Knowledge

Townsend discharge

Source đź“ť

959: 1502:
occur in the gas space immediately round the anode which are numerically proportional to the number of original ionising events. Increasing the voltage further increases the number of avalanches until the Geiger region is reached where the full volume of the fill gas around the anodes ionised, and all proportional energy information is lost. Beyond the Geiger region, the gas is in continuous discharge owing to the high electric field strength.
31: 1459: 717: 141:. If the electric field is strong enough, then the free electron can gain sufficient velocity (energy) to liberate another electron when it next collides with a molecule. The two free electrons then travel towards the anode and gain sufficient energy from the electric field to cause further impact ionisations, and so on. This process is effectively a 437: 1083: 1498:
enters this region and creates a localised avalanche that is independent of those from other ion pairs, but which can still provide a multiplication effect. In this way, spectroscopic information on the energy of the incident radiation is available by the magnitude of the output pulse from each initiating event.
1015:
A Townsend discharge can be sustained only over a limited range of gas pressure and electric field intensity. The accompanying plot shows the variation of voltage drop and the different operating regions for a gas-filled tube with a constant pressure, but a varying current between its electrodes. The
1046:
In the presence of a magnetic field, the likelihood of an avalanche discharge occurring under high vacuum conditions can be increased through a phenomenon known as Penning discharge. This occurs when electrons can become trapped within a potential minimum, thereby extending the mean free path of the
773:, is a term used where secondary ionisation occurs because the primary ionisation electrons gain sufficient energy from the accelerating electric field, or from the original ionising particle. The coefficient gives the number of secondary electrons produced by primary electron per unit path length. 1501:
The accompanying plot shows the variation of ionisation current for a co-axial cylinder system. In the ion chamber region, there are no avalanches and the applied voltage only serves to move the ions towards the electrodes to prevent re-combination. In the proportional region, localised avalanches
1497:
In the case of proportional counters, multiple creation of ion pairs occurs in the "ion drift" region near the cathode. The electric field and chamber geometries are selected so that an "avalanche region" is created in the immediate proximity of the anode. A negative ion drifting towards the anode
1493:
In the case of a GM tube, the high electric field strength is sufficient to cause complete ionisation of the fill gas surrounding the anode from the initial creation of just one ion pair. The GM tube output carries information that the event has occurred, but no information about the energy of the
208:
Townsend observed currents varying exponentially over ten or more orders of magnitude with a constant applied voltage when the distance between the plates was varied. He also discovered that gas pressure influenced conduction: he was able to generate ions in gases at low pressure with a much lower
121:
of the electron must allow free electrons to acquire an energy level (velocity) that can cause impact ionisation. If the electric field is too small, then the electrons do not acquire enough energy. If the mean free path is too short, then the electron gives up its acquired energy in a series of
949:
These two formulas may be thought as describing limiting cases of the effective behavior of the process: either can be used to describe the same experimental results. Other formulas describing various intermediate behaviors are found in the literature, particularly in reference 1 and citations
712:{\displaystyle {\frac {I}{I_{0}}}={\frac {(\alpha _{n}-\alpha _{p})e^{(\alpha _{n}-\alpha _{p})d}}{\alpha _{n}-\alpha _{p}e^{(\alpha _{n}-\alpha _{p})d}}}\qquad \Longrightarrow \qquad {\frac {I}{I_{0}}}\cong {\frac {e^{\alpha _{n}d}}{1-({\alpha _{p}/\alpha _{n}})e^{\alpha _{n}d}}}} 944: 1241: 145:
that generates free electrons. Initially, the number of collisions grows exponentially, but eventually, this relationship will break down—the limit to the multiplication in an electron avalanche is known as the
1038:
Discharges in vacuum require vaporization and ionisation of electrode atoms. An arc can be initiated without a preliminary Townsend discharge, for example when electrodes touch and are then separated.
274: 760: 38:. The original ionisation event liberates one electron, and each subsequent collision liberates a further electron, so two electrons emerge from each collision to sustain the avalanche. 829: 125:
The avalanche mechanism is shown in the accompanying diagram. The electric field is applied across a gaseous medium; initial ions are created with ionising radiation (for example,
1274: 1131: 1310: 821: 413: 1397: 1370: 1343: 209:
voltage than that required to generate a spark. This observation overturned conventional thinking about the amount of current that an irradiated gas could conduct.
70:, collide with gas molecules, and consequently free additional electrons. Those electrons are in turn accelerated and free additional electrons. The result is an 1019:
At higher pressures, discharges occur more rapidly than the calculated time for ions to traverse the gap between electrodes, and the streamer theory of
201:
between the plates. However, this current showed an exponential increase as the plate gaps became small, leading to the conclusion that the gas
122:
non-ionising collisions. If the mean free path is too long, then the electron reaches the anode before colliding with another molecule.
1423:
of breakdown voltages is high, the above formula can only give a qualitative indication of what the real frequency of oscillation is.
1490:
in the gaseous medium to produce ion pairs, but different use is made by each detector type of the resultant avalanche effects.
1759: 962:
Voltage-current characteristics of electrical discharge in neon at 1 torr, with two planar electrodes separated by 50 cm.
1680: 380:
increases; two different effects were considered in order to better model the discharge: positive ions and cathode emission.
218: 169:
Townsend's early experimental apparatus consisted of planar parallel plates forming two sides of a chamber filled with a
1462:
Plot of variation of ionisation current against applied voltage for a co-axial wire cylinder gaseous radiation detector.
1098: 17: 1575: 1110: 823:, the average number of electrons released from a surface by an incident positive ion, according to the formula 939:{\displaystyle {\frac {I}{I_{0}}}={\frac {e^{\alpha _{n}d}}{1-{\epsilon _{i}}\left(e^{\alpha _{n}d}-1\right)}}.} 725: 1125:
whose schematic is shown in the picture on the right. The sawtooth shaped oscillation generated has frequency
142: 1521: 1467: 388:
Townsend put forward the hypothesis that positive ions also produce ion pairs, introducing a coefficient
158: 1236:{\displaystyle f\cong {\frac {1}{R_{1}C_{1}\ln {\frac {V_{1}-V_{\text{GLOW}}}{V_{1}-V_{\text{TWN}}}}}},} 1774: 1016:
Townsend avalanche phenomena occurs on the sloping plateau B-D. Beyond D, the ionisation is sustained.
1252: 312: 1471: 1288: 1691: 799: 1526: 391: 1420: 958: 1672: 1404: 1122: 1087: 75: 1636:
Principles of Electron Tubes: Including Grid-controlled Tubes, Microwave Tubes and Gas Tubes
161:, magnitudes of currents flowing during this process can range from about 10 to 10 amperes. 1703: 1536: 1475: 1375: 1348: 1321: 781:
Townsend, Holst and Oosterhuis also put forward an alternative hypothesis, considering the
190: 94: 8: 1764: 1511: 1431: 90: 71: 1744: 1715: 1707: 1603: 1719: 1647: 1634: 1479: 1102: 1032: 782: 79: 1589:
by A. von Engel. Biographical Memoirs of Fellows of the Royal Society. 1957 3, 256-272
1779: 1723: 1676: 1571: 1313: 1280: 1072: 361: 93:, who discovered the fundamental ionisation mechanism by his work circa 1897 at the 1711: 1531: 1446:: achievable current is typically 10~20 times greater respect to that generated by 1028: 976: 965: 43: 205:
were multiplying as they moved between the plates due to the high electric field.
1623: 1541: 1113:
region of the S-type. The negative resistance can be used to generate electrical
1068: 1020: 212:
The experimental data obtained from his experiments are described by the formula
154: 35: 1277: 1094: 1065: 981: 369: 198: 178: 174: 118: 114: 83: 67: 1415:
Since temperature and time stability of the characteristics of gas diodes and
153:
The Townsend avalanche can have a large range of current densities. In common
1769: 1753: 1619: 1439: 1082: 1024: 298: 147: 197:, and he found that the current flowing through the chamber depended on the 1516: 1027:, Meek, and Loeb is applicable. In highly non-uniform electric fields, the 992: 1400: 1114: 1615: 126: 106: 55: 1487: 1447: 1442:
charge generated by incident radiation (visible light or not) on the
1435: 1416: 1106: 30: 1458: 1118: 383: 353: 129:). An original ionisation event produces an ion pair; the positive 63: 1466:
Townsend avalanche discharges are fundamental to the operation of
34:
Avalanche effect in gas subject to ionising radiation between two
1443: 1408: 1061: 786: 428: 376:
rises faster than predicted by the above formula as the distance
339: 302: 182: 134: 1610:. Handbuch der Physik (Encyclopedia of Physics). Vol. XXI. 334:
pairs generated per unit length (e.g. meter) by a negative ion (
1611: 1060:
The starting of Townsend discharge sets the upper limit to the
420: 360:
The almost-constant voltage between the plates is equal to the
424: 343: 335: 194: 186: 138: 1482:
or measuring its energy. The incident radiation will ionise
776: 181:
was connected between the plates, the lower plate being the
1483: 790: 202: 416: 372:
regime. Subsequent experiments revealed that the current
331: 170: 130: 110: 59: 1632:
Gewartowski, James W.; Watson, Hugh Alexander (1965).
269:{\displaystyle {\frac {I}{I_{0}}}=e^{\alpha _{n}d},\,} 82:
requires a source of free electrons and a significant
1378: 1351: 1324: 1291: 1255: 1134: 832: 802: 728: 440: 394: 221: 105:
The avalanche occurs in a gaseous medium that can be
1071:
can withstand. This limit is the Townsend discharge
189:. He forced the cathode to emit electrons using the 419:
pairs generated per unit length by a positive ion (
1745:Simulation showing electron paths during avalanche 1692:"Penning discharge in the KATRIN pre-spectrometer" 1666: 1646: 1633: 1391: 1364: 1337: 1304: 1268: 1235: 938: 815: 754: 711: 407: 268: 1631: 1093:The occurrence of Townsend discharge, leading to 364:needed to create a self-sustaining avalanche: it 1751: 1001:; ionisation occurs, current below 10 microamps. 384:Gas ionisation caused by motion of positive ions 137:while the free electron accelerates towards the 1453: 1434:during Townsend discharge is naturally used in 86:; without both, the phenomenon does not occur. 1667:Kuffel, E.; Zaengl, W. S.; Kuffel, J. (2004). 1602:Little, P. F. (1956). "Secondary effects". In 1035:for further description of these mechanisms. 1570:, third edition 2000. John Wiley and sons, 762:, in very good agreement with experiments. 164: 1661:Glow- and Arc-discharge tubes and circuits 755:{\displaystyle \alpha _{p}\ll \alpha _{n}} 1689: 1649:Theory and applications of electron tubes 777:Cathode emission caused by impact of ions 265: 1457: 1081: 957: 795:Townsend's second ionisation coefficient 29: 1562: 1560: 1558: 1556: 989:I: unstable region: glow-arc transition 14: 1752: 1601: 1055: 1011:; large amounts of radiation produced. 100: 89:The Townsend discharge is named after 1669:High Voltage Engineering Fundamentals 1653:(2nd ed.). McGraw-Hill Co., Inc. 1644: 1587:John Sealy Edward Townsend. 1868-1957 328:first Townsend ionisation coefficient 286:is the current flowing in the device, 74:that permits significantly increased 1608:Electron-emission • Gas discharges I 1553: 1041: 973:D: self-sustained Townsend discharge 771:first Townsend avalanche coefficient 1568:Radiation Detection and Measurement 431:. The following formula was found: 24: 25: 1791: 1738: 1690:Frankle, FM, et al. (2014). 1426: 1086:Neon lamp/cold-cathode gas diode 1006:; the plasma emits a faint glow. 356:between the plates of the device. 1111:negative differential resistance 1269:{\displaystyle V_{\text{GLOW}}} 1050: 971:C: avalanche Townsend discharge 603: 599: 1657:Electrical conduction in gases 1580: 1305:{\displaystyle V_{\text{TWN}}} 1099:current–voltage characteristic 683: 653: 600: 588: 562: 524: 498: 490: 464: 13: 1: 1760:Electrical discharge in gases 1716:10.1088/1748-0221/9/07/P07028 1595: 953: 816:{\displaystyle \epsilon _{i}} 789:caused by impact of positive 368:when the current reaches the 1468:gaseous ionisation detectors 1454:Ionising radiation detectors 1109:in such a way that it has a 159:gaseous ionisation detectors 7: 1640:. D. Van Nostrand Co., Inc. 1522:Electric discharge in gases 1505: 1031:process is applicable. See 408:{\displaystyle \alpha _{p}} 330:, expressing the number of 10: 1796: 1696:Journal of Instrumentation 1645:Reich, Herbert J. (1944). 1312:is the Townsend discharge 1004:F-H region: glow discharge 999:A-D region: dark discharge 987:H: abnormal glow discharge 767:first Townsend coefficient 1009:I-K region: arc discharge 415:expressing the number of 301:current generated at the 1547: 1432:Avalanche multiplication 985:G: normal glow discharge 185:while the other was the 165:Quantitative description 157:, such as those used as 133:accelerates towards the 72:avalanche multiplication 1527:Field electron emission 193:by irradiating it with 1463: 1421:statistical dispersion 1393: 1366: 1339: 1306: 1270: 1237: 1097:breakdown, shapes the 1090: 1012: 940: 817: 756: 713: 409: 270: 66:are accelerated by an 39: 27:Gas ionization process 1673:Butterworth-Heinemann 1461: 1419:is low, and also the 1399:are respectively the 1394: 1392:{\displaystyle V_{1}} 1367: 1365:{\displaystyle R_{1}} 1340: 1338:{\displaystyle C_{1}} 1307: 1271: 1238: 1123:relaxation oscillator 1088:relaxation oscillator 1085: 969:B: saturation current 961: 941: 818: 769:( α ), also known as 757: 714: 410: 271: 78:through the gas. The 76:electrical conduction 33: 1537:Photoelectric effect 1494:incident radiation. 1478:in either detecting 1476:proportional counter 1376: 1349: 1322: 1289: 1253: 1132: 975:E: unstable region: 964:A: random pulses by 830: 800: 785:of electrons by the 726: 438: 392: 219: 191:photoelectric effect 95:Cavendish Laboratory 1708:2014JInst...9P7028F 1626:. pp. 574–663. 1512:Avalanche breakdown 1056:Gas-discharge tubes 101:General description 91:John Sealy Townsend 1659:" and chapter 12 " 1480:ionising radiation 1472:Geiger–MĂĽller tube 1464: 1389: 1362: 1335: 1302: 1266: 1233: 1103:gas-discharge tube 1091: 1033:Electron avalanche 1013: 936: 813: 793:. This introduced 783:augmented emission 752: 709: 405: 266: 52:Townsend avalanche 48:Townsend discharge 40: 18:Townsend avalanche 1775:Molecular physics 1682:978-0-7506-3634-6 1604:FlĂĽgge, Siegfried 1448:vacuum phototubes 1438:, to amplify the 1314:breakdown voltage 1299: 1281:breakdown voltage 1263: 1228: 1225: 1221: 1196: 1073:breakdown voltage 1042:Penning discharge 931: 848: 707: 619: 597: 456: 362:breakdown voltage 237: 16:(Redirected from 1787: 1734: 1732: 1730: 1686: 1671:(2nd ed.). 1654: 1652: 1641: 1639: 1627: 1590: 1584: 1578: 1564: 1398: 1396: 1395: 1390: 1388: 1387: 1371: 1369: 1368: 1363: 1361: 1360: 1344: 1342: 1341: 1336: 1334: 1333: 1311: 1309: 1308: 1303: 1301: 1300: 1297: 1275: 1273: 1272: 1267: 1265: 1264: 1261: 1242: 1240: 1239: 1234: 1229: 1227: 1226: 1224: 1223: 1222: 1219: 1210: 1209: 1199: 1198: 1197: 1194: 1185: 1184: 1174: 1166: 1165: 1156: 1155: 1142: 1077:ignition voltage 1062:blocking voltage 1029:corona discharge 977:corona discharge 966:cosmic radiation 945: 943: 942: 937: 932: 930: 929: 925: 918: 917: 913: 912: 893: 892: 891: 874: 873: 869: 868: 854: 849: 847: 846: 834: 822: 820: 819: 814: 812: 811: 761: 759: 758: 753: 751: 750: 738: 737: 718: 716: 715: 710: 708: 706: 705: 704: 700: 699: 682: 681: 680: 671: 666: 665: 645: 644: 640: 639: 625: 620: 618: 617: 605: 598: 596: 595: 594: 587: 586: 574: 573: 556: 555: 543: 542: 532: 531: 530: 523: 522: 510: 509: 489: 488: 476: 475: 462: 457: 455: 454: 442: 414: 412: 411: 406: 404: 403: 379: 375: 351: 325: 310: 296: 285: 275: 273: 272: 267: 261: 260: 256: 255: 238: 236: 235: 223: 155:gas-filled tubes 44:electromagnetism 36:plate electrodes 21: 1795: 1794: 1790: 1789: 1788: 1786: 1785: 1784: 1750: 1749: 1741: 1728: 1726: 1683: 1624:Springer-Verlag 1598: 1593: 1585: 1581: 1566:Glenn F Knoll. 1565: 1554: 1550: 1542:Townsend (unit) 1508: 1456: 1429: 1411:of the circuit. 1407:and the supply 1383: 1379: 1377: 1374: 1373: 1356: 1352: 1350: 1347: 1346: 1329: 1325: 1323: 1320: 1319: 1296: 1292: 1290: 1287: 1286: 1260: 1256: 1254: 1251: 1250: 1218: 1214: 1205: 1201: 1200: 1193: 1189: 1180: 1176: 1175: 1173: 1161: 1157: 1151: 1147: 1146: 1141: 1133: 1130: 1129: 1069:gas-filled tube 1058: 1053: 1044: 1021:spark discharge 1007: 1002: 997: 996:K: electric arc 995: 990: 988: 986: 984: 979: 974: 972: 970: 968: 963: 956: 908: 904: 903: 899: 898: 894: 887: 883: 882: 875: 864: 860: 859: 855: 853: 842: 838: 833: 831: 828: 827: 807: 803: 801: 798: 797: 779: 746: 742: 733: 729: 727: 724: 723: 695: 691: 690: 686: 676: 672: 667: 661: 657: 656: 646: 635: 631: 630: 626: 624: 613: 609: 604: 582: 578: 569: 565: 561: 557: 551: 547: 538: 534: 533: 518: 514: 505: 501: 497: 493: 484: 480: 471: 467: 463: 461: 450: 446: 441: 439: 436: 435: 399: 395: 393: 390: 389: 386: 377: 373: 349: 324: 318: 308: 295: 289: 283: 251: 247: 246: 242: 231: 227: 222: 220: 217: 216: 167: 103: 28: 23: 22: 15: 12: 11: 5: 1793: 1783: 1782: 1777: 1772: 1767: 1762: 1748: 1747: 1740: 1739:External links 1737: 1736: 1735: 1687: 1681: 1664: 1642: 1629: 1597: 1594: 1592: 1591: 1579: 1551: 1549: 1546: 1545: 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1507: 1504: 1455: 1452: 1436:gas phototubes 1428: 1427:Gas phototubes 1425: 1413: 1412: 1386: 1382: 1359: 1355: 1332: 1328: 1317: 1295: 1284: 1278:glow discharge 1259: 1244: 1243: 1232: 1217: 1213: 1208: 1204: 1192: 1188: 1183: 1179: 1172: 1169: 1164: 1160: 1154: 1150: 1145: 1140: 1137: 1095:glow discharge 1075:, also called 1066:glow discharge 1057: 1054: 1052: 1049: 1043: 1040: 982:glow discharge 980:F: sub-normal 955: 952: 947: 946: 935: 928: 924: 921: 916: 911: 907: 902: 897: 890: 886: 881: 878: 872: 867: 863: 858: 852: 845: 841: 837: 810: 806: 778: 775: 749: 745: 741: 736: 732: 720: 719: 703: 698: 694: 689: 685: 679: 675: 670: 664: 660: 655: 652: 649: 643: 638: 634: 629: 623: 616: 612: 608: 602: 593: 590: 585: 581: 577: 572: 568: 564: 560: 554: 550: 546: 541: 537: 529: 526: 521: 517: 513: 508: 504: 500: 496: 492: 487: 483: 479: 474: 470: 466: 460: 453: 449: 445: 423:) moving from 402: 398: 385: 382: 370:glow discharge 358: 357: 347: 338:) moving from 320: 316: 313:Euler's number 306: 293: 287: 277: 276: 264: 259: 254: 250: 245: 241: 234: 230: 226: 199:electric field 179:voltage source 175:direct-current 166: 163: 143:chain reaction 119:mean free path 115:electric field 102: 99: 84:electric field 68:electric field 26: 9: 6: 4: 3: 2: 1792: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1757: 1755: 1746: 1743: 1742: 1725: 1721: 1717: 1713: 1709: 1705: 1702:(7): P07028. 1701: 1697: 1693: 1688: 1684: 1678: 1674: 1670: 1665: 1662: 1658: 1651: 1650: 1643: 1638: 1637: 1630: 1625: 1621: 1620:New York City 1617: 1613: 1609: 1605: 1600: 1599: 1588: 1583: 1577: 1576:0-471-07338-5 1573: 1569: 1563: 1561: 1559: 1557: 1552: 1543: 1540: 1538: 1535: 1533: 1532:Paschen's law 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1509: 1503: 1499: 1495: 1491: 1489: 1485: 1481: 1477: 1473: 1469: 1460: 1451: 1449: 1445: 1441: 1440:photoelectric 1437: 1433: 1424: 1422: 1418: 1410: 1406: 1402: 1384: 1380: 1357: 1353: 1330: 1326: 1318: 1315: 1293: 1285: 1282: 1279: 1257: 1249: 1248: 1247: 1230: 1215: 1211: 1206: 1202: 1190: 1186: 1181: 1177: 1170: 1167: 1162: 1158: 1152: 1148: 1143: 1138: 1135: 1128: 1127: 1126: 1124: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1089: 1084: 1080: 1079:of the tube. 1078: 1074: 1070: 1067: 1063: 1048: 1039: 1036: 1034: 1030: 1026: 1022: 1017: 1010: 1005: 1000: 994: 983: 978: 967: 960: 951: 933: 926: 922: 919: 914: 909: 905: 900: 895: 888: 884: 879: 876: 870: 865: 861: 856: 850: 843: 839: 835: 826: 825: 824: 808: 804: 796: 792: 788: 784: 774: 772: 768: 763: 747: 743: 739: 734: 730: 701: 696: 692: 687: 677: 673: 668: 662: 658: 650: 647: 641: 636: 632: 627: 621: 614: 610: 606: 591: 583: 579: 575: 570: 566: 558: 552: 548: 544: 539: 535: 527: 519: 515: 511: 506: 502: 494: 485: 481: 477: 472: 468: 458: 451: 447: 443: 434: 433: 432: 430: 426: 422: 418: 400: 396: 381: 371: 367: 363: 355: 348: 345: 341: 337: 333: 329: 323: 317: 314: 307: 304: 300: 299:photoelectric 292: 288: 282: 281: 280: 262: 257: 252: 248: 243: 239: 232: 228: 224: 215: 214: 213: 210: 206: 204: 200: 196: 192: 188: 184: 180: 176: 172: 162: 160: 156: 151: 149: 148:Raether limit 144: 140: 136: 132: 128: 123: 120: 116: 112: 108: 98: 97:, Cambridge. 96: 92: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 37: 32: 19: 1727:. Retrieved 1699: 1695: 1668: 1660: 1656: 1655:Chapter 11 " 1648: 1635: 1607: 1586: 1582: 1567: 1517:Electric arc 1500: 1496: 1492: 1470:such as the 1465: 1430: 1414: 1245: 1121:, as in the 1115:oscillations 1092: 1076: 1059: 1051:Applications 1047:electrons . 1045: 1037: 1018: 1014: 1008: 1003: 998: 993:electric arc 948: 794: 780: 770: 766: 764: 721: 387: 365: 359: 327: 321: 290: 278: 211: 207: 168: 152: 124: 104: 88: 58:process for 51: 47: 41: 1401:capacitance 127:cosmic rays 62:where free 1765:Ionization 1754:Categories 1616:Heidelberg 1596:References 1417:neon lamps 1405:resistance 1105:such as a 954:Conditions 56:ionisation 1724:123114495 1488:molecules 1212:− 1187:− 1171:⁡ 1139:≅ 1119:waveforms 1107:neon lamp 950:therein. 920:− 906:α 885:ϵ 880:− 862:α 805:ϵ 744:α 740:≪ 731:α 693:α 674:α 659:α 651:− 633:α 622:≅ 601:⟹ 580:α 576:− 567:α 549:α 545:− 536:α 516:α 512:− 503:α 482:α 478:− 469:α 397:α 366:decreases 249:α 109:(such as 80:discharge 64:electrons 1780:Electron 1506:See also 1474:and the 354:distance 305:surface, 117:and the 113:). The 1729:Dec 15, 1704:Bibcode 1606:(ed.). 1444:cathode 1409:voltage 1276:is the 1025:Raether 787:cathode 429:cathode 352:is the 340:cathode 326:is the 303:cathode 297:is the 183:cathode 135:cathode 107:ionised 1722:  1679:  1612:Berlin 1574:  1403:, the 1246:where 722:since 421:cation 319:α 279:where 195:x-rays 54:is an 46:, the 1720:S2CID 1548:Notes 1484:atoms 1316:, and 1101:of a 425:anode 346:, and 344:anode 336:anion 187:anode 177:high- 139:anode 60:gases 1770:Ions 1731:2021 1677:ISBN 1572:ISBN 1372:and 1262:GLOW 1195:GLOW 1117:and 791:ions 765:The 203:ions 173:. A 150:. 1712:doi 1486:or 1298:TWN 1220:TWN 1023:of 991:J: 427:to 417:ion 342:to 332:ion 311:is 171:gas 131:ion 111:air 50:or 42:In 1756:: 1718:. 1710:. 1698:. 1694:. 1675:. 1663:". 1622:: 1555:^ 1450:. 1345:, 1168:ln 1064:a 1733:. 1714:: 1706:: 1700:9 1685:. 1628:. 1618:- 1614:- 1385:1 1381:V 1358:1 1354:R 1331:1 1327:C 1294:V 1283:, 1258:V 1231:, 1216:V 1207:1 1203:V 1191:V 1182:1 1178:V 1163:1 1159:C 1153:1 1149:R 1144:1 1136:f 934:. 927:) 923:1 915:d 910:n 901:e 896:( 889:i 877:1 871:d 866:n 857:e 851:= 844:0 840:I 836:I 809:i 748:n 735:p 702:d 697:n 688:e 684:) 678:n 669:/ 663:p 654:( 648:1 642:d 637:n 628:e 615:0 611:I 607:I 592:d 589:) 584:p 571:n 563:( 559:e 553:p 540:n 528:d 525:) 520:p 507:n 499:( 495:e 491:) 486:p 473:n 465:( 459:= 452:0 448:I 444:I 401:p 378:d 374:I 350:d 322:n 315:, 309:e 294:0 291:I 284:I 263:, 258:d 253:n 244:e 240:= 233:0 229:I 225:I 20:)

Index

Townsend avalanche

plate electrodes
electromagnetism
ionisation
gases
electrons
electric field
avalanche multiplication
electrical conduction
discharge
electric field
John Sealy Townsend
Cavendish Laboratory
ionised
air
electric field
mean free path
cosmic rays
ion
cathode
anode
chain reaction
Raether limit
gas-filled tubes
gaseous ionisation detectors
gas
direct-current
voltage source
cathode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑