Knowledge

Cryovolcano

Source 📝

254: 1343: 1390: 1327: 1214:, may also represent another site of cryovolcanism on Pluto. An estimated 300 kilometres (190 miles) of Virgil Fossae's western section was likely the site of a fountaining eruption, spewing and dispersing material that covered surrounding terrain up to 200 kilometres (120 miles) away. More recently, in 2021 Hekla Cavus was hypothesized to have formed from a cryovolcanic collapse by a team of two researchers, C. J. Ahrens and V. F. Chevrier. Similarly, in 2021 a team of planetary scientists led by A. Emran proposed that Kiladze, a feature that is formally classified as an impact crater, is actually a cryovolcanic caldera complex. 1359: 1426: 1165: 1374: 1134:
represent Triton's youngest cryovolcanic features. The regions around Ruach and Tuonela feature additional smaller subcircular depressions, some of which are partially bordered by walls and scarps. In 2014, a team of planetary scientists interpreted these depressions as diapirs, caldera collapse structures, or impact craters filled in by cryolava flows. To the south of Tuonela Planitia, isolated conical hills with central depressions have been noted as resembling terrestrial cinder cones, possibly pointing to cryovolcanic activity beyond Tuonela Planitia's plains.
818: 31: 968: 1308: 1438: 431: 4726: 1207:, two large mountains with central depressions which have led to hypotheses that they may be cryovolcanoes with peak calderas. The two mountains are surrounded by an unusual region of hilly "hummocky terrain", and the lack of distinct flow features have led to an alternative proposal in 2022 by a team of researchers that the structures may instead be formed by sequential dome-forming eruptions, with nearby Coleman Mons being a smaller independent dome. 4750: 911:(HST) in December 2012 detected columns of excess water vapor up to 200 kilometres (120 miles) high, hinting at the existence of weak, possibly cryovolcanic plumes. The plumes were observed again by the HST in 2014. However, as these are distant observations, the plumes have yet to be definitively confirmed as eruptions. Recent analyses of some Europan surface features have proposed cryovolcanic origins for them as well. In 2011, Europa's 4497: 1402: 4762: 1414: 4738: 1027:, an ovular depression that resembles a caldera. Several round lakes and depressions in Titan's polar regions show structural evidence of an explosive origin, including overlapping depressions, raised rims (or "ramparts"), and islands or mountains within depression rim. These characteristics led to a 2020 hypothesis by planetary scientists Charles A. Wood and Jani Radebaugh that they form from either 1146:; however, more recent analysis in 2022 disfavors the solid greenhouse effect model. An alternative cryovolcanic model, first proposed by R. L. Kirk and collaborators in 1995, instead suggests that the plumes represent explosive cryovolcanic eruption columns—an interpretation supported by the estimated observed output rate of ~200 kg/s, comparable to the output of Enceladus's plumes. 915:, where the crust appears especially disrupted, was interpreted by a team of researchers as the site of very shallow cryomagma lakes. As these subsurface lakes melt and refreeze, they fracture Europa's crust into small blocks, creating the chaos terrain. Later, in 2023, a field of cryovolcanic cones was tentatively identified near the western edge of 874:(formerly Ysolos Mons), two prominent isolated mountains which are likely young cryovolcanic domes. It is expected that cryovolcanic domes eventually subside after becoming extinct due to viscous relaxation, flattening them. This would explain why Ahuna Mons appears to be the most prominent construct on Ceres, despite its geologically young age. 3753:
Hofgartner, Jason D.; Birch, Samuel P. D.; Castillo, Julie; Grundy, Will M.; Hansen, Candice J.; Hayes, Alexander G.; Howett, Carly J. A.; Hurford, Terry A.; Martin, Emily S.; Mitchell, Karl L.; Nordheim, Tom A.; Poston, Michael J.; Prockter, Louise M.; Quick, Lynnae C.; Schenk, Paul (15 March 2022).
373:
Internal pressurization: the progressive pressurization of a subsurface ocean as it cools and freezes may be enough to force cryomagma to ascend to the surface due to water's unusual property of expanding upon freezing. Internal ocean pressurization does not necessitate the addition of other volatile
322:
Effusive cryovolcanism takes place with little to no explosive activity and is instead characterized by widespread cryolava flows which cover the pre-existing landscape. In contrast to explosive cryovolcanism, no instances of active effusive cryovolcanism have been observed. Structures constructed by
107:
as well. As such, cryovolcanism is important to the geological histories of these worlds, constructing landforms or even resurfacing entire regions. Despite this, only a few eruptions have ever been observed in the Solar System. The sporadic nature of direct observations means that the true number of
415:
does. As the ice convects, warmer ice becomes buoyant relative to surrounding colder ice, rising towards the surface. The convection can be aided by local density differences in the ice due to an uneven distribution of impurities in the ice shell. If the warm ice intrudes on particularly impure ice
383:
In addition to overcoming the density barrier, cryomagma also requires a way to reach the surface in order to erupt. Fractures in particular, either the result of global or localized stress in the icy crust, providing potential eruptive conduits for cryomagma to exploit. Such stresses may come from
1117:
spacecraft on 25 August 1989, revealing Triton's surface features up close for the first time. With an estimated average surface age of 10–100 million years old, with some regions possibly being only a few million years old, Triton is one of the most geologically active worlds in the Solar System.
490:
Reservoirs of cryomagma can hypothetically form within the shell of an icy world as well, either from direct localized melting or the injection of cryomagma from a deeper subsurface ocean. A convective layer in the ice shell can generate warm plumes that spread laterally at the base of the brittle
357:
Compositional buoyancy: the introduction of impurities such as ammonia, which is expected to be common in the outer Solar System, can help lower the densities of cryomagmas. However, the presence of impurities in cryomagma alone is unlikely to succeed in overcoming the density barrier. Conversely,
1141:
deposited by wind-blown plumes. At least two plumes, the Mahilani Plume and the Hili Plume, have been observed, with the two plumes reaching 8 kilometres (5.0 miles) in altitude. These plumes have been hypothesized by numerous teams of researchers in the early 1990s to be driven by the buildup of
1279:
spacecraft, indicate that icy worlds are capable of sustaining enough heat on their own to drive cryovolcanic activity. In contrast to the icy satellites of the giant planets, where many benefit from extensive tidal heating from their parent planets, the dwarf planets must rely on heat generated
1133:
form a northern pair, and Sipapu Planitia and Ryugu Planitia form a southern pair. The walled plains are characterized by crenulated, irregularly-shaped cliffs that enclose a flat, young plain with a single group of pits and mounds. The walled plains are likely young cryovolcanic lakes and may
1069:
is located near Miranda's south pole and is estimated to be less than 1 billion years old, and broad similarities between Miranda's coronae and Enceladus's south polar region have been noted. These characteristics have led to several teams of researchers to propose a cryovolcanic origin of the
88:. Cryovolcanic eruptions can take many forms, such as fissure and curtain eruptions, effusive cryolava flows, and large-scale resurfacing, and can vary greatly in output volumes. Immediately after an eruption, cryolava quickly freezes, constructing geological features and altering the surface. 802:
Although there are broad parallels between cryovolcanism and terrestrial (or "silicate") volcanism, such as the construction of domes and shields, the definitive identification of cryovolcanic structures is difficult. The unusual properties of water-dominated cryolava, for example, means that
365:
Gas-driven buoyancy: besides affecting density, the inclusion of more volatile impurities may help decrease the density of cryomagma as it ascends by the formation of gas bubbles. The volatile compounds are fully dissolved in the cryomagma when pressurized deep beneath the surface. Should the
1832:
Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; White, O. L.; Singer, K.; Nimmo, F.; Thomason, C.; Lauer, T. R.; Robbins, S.; Umurhan, O. M.; Grundy, W. M.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Smith, K. E.; Olkin, C. (November 2018). "Basins, fractures and
991:
Other regions centered on Enceladus's leading and trailing hemispheres—the hemispheres that "face" towards or against the direction of Enceladus's orbit—exhibit similar terrain to that of the Tiger Stripes, possibly indicating that Enceladus has experienced discrete periods of heightened
3996:; Cook, Jason C.; Bertrand, Tanguy; Stern, S. Alan; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Spencer, John R.; Lisse, Carey M.; Binzel, Richard P.; Earle, Alissa M.; Robbins, Stuart J.; Gladstone, G. Randall; Cartwright, Richard J.; Ennico, Kimberly (15 September 2019). 495:, where friction may be able to generate enough heat to melt ice; and impact events that violently heat the impact site. Intrusive models, meanwhile, propose that a deeper subsurface ocean directly injects cryomagma through fractures in the ice shell, much like volcanic 265:, is expected to be driven by the exsolvation of dissolved volatile gasses as pressure drops whilst cryomagma ascends, much like the mechanisms of explosive volcanism on terrestrial planets. Whereas terrestrial explosive volcanism is primarily driven by dissolved water ( 1198:
on 14 July 2015, observing their surface features in detail for the first time. The surface of Pluto varies dramatically in age, and several regions appear to display relatively recent cryovolcanic activity. The most reliably identified cryovolcanic structures are
577:'s icy moons, where salt-dominated impurities are likely more common. Besides affecting density and viscosity, the inclusions of impurities—particularly salts and especially ammonia—can encourage melting by significantly lowering the melting point of cryomagma. 3991:
Cruikshank, Dale P.; Umurhan, Orkan M.; Beyer, Ross A.; Schmitt, Bernard; Keane, James T.; Runyon, Kirby D.; Atri, Dimitra; White, Oliver L.; Matsuyama, Isamu; Moore, Jeffrey M.; McKinnon, William B.; Sandford, Scott A.; Singer, Kelsi N.; Grundy, William M.;
1221:
represents the youngest surface on Pluto, it is not a cryovolcanic structure; Sputnik Planitia continuously resurfaces itself with the convective overturning of glacial nitrogen ice, fuelled by Pluto's internal heat and sublimation into Pluto's atmosphere.
1014:
which permanently obscures visible observations of its surface features, making the definitive identification of cryovolcanic structures especially difficult. Titan has an extensive subsurface ocean, encouraging searches for evidence of cryovolcanism. From
1264:. The detection indicated that all three have experienced internal melting and planetary differentiation in their pasts. The presence of volatiles on their surfaces indicates that cryovolcanism may be resupplying methane. JWST spectral observations of 339:
For cryovolcanism to occur, three conditions must be met: an ample supply of cryomagma must be produced in a reservoir, the cryomagma must have a force driving ascent, and conduits need to be formed to the surface where cryomagma is able to ascend.
352:
where liquid magma is less dense than solid rock. As such, cryomagma must overcome this in order to erupt onto a body's surface. A variety of hypotheses have been proposed by planetary scientists to explain how cryomagma erupts onto the surface:
891:
receives enough tidal heating from Jupiter to sustain a global liquid water ocean. Its surface is exceedingly young, at roughly 60 to 90 million years old. Its most striking features, a dense web of linear cracks and faults termed
862:, indicates that the upwelling occurred recently or is currently ongoing. That brine exists in Ceres's interior implies that salts played a role in keeping Ceres's subsurface ocean liquid, potentially even to the present day. 439:
Cryovolcanism implies the generation of large volumes of molten fluid in the interiors of icy worlds. A primary reservoir of such fluid are subsurface oceans. Subsurface oceans are widespread amongst the icy satellites of the
434:
A diagram of Europa's probable internal structure, with a hot core tidally heated by Jupiter's influence. A global subsurface ocean exists underneath Europa's surface, with localized melting possibly occurring within its ice
946:
imagery. The paterae have been hypothesized by several teams of planetary scientists as caldera-like cryovolcanic vents. However, conclusive evidence for a cryovolcanic origin of these structures remains elusive in imagery.
854:. These bright spots are composed primarily of various salts, and are hypothesized to have formed from impact-induced upwelling of subsurface material that erupt brine to Ceres's surface. The distribution of hydrated 2197:
Glein, Christopher R.; Grundy, William M.; Lunine, Jonathan I.; Wong, Ian; Protopapa, Silvia; Pinilla-Alonso, Noemi; Stansberry, John A.; Holler, Bryan J.; Cook, Jason C.; Souza-Feliciano, Ana Carolina (April 2024).
2267:
Emery, J. P.; Wong, I.; Brunetto, R.; Cook, R.; Pinilla-Alonso, N.; Stansberry, J. A.; et al. (March 2024). "A Tale of 3 Dwarf Planets: Ices and Organics on Sedna, Gonggong, and Quaoar from JWST Spectroscopy".
1118:
Large-scale cryovolcanic landforms have been identified on Triton's young surface, with nearly all of Triton's observed surface features likely related to cryovolcanism. One of Triton's major cryovolcanic features,
511:
Water is expected to be the dominant component of cryomagmas. Besides water, cryomagma may contain additional impurities, drastically changing its properties. Certain compounds can lower the density of cryomagma.
177:. Cryomagma refers to the molten or partially molten material beneath a body's surface, where it may then erupt onto the surface. If the material is still fluid, it is classified as cryolava, which can flow in 2886:
Patterson, G. Wesley; Collins, Geoffrey C.; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Jonothan P. (6 December 2009). "Global geological mapping of Ganymede".
1070:
coronae, where eruptions of viscous cryomagma form the structures with some tectonic involvement. Ariel also exhibits widespread resurfacing, with large polygonal crustal blocks divided by large canyons (
483:. In the case of Pluto and the other dwarf planets, there is comparatively little, if any long-term tidal heating. Thus, heating must largely be self-generated, primarily coming from the decay of 1272:
revealed that hydrogen-deuterium and carbon isotopic ratios indicated that both dwarf planets are actively replenishing surface methane as well, possibly with the presence of a subsurface ocean.
3284: 2473:
De Sanctis, M; Ammannito, E; Raponi, A; Frigeri, A; Ferrari, M; Carrozzo, F; Ciarniello, M; Formisano, M; Rousseau, B; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T. (10 August 2020).
1059:
appear to have unusually youthful surfaces indicative of relatively recent activity. Miranda in particular has extraordinarily varied terrain, with striking angular features known as the
323:
effusive eruptions depend on the viscosity of the erupted material. Eruptions of less viscous cryolava can resurface large regions and form expansive, relatively flat plains, similar to
491:
icy crust. The intruding warm ice can melt impure ice, forming a lens-shaped region of melting. Other proposed methods of producing localized melts include the buildup of stress within
416:(such as ice containing large amounts of salts), the warm ice can lead to the melting of the impure ice. The melting may then go on to erupt or uplift terrain to form surface diapirs. 3182:
Iess, L.; Jacobson, R. A.; Ducci, M.; Stevenson, D. J.; Lunine, Jonathan I.; Armstrong, J. W.; Asmar, S. W.; Racioppa, P.; Rappaport, N. J.; Tortora, P. (2012). "The Tides of Titan".
907:
Despite its young surface age, few, if any, distinct cryovolcanoes have been definitively identified on the Europan surface in the past. Nevertheless, observations of Europa from the
3246:; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Wye, L.; Radebaugh, J.; Stofan, E. R.; Janssen, M. A.; Neish, C. D.; Wall, S. D.; Wood, C. A.; 978:'s moon Enceladus is host to the most dramatic example of cryovolcanism yet observed, with a series of vents erupting 250 kg of material per second that feeds Saturn's 358:
the density of the ice shell can be increased through impurities as well, such as the inclusion silicate particles and salts. In particular, objects that are only partially
331:
eruptions on terrestrial planets. More viscous erupted material does not travel as far, and instead can construct localized high-relief features such as cryovolcanic domes.
3139:
Berne, A.; Simons, M.; Keane, J.T.; Leonard, E.J.; Park, R.S. (29 April 2024). "Jet activity on Enceladus linked to tidally driven strike-slip motion along tiger stripes".
547:) can lower cryomagma density even further, whilst significantly increasing viscosity. Conversely, some impurities can increase the density of cryomagma. Salts, such as 3425:
Schenk, Paul M.; Moore, Jeffrey M. (December 2020). "Topography and geology of Uranian mid-sized icy satellites in comparison with Saturnian and Plutonian satellites".
2930: 2696: 2316:
Schmidt, Britney; Blankenship, Don; Patterson, Wes; Schenk, Paul (24 November 2011). "Active formation of 'chaos terrain' over shallow subsurface water on Europa".
1031:-like eruptions—forming by explosions of boiling subsurface liquid as it is rapidly heated by magma (in this case, cryomagma)—or the flooding of collapse calderas. 1553: 2859:
Solomonidou, Anezina; Malaska, Michael; Stephan, Katrin; Soderlund, Krista; Valenti, Martin; Lucchetti, Alice; Kalousova, Klara; Lopes, Rosaly (September 2022).
131:
to drive cryovolcanism on their own, an observation which has been supported by both in situ observations by spacecraft and distant observations by telescopes.
1891:
Moore, M. H.; Ferrante, R. F.; Hudson, R. L.; Stone, J. N. (September 2007). "Ammonia–water ice laboratory studies relevant to outer Solar System surfaces".
930:'s surface, like Europa's, is heavily tectonized yet appears to have few cryovolcanic features. By 2009, at least 30 irregularly-shaped depressions (termed 1122:, the apparent primary vent of the Cipango Planum cryovolcanic plateau which is one of the largest volcanic or cryovolcanic edifices in the Solar System. 3815: 573:) significantly increases density with comparatively minor changes in viscosity. Salty or briny cryomagma compositions may be important cryovolcanism on 2834: 2740:
Bradåk, Balåzs; Kereszturi, Ákos; Gomez, Christopher (November 2023). "Tectonic analysis of a newly identified putative cryovolcanic field on Europa".
2200:"Moderate D/H ratios in methane ice on Eris and Makemake as evidence of hydrothermal or metamorphic processes in their interiors: Geochemical analysis" 4270: 3900: 3557:
Martin-Herrero, Alvaro; Romeo, Ignacio; Ruiz, Javier (2018). "Heat flow in Triton: Implications for heat sources powering recent geologic activity".
1373: 3251: 3819: 2026: 4223: 3849: 1765:
Fortes, A. D.; Gindrod, P. M.; Trickett, S. K.; Vočadlo, L. (May 2007). "Ammonium sulfate on Titan: Possible origin and role in cryovolcanism".
127:
in the case of the moons of the giant planets. However, isolated dwarf planets are capable of retaining enough internal heat from formation and
2718: 982:. These eruptions take place across Enceladus's south polar region, sourced from four major ridges which form a region informally known as the 2617:
Kattenhorn, Simon A. (March 2018). "Commentary: The Feasibility of Subduction and Implications for Plate Tectonics on Jupiter's Moon Europa".
1342: 871: 4292:
Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry (March 2018). "Relevance of tidal heating on large TNOs".
1326: 228:-like collapse structures, cryovolcanic flow channels (analogous to lava flow features), and cryovolcanic fields and plains (analogous to 2585: 1389: 1228:'s surface dichotomy indicates that a large section of its surface may have been flooded in large, effusive eruptions, similar to the 1074:) with floors as young as ~0.8 ± 0.5 billion years old, while relatively flat plains may have been the site of large flood eruptions. 916: 3728: 3061: 2560: 2169: 158:, meaning cold or frost), and volcano. In general, terminology used to describe cryovolcanism is analogous to volcanic terminology: 4679: 348:
A major challenge in models of cryovolcanic mechanisms is that liquid water is substantially denser than water ice, in contrast to
4133:
McKinnon, W. B.; et al. (1 June 2016). "Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour".
3371: 4088:; Cruikshank, D. P.; Cook, J. C. (March 2021). "Surface composition of Pluto's Kiladze area and relationship to cryovolcanism". 3086:
Thomas, P. C.; Tajeddine, R.; et al. (2016). "Enceladus's measured physical libration requires a global subsurface ocean".
2952:
Spahn, F.; et al. (10 March 2006). "Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring".
2451: 2652:
Figueredo, Patricio H.; Greeley, Ronald (February 2004). "Resurfacing history of Europa from pole-to-pole geological mapping".
1667: 1011: 3687: 3652: 2922: 1742: 1685: 1603: 3016:; Helfenstein, P.; Thomas, P. C.; Ingersoll, A. P.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R. (10 March 2006). 1307: 2688: 1280:
primarily or almost entirely by themselves. Leftover primordial heat from formation and radiogenic heat from the decay of
4355: 3468:
Sulcanese, Davide; Cioria, Camilla; Kokin, Osip; Mitri, Giuseppe; Pondrelli, Monica; Chiarolanza, Giancula (March 2023).
1358: 1545: 1457: 388:
as an object orbits around a parent planet, especially if the object is on an eccentric orbit or if its orbit changes.
1425: 2601: 2430: 452:
orbit allows the rocky core to dissipate energy and generate heat. Evidence for subsurface oceans also exist for the
208:
is a landform constructed by cryovolcanic eruptions. These may take the form of shields (analogous to terrestrial
4766: 1724: 392:, where the object's surface shifts relative to its rotational axis, can introduce deformities in the ice shell. 257:
Diagram of Enceladus's south polar plumes, an example of explosive cryovolcanism, and Enceladus's internal ocean
3469: 2803: 1977:"Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus" 1462: 1437: 144: 370:
of the volatiles out of the cryomagma, forming gas bubbles that help lower the density of the bulk solution.
4246: 3872: 3842:"At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins" 3393:
Leonard, Erin Janelle; Beddingfield, Chloe B.; Elder, Catherine M.; Nordheim, Tom Andrei (December 2022).
1506:
Using an estimated surface area of at least 490,000 km for Cipango Planum, this significantly surpasses
803:
cryovolcanic features are difficult to interpret using criteria applied to terrestrial volcanic features.
253: 3669: 2060:"The role of Pluto's ocean's salinity in supporting nitrogen ice loads within the Sputnik Planitia basin" 836:
is the innermost object in the Solar System known to be cryovolcanically active. Upon the arrival of the
812: 1930: 4793: 4742: 4709: 4704: 3811: 1249: 1001: 4195: 3755: 2199: 2059: 2033: 1252:(JWST) detected light hydrocarbons and complex organic molecules on the surfaces of the dwarf planets 3841: 2860: 1137:
Triton's southern polar ice cap is marked by a multitude of dark streaks, likely composed of organic
1077:
Evidence for relatively recent cryovolcanism on the other three round moons of Uranus is less clear.
983: 359: 2974: 1585: 896:, appear to be the sites of active resurfacing on Europa, proceeding in a manner similar to Earth's 3470:"Geological analysis of Monad Regio, Triton: Possible evidence of endogenic and exogenic processes" 2001: 1101: 1085:
has a massive ~11 km (6.8 mi) high mountain that was observed on its limb at the time of
396:
also provide an additional source of fracturing by violently disrupting and weakening the crust.
4348: 3997: 3880: 3713:
Characterization and Possible Origin of Sub-Circular Depressions in Ruach Planitia Region, Triton
3017: 2582: 1257: 476: 468: 65: 2368: 1877: 859: 826: 523:) in particular may be a common component of cryomagmas, and has been detected in the plumes of 3394: 2969: 1996: 1468: 1092:
s flyby; the precise origins of the mountain is unclear, but it may be of cryovolcanic origin.
908: 425: 18:
Type of volcano that erupts volatiles such as water, ammonia or methane, instead of molten rock
3605:"Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon" 883: 3928: 1413: 843: 480: 96: 3570: 2865:. 16th Europlanet Science Congress 2022. Palacio de Congresos de Granada, Spain and online. 2384: 1401: 4788: 4311: 4207: 4152: 4107: 4056: 4009: 3947: 3777: 3720: 3616: 3566: 3531: 3522:
Schenk, Paul M.; Zahnle, Kevin (December 2007). "On the negligible surface age of Triton".
3481: 3434: 3400: 3327: 3266: 3243: 3191: 3148: 3105: 3029: 2961: 2896: 2749: 2661: 2626: 2536: 2486: 2380: 2325: 2287: 2221: 2125: 2071: 1988: 1942: 1900: 1842: 1814: 1774: 1261: 1164: 942: 833: 484: 472: 449: 3711: 2315: 362:
into a rocky core and icy mantle are likely to have ice shells rich in silicate particles.
8: 2524: 2154: 1265: 1195: 1019:
radar data, several features have been proposed as candidate cryovolcanoes, most notably
464: 4315: 4211: 4156: 4111: 4060: 4013: 3951: 3781: 3724: 3620: 3535: 3485: 3438: 3404: 3331: 3270: 3195: 3152: 3109: 3033: 2965: 2900: 2753: 2665: 2630: 2592:, pp. 427 ff. in Bagenal, Fran; Dowling, Timothy E.; and McKinnon, William B., editors; 2540: 2490: 2329: 2291: 2225: 2129: 2075: 1992: 1946: 1904: 1846: 1818: 1778: 979: 962: 956: 535:
mixture can be positively buoyant with respect to the icy crust, enabling its eruption.
4730: 4674: 4461: 4436: 4341: 4301: 4262: 4176: 4142: 4097: 4085: 4025: 3993: 3968: 3937: 3923: 3892: 3767: 3582: 3497: 3345: 3225: 3121: 3095: 3053: 2995: 2765: 2552: 2502: 2396: 2349: 2277: 2237: 2211: 2087: 1858: 1809:
Croft, S. K.; Kargel, J. S.; Kirk, R. L.; et al. (1995). "The geology of Triton".
1734: 1691: 1677: 1511: 1061: 116: 3367: 306:). Upon eruption, cryovolcanic material is pulverized in violent explosions much like 147:(GSA) Abstract with Programs. The term is ultimately a combination of cryo-, from the 4749: 4669: 4528: 4466: 4266: 4168: 4029: 3973: 3896: 3793: 3683: 3648: 3586: 3501: 3450: 3349: 3217: 3164: 3125: 3045: 2987: 2826: 2769: 2597: 2556: 2506: 2447: 2426: 2341: 2241: 2091: 2011: 1976: 1862: 1738: 1695: 1681: 1599: 1159: 1143: 838: 548: 412: 389: 128: 4180: 3229: 2999: 2475:"Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids" 2474: 2400: 817: 4754: 4684: 4653: 4648: 4431: 4319: 4254: 4215: 4196:"Differentiation and cryovolcanism on Charon: A view before and after New Horizons" 4160: 4115: 4064: 4017: 3963: 3955: 3884: 3785: 3675: 3624: 3603:
Schenk, Paul; Beddingfield, Chloe; Bertrand, Tanguy; et al. (September 2021).
3574: 3539: 3489: 3442: 3335: 3274: 3207: 3199: 3156: 3113: 3057: 3037: 2979: 2904: 2866: 2818: 2757: 2669: 2634: 2544: 2494: 2388: 2353: 2333: 2295: 2229: 2133: 2079: 2006: 1950: 1908: 1850: 1782: 1730: 1673: 1591: 1333: 1317: 1285: 1218: 1155: 1130: 1119: 1066: 822: 198: 120: 34: 4623: 4486: 4398: 4388: 4323: 4219: 4119: 4069: 4044: 4021: 3789: 3543: 3493: 3247: 3117: 2908: 2783: 2673: 2589: 2583:"Chapter 18: Ages and Interiors: the Cratering Record of the Galilean Satellites" 2299: 2233: 2083: 1912: 1854: 1786: 1233: 1044: 988:. Enceladus's cryovolcanic activity is sustained by a global subsurface ocean. 936: 927: 897: 855: 492: 30: 3848:. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. 2822: 2581:
Schenk, Paul M.; Chapman, Clark R.; Zahnle, Kevin; and Moore, Jeffrey M. (2004)
1523:
s closest approach, its true extent is uncertain and may be significantly larger
850:) located within several major impact basins, most prominently in the center of 4699: 4628: 4446: 4426: 3959: 3160: 1313: 1185: 1126: 1078: 1052: 851: 559: 500: 496: 324: 285: 274: 209: 38: 4258: 3888: 3756:"Hypotheses for Triton's plumes: New analyses and future remote sensing tests" 3578: 2761: 2548: 2498: 2027:"Tidal heating and the long-term stability of a subsurface ocean on Enceladus" 1595: 967: 4782: 4694: 4598: 4505: 4481: 4456: 4451: 4441: 3797: 3168: 3013: 2719:"NASA's Hubble Spots Possible Water Plumes Erupting on Jupiter's Moon Europa" 1931:"Pressurized oceans and the eruption of liquid water on Europa and Enceladus" 1288:
of rocky material or tidal heating from interactions with their satellites .
1275:
These observations, combined with the discoveries in the Pluto system by the
1225: 1110: 1082: 912: 888: 445: 367: 148: 124: 46: 3679: 3203: 3041: 2983: 4689: 4633: 4471: 4403: 4172: 3977: 3454: 3446: 3316:"Morphologic Evidence for Volcanic Craters near Titan's North Polar Region" 3221: 3049: 2991: 2830: 2425:(2nd ed.). Cambridge, UK: Cambridge University Press. pp. 53–55. 2345: 1663: 1507: 1281: 1245: 1211: 1204: 1190: 1056: 1024: 1007: 453: 441: 393: 328: 307: 217: 186: 182: 104: 100: 92: 77: 4045:"Investigation of the morphology and interpretation of Hekla Cavus, Pluto" 1833:
volcanoes: Global cartography and topography of Pluto from New Horizons".
1510:'s area of roughly 300,000 km. As Cipango Planum extended beyond Triton's 1081:
hosts large chasms but does not show any clear evidence of cryovolcanism.
4583: 4538: 4513: 4421: 4383: 3340: 3315: 2871: 2638: 2138: 2113: 1954: 1474: 1380: 1229: 1200: 1169: 1023:, a mountain reminiscent of a shield or dome edifice; and the neighoring 213: 24: 4164: 3212: 2337: 1298:
Various examples of probable cryovolcanic structures in the Solar System
842:
orbiter in March 2015, the dwarf planet was discovered to have numerous
185:. Explosive eruptions, however, may pulverize the material into a fine " 4608: 4558: 4533: 3812:"NASA's Three-Billion-Mile Journey to Pluto Reaches Historic Encounter" 3629: 3604: 3279: 2392: 1480: 1364: 901: 867: 400: 229: 4593: 4578: 4563: 4411: 3719:. 45th Lunar and Planetary Science Conference. The Woodlands, Texas. 3645:
Worlds on Fire: Volcanoes on the Earth, the Moon, Mars, Venus and Io;
1516: 1349: 1020: 528: 221: 112: 399:
An alternative model for cryovolcanic eruptions invokes solid-state
366:
cryomagma ascend, the cryomagma is depressurized. This leads to the
4638: 4613: 4588: 4518: 4306: 4147: 4102: 3942: 3772: 3100: 2523:
Sori, Michael T.; Sizemore, Hanna G.; et al. (December 2018).
2282: 2216: 1269: 1142:
nitrogen gas underneath solid nitrogen ice through a sort of solid
536: 532: 349: 143:
was coined by Steven K. Croft in a 1987 conference abstract at the
2858: 1284:
in their rocky cores likely serve as primary sources of heat. The
224:). Cryovolcanic edifices may support secondary landforms, such as 4568: 4553: 4496: 4378: 4364: 3252:"Cryovolcanism on Titan: New results from Cassini RADAR and VIMS" 1106: 574: 513: 460: 408: 225: 73: 61: 42: 3392: 2472: 430: 4618: 4603: 4573: 4548: 4543: 4523: 4476: 1253: 1138: 1040: 975: 524: 404: 311: 2885: 904:, with one block of its icy crust sliding underneath another. 99:
in the outer Solar System, especially on the icy moons of the
3990: 3752: 1486: 1181: 1173: 456: 295:), explosive cryovolcanism may instead be driven by methane ( 236:
As cryovolcanism largely takes place on icy worlds, the term
174: 69: 4333: 4083: 1764: 1477: â€“ Wave-driven mound of ice formed on terrestrial lakes 123:
from within a celestial object, often supplied by extensive
4643: 4416: 2153:
Castillo-Rogez, J. C.; McCord, T. B.; Davis, A. G. (2007).
1028: 385: 170: 3602: 3181: 3467: 3012: 2951: 2152: 4291: 1890: 1831: 1176:. Coleman Mons can be seen just southwest of Wright Mons 3709: 3556: 3242: 3138: 2448:"NASA Spacecraft Becomes First to Orbit a Dwarf Planet" 1236:
and may have erupted as Charon's internal ocean froze.
900:. In addition to this, Europa may experience a form of 3710:
Martin-Herrero, A.; Ruiz, J.; Romeo, I. (March 2014).
1465: â€“ Liquid water naturally occurring outside Earth 80:. The erupted material is collectively referred to as 3018:"Cassini Observes the Active South Pole of Enceladus" 2792:(Center Latitude: -14.60°, Center Longitude: 208.50°) 2739: 2266: 2196: 2525:"Cryovolcanic rates on Ceres revealed by topography" 1579: 1577: 1575: 1573: 1571: 407:. If a portion of an object's ice shell is warm and 3816:
Johns Hopkins University Applied Physics Laboratory
3647:Cambridge University Press: Cambridge, UK, p. 132. 2802:Showman, Adam P.; Malhotra, Renu (1 October 1999). 3703: 3550: 3420: 3418: 3416: 3414: 3396:The Geologic History of Miranda's Inverness Corona 2680: 1583: 3427:Philosophical Transactions of the Royal Society A 2612: 2610: 2594:Jupiter: The Planet, Satellites and Magnetosphere 2446:Landau, Elizabeth; Brown, Dwayne (6 March 2015). 1661: 1584:Hargitai, Henrik; Kereszturi, Ákos, eds. (2015). 1568: 1483: â€“ Collections of ice crystals in open water 1244:In 2022, low-resolution near-infrared (0.7–5 ÎŒm) 419: 193:. Cryoclastic material flowing downhill produces 41:(upper left), two large cryovolcanic features on 4780: 4244: 3998:"Recent cryovolcanism in Virgil Fossae on Pluto" 3668:McKinnon, William B.; Kirk, Randolph L. (2014). 2651: 3924:"Large-scale cryovolcanic resurfacing on Pluto" 3864: 3663: 3661: 3411: 3085: 2852: 2801: 2423:Principles of igneous and metamorphic petrology 1974: 1808: 1051:spacecraft. Of Uranus's five major satellites, 1002:Titan (moon) § Cryovolcanism and mountains 411:enough, it could begin to convect, much as the 84:; it originates from a reservoir of subsurface 4042: 3984: 3834: 3746: 2607: 2311: 2309: 2057: 1975:Moresi, Louis; Solomatov, Viatcheslav (1998). 1878:"Ice volcanoes on Pluto may still be erupting" 1718: 1716: 1714: 1712: 4349: 4043:Ahrens, C. J.; Chevrier, V. F. (March 2021). 3598: 3596: 3461: 3313: 3081: 3079: 2879: 2862:Ganymede paterae: a priority target for JUICE 2711: 2645: 2466: 2439: 2420: 2414: 2058:McGovern, J. C.; Nguyen, A. L. (April 2024). 1968: 1804: 1802: 1800: 1798: 1796: 1544:Liddell, Henry George; Scott, Robert (1940). 934:) were identified on Ganymede's surface from 95:, past and recent cryovolcanism is common on 4126: 3667: 3658: 3521: 3399:. AGU Fall Meeting 2022. Chicago, Illinois. 2522: 2421:Philpotts, Anthony R.; Ague, Jay J. (2009). 2262: 2260: 2258: 2192: 2190: 2051: 1924: 1922: 1657: 1655: 1653: 1651: 1649: 1647: 1645: 1643: 1641: 1639: 1637: 1635: 1543: 919:, a region in Europa's southern hemisphere. 134: 4238: 3804: 3637: 3424: 3386: 3309: 3307: 3305: 2795: 2776: 2518: 2516: 2445: 2306: 2105: 1709: 1669:Planetary Volcanism across the Solar System 1633: 1631: 1629: 1627: 1625: 1623: 1621: 1619: 1617: 1615: 4356: 4342: 4285: 4193: 4036: 3915: 3593: 3515: 3076: 2733: 2616: 2575: 2360: 1793: 4305: 4187: 4146: 4101: 4077: 4068: 3967: 3941: 3771: 3628: 3361: 3359: 3339: 3278: 3236: 3211: 3132: 3099: 3006: 2973: 2945: 2870: 2281: 2255: 2215: 2187: 2137: 2019: 2010: 2000: 1928: 1919: 1869: 1825: 1758: 813:Ceres (dwarf planet) § Cryovolcanism 243: 169:are distinguished in a manner similar to 4132: 3320:Journal of Geophysical Research: Planets 3302: 3259:Journal of Geophysical Research: Planets 3175: 2686: 2619:Journal of Geophysical Research: Planets 2513: 2146: 1884: 1722: 1612: 1471: â€“ Study of extraterrestrial oceans 1163: 1047:were explored for the first time by the 966: 816: 506: 429: 252: 56:(sometimes informally referred to as an 29: 4247:"Ice volcanoes may dot Pluto's surface" 3873:"Icy volcanoes may dot Pluto's surface" 4781: 3921: 3365: 3356: 2366: 2111: 1929:Manga, M.; Wang, C. -Y. (April 2007). 1239: 1102:Geology of Triton § Cryovolcanism 581:Properties of hypothesized cryomagmas 248: 119:, cryovolcanism is driven by escaping 4337: 4273:from the original on 17 November 2015 3903:from the original on 17 November 2015 3870: 3822:from the original on 14 November 2021 3290:from the original on 1 September 2019 2933:from the original on 23 November 2017 2790:. USGS Astrogeology Research Program. 2699:from the original on 15 December 2013 2369:"Cryovolcanism on the Icy Satellites" 2175:from the original on 24 February 2011 1729:(Second ed.). pp. 763–776. 1666:; Fagents, Sarah A. (December 2021). 1590:(first ed.). Springer New York. 884:Europa (moon) § Surface features 317: 108:extant cryovolcanoes is contentious. 4737: 3674:(Third ed.). pp. 861–881. 2915: 2687:Fletcher, Leigh (12 December 2013). 2155:"Ceres: evolution and present state" 2114:"Ceres: Evolution and current state" 1875: 1556:from the original on 12 January 2024 1537: 1210:Virgil Fossae, a large fault within 4761: 4226:from the original on 1 October 2017 2923:"Enceladus rains water onto Saturn" 2788:Gazetteer of Planetary Nomenclature 2563:from the original on 17 August 2021 1587:Encyclopedia of Planetary Landforms 1149: 957:Enceladus § South polar plumes 821:Bright faculae on the floor of the 531:. A partially frozen ammonia-water 13: 3922:Singer, Kelsi N. (29 March 2022). 3734:from the original on 12 March 2024 3314:Wood, C.A.; Radebaugh, J. (2020). 3250:; Malaska, M. J. (19 March 2013). 1735:10.1016/B978-0-12-385938-9.00044-4 1678:10.1016/B978-0-12-813987-5.00005-5 1489: â€“ Mound of earth-covered ice 1458:List of extraterrestrial volcanoes 586:Cryomagma composition, mass % 314:, producing cryoclastic material. 14: 4805: 3852:from the original on 4 March 2016 3064:from the original on 16 June 2024 2454:from the original on 7 March 2015 1981:Geophysical Journal International 1125:Triton hosts four walled plains: 4760: 4748: 4736: 4725: 4724: 4495: 4194:Desch, S. J.; Neveu, M. (2017). 3671:Encyclopedia of the Solar System 3374:from the original on 18 May 2024 2840:from the original on 14 May 2011 2012:10.1046/j.1365-246X.1998.00521.x 1436: 1424: 1412: 1400: 1388: 1372: 1357: 1341: 1325: 1306: 1034: 240:is sometimes used colloquially. 2118:Journal of Geophysical Research 1500: 858:on one particular bright spot, 797: 2596:, Cambridge University Press, 1876:Sohn, Rebecca (1 April 2022). 1065:cutting across older terrain. 971:Enceladus's south polar plumes 444:and are largely maintained by 420:Cryomagma reservoir generation 1: 4363: 3871:Witze, A. (9 November 2015). 1726:The Encyclopedia of Volcanoes 1530: 1463:Extraterrestrial liquid water 963:Rings of Saturn § E Ring 334: 145:Geological Society of America 23:For ice mounds on Earth, see 4324:10.1016/j.icarus.2017.11.023 4220:10.1016/j.icarus.2016.11.037 4120:10.1016/j.icarus.2023.115653 4070:10.1016/j.icarus.2020.114108 4022:10.1016/j.icarus.2019.04.023 3790:10.1016/j.icarus.2021.114835 3544:10.1016/j.icarus.2007.07.004 3494:10.1016/j.icarus.2022.115368 3118:10.1016/j.icarus.2015.08.037 2909:10.1016/j.icarus.2009.11.035 2674:10.1016/j.icarus.2003.09.016 2300:10.1016/j.icarus.2024.116017 2234:10.1016/j.icarus.2024.115999 2084:10.1016/j.icarus.2024.115968 1935:Geophysical Research Letters 1913:10.1016/j.icarus.2007.02.020 1855:10.1016/j.icarus.2018.06.008 1787:10.1016/j.icarus.2006.11.002 1443:Enceladus feeding the E ring 1395:Dome in Murias Chaos, Europa 950: 825:impact basin on Ceres, with 706:Ammonia, water, and methanol 261:Explosive cryovolcanism, or 103:and potentially amongst the 7: 3559:Planetary and Space Science 3366:Bolles, Dana (March 2024). 2823:10.1126/science.286.5437.77 2162:Lunar and Planetary Science 1451: 992:cryovolcanism in the past. 922: 779:Basaltic lava (comparison) 448:, where the moon's slighly 378: 91:Although rare in the inner 10: 4810: 3960:10.1038/s41467-022-29056-3 3161:10.1038/s41561-024-01418-0 2742:Advances in Space Research 2112:McCord, Thomas B. (2005). 1291: 1250:James Webb Space Telescope 1172:, a likely cryovolcano on 1153: 1099: 999: 960: 954: 881: 810: 423: 220:), or domes (analogous to 22: 4720: 4662: 4504: 4493: 4371: 4259:10.1038/nature.2015.18756 4245:Witze, Alexandra (2015). 3889:10.1038/nature.2015.18756 3579:10.1016/j.pss.2018.03.010 2804:"The Galilean Satellites" 2762:10.1016/j.asr.2023.07.062 2721:. NASA. 26 September 2016 2549:10.1038/s41550-018-0574-1 2499:10.1038/s41550-020-1138-8 1596:10.1007/978-1-4614-3134-3 1419:Inverness Corona, Miranda 1232:. These floodplains form 1095: 877: 778: 746: 705: 672: 628: 602: 597: 594: 591: 588: 585: 459:and, to a lesser extent, 343: 135:Etymology and terminology 4399:Cryptovolcanic structure 3846:New Horizons News Center 2588:24 December 2016 at the 2373:Earth, Moon, and Planets 1493: 1407:Elsinore Corona, Miranda 995: 806: 4680:Eruptions by death toll 3881:Nature Publishing Group 3680:10.1016/C2010-0-67309-3 3571:2018P&SS..160...19M 3204:10.1126/science.1219631 3042:10.1126/science.1123013 2984:10.1126/science.1121375 2385:1995EM&P...67..101K 1723:Geissler, Paul (2015). 1550:A Greek–English Lexicon 1383:and Piccard Mons, Pluto 595:Liquid viscosity (Pa·s) 302:) and carbon monoxide ( 212:), cones (analogous to 3994:Dalle Ore, Cristina M. 3643:Frankel, C.S. (2005). 3447:10.1098/rsta.2020.0102 2689:"The Plumes of Europa" 2367:Kargel, J. S. (1995). 1469:Planetary oceanography 1177: 1012:atmospheric haze layer 972: 909:Hubble Space Telescope 830: 487:in their rocky cores. 436: 426:Planetary oceanography 258: 244:Types of cryovolcanism 230:lava fields and plains 64:that erupts gases and 49: 3929:Nature Communications 2693:The Planetary Society 1188:were explored by the 1167: 1113:were explored by the 1109:and its largest moon 970: 961:Further information: 820: 598:Solid density (g/cm) 592:Liquid density (g/cm) 507:Cryomagma composition 433: 424:Further information: 263:cryoclastic eruptions 256: 33: 3341:10.1029/2019JE006036 2872:10.5194/epsc2022-423 2639:10.1002/2018JE005524 2139:10.1029/2004JE002244 1955:10.1029/2007GL029297 1662:Gregg, Tracy K. P.; 1282:radioactive isotopes 1248:observations by the 1186:system of five moons 1039:On 24 January 1986, 747:Nitrogen and methane 485:radioactive isotopes 206:cryovolcanic edifice 191:cryoclastic material 4316:2018Icar..302..245S 4212:2017Icar..287..175D 4165:10.1038/nature18289 4157:2016Natur.534...82M 4112:2023Icar..40415653E 4061:2021Icar..35614108A 4014:2019Icar..330..155C 3952:2022NatCo..13.1542S 3782:2022Icar..37514835H 3725:2014LPI....45.1177M 3621:2021RemS...13.3476S 3536:2007Icar..192..135S 3486:2023Icar..39215368S 3439:2020RSPTA.37800102S 3405:2022AGUFM.P32E1872L 3332:2020JGRE..12506036W 3271:2013JGRE..118..416L 3248:Lunine, Jonathan I. 3196:2012Sci...337..457I 3153:2024NatGe..17..385B 3110:2016Icar..264...37T 3034:2006Sci...311.1393P 3028:(5766): 1393–1401. 2966:2006Sci...311.1416S 2901:2010Icar..207..845P 2754:2023AdSpR..72.4064B 2666:2004Icar..167..287F 2631:2018JGRE..123..684K 2541:2018NatAs...2..946S 2491:2020NatAs...4..786D 2338:10.1038/nature10608 2330:2011Natur.479..502S 2292:2024Icar..41416017E 2226:2024Icar..41215999G 2130:2005JGRE..110.5009M 2076:2024Icar..41215968M 1993:1998GeoJI.133..669M 1947:2007GeoRL..34.7202M 1905:2007Icar..190..260M 1847:2018Icar..314..400S 1819:1995netr.conf..879C 1779:2007Icar..188..139F 1664:Lopes, Rosaly M. C. 1552:. Clarendon Press. 1431:Plumes of Enceladus 1240:Other dwarf planets 582: 249:Explosive eruptions 117:terrestrial planets 4675:Lists of volcanoes 4462:Subglacial volcano 4437:Pyroclastic shield 3630:10.3390/rs13173476 3280:10.1002/jgre.20062 2393:10.1007/BF00613296 1811:Neptune and Triton 1379:Topography map of 1178: 973: 831: 580: 493:strike-slip faults 437: 318:Effusive eruptions 259: 50: 4794:Planetary geology 4776: 4775: 4529:Basaltic andesite 4467:Submarine volcano 3689:978-0-12-415845-0 3653:978-0-521-80393-9 3141:Nature Geoscience 2324:(7374): 502–505. 1744:978-0-12-385938-9 1687:978-0-12-813987-5 1605:978-1-4614-3133-6 1332:Detail mosaic of 1180:The dwarf planet 1160:Geology of Charon 1144:greenhouse effect 795: 794: 673:Ammonia and water 589:Melting point (K) 549:magnesium sulfate 390:True polar wander 199:pyroclastic flows 195:cryoclastic flows 179:cryolava channels 129:radioactive decay 97:planetary objects 66:volatile material 4801: 4764: 4763: 4752: 4740: 4739: 4728: 4727: 4685:Decade Volcanoes 4663:Lists and groups 4654:Pyroclastic flow 4649:Pyroclastic fall 4499: 4432:Pyroclastic cone 4358: 4351: 4344: 4335: 4334: 4328: 4327: 4309: 4289: 4283: 4282: 4280: 4278: 4242: 4236: 4235: 4233: 4231: 4191: 4185: 4184: 4150: 4130: 4124: 4123: 4105: 4086:Dalle Ore, C. M. 4081: 4075: 4074: 4072: 4040: 4034: 4033: 3988: 3982: 3981: 3971: 3945: 3919: 3913: 3912: 3910: 3908: 3868: 3862: 3861: 3859: 3857: 3838: 3832: 3831: 3829: 3827: 3818:. 14 July 2015. 3808: 3802: 3801: 3775: 3750: 3744: 3743: 3741: 3739: 3733: 3718: 3707: 3701: 3700: 3698: 3696: 3665: 3656: 3641: 3635: 3634: 3632: 3600: 3591: 3590: 3554: 3548: 3547: 3519: 3513: 3512: 3510: 3508: 3465: 3459: 3458: 3422: 3409: 3408: 3390: 3384: 3383: 3381: 3379: 3363: 3354: 3353: 3343: 3311: 3300: 3299: 3297: 3295: 3289: 3282: 3256: 3240: 3234: 3233: 3215: 3179: 3173: 3172: 3136: 3130: 3129: 3103: 3083: 3074: 3073: 3071: 3069: 3010: 3004: 3003: 2977: 2960:(5766): 1416–8. 2949: 2943: 2942: 2940: 2938: 2919: 2913: 2912: 2883: 2877: 2876: 2874: 2856: 2850: 2849: 2847: 2845: 2839: 2808: 2799: 2793: 2791: 2784:"Argadnel Regio" 2780: 2774: 2773: 2748:(9): 4064–4073. 2737: 2731: 2730: 2728: 2726: 2715: 2709: 2708: 2706: 2704: 2684: 2678: 2677: 2649: 2643: 2642: 2614: 2605: 2579: 2573: 2572: 2570: 2568: 2529:Nature Astronomy 2520: 2511: 2510: 2479:Nature Astronomy 2470: 2464: 2463: 2461: 2459: 2443: 2437: 2436: 2418: 2412: 2411: 2409: 2407: 2379:(1–3): 101–113. 2364: 2358: 2357: 2313: 2304: 2303: 2285: 2264: 2253: 2252: 2250: 2248: 2219: 2194: 2185: 2184: 2182: 2180: 2174: 2159: 2150: 2144: 2143: 2141: 2109: 2103: 2102: 2100: 2098: 2055: 2049: 2048: 2046: 2044: 2038: 2032:. Archived from 2031: 2023: 2017: 2016: 2014: 2004: 1972: 1966: 1965: 1963: 1961: 1926: 1917: 1916: 1888: 1882: 1881: 1873: 1867: 1866: 1829: 1823: 1822: 1806: 1791: 1790: 1762: 1756: 1755: 1753: 1751: 1720: 1707: 1706: 1704: 1702: 1659: 1610: 1609: 1581: 1566: 1565: 1563: 1561: 1541: 1524: 1522: 1504: 1440: 1428: 1416: 1404: 1392: 1376: 1361: 1345: 1334:Leviathan Patera 1329: 1318:Tuonela Planitia 1310: 1286:serpentinization 1219:Sputnik Planitia 1194:spacecraft in a 1156:Geology of Pluto 1150:Pluto and Charon 1131:Tuonela Planitia 1120:Leviathan Patera 1091: 1067:Inverness Corona 898:mid-ocean ridges 866:also discovered 762: 755: 730: 722: 715: 689: 682: 656: 645: 638: 612: 583: 579: 572: 557: 546: 522: 325:shield volcanoes 305: 301: 294: 283: 272: 210:shield volcanoes 35:Leviathan Patera 4809: 4808: 4804: 4803: 4802: 4800: 4799: 4798: 4779: 4778: 4777: 4772: 4716: 4658: 4624:Tephriphonolite 4500: 4491: 4487:Harmonic tremor 4389:Complex volcano 4367: 4362: 4332: 4331: 4290: 4286: 4276: 4274: 4243: 4239: 4229: 4227: 4192: 4188: 4141:(7605): 82–85. 4131: 4127: 4082: 4078: 4041: 4037: 3989: 3985: 3920: 3916: 3906: 3904: 3869: 3865: 3855: 3853: 3840: 3839: 3835: 3825: 3823: 3810: 3809: 3805: 3751: 3747: 3737: 3735: 3731: 3716: 3708: 3704: 3694: 3692: 3690: 3666: 3659: 3642: 3638: 3601: 3594: 3555: 3551: 3520: 3516: 3506: 3504: 3466: 3462: 3423: 3412: 3391: 3387: 3377: 3375: 3364: 3357: 3312: 3303: 3293: 3291: 3287: 3254: 3244:Lopes, R. M. C. 3241: 3237: 3190:(6093): 457–9. 3180: 3176: 3137: 3133: 3084: 3077: 3067: 3065: 3011: 3007: 2975:10.1.1.466.6748 2950: 2946: 2936: 2934: 2921: 2920: 2916: 2884: 2880: 2857: 2853: 2843: 2841: 2837: 2817:(5437): 77–84. 2806: 2800: 2796: 2782: 2781: 2777: 2738: 2734: 2724: 2722: 2717: 2716: 2712: 2702: 2700: 2685: 2681: 2650: 2646: 2615: 2608: 2590:Wayback Machine 2580: 2576: 2566: 2564: 2535:(12): 946–950. 2521: 2514: 2471: 2467: 2457: 2455: 2444: 2440: 2433: 2419: 2415: 2405: 2403: 2365: 2361: 2314: 2307: 2265: 2256: 2246: 2244: 2195: 2188: 2178: 2176: 2172: 2157: 2151: 2147: 2110: 2106: 2096: 2094: 2056: 2052: 2042: 2040: 2039:on 21 July 2010 2036: 2029: 2025: 2024: 2020: 1973: 1969: 1959: 1957: 1927: 1920: 1889: 1885: 1874: 1870: 1830: 1826: 1807: 1794: 1763: 1759: 1749: 1747: 1745: 1721: 1710: 1700: 1698: 1688: 1660: 1613: 1606: 1582: 1569: 1559: 1557: 1542: 1538: 1533: 1528: 1527: 1520: 1505: 1501: 1496: 1454: 1449: 1448: 1447: 1444: 1441: 1432: 1429: 1420: 1417: 1408: 1405: 1396: 1393: 1384: 1377: 1368: 1362: 1353: 1348:Radar image of 1346: 1337: 1330: 1321: 1311: 1300: 1299: 1294: 1242: 1234:Vulcan Planitia 1162: 1154:Main articles: 1152: 1104: 1098: 1089: 1045:system of moons 1037: 1004: 998: 965: 959: 953: 925: 886: 880: 860:Cerealia Facula 856:sodium chloride 846:(designated as 827:Cerealia Facula 815: 809: 800: 761: 757: 754: 750: 748: 728: 724: 721: 717: 713: 709: 707: 688: 684: 680: 676: 674: 655: 651: 647: 644: 640: 636: 632: 630: 610: 606: 604: 571: 567: 563: 556: 552: 544: 540: 521: 517: 509: 428: 422: 381: 346: 337: 320: 303: 300: 296: 293: 289: 282: 278: 270: 266: 251: 246: 137: 68:such as liquid 60:) is a type of 28: 19: 12: 11: 5: 4807: 4797: 4796: 4791: 4774: 4773: 4771: 4770: 4758: 4746: 4734: 4721: 4718: 4717: 4715: 4714: 4713: 4712: 4707: 4700:Volcanic field 4697: 4692: 4687: 4682: 4677: 4672: 4666: 4664: 4660: 4659: 4657: 4656: 4651: 4646: 4641: 4636: 4631: 4629:Trachyandesite 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4591: 4586: 4581: 4576: 4571: 4566: 4561: 4556: 4551: 4546: 4541: 4536: 4531: 4526: 4521: 4516: 4510: 4508: 4506:Volcanic rocks 4502: 4501: 4494: 4492: 4490: 4489: 4484: 4479: 4474: 4469: 4464: 4459: 4454: 4449: 4447:Shield volcano 4444: 4439: 4434: 4429: 4427:Parasitic cone 4424: 4419: 4414: 4409: 4406: 4401: 4396: 4391: 4386: 4381: 4375: 4373: 4369: 4368: 4361: 4360: 4353: 4346: 4338: 4330: 4329: 4284: 4237: 4186: 4125: 4076: 4035: 3983: 3914: 3863: 3833: 3803: 3745: 3702: 3688: 3657: 3636: 3609:Remote Sensing 3592: 3549: 3530:(1): 135–149. 3514: 3460: 3410: 3385: 3355: 3301: 3265:(3): 416–435. 3235: 3174: 3147:(5): 385–391. 3131: 3075: 3005: 2944: 2914: 2895:(2): 845–867. 2878: 2851: 2794: 2775: 2732: 2710: 2679: 2660:(2): 287–312. 2644: 2625:(3): 684–689. 2606: 2574: 2512: 2465: 2438: 2431: 2413: 2359: 2305: 2254: 2186: 2145: 2124:(E5): E05009. 2104: 2050: 2018: 2002:10.1.1.30.5989 1967: 1918: 1899:(1): 260–273. 1883: 1868: 1824: 1792: 1773:(1): 139–153. 1757: 1743: 1708: 1686: 1611: 1604: 1567: 1535: 1534: 1532: 1529: 1526: 1525: 1498: 1497: 1495: 1492: 1491: 1490: 1484: 1478: 1472: 1466: 1460: 1453: 1450: 1446: 1445: 1442: 1435: 1433: 1430: 1423: 1421: 1418: 1411: 1409: 1406: 1399: 1397: 1394: 1387: 1385: 1378: 1371: 1369: 1363: 1356: 1354: 1347: 1340: 1338: 1331: 1324: 1322: 1314:Ruach Planitia 1312: 1305: 1302: 1301: 1297: 1296: 1295: 1293: 1290: 1241: 1238: 1151: 1148: 1127:Ruach Planitia 1100:Main article: 1097: 1094: 1036: 1033: 1006:Saturn's moon 1000:Main article: 997: 994: 955:Main article: 952: 949: 924: 921: 917:Argadnel Regio 882:Main article: 879: 876: 852:Occator Crater 811:Main article: 808: 805: 799: 796: 793: 792: 789: 786: 783: 780: 776: 775: 772: 769: 766: 763: 759: 752: 744: 743: 740: 737: 734: 731: 726: 719: 711: 703: 702: 699: 696: 693: 690: 686: 678: 670: 669: 666: 663: 660: 657: 653: 649: 642: 634: 626: 625: 622: 619: 616: 613: 608: 600: 599: 596: 593: 590: 587: 569: 565: 560:sodium sulfate 554: 542: 519: 508: 505: 421: 418: 413:Earth's mantle 380: 377: 376: 375: 371: 363: 360:differentiated 345: 342: 336: 333: 319: 316: 298: 291: 286:sulfur dioxide 280: 275:carbon dioxide 268: 250: 247: 245: 242: 239: 234: 233: 207: 202: 196: 192: 180: 168: 164: 142: 136: 133: 39:Ruach Planitia 17: 9: 6: 4: 3: 2: 4806: 4795: 4792: 4790: 4787: 4786: 4784: 4769: 4768: 4759: 4757: 4756: 4751: 4747: 4745: 4744: 4735: 4733: 4732: 4723: 4722: 4719: 4711: 4708: 4706: 4703: 4702: 4701: 4698: 4696: 4695:Volcanic belt 4693: 4691: 4688: 4686: 4683: 4681: 4678: 4676: 4673: 4671: 4668: 4667: 4665: 4661: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4599:Phonotephrite 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4511: 4509: 4507: 4503: 4498: 4488: 4485: 4483: 4482:Volcanic cone 4480: 4478: 4475: 4473: 4470: 4468: 4465: 4463: 4460: 4458: 4457:Stratovolcano 4455: 4453: 4452:Somma volcano 4450: 4448: 4445: 4443: 4442:Rootless cone 4440: 4438: 4435: 4433: 4430: 4428: 4425: 4423: 4420: 4418: 4415: 4413: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4376: 4374: 4370: 4366: 4359: 4354: 4352: 4347: 4345: 4340: 4339: 4336: 4325: 4321: 4317: 4313: 4308: 4303: 4299: 4295: 4288: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4241: 4225: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4190: 4182: 4178: 4174: 4170: 4166: 4162: 4158: 4154: 4149: 4144: 4140: 4136: 4129: 4121: 4117: 4113: 4109: 4104: 4099: 4095: 4091: 4087: 4080: 4071: 4066: 4062: 4058: 4054: 4050: 4046: 4039: 4031: 4027: 4023: 4019: 4015: 4011: 4007: 4003: 3999: 3995: 3987: 3979: 3975: 3970: 3965: 3961: 3957: 3953: 3949: 3944: 3939: 3935: 3931: 3930: 3925: 3918: 3902: 3898: 3894: 3890: 3886: 3882: 3878: 3874: 3867: 3851: 3847: 3843: 3837: 3821: 3817: 3813: 3807: 3799: 3795: 3791: 3787: 3783: 3779: 3774: 3769: 3765: 3761: 3757: 3749: 3730: 3726: 3722: 3715: 3714: 3706: 3691: 3685: 3681: 3677: 3673: 3672: 3664: 3662: 3654: 3650: 3646: 3640: 3631: 3626: 3622: 3618: 3614: 3610: 3606: 3599: 3597: 3588: 3584: 3580: 3576: 3572: 3568: 3564: 3560: 3553: 3545: 3541: 3537: 3533: 3529: 3525: 3518: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3464: 3456: 3452: 3448: 3444: 3440: 3436: 3432: 3428: 3421: 3419: 3417: 3415: 3406: 3402: 3398: 3397: 3389: 3373: 3369: 3362: 3360: 3351: 3347: 3342: 3337: 3333: 3329: 3326:(8): e06036. 3325: 3321: 3317: 3310: 3308: 3306: 3286: 3281: 3276: 3272: 3268: 3264: 3260: 3253: 3249: 3245: 3239: 3231: 3227: 3223: 3219: 3214: 3209: 3205: 3201: 3197: 3193: 3189: 3185: 3178: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3142: 3135: 3127: 3123: 3119: 3115: 3111: 3107: 3102: 3097: 3093: 3089: 3082: 3080: 3063: 3059: 3055: 3051: 3047: 3043: 3039: 3035: 3031: 3027: 3023: 3019: 3015: 3009: 3001: 2997: 2993: 2989: 2985: 2981: 2976: 2971: 2967: 2963: 2959: 2955: 2948: 2932: 2928: 2924: 2918: 2910: 2906: 2902: 2898: 2894: 2890: 2882: 2873: 2868: 2864: 2863: 2855: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2805: 2798: 2789: 2785: 2779: 2771: 2767: 2763: 2759: 2755: 2751: 2747: 2743: 2736: 2720: 2714: 2698: 2694: 2690: 2683: 2675: 2671: 2667: 2663: 2659: 2655: 2648: 2640: 2636: 2632: 2628: 2624: 2620: 2613: 2611: 2603: 2602:0-521-81808-7 2599: 2595: 2591: 2587: 2584: 2578: 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2519: 2517: 2508: 2504: 2500: 2496: 2492: 2488: 2485:(8): 786–93. 2484: 2480: 2476: 2469: 2453: 2449: 2442: 2434: 2432:9780521880060 2428: 2424: 2417: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2363: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2312: 2310: 2301: 2297: 2293: 2289: 2284: 2279: 2275: 2271: 2263: 2261: 2259: 2243: 2239: 2235: 2231: 2227: 2223: 2218: 2213: 2209: 2205: 2201: 2193: 2191: 2171: 2168:: 2006–2007. 2167: 2163: 2156: 2149: 2140: 2135: 2131: 2127: 2123: 2119: 2115: 2108: 2093: 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2054: 2035: 2028: 2022: 2013: 2008: 2003: 1998: 1994: 1990: 1987:(3): 669–82. 1986: 1982: 1978: 1971: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1925: 1923: 1914: 1910: 1906: 1902: 1898: 1894: 1887: 1879: 1872: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1828: 1820: 1816: 1812: 1805: 1803: 1801: 1799: 1797: 1788: 1784: 1780: 1776: 1772: 1768: 1761: 1746: 1740: 1736: 1732: 1728: 1727: 1719: 1717: 1715: 1713: 1697: 1693: 1689: 1683: 1679: 1675: 1671: 1670: 1665: 1658: 1656: 1654: 1652: 1650: 1648: 1646: 1644: 1642: 1640: 1638: 1636: 1634: 1632: 1630: 1628: 1626: 1624: 1622: 1620: 1618: 1616: 1607: 1601: 1597: 1593: 1589: 1588: 1580: 1578: 1576: 1574: 1572: 1555: 1551: 1547: 1540: 1536: 1519: 1518: 1513: 1509: 1503: 1499: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1464: 1461: 1459: 1456: 1455: 1439: 1434: 1427: 1422: 1415: 1410: 1403: 1398: 1391: 1386: 1382: 1375: 1370: 1366: 1360: 1355: 1351: 1344: 1339: 1335: 1328: 1323: 1319: 1315: 1309: 1304: 1303: 1289: 1287: 1283: 1278: 1273: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1246:spectroscopic 1237: 1235: 1231: 1227: 1223: 1220: 1215: 1213: 1208: 1206: 1202: 1197: 1193: 1192: 1187: 1183: 1175: 1171: 1166: 1161: 1157: 1147: 1145: 1140: 1135: 1132: 1128: 1123: 1121: 1116: 1112: 1108: 1103: 1093: 1088: 1084: 1080: 1075: 1073: 1068: 1064: 1063: 1058: 1054: 1050: 1046: 1042: 1035:Uranian moons 1032: 1030: 1026: 1022: 1018: 1013: 1009: 1003: 993: 989: 987: 986: 985:Tiger Stripes 981: 977: 969: 964: 958: 948: 945: 944: 939: 938: 933: 929: 920: 918: 914: 913:chaos terrain 910: 905: 903: 899: 895: 890: 885: 875: 873: 869: 865: 861: 857: 853: 849: 845: 841: 840: 835: 828: 824: 819: 814: 804: 790: 787: 784: 781: 777: 773: 770: 767: 764: 745: 741: 738: 735: 732: 704: 700: 697: 694: 691: 671: 667: 664: 661: 658: 627: 623: 620: 617: 614: 601: 584: 578: 576: 561: 550: 538: 534: 530: 526: 515: 504: 502: 498: 494: 488: 486: 482: 478: 474: 470: 466: 462: 458: 455: 454:dwarf planets 451: 447: 446:tidal heating 443: 442:giant planets 432: 427: 417: 414: 410: 406: 402: 397: 395: 394:Impact events 391: 387: 372: 369: 364: 361: 356: 355: 354: 351: 341: 332: 330: 326: 315: 313: 309: 287: 276: 264: 255: 241: 237: 231: 227: 223: 219: 218:spatter cones 215: 211: 205: 203: 200: 197:, analogs to 194: 190: 188: 184: 183:lava channels 181:, analogs to 178: 176: 172: 166: 162: 161: 160: 159: 157: 153: 150: 149:Ancient Greek 146: 140: 132: 130: 126: 125:tidal heating 122: 121:internal heat 118: 114: 109: 106: 105:dwarf planets 102: 101:giant planets 98: 94: 89: 87: 83: 79: 75: 71: 67: 63: 59: 55: 48: 44: 40: 37:(center) and 36: 32: 26: 21: 16: 4765: 4753: 4741: 4729: 4690:Volcanic arc 4634:Trachybasalt 4472:Supervolcano 4404:Fissure vent 4393: 4297: 4293: 4287: 4275:. Retrieved 4250: 4240: 4228:. Retrieved 4203: 4199: 4189: 4138: 4134: 4128: 4093: 4089: 4079: 4052: 4048: 4038: 4005: 4001: 3986: 3933: 3927: 3917: 3905:. Retrieved 3876: 3866: 3854:. Retrieved 3845: 3836: 3824:. Retrieved 3806: 3763: 3759: 3748: 3736:. Retrieved 3712: 3705: 3693:. Retrieved 3670: 3644: 3639: 3615:(17): 3476. 3612: 3608: 3562: 3558: 3552: 3527: 3523: 3517: 3505:. Retrieved 3477: 3473: 3463: 3430: 3426: 3395: 3388: 3376:. Retrieved 3323: 3319: 3292:. Retrieved 3262: 3258: 3238: 3213:11573/477190 3187: 3183: 3177: 3144: 3140: 3134: 3091: 3087: 3066:. Retrieved 3025: 3021: 3014:Porco, C. C. 3008: 2957: 2953: 2947: 2935:. Retrieved 2926: 2917: 2892: 2888: 2881: 2861: 2854: 2842:. Retrieved 2814: 2810: 2797: 2787: 2778: 2745: 2741: 2735: 2723:. Retrieved 2713: 2701:. Retrieved 2692: 2682: 2657: 2653: 2647: 2622: 2618: 2593: 2577: 2565:. Retrieved 2532: 2528: 2482: 2478: 2468: 2456:. Retrieved 2441: 2422: 2416: 2404:. Retrieved 2376: 2372: 2362: 2321: 2317: 2273: 2269: 2245:. Retrieved 2207: 2203: 2177:. Retrieved 2165: 2161: 2148: 2121: 2117: 2107: 2095:. Retrieved 2067: 2063: 2053: 2041:. Retrieved 2034:the original 2021: 1984: 1980: 1970: 1958:. Retrieved 1938: 1934: 1896: 1892: 1886: 1880:. Space.com. 1871: 1838: 1834: 1827: 1810: 1770: 1766: 1760: 1748:. Retrieved 1725: 1699:. Retrieved 1668: 1586: 1558:. Retrieved 1549: 1539: 1515: 1508:Olympus Mons 1502: 1277:New Horizons 1276: 1274: 1243: 1224: 1216: 1212:Belton Regio 1209: 1205:Piccard Mons 1191:New Horizons 1189: 1179: 1136: 1124: 1114: 1105: 1086: 1076: 1071: 1060: 1048: 1038: 1025:Sotra Patera 1016: 1010:has a dense 1005: 990: 984: 974: 941: 935: 931: 926: 906: 893: 887: 863: 847: 844:bright spots 837: 832: 801: 798:Observations 510: 489: 438: 398: 386:tidal forces 382: 347: 338: 329:flood basalt 321: 308:volcanic ash 262: 260: 235: 214:cinder cones 155: 151: 138: 110: 93:Solar System 90: 85: 81: 78:hydrocarbons 57: 53: 51: 20: 15: 4789:Volcanology 4767:WikiProject 4710:polygenetic 4705:monogenetic 4584:Nephelinite 4539:Blairmorite 4514:Agglomerate 4422:Mud volcano 4394:Cryovolcano 4384:Cinder cone 4300:: 245–260. 4277:15 November 4206:: 175–186. 4084:Emran, A.; 4008:: 155–168. 3936:(1): 1542. 3368:"Voyager 2" 3294:2 September 2703:17 December 1841:: 400–433. 1813:: 879–947. 1475:Ice volcano 1381:Wright Mons 1230:Lunar maria 1201:Wright Mons 1170:Wright Mons 1168:Edifice of 238:ice volcano 141:cryovolcano 58:ice volcano 54:cryovolcano 25:Ice volcano 4783:Categories 4609:Rhyodacite 4559:Ignimbrite 4534:Benmoreite 4307:1706.04682 4148:1903.05571 4103:2303.17072 3943:2207.06557 3907:9 November 3856:9 November 3773:2112.04627 3766:: 114835. 3101:1509.07555 2937:14 January 2844:17 January 2283:2309.15230 2276:(116017). 2217:2309.05549 2043:14 October 1531:References 1512:terminator 1481:Frazil ice 1365:Ahuna Mons 902:subduction 872:Yamor Mons 868:Ahuna Mons 603:Pure water 401:convection 374:compounds. 368:exsolution 335:Mechanisms 222:lava domes 4594:Phonolite 4579:Leucitite 4564:Komatiite 4412:Lava dome 4408:Lava cone 4365:Volcanoes 4267:182698872 4030:149983734 3897:182698872 3798:0019-1035 3587:125508759 3565:: 19–25. 3502:254173536 3350:225752345 3169:1752-0908 3126:118429372 3094:: 37–47. 2970:CiteSeerX 2770:260798414 2567:17 August 2557:186800298 2507:225442620 2242:261696907 2092:267316007 1997:CiteSeerX 1863:126273376 1696:245084572 1517:Voyager 2 1350:Doom Mons 1217:Although 1115:Voyager 2 1087:Voyager 2 1049:Voyager 2 1021:Doom Mons 951:Enceladus 829:at center 529:Enceladus 503:systems. 450:eccentric 405:diapirism 350:silicates 189:" termed 167:cryomagma 139:The term 113:volcanism 86:cryomagma 4731:Category 4639:Trachyte 4614:Rhyolite 4589:Obsidian 4519:Andesite 4271:Archived 4230:13 March 4224:Archived 4181:30903520 4173:27251279 3978:35351895 3901:Archived 3850:Archived 3820:Archived 3738:13 March 3729:Archived 3695:12 March 3507:12 March 3455:33161858 3433:(2187). 3372:Archived 3370:. NASA. 3285:Archived 3230:10966007 3222:22745254 3068:13 March 3062:Archived 3050:16527964 3000:33554377 2992:16527969 2931:Archived 2929:. 2011. 2835:Archived 2831:10506564 2697:Archived 2586:Archived 2561:Archived 2452:Archived 2450:. NASA. 2406:12 March 2401:54843498 2346:22089135 2247:12 March 2170:Archived 2097:13 March 1960:12 March 1750:12 March 1701:12 March 1554:Archived 1452:See also 1336:, Triton 1320:, Triton 1270:Makemake 1258:Gonggong 1184:and its 1072:chasmata 1043:and its 928:Ganymede 923:Ganymede 756:, 13.5% 683:, 32.6% 537:Methanol 533:eutectic 527:'s moon 477:Gonggong 469:Makemake 379:Eruption 163:Cryolava 82:cryolava 45:'s moon 4743:Commons 4670:Hotspot 4569:Lapilli 4554:Felsite 4379:Caldera 4312:Bibcode 4208:Bibcode 4153:Bibcode 4108:Bibcode 4057:Bibcode 4010:Bibcode 3969:8964750 3948:Bibcode 3778:Bibcode 3721:Bibcode 3617:Bibcode 3567:Bibcode 3532:Bibcode 3482:Bibcode 3435:Bibcode 3401:Bibcode 3328:Bibcode 3267:Bibcode 3192:Bibcode 3184:Science 3149:Bibcode 3106:Bibcode 3058:6976648 3030:Bibcode 3022:Science 2962:Bibcode 2954:Science 2897:Bibcode 2811:Science 2750:Bibcode 2662:Bibcode 2627:Bibcode 2537:Bibcode 2487:Bibcode 2458:6 March 2381:Bibcode 2354:4405195 2326:Bibcode 2288:Bibcode 2222:Bibcode 2179:25 June 2166:XXXVIII 2126:Bibcode 2072:Bibcode 1989:Bibcode 1943:Bibcode 1901:Bibcode 1843:Bibcode 1815:Bibcode 1775:Bibcode 1546:"ÎșÏÏÎżÏ‚" 1514:during 1367:, Ceres 1352:, Titan 1292:Gallery 1139:tholins 1107:Neptune 1079:Titania 1062:coronae 1053:Miranda 1017:Cassini 943:Galileo 937:Voyager 932:paterae 848:faculae 823:Occator 788:~10-100 646:, 2.8% 575:Jupiter 514:Ammonia 409:ductile 284:), and 226:caldera 115:on the 74:ammonia 62:volcano 43:Neptune 4755:Portal 4619:Tephra 4604:Pumice 4574:Latite 4549:Dacite 4544:Cinder 4524:Basalt 4477:Tossol 4294:Icarus 4265:  4251:Nature 4200:Icarus 4179:  4171:  4135:Nature 4090:Icarus 4049:Icarus 4028:  4002:Icarus 3976:  3966:  3895:  3877:Nature 3826:18 May 3796:  3760:Icarus 3686:  3651:  3585:  3524:Icarus 3500:  3474:Icarus 3453:  3378:21 May 3348:  3228:  3220:  3167:  3124:  3088:Icarus 3056:  3048:  2998:  2990:  2972:  2889:Icarus 2829:  2768:  2725:13 May 2654:Icarus 2600:  2555:  2505:  2429:  2399:  2352:  2344:  2318:Nature 2270:Icarus 2240:  2204:Icarus 2090:  2064:Icarus 1999:  1893:Icarus 1861:  1835:Icarus 1767:Icarus 1741:  1694:  1684:  1602:  1560:13 May 1260:, and 1254:Quaoar 1226:Charon 1111:Triton 1096:Triton 1083:Oberon 1041:Uranus 980:E ring 976:Saturn 894:lineae 889:Europa 878:Europa 771:0.0003 749:86.5% 723:, 30% 716:, 23% 701:0.962 675:67.4% 639:, 16% 631:81.2% 624:0.917 621:0.0017 558:) and 525:Saturn 481:Quaoar 479:, and 344:Ascent 312:tephra 152:ÎșÏáż ÌÎżÏ‚ 76:, and 47:Triton 4372:Types 4302:arXiv 4263:S2CID 4177:S2CID 4143:arXiv 4098:arXiv 4026:S2CID 3938:arXiv 3893:S2CID 3768:arXiv 3732:(PDF) 3717:(PDF) 3583:S2CID 3498:S2CID 3346:S2CID 3288:(PDF) 3255:(PDF) 3226:S2CID 3122:S2CID 3096:arXiv 3054:S2CID 2996:S2CID 2838:(PDF) 2807:(PDF) 2766:S2CID 2553:S2CID 2503:S2CID 2397:S2CID 2350:S2CID 2278:arXiv 2238:S2CID 2212:arXiv 2173:(PDF) 2158:(PDF) 2088:S2CID 2037:(PDF) 2030:(PDF) 1941:(7). 1859:S2CID 1692:S2CID 1521:' 1494:Notes 1487:Pingo 1262:Sedna 1196:flyby 1182:Pluto 1174:Pluto 1090:' 1057:Ariel 1008:Titan 996:Titan 834:Ceres 807:Ceres 768:0.783 739:4,000 736:0.978 695:0.946 668:1.13 665:0.007 629:Brine 618:1.000 605:100% 473:Sedna 461:Ceres 457:Pluto 435:shell 175:magma 156:krĂșos 111:Like 70:water 4644:Tuff 4417:Maar 4279:2015 4232:2024 4169:PMID 3974:PMID 3909:2015 3858:2015 3828:2024 3794:ISSN 3740:2024 3697:2024 3684:ISBN 3649:ISBN 3509:2024 3451:PMID 3380:2024 3296:2019 3218:PMID 3165:ISSN 3070:2024 3046:PMID 2988:PMID 2939:2015 2846:2008 2827:PMID 2727:2015 2705:2013 2598:ISBN 2569:2021 2460:2015 2427:ISBN 2408:2024 2342:PMID 2249:2024 2181:2009 2099:2024 2045:2011 1962:2024 1752:2024 1739:ISBN 1703:2024 1682:ISBN 1600:ISBN 1562:2024 1316:and 1268:and 1266:Eris 1203:and 1158:and 1129:and 1055:and 1029:maar 940:and 870:and 864:Dawn 839:Dawn 708:47% 662:1.19 641:MgSO 553:MgSO 501:sill 499:and 497:dike 465:Eris 403:and 327:and 310:and 216:and 173:and 171:lava 165:and 4320:doi 4298:302 4255:doi 4216:doi 4204:287 4161:doi 4139:534 4116:doi 4094:404 4065:doi 4053:356 4018:doi 4006:330 3964:PMC 3956:doi 3885:doi 3786:doi 3764:375 3676:doi 3625:doi 3575:doi 3563:160 3540:doi 3528:192 3490:doi 3478:392 3443:doi 3431:378 3336:doi 3324:125 3275:doi 3263:118 3208:hdl 3200:doi 3188:337 3157:doi 3114:doi 3092:264 3038:doi 3026:311 2980:doi 2958:311 2927:ESA 2905:doi 2893:207 2867:doi 2819:doi 2815:286 2758:doi 2670:doi 2658:167 2635:doi 2623:123 2545:doi 2495:doi 2389:doi 2334:doi 2322:479 2296:doi 2274:414 2230:doi 2208:412 2134:doi 2122:110 2080:doi 2068:412 2007:doi 1985:133 1951:doi 1909:doi 1897:190 1851:doi 1839:314 1783:doi 1771:188 1731:doi 1674:doi 1592:doi 733:153 692:176 659:268 615:273 463:,. 273:), 187:ash 4785:: 4318:. 4310:. 4296:. 4269:. 4261:. 4253:. 4249:. 4222:. 4214:. 4202:. 4198:. 4175:. 4167:. 4159:. 4151:. 4137:. 4114:. 4106:. 4096:. 4092:. 4063:. 4055:. 4051:. 4047:. 4024:. 4016:. 4004:. 4000:. 3972:. 3962:. 3954:. 3946:. 3934:13 3932:. 3926:. 3899:. 3891:. 3883:. 3879:. 3875:. 3844:. 3814:. 3792:. 3784:. 3776:. 3762:. 3758:. 3727:. 3682:. 3660:^ 3623:. 3613:13 3611:. 3607:. 3595:^ 3581:. 3573:. 3561:. 3538:. 3526:. 3496:. 3488:. 3480:. 3476:. 3472:. 3449:. 3441:. 3429:. 3413:^ 3358:^ 3344:. 3334:. 3322:. 3318:. 3304:^ 3283:. 3273:. 3261:. 3257:. 3224:. 3216:. 3206:. 3198:. 3186:. 3163:. 3155:. 3145:17 3143:. 3120:. 3112:. 3104:. 3090:. 3078:^ 3060:. 3052:. 3044:. 3036:. 3024:. 3020:. 2994:. 2986:. 2978:. 2968:. 2956:. 2925:. 2903:. 2891:. 2833:. 2825:. 2813:. 2809:. 2786:. 2764:. 2756:. 2746:72 2744:. 2695:. 2691:. 2668:. 2656:. 2633:. 2621:. 2609:^ 2559:. 2551:. 2543:. 2531:. 2527:. 2515:^ 2501:. 2493:. 2481:. 2477:. 2395:. 2387:. 2377:67 2375:. 2371:. 2348:. 2340:. 2332:. 2320:. 2308:^ 2294:. 2286:. 2272:. 2257:^ 2236:. 2228:. 2220:. 2210:. 2206:. 2202:. 2189:^ 2164:. 2160:. 2132:. 2120:. 2116:. 2086:. 2078:. 2070:. 2066:. 2062:. 2005:. 1995:. 1983:. 1979:. 1949:. 1939:34 1937:. 1933:. 1921:^ 1907:. 1895:. 1857:. 1849:. 1837:. 1795:^ 1781:. 1769:. 1737:. 1711:^ 1690:. 1680:. 1672:. 1614:^ 1598:. 1570:^ 1548:. 1256:, 791:– 774:– 765:62 758:CH 742:– 729:OH 725:CH 718:NH 685:NH 652:SO 648:Na 568:SO 564:Na 545:OH 541:CH 518:NH 475:, 471:, 467:, 304:CO 297:CH 290:SO 279:CO 232:). 204:A 72:, 52:A 4357:e 4350:t 4343:v 4326:. 4322:: 4314:: 4304:: 4281:. 4257:: 4234:. 4218:: 4210:: 4183:. 4163:: 4155:: 4145:: 4122:. 4118:: 4110:: 4100:: 4073:. 4067:: 4059:: 4032:. 4020:: 4012:: 3980:. 3958:: 3950:: 3940:: 3911:. 3887:: 3860:. 3830:. 3800:. 3788:: 3780:: 3770:: 3742:. 3723:: 3699:. 3678:: 3655:. 3633:. 3627:: 3619:: 3589:. 3577:: 3569:: 3546:. 3542:: 3534:: 3511:. 3492:: 3484:: 3457:. 3445:: 3437:: 3407:. 3403:: 3382:. 3352:. 3338:: 3330:: 3298:. 3277:: 3269:: 3232:. 3210:: 3202:: 3194:: 3171:. 3159:: 3151:: 3128:. 3116:: 3108:: 3098:: 3072:. 3040:: 3032:: 3002:. 2982:: 2964:: 2941:. 2911:. 2907:: 2899:: 2875:. 2869:: 2848:. 2821:: 2772:. 2760:: 2752:: 2729:. 2707:. 2676:. 2672:: 2664:: 2641:. 2637:: 2629:: 2604:. 2571:. 2547:: 2539:: 2533:2 2509:. 2497:: 2489:: 2483:4 2462:. 2435:. 2410:. 2391:: 2383:: 2356:. 2336:: 2328:: 2302:. 2298:: 2290:: 2280:: 2251:. 2232:: 2224:: 2214:: 2183:. 2142:. 2136:: 2128:: 2101:. 2082:: 2074:: 2047:. 2015:. 2009:: 1991:: 1964:. 1953:: 1945:: 1915:. 1911:: 1903:: 1865:. 1853:: 1845:: 1821:. 1817:: 1789:. 1785:: 1777:: 1754:. 1733:: 1705:. 1676:: 1608:. 1594:: 1564:. 785:– 782:– 760:4 753:2 751:N 727:3 720:3 714:O 712:2 710:H 698:4 687:3 681:O 679:2 677:H 654:4 650:2 643:4 637:O 635:2 633:H 611:O 609:2 607:H 570:4 566:2 562:( 555:4 551:( 543:3 539:( 520:3 516:( 299:4 292:2 288:( 281:2 277:( 271:O 269:2 267:H 201:. 154:( 27:.

Index

Ice volcano
An image of two large cryovolcanoes
Leviathan Patera
Ruach Planitia
Neptune
Triton
volcano
volatile material
water
ammonia
hydrocarbons
Solar System
planetary objects
giant planets
dwarf planets
volcanism
terrestrial planets
internal heat
tidal heating
radioactive decay
Geological Society of America
Ancient Greek
lava
magma
lava channels
ash
pyroclastic flows
shield volcanoes
cinder cones
spatter cones

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑