Knowledge

Hydrogen production

Source 📝

701: 585: 2158:(ATR) with integrated capture of carbon dioxide allows higher capture rates at satisfactory energy efficiencies and life cycle assessments have shown lower greenhouse gas emissions for such plants compared to SMRs with carbon dioxide capture. Application of ATR technology with integrated capture of carbon dioxide in Europe has been assessed to have a lower greenhouse gas footprint than burning natural gas, e.g. for the H21 project with a reported reduction of 68% due to a reduced carbon dioxide intensity of natural gas combined with a more suitable reactor type for capture of carbon dioxide. 686:. The lower the energy used by a generator, the higher would be its efficiency; a 100%-efficient electrolyser would consume 39.4 kilowatt-hours per kilogram (142 MJ/kg) of hydrogen, 12,749 joules per litre (12.75 MJ/m). Practical electrolysis typically uses a rotating electrolyser, where centrifugal force helps separate gas bubbles from water. Such an electrolyser at 15 bar pressure may consume 50 kilowatt-hours per kilogram (180 MJ/kg), and a further 15 kilowatt-hours (54 MJ) if the hydrogen is compressed for use in hydrogen cars. 2097: 1602: 1509: 1546: 1646: 149: 734:. The thermodynamic energy required for hydrogen by electrolysis translates to 33 kWh/kg, which is higher than steam reforming with carbon capture and higher than methane pyrolysis. One of the advantages of electrolysis over hydrogen from steam methane reforming (SMR) is that the hydrogen can be produced on-site, meaning that the costly process of delivery via truck or pipeline is avoided. 1907:. William Ayers at Energy Conversion Devices demonstrated and patented the first multijunction high efficiency photoelectrochemical system for direct splitting of water in 1983. This group demonstrated direct water splitting now referred to as an "artificial leaf" or "wireless solar water splitting" with a low cost thin film amorphous silicon multijunction sheet immersed directly in water. 390:(SMR), which uses natural gas. The energy content of the produced hydrogen is around 74% of the energy content of the original fuel, as some energy is lost as excess heat during production. In general, steam reforming emits carbon dioxide, a greenhouse gas, and is known as gray hydrogen. If the carbon dioxide is captured and stored, the hydrogen produced is known as blue hydrogen. 1881:
potentially less energy is required to produce hydrogen. Nuclear heat could be used to split hydrogen from water. High temperature (950–1000 °C) gas cooled nuclear reactors have the potential to split hydrogen from water by thermochemical means using nuclear heat. High-temperature electrolysis has been demonstrated in a laboratory, at 108 
1435:/mol glucose can be produced. Sugars are convertible to volatile fatty acids (VFAs) and alcohols as by-products during this process. Photo fermentative bacteria are able to generate hydrogen from VFAs. Hence, metabolites formed in dark fermentation can be used as feedstock in photo fermentation to enhance the overall yield of hydrogen. 1280:(S-I cycle) is a thermochemical cycle processes which generates hydrogen from water with an efficiency of approximately 50%. The sulfur and iodine used in the process are recovered and reused, and not consumed by the process. The cycle can be performed with any source of very high temperatures, approximately 950 °C, such as by 570:, low pressure electrolysis of water, or a range of other emerging electrochemical processes such as high temperature electrolysis or carbon assisted electrolysis. However, current best processes for water electrolysis have an effective electrical efficiency of 70-80%, so that producing 1 kg of hydrogen (which has a 608:
reforming). Due to their use of water, a readily available resource, electrolysis and similar water-splitting methods have attracted the interest of the scientific community. With the objective of reducing the cost of hydrogen production, renewable sources of energy have been targeted to allow electrolysis.
2259:
by electrolysis. Although requiring expensive technologies, hydrogen can be cooled, compressed and purified for use in other processes on site or sold to a customer via pipeline, cylinders or trucks. The discovery and development of less expensive methods of production of bulk hydrogen is relevant to
1969:
which uses sunlight to obtain the required 800 to 1,200 °C to heat water. Hydrosol II has been in operation since 2008. The design of this 100-kilowatt pilot plant is based on a modular concept. As a result, it may be possible that this technology could be readily scaled up to the megawatt range
607:
Water electrolysis can operate at 50–80 °C (120–180 °F), while steam methane reforming requires temperatures at 700–1,100 °C (1,300–2,000 °F). The difference between the two methods is the primary energy used; either electricity (for electrolysis) or natural gas (for steam methane
577:
In parts of the world, steam methane reforming is between $ 1–3/kg on average excluding hydrogen gas pressurization cost. This makes production of hydrogen via electrolysis cost competitive in many regions already, as outlined by Nel Hydrogen and others, including an article by the IEA examining the
140:
is bonded to oxygen in water. Manufacturing elemental hydrogen requires the consumption of a hydrogen carrier such as a fossil fuel or water. The former carrier consumes the fossil resource and in the steam methane reforming (SMR) process produces greenhouse gas carbon dioxide. However, in the newer
1426:
Among hydrogen production methods biological routes are potentially less energy intensive. In addition, a wide variety of waste and low-value materials such as agricultural biomass as renewable sources can be utilized to produce hydrogen via biochemical or thermochemical pathways. Nevertheless, at
1924:
A method studied by Thomas Nann and his team at the University of East Anglia consists of a gold electrode covered in layers of indium phosphide (InP) nanoparticles. They introduced an iron-sulfur complex into the layered arrangement, which when submerged in water and irradiated with light under a
1016:
is used. The process of coal gasification uses steam and oxygen to break molecular bonds in coal and form a gaseous mixture of hydrogen and carbon monoxide. Carbon dioxide and pollutants may be more easily removed from gas obtained from coal gasification versus coal combustion. Another method for
721:
The US DOE target price for hydrogen in 2020 is $ 2.30/kg, requiring an electricity cost of $ 0.037/kWh, which is achievable given recent PPA tenders for wind and solar in many regions. The report by IRENA.ORG is an extensive factual report of present-day industrial hydrogen production consuming
1880:
Hydrogen can be generated from energy supplied in the form of heat and electricity through high-temperature electrolysis (HTE). Since some of the energy in HTE is supplied in the form of heat, less of the energy must be converted twice from heat to electricity, and then to hydrogen. Therefore,
712:
As of 2020, the cost of hydrogen by electrolysis is around $ 3–8/kg. Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–82%, producing 1 kg of hydrogen
689:
Conventional alkaline electrolysis has an efficiency of about 70%, however advanced alkaline water electrolysers with efficiency of up to 82% are available. Accounting for the use of the higher heat value (because inefficiency via heat can be redirected back into the system to create the steam
1910:
Hydrogen evolved on the front amorphous silicon surface decorated with various catalysts while oxygen evolved off the back metal substrate. A Nafion membrane above the multijunction cell provided a path for ion transport. Their patent also lists a variety of other semiconductor multijunction
1479:
Fermentative hydrogen production can be done using direct biophotolysis by green algae, indirect biophotolysis by cyanobacteria, photo-fermentation by anaerobic photosynthetic bacteria and dark fermentation by anaerobic fermentative bacteria. For example, studies on hydrogen production using
1656:
of methane (natural gas) with a one-step process bubbling methane through a molten metal catalyst is a "no greenhouse gas" approach to produce hydrogen that was demonstrated in laboratory conditions in 2017 and now being tested at larger scales. The process is conducted at high temperatures
1403:
systems. However, if this process is assisted by photocatalysts suspended directly in water instead of using photovoltaic and an electrolytic system the reaction is in just one step, it can be made more efficient. Current systems, however have low performance for commercial implementation.
1430:
Biochemical routes to hydrogen are classified as dark and photo fermentation processes. In dark fermentation, carbohydrates are converted to hydrogen by fermentative microorganisms including strict anaerobe and facultative anaerobic bacteria. A theoretical maximum of 4 mol
4056:
Sebbahi, Seddiq; Nabil, Nouhaila; Alaoui-Belghiti, Amine; Laasri, Said; Rachidi, Samir; Hajjaji, Abdelowahed (2022). "Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis".
5406: 758:
Carbon/hydrocarbon assisted water electrolysis (CAWE) has the potential to offer a less energy intensive, cleaner method of using chemical energy in various sources of carbon, such as low-rank and high sulfur coals, biomass, alcohols and methane (Natural Gas), where pure
2088:
in Mali, producing electricity for the surrounding villages. More discoveries of naturally occurring hydrogen in continental, on-shore geological environments have been made in recent years and open the way to the novel field of natural or native hydrogen, supporting
6891: 1538:, as the latter only uses algae and with the latter, the algae itself generates the hydrogen instantly, where with biocatalysed electrolysis, this happens after running through the microbial fuel cell and a variety of aquatic plants can be used. These include 7112:
Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco (December 2016).
801:
by electrolysis generates a sizable amount of Hydrogen as a byproduct. In the port of Antwerp a 1MW demonstration fuel cell power plant is powered by such byproduct. This unit has been operational since late 2011. The excess hydrogen is often managed with a
834:, resulting in a hydrogen- and carbon monoxide-rich syngas. More hydrogen and carbon dioxide are then obtained from carbon monoxide (and water) via the water-gas shift reaction. Carbon dioxide can be co-fed to lower the hydrogen to carbon monoxide ratio. 742:
In addition to reduce the voltage required for electrolysis via the increasing of the temperature of the electrolysis cell it is also possible to electrochemically consume the oxygen produced in an electrolyser by introducing a fuel (such as carbon/coal,
1915:
technology at universities and the photovoltaic industry. If this process is assisted by photocatalysts suspended directly in water instead of using photovoltaic and an electrolytic system, the reaction is in just one step, which can improve efficiency.
1427:
present hydrogen is produced mainly from fossil fuels, in particular, natural gas which are non-renewable sources. Hydrogen is not only the cleanest fuel but also widely used in a number of industries, especially fertilizer, petrochemical and food ones.
5685: 6420: 7512:
Larin, Nikolay; Zgonnik, Viacheslav; Rodina, Svetlana; Deville, Eric; Prinzhofer, Alain; Larin, Vladimir N. (September 2015). "Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia".
1792:
can be sequestered successfully by several methods, leaving hydrogen gas. In 2006–2007, NanoLogix first demonstrated a prototype hydrogen bioreactor using waste as a feedstock at Welch's grape juice factory in North East, Pennsylvania (U.S.).
1871:
is eliminated, the average energy consumption for internal compression is around 3%. European largest (1 400 000 kg/a, High-pressure Electrolysis of water, alkaline technology) hydrogen production plant is operating at Kokkola, Finland.
1143:
can be divided into different types based on the pyrolysis temperature, namely low-temperature slow pyrolysis, medium-temperature rapid pyrolysis, and high-temperature flash pyrolysis. The source energy is mainly solar energy, with help of
2084:, and in petroleum refining. Although initially hydrogen gas was thought not to occur naturally in convenient reservoirs, it is now demonstrated that this is not the case; a hydrogen system is currently being exploited near Bourakebougou, 5800:
Ropero-Vega, J.L.; Pedraza-Avella, J.A.; Niño-Gómez, M.E. (September 2015). "Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes".
1324:, and water. The generator is small enough to fit a truck and requires only a small amount of electric power, the materials are stable and not combustible, and they do not generate hydrogen until mixed. The method has been in use since 7757:
Antonini, Cristina; Treyer, Karin; Streb, Anne; van der Spek, Mijndert; Bauer, Christian; Mazzotti, Marco (2020). "Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis".
397:), and water. It is the cheapest source of industrial hydrogen, being the source of nearly 50% of the world's hydrogen. The process consists of heating the gas to 700–1,100 °C (1,300–2,000 °F) in the presence of steam over a 5959:
Asadi, Nooshin; Karimi Alavijeh, Masih; Zilouei, Hamid (January 2017). "Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran".
2014:, are under research and in testing phase to produce hydrogen and oxygen from water and heat without using electricity. These processes can be more efficient than high-temperature electrolysis, typical in the range from 35% – 49% 1070:
Injecting appropriate microbes into depleted oil wells allows them to extract hydrogen from the remaining, unrecoverable oil. Since the only inputs are the microbes, production costs are low. The method also produces concentrated
1268:
is used because aside from water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled. If electricity is partially used as an input, the resulting thermochemical cycle is defined as a
2856: 6887: 755:, glycerol, etc.) into the oxygen side of the reactor. This reduces the required electrical energy and has the potential to reduce the cost of hydrogen to less than 40~60% with the remaining energy provided in this manner. 1570:
powder reacts with water to produce hydrogen gas upon contact with water. It reportedly generates hydrogen at 100 percent of the theoretical yield. Cost-effective routes for generating the aluminum alloy remain elusive.
627:(AECs). Traditionally, alkaline electrolysers are cheaper in terms of investment (they generally use nickel catalysts), but less-efficient; PEM electrolysers, conversely, are more expensive (they generally use expensive 7680: 1952:
Very high temperatures are required to dissociate water into hydrogen and oxygen. A catalyst is required to make the process operate at feasible temperatures. Heating the water can be achieved through the use of water
638:
SOECs operate at high temperatures, typically around 800 °C (1,500 °F). At these high temperatures, a significant amount of the energy required can be provided as thermal energy (heat), and as such is termed
4771:
Lamy, Claude; Devadas, Abirami; Simoes, Mario; Coutanceau, Christophe (2012). "Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC)".
1783:
Biological hydrogen can be produced in bioreactors that use feedstocks other than algae, the most common feedstock being waste streams. The process involves bacteria feeding on hydrocarbons and excreting hydrogen and
7182:
Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; del Valle, F.; Villoria de la Mano, José A.; Fierro, José L. G. (22 June 2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation".
717:
of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity. At an electricity cost of $ 0.06/kWh, as set out in the Department of Energy hydrogen production targets for 2015, the hydrogen cost is $ 3/kg.
7891: 5131: 1168:
thermo-chemical cycle for splitting water and high-temperature steam electrolysis (HTSE) were selected as the main processes for nuclear hydrogen production. The S-I cycle follows three chemical reactions:
5719:
Navarro Yerga, Rufino M.; Álvarez Galván, M. Consuelo; Del Valle, F.; Villoria De La Mano, José A.; Fierro, José L. G. (2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation".
4985: 5532:
Chukwu, C., Naterer, G. F., Rosen, M. A., "Process Simulation of Nuclear-Produced Hydrogen with a Cu-Cl Cycle", 29th Conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, June 1–4, 2008.
4261: 6412: 1801:
Besides regular electrolysis, electrolysis using microbes is another possibility. With biocatalysed electrolysis, hydrogen is generated after running through the microbial fuel cell and a variety of
1332:
is filled with sodium hydroxide and ferrosilicon, closed, and a controlled amount of water is added; the dissolving of the hydroxide heats the mixture to about 93 °C and starts the reaction;
5702: 1345: 4498: 581:
A small part (2% in 2019) is produced by electrolysis using electricity and water, consuming approximately 50 to 55 kilowatt-hours of electricity per kilogram of hydrogen produced.
4741:
Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S; Mulder, Roger J (2016). "Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation".
6695:
Patlolla, Shashank Reddy; Katsu, Kyle; Sharafian, Amir; Wei, Kevin; Herrera, Omar E.; Mérida, Walter (July 2023). "A review of methane pyrolysis technologies for hydrogen production".
5176:
Gemayel, Jimmy El; MacChi, Arturo; Hughes, Robin; Anthony, Edward John (2014). "Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture".
2848: 6857: 1657:(1065 °C). Producing 1 kg of hydrogen requires about 18 kWh of electricity for process heat. The pyrolysis of methane can be expressed by the following reaction equation. 654:
PEM electrolysis cells typically operate below 100 °C (212 °F). These cells have the advantage of being comparatively simple and can be designed to accept widely varying
6532:
Palmer, Clarke; Upham, D. Chester; Smart, Simon; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (January 2020). "Dry reforming of methane catalysed by molten metal alloys".
3741: 2207:
94 million tonnes of grey hydrogen are produced globally using fossil fuels as of 2022, primarily natural gas, and are therefore a significant source of greenhouse gas emissions.
604:
between 70 and 85%. The electrical efficiency of electrolysis is expected to reach 82–86% before 2030, while also maintaining durability as progress in this area continues apace.
2018:
efficiency. Thermochemical production of hydrogen using chemical energy from coal or natural gas is generally not considered, because the direct chemical path is more efficient.
6730:
Tao, Yongzhen; Chen, Yang; Wu, Yongqiang; He, Yanling; Zhou, Zhihua (1 February 2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose".
6150:
Strik, David P. B. T. B.; Hamelers (Bert), H. V. M.; Snel, Jan F. H.; Buisman, Cees J. N. (2008). "Green electricity production with living plants and bacteria in a fuel cell".
2011: 136:. It is unclear how much molecular hydrogen is available in natural reservoirs, but at least one company specializes in drilling wells to extract hydrogen. Most hydrogen in the 7861: 7794: 6576: 1148:
to decompose water or biomass to produce hydrogen. However, this process has relatively low hydrogen yields and high operating cost. It is not a feasible method for industry.
5235: 1885:(thermal) per kilogram of hydrogen produced, but not at a commercial scale. In addition, this is lower-quality "commercial" grade Hydrogen, unsuitable for use in fuel cells. 516:. This oxidation also provides energy to maintain the reaction. Additional heat required to drive the process is generally supplied by burning some portion of the methane. 4683:
Uhm, Sunghyun; Jeon, Hongrae; Kim, Tae Jin; Lee, Jaeyoung (2012). "Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process".
7697: 4196:
Clarke, R.E.; Giddey, S.; Ciacchi, F.T.; Badwal, S.P.S.; Paul, B.; Andrews, J. (2009). "Direct coupling of an electrolyser to a solar PV system for generating hydrogen".
2720: 2533: 1027:
gas made from pyrolysis (oxygen free heating) of coal has about 60% hydrogen, the rest being methane, carbon monoxide, carbon dioxide, ammonia, molecular nitrogen, and
538:
O) into its components oxygen and hydrogen. When the source of energy for water splitting is renewable or low-carbon, the hydrogen produced is sometimes referred to as
6072:
Asadi, Nooshin; Zilouei, Hamid (March 2017). "Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes".
124:. The global hydrogen generation market was fairly valued at US$ 155 billion in 2022, and expected to grow at a compound annual growth rate of 9.3% from 2023 to 2030. 7469:
Prinzhofer, Alain; Tahara Cissé, Cheick Sidy; Diallo, Aliou Boubacar (October 2018). "Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)".
6389: 152:
Illustrating inputs and outputs of steam reforming of natural gas, a process to produce hydrogen. As of 2020, the carbon sequestrastion step is not in commercial use.
7883: 186:. If most of the carbon dioxide emission is captured, it is referred to as blue hydrogen. Hydrogen produced from coal may be referred to as brown or black hydrogen. 6992: 5088: 4428: 3918: 3856: 592:
Water electrolysis is using electricity to split water into hydrogen and oxygen. As of 2020, less than 0.1% of hydrogen production comes from water electrolysis.
3779: 4904:
Ju, Hyungkuk; Badwal, Sukhvinder; Giddey, Sarbjit (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production".
4370: 7437: 4982: 3287: 79:. Producing green hydrogen is currently more expensive than producing gray hydrogen, and the efficiency of energy conversion is inherently low. Other methods of 4559: 3671: 6755: 2556: 2021:
None of the thermochemical hydrogen production processes have been demonstrated at production levels, although several have been demonstrated in laboratories.
1911:
materials for the direct water splitting in addition to amorphous silicon and silicon germanium alloys. Research continues towards developing high-efficiency
5372:
Ping, Zhang; Laijun, Wang; Songzhe, Chen; Jingming, Xu (January 2018). "Progress of nuclear hydrogen production through the iodine–sulfur process in China".
1899:
Using electricity produced by photovoltaic systems offers the cleanest way to produce hydrogen. Water is broken into hydrogen and oxygen by electrolysis – a
7229:
Navarro, R.M.; Del Valle, F.; Villoria de la Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009). "Photocatalytic Water Splitting Under Visible Light".
3707: 4224: 4166: 1231:
The hydrogen production rate of HTGR with IS cycle is approximately 0.68 kg/s, and the capital cost to build a unit of power plant is $ 100 million.
7027: 6189: 3388: 3157: 1805: 542:. The conversion can be accomplished in several ways, but all methods are currently considered more expensive than fossil-fuel based production methods. 6475:
Upham, D. Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R.; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (17 November 2017).
2978: 5535: 3017: 2111:
at scale for a renewable hydrogen economy. Water could be pumped down to hot iron-rich rock to produce hydrogen and the hydrogen could be extracted.
651:. This has the potential to reduce the overall cost of the hydrogen produced by reducing the amount of electrical energy required for electrolysis. 5464: 4611: 2647: 1691:
Methane pyrolysis technologies are in the early development stages as of 2023. They have numerous obstacles to overcome before commercialization.
33:
gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Most hydrogen is
6031: 2999: 1732:
reactions do not require light energy, so they are capable of constantly producing hydrogen from organic compounds throughout the day and night.
101:
As of 2023, less than 1% of dedicated hydrogen production is low-carbon, i.e. blue hydrogen, green hydrogen, and hydrogen produced from biomass.
6340: 4861:
Ju, H; Badwal, S.P.S; Giddey, S (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production".
4490: 6607: 2143:
that is 20% greater than burning gas or coal for heat and 60% greater when compared to burning diesel for heat, assuming US up- and mid-stream
830:
Hydrogen production from natural gas and heavier hydrocarbons is achieved by partial oxidation. A fuel-air or fuel-oxygen mixture is partially
5653: 697:
PEM efficiency is expected to increase to approximately 86% before 2030. Theoretical efficiency for PEM electrolysers is predicted up to 94%.
7304: 3253: 7077: 1621:, also called white hydrogen or gold hydrogen, can be extracted from wells in a similar manner as fossil fuels such as oil and natural gas. 7367: 7056: 6115:
Percival Zhang, Y-H; Sun, Jibin; Zhong, Jian-Jiang (2010). "Biofuel production by in vitro synthetic enzymatic pathway biotransformation".
3802: 1958: 7409: 7115:"Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution" 6865: 5035: 5995:
Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose".
5006: 4316: 4089: 5248: 4458: 4116:
Hauch, Anne; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Mogensen, Mogens (2008). "Highly efficient high temperature electrolysis".
3733: 3041: 1399:
The conversion of solar energy to hydrogen by means of water splitting process is one of the most interesting ways to achieve clean and
145:
process no greenhouse gas carbon dioxide is produced. These processes typically require no further energy input beyond the fossil fuel.
7832: 7339: 4636: 2557:"Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options" 45:, the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. When 6643:"Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production" 3625: 6194: 1289: 620: 2204:
As of 2020, estimated costs of production are $ 1–1.80/kg for grey hydrogen and blue hydrogen, and $ 2.50–6.80 for green hydrogen.
2181:
to produce hydrogen in a steam reformer. Hydrogen fuel, when produced by renewable sources of energy like wind or solar power, is a
6568: 6152: 2529: 1991: 3557:
Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014).
5149:
Lee, Woon-Jae; Lee, Yong-Kuk (2001). "Internal Gas Pressure Characteristics Generated during Coal Carbonization in a Coke Oven".
3446:
Dincer, Ibrahim; Acar, Canan (September 2015). "Review and evaluation of hydrogen production methods for better sustainability".
841:
fuel-air mixture or fuel-oxygen is partially combusted in a reformer or partial oxidation reactor. A distinction is made between
4148: 1106:, researchers found bacteria in a naturally occurring high radiation zone. The bacterial community which was dominated by a new 6779: 5321: 4584: 2710: 2521: 1944:
of water to produce hydrogen gas. The company plans to achieve commercial application "as early as possible", not before 2020.
1867:). By pressurising the hydrogen in the electrolyser, through a process known as chemical compression, the need for an external 1700: 1550: 1535: 1357: 7641: 6366: 4983:
http://www.nedstack.com/images/stories/news/documents/20120202_Press%20release%20Solvay%20PEM%20Power%20Plant%20start%20up.pdf
2241:, the primary industrial method for the production of synthetic nitrogen fertilizer for growing 47 percent of food worldwide. 1132:
occurs at temperatures too high for usual process piping and equipment resulting in a rather low commercialization potential.
8096: 7246: 6925: 6226: 5940: 5828:
Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek; Wageh, Swelm; Al-Ghamdi, Ahmed A. (May 2017). "Heterojunction Photocatalysts".
5784: 4013:
Badwal, Sukhvinder P.S.; Giddey, Sarbjit; Munnings, Christopher (2013). "Hydrogen production via solid electrolytic routes".
3495: 3430: 5502: 1385:(the conversion of sunlight into hydrogen) barrier. with a hydrogen production rate of 10–12 ml per liter culture per hour. 7818: 6381: 5345:
Guoxin, Hu; Hao, Huang (May 2009). "Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent".
5113: 194:
Hydrogen is often referred to by various colors to indicate its origin (perhaps because gray symbolizes "dirty hydrogen").
6761: 5266:; Eoin L. Brodie; Terry C. Hazen; Gary L. Andersen; Todd Z. DeSantis; Duane P. Moser; Dave Kershaw; T. C. Onstott (2006). 1381:, to the production of hydrogen. It seems that the production is now economically feasible by surpassing the 7–10 percent 6999: 5092: 4266: 1157: 5475:
Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. 2009
3775: 175:. When derived from natural gas by zero greenhouse emission methane pyrolysis, it is referred to as turquoise hydrogen. 7084: 4648:
Giddey, S; Kulkarni, A; Badwal, S.P.S (2015). "Low emission hydrogen generation through carbon assisted electrolysis".
4378: 3312: 1562: 7433: 5060: 3278: 2909: 159:
water, the latter carrier, requires electrical or heat input, generated from some primary energy source (fossil fuel,
5584: 4563: 4535: 4346: 3675: 3647: 679: 1062:
S from the sulfur in the coke feed. Gasification is an option for producing hydrogen from almost any carbon source.
700: 5565: 5437: 5420: 2390: 1705: 1453: 1444: 7262:
Nann, Thomas; Ibrahim, Saad K.; Woi, Pei-Meng; Xu, Shu; Ziegler, Jan; Pickett, Christopher J. (22 February 2010).
3975: 6382:"Researchers develop potentially low-cost, low-emissions technology that can convert methane without forming CO2" 6268: 4802:
Badwal, Sukhvinder P. S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F (2014).
3947: 3696: 3093: 2870: 1758:
where hydrogen is produced from organic matter (e.g. from sewage, or solid matter) while 0.2 – 0.8 V is applied.
1593:
are submerged and heated to about 80 °C (176 °F), causing a chemical reaction which produces hydrogen.
6242: 4503:
green hydrogen .. current pricing of around $ 3 to $ 8 a kilogram .. gray hydrogen, which costs as little as $ 1
4235: 4174: 1423:, steam reforming, or biological conversion like biocatalysed electrolysis or fermentative hydrogen production. 3543: 2198: 1394: 17: 7955:
Castelvecchi, Davide (2022-11-16). "How the hydrogen revolution can help save the planet — and how it can't".
7023: 6199: 3392: 3148: 1962: 1802: 4475: 3365: 2799: 2374: 1285: 640: 616: 557: 8034: 8006: 7655: 4547:
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
3659:
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
2970: 1534:, wastewater or plants can be used to generate power. Biocatalysed electrolysis should not be confused with 981:). Of the available energy of the feed, approximately 48% is contained in the hydrogen, 40% is contained in 8115: 5542: 5485: 3013: 2452: 2395: 2064:. Of the available energy of the feed, approximately 48% is contained in the hydrogen, 40% is contained in 416: 7457: 5077: 2742: 2169:. Two ways of producing hydrogen from renewable energy sources are claimed to be practical. One is to use 1292:
in Japan. There are other hybrid cycles that use both high temperatures and some electricity, such as the
588:
Illustrating inputs and outputs of electrolysis of water, for production of hydrogen and no greenhouse gas
8072: 7934: 5923:
Häussinger, Peter; Lohmüller, Reiner; Watson, Allan M. (2011). "Hydrogen, 1. Properties and Occurrence".
2555:
Griffiths, Steve; Sovacool, Benjamin K.; Kim, Jinsoo; Bazilian, Morgan; Uratani, Joao M. (October 2021).
2314: 1709: 1382: 5693:. Steering Committee Meeting and Workshop of APEC Research Network for Advanced Biohydrogen Technology. 5461: 4400: 3828: 2849:"A net-zero world 'would require 306 million tonnes of green hydrogen per year by 2050': IEA | Recharge" 2639: 2201:
made an agreement in January 2022 to supply commercial pink hydrogen in the order of kilograms per day.
6051: 2136: 1894: 1824: 1304:
reaction in one of the reaction steps, it operates at 530 °C and has an efficiency of 43 percent.
643:. The heat energy can be provided from a number of different sources, including waste industrial heat, 624: 567: 561: 448: 271: 46: 5763:
Navarro, R.M.; Del Valle, F.; Villoria De La Mano, J.A.; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009).
5536:"Process Simulation of Nuclear-Based Thermochemical Hydrogen Production with a Copper-Chlorine Cycle" 4170: 4003:
Hordeski, M. F. Alternative fuels: the future of hydrogen. 171–199 (The Fairmont Press, inc., 2007).
2380: 2279: 1954: 1904: 1900: 1293: 1281: 1036: 997: 973:
company of the same name, for the production of hydrogen and carbon black from liquid hydrocarbons (C
6599: 7905: 6957:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
6413:"BASF researchers working on fundamentally new, low-carbon production processes, Methane Pyrolysis" 3486:
Press, Roman J.; Santhanam, K. S. V.; Miri, Massoud J.; Bailey, Alla V.; Takacs, Gerald A. (2008).
3065: 2916: 2140: 2124: 2108: 1625: 1605: 776: 179: 7335: 7314: 5660: 3244: 7088: 7048: 6628: 5263: 4517:"Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis" 3618:"Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis" 3280:
National hydrogen roadmap: pathways to an economically sustainable hydrogen industry in Australia
3277:
Bruce, S; Temminghoff, M; Hayward, J; Schmidt, E; Munnings, C; Palfreyman, D; Hartley, P (2018).
1847:) by means of an electric current being passed through the water. The difference with a standard 1746: 1473: 1165: 1164:-free nuclear technique to produce hydrogen by splitting water in a large scale. In this method, 1040: 648: 133: 38: 7698:"Air Products to Build Europe’s Largest Blue Hydrogen Plant and Strengthens Long-term Agreement" 7360: 2822: 2076:
As of 2019, hydrogen is mainly used as an industrial feedstock, primarily for the production of
817:
with 60% hydrogen by volume. The hydrogen can be extracted from the coke oven gas economically.
7402: 6477:"Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon" 5262:
Li-Hung Lin; Pei-Ling Wang; Douglas Rumble; Johanna Lippmann-Pipke; Erik Boice; Lisa M. Pratt;
5028: 4714:
in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis".
2385: 2304: 2299: 1860: 156: 7862:"World first for nuclear-powered pink hydrogen as commercial deal signed in Sweden | Recharge" 7642:"The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey" 7556: 6367:"The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey" 6293: 5764: 5576: 2888: 167:). Hydrogen produced by electrolysis of water using renewable energy sources such as wind and 104:
In 2020, roughly 87 million tons of hydrogen was produced worldwide for various uses, such as
7884:"A wake-up call on green hydrogen: the amount of wind and solar needed is immense | Recharge" 7336:"DLR Portal – DLR scientists achieve solar hydrogen production in a 100-kilowatt pilot plant" 3118: 2354: 2309: 2174: 2155: 2003: 1995: 1848: 1058:
via coal gasification. The produced syngas consists mainly of hydrogen, carbon monoxide and H
1000:
technology for the production of hydrogen, heat and carbon from methane and natural gas in a
593: 551: 5261: 7964: 7613: 7572: 7522: 7478: 7192: 7126: 6966: 6813: 6739: 6704: 6654: 6488: 6311: 6161: 6081: 6004: 5969: 5892: 5837: 5729: 5698: 5609: 5381: 5279: 5267: 5185: 4913: 4870: 4815: 4657: 4516: 4022: 3617: 3570: 3455: 3199: 3186:
Van de Graaf, Thijs; Overland, Indra; Scholten, Daniel; Westphal, Kirsten (December 2020).
2681: 2607: 2568: 2483: 2230: 1297: 1245: 1240: 323: 1688:
The industrial quality solid carbon may be sold as manufacturing feedstock or landfilled.
8: 6802:"Analytical approaches to photobiological hydrogen production in unicellular green algae" 5598:"Analytical approaches to photobiological hydrogen production in unicellular green algae" 4152: 3243:
Sansom, Robert; Baxter, Jenifer; Brown, Andy; Hawksworth, Stuart; McCluskey, Ian (2020).
2294: 2256: 2015: 2007: 1999: 1912: 1868: 1852: 1755: 1751: 1725: 1531: 1527: 1521: 1517: 1277: 1001: 663: 644: 486: 405: 7968: 7617: 7576: 7526: 7482: 7196: 7130: 6970: 6817: 6743: 6708: 6658: 6492: 6315: 6165: 6085: 6008: 5973: 5896: 5841: 5733: 5613: 5385: 5283: 5212: 5189: 4917: 4874: 4819: 4710:
Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S (2017). "The role of nanosized SnO
4661: 4026: 3574: 3459: 3203: 2685: 2611: 2572: 2520:
Bonheure, Mike; Vandewalle, Laurien A.; Marin, Guy B.; Van Geem, Kevin M. (March 2021).
2487: 7988: 7538: 7494: 7181: 7147: 7114: 6834: 6801: 6670: 6549: 6514: 6302: 6177: 5861: 5765:"Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development" 5718: 5630: 5597: 5303: 4929: 4886: 4838: 4803: 4291: 4143: 4038: 3593: 3558: 3422: 3220: 3187: 2501: 2274: 2221:
Hydrogen is used for the conversion of heavy petroleum fractions into lighter ones via
1313: 1018: 601: 584: 7929: 7238: 5776: 5002: 4464:. The Bellona Foundation. p. 20. Archived from the original on 16 September 2013. 2030: 955: 8092: 8065: 7992: 7980: 7807: 7731: 7542: 7498: 7285: 7242: 7208: 7152: 6939: 6931: 6921: 6839: 6674: 6553: 6518: 6506: 6222: 6132: 6097: 5936: 5853: 5780: 5745: 5635: 5580: 5295: 4933: 4890: 4843: 4469: 4342: 4042: 3598: 3524:
CISAP4 4th International Conference on Safety and Environment in the Process Industry
3491: 3426: 3370: 3225: 2993: 2804: 2505: 2319: 2289: 2090: 1737: 1733: 1729: 1585:
CC-HOD (Catalytic Carbon – Hydrogen On Demand) is a low-temperature process in which
1465: 1461: 1448: 1013: 986: 612: 256: 142: 91: 6775: 6181: 5865: 5307: 4785: 4754: 4727: 4295: 4102: 3512: 1284:
systems (CSP) and is regarded as being well suited to the production of hydrogen by
635:, and can therefore be possibly cheaper if the hydrogen production is large enough. 393:
Steam methane reforming (SMR) produces hydrogen from natural gas, mostly methane (CH
7972: 7833:"WSJ News Exclusive: Green Hydrogen Gets a Boost in the U.S. With $ 4 Billion Plant 7775: 7767: 7739: 7723: 7715: 7621: 7580: 7530: 7490: 7486: 7275: 7234: 7200: 7142: 7134: 6978: 6974: 6829: 6821: 6751: 6747: 6712: 6666: 6662: 6541: 6496: 6455: 6319: 6169: 6124: 6093: 6089: 6016: 6012: 5981: 5977: 5928: 5900: 5845: 5810: 5772: 5737: 5625: 5617: 5389: 5358: 5354: 5287: 5193: 5158: 4963: 4925: 4921: 4882: 4878: 4833: 4823: 4781: 4750: 4723: 4696: 4692: 4669: 4665: 4283: 4275: 4209: 4205: 4125: 4098: 4066: 4030: 3898: 3588: 3578: 3467: 3463: 3418: 3360: 3350: 3215: 3207: 2949: 2794: 2784: 2689: 2615: 2576: 2491: 2431: 2339: 2334: 2261: 2216: 2162: 2085: 2065: 1987: 1649:
Illustrating inputs and outputs of methane pyrolysis, a process to produce Hydrogen
1629: 1618: 1612: 1400: 1349: 1317: 1112: 1028: 982: 963: 691: 530:
Methods to produce hydrogen without the use of fossil fuels involve the process of
485:
In a second stage, additional hydrogen is generated through the lower-temperature,
233: 164: 95: 76: 64: 41:. In this process, hydrogen is produced from a chemical reaction between steam and 7626: 7601: 6912:
Janssen, H.; Emonts, B.; Groehn, H. G.; Mai, H.; Reichel, R.; Stolten, D. (2001).
6642: 5932: 7840: 6128: 5814: 5762: 5468: 5424: 4989: 4612:"Xcel Attracts 'Unprecedented' Low Prices for Solar and Wind Paired With Storage" 4336: 4321: 4262:"Process intensification: water electrolysis in a centrifugal acceleration field" 4142:
In the laboratory, water electrolysis can be done with a simple apparatus like a
2694: 2669: 2620: 2595: 2369: 2349: 2329: 2324: 2148: 2144: 1983: 1937: 1929: 1813: 1809: 1539: 1333: 1329: 1301: 714: 632: 597: 571: 531: 525: 387: 381: 121: 7390: 6442:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020).
5509: 4070: 2936:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020).
2496: 2471: 1500:
Diverse enzymatic pathways have been designed to generate hydrogen from sugars.
658:
inputs, which makes them ideal for use with renewable sources of energy such as
8030: 7976: 7780: 7403:"Development of Solar-powered Thermochemical Production of Hydrogen from Water" 6716: 5393: 5197: 4968: 4951: 4087:
Ogden, J.M. (1999). "Prospects for building a hydrogen energy infrastructure".
3803:"Green hydrogen is gaining traction, but still has massive hurdles to overcome" 3252:. London, United Kingdom: The Institution of Engineering and Technology (IET). 3211: 2580: 2436: 2422: 2417: 2364: 2359: 2190: 2182: 2104: 2096: 1933: 1777: 1601: 1567: 1378: 1145: 1051: 803: 628: 539: 217: 172: 59: 49:
is used to remove a large fraction of these emissions, the product is known as
7585: 7560: 7534: 7264:"Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production" 6825: 6545: 6324: 6303:
Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology
6297: 5621: 5579:, István Hargittai, Magdolna Hargittai, p. 261, Imperial College Press (2000) 4338:
Hydrogen Science and Engineering: Materials, Processes, Systems and Technology
4279: 2071: 1508: 8109: 7735: 7309: 7052: 6935: 6216: 4828: 3776:"How Much Electricity/Water Is Needed to Produce 1 kg of H2 by Electrolysis?" 3583: 2344: 2238: 2226: 2222: 2186: 1941: 1205: 838: 352: 183: 160: 113: 51: 7743: 6501: 6476: 5417: 5291: 3337:
Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024).
3246:
Transitioning to hydrogen: assessing the engineering risks and uncertainties
3156:. Berlin, Germany: Federal Ministry for Economic Affairs and Energy (BMWi). 2771:
Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024).
1632:. Water could be pumped down to hot iron-rich rock to extract the hydrogen. 1484:, an anaerobic photosynthetic bacteria, coupled to a hydrogenase donor like 1344: 7984: 7836: 7701: 7289: 7280: 7263: 7212: 7204: 7156: 6843: 6510: 6460: 6443: 6136: 6101: 5857: 5849: 5749: 5741: 5639: 5299: 4847: 3602: 3374: 3229: 2954: 2937: 2808: 2715: 2178: 2170: 2120: 2045: 2034: 1750:
SH2C can be employed to convert small molecular fatty acids into hydrogen.
1420: 1321: 1103: 959: 798: 436: 327: 225: 105: 87: 68: 6247:
U.S. Army Combat Capabilities Development Command Army Research Laboratory
4539: 4167:"Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'" 3903: 3886: 3651: 2248:
for local electricity generation or potentially as a transportation fuel.
1970:
by multiplying the available reactor units and by connecting the plant to
512:(O) atom is stripped from the additional water (steam) to oxidize CO to CO 489:, water-gas shift reaction, performed at about 360 °C (680 °F): 443:, etc.), one ton of hydrogen produced will also produce 9 to 12 tons of CO 419:, the carbon monoxide reacts with steam to obtain further quantities of H 5687:
Renewable Energy Technology And Prospect On Biohydrogen Study In Thailand
5418:
IEA Energy Technology Essentials – Hydrogen Production & Distribution
3887:"Hydrogen Production Technologies: Current State and Future Developments" 2711:"In-depth Q&A: Does the world need hydrogen to solve climate change?" 2472:"Is heating homes with hydrogen all but a pipe dream? An evidence review" 2284: 2037:
and hydrogen process (CB&H) is a method, developed in the 1980s by a
1713: 1416: 1325: 1249: 1129: 889: 810: 752: 578:
conditions which could lead to a competitive advantage for electrolysis.
168: 137: 7305:"Panasonic moves closer to home energy self-sufficiency with fuel cells" 7138: 5441: 5268:"Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome" 1369:. In the late 1990s it was discovered that if the algae are deprived of 1270: 849:
partial oxidation (CPOX). The chemical reaction takes the general form:
7771: 7458:
https://www.hfpeurope.org/infotools/energyinfos__e/hydrogen/main03.html
7177: 7175: 6943: 4952:"Carbon Neutral Fuels and Chemicals from Standalone Biomass Refineries" 4317:«Coca-Cola-oppskrift» kan gjøre hydrogen til nytt norsk industrieventyr 3355: 3338: 3188:"The new oil? The geopolitics and international governance of hydrogen" 2789: 2772: 2453:"Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part" 2252: 2245: 1864: 1856: 1768:. In the late 1990s it was discovered that if the algae is deprived of 1765: 1366: 1117: 1092: 831: 662:. AECs optimally operate at high concentrations of electrolyte (KOH or 659: 424: 6858:"NanoLogix generates energy on-site with bioreactor-produced hydrogen" 6800:
Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (December 2009).
6444:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 6218:
Electricity generation by living plants in a plant microbial fuel cell
5905: 5880: 5486:"Status report 101 – Gas Turbine High Temperature Reactor (GTHTR300C)" 5322:"Dream or Reality? Electrification of the Chemical Process Industries" 5162: 2938:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 2668:
Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023).
2594:
Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023).
2522:"Dream or Reality? Electrification of the Chemical Process Industries" 2041: 1645: 1545: 782: 7727: 5566:
Report No 40: The ferrosilicon process for the generation of hydrogen
5462:
https://smr.inl.gov/Document.ashx?path=DOCS%2FGCR-Int%2FNHDDELDER.pdf
4945: 4943: 4804:"Emerging electrochemical energy conversion and storage technologies" 4287: 4129: 3559:"Emerging electrochemical energy conversion and storage technologies" 3336: 2770: 2418:"Recent development of hydrogen and fuel cell technologies: A review" 1971: 1925:
small electric current, produced hydrogen with an efficiency of 60%.
1882: 1653: 1590: 1312:
Ferrosilicon is used by the military to quickly produce hydrogen for
1140: 1107: 1099: 1024: 966: 694:
are around 80%, or 82% using the most modern alkaline electrolysers.
401: 7561:"New Perspectives in the Industrial Exploration for Native Hydrogen" 7224: 7222: 7172: 7169:
William Ayers, US Patent 4,466,869 Photolytic Production of Hydrogen
6298:"New Perspectives in the Industrial Exploration for Native Hydrogen" 6173: 4034: 3185: 2743:"Natural Hydrogen: A Potential Clean Energy Source Beneath Our Feet" 1982:
There are more than 352 thermochemical cycles which can be used for
763:
produced can be easily sequestered without the need for separation.
574:
of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity.
7681:"First element in periodic table: Why all the fuss about hydrogen?" 5879:
Djurišić, Aleksandra B.; He, Yanling; Ng, Alan M. C. (March 2020).
5799: 5771:. Advances in Chemical Engineering. Vol. 36. pp. 111–43. 5694: 5213:"Oil-eating microbes excrete the world's cheapest "clean" hydrogen" 4533: 4456: 3645: 2081: 1717: 1457: 794: 744: 117: 30: 5503:"JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION: GTHTR300C" 4940: 3413:
Velazquez Abad, A.; Dodds, P.E. (2017). "Production of Hydrogen".
666:) and at high temperatures, often near 200 °C (392 °F). 631:
metal catalysts) but are more efficient and can operate at higher
232:
include hydrogen produced from other low-emission sources such as
75:
include hydrogen produced from other low-emission sources such as
7713: 7219: 4585:"DOE Technical Targets for Hydrogen Production from Electrolysis" 4371:"Hydrogen from water electrolysis – solutions for sustainability" 4055: 3734:"Commentary: Producing industrial hydrogen from renewable energy" 3304: 2234: 2077: 2057: 1412: 1128:
Water spontaneously dissociates at around 2500 °C, but this
1096: 775:
by gasification and syngas is further converted into hydrogen by
748: 655: 440: 251: 109: 84: 42: 2968: 1476:
SH2C can be employed to convert some fatty acids into hydrogen.
545: 7906:"How does the energy crisis affect the transition to net zero?" 7756: 7049:"Steam heat: researchers gear up for full-scale hydrogen plant" 6149: 2519: 2061: 2038: 1836: 1773: 1769: 1721: 1586: 1580: 1374: 1370: 1261: 1055: 970: 814: 772: 509: 463: 398: 7231:
Advances in Chemical Engineering - Photocatalytic Technologies
7111: 6914:
High-pressure electrolysis, the key technology for efficient H
4429:"Cost reduction and performance increase of PEM electrolysers" 3919:"Cost reduction and performance increase of PEM electrolysers" 3857:"Cost reduction and performance increase of PEM electrolysers" 3276: 3087: 3085: 708:
production cost ($ -gge untaxed) at varying natural gas prices
148: 7391:
UNLV Thermochemical cycle automated scoring database (public)
6956: 6597: 5596:
Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (2009).
4514: 3615: 2969:
Sampson2019-02-11T10:48:00+00:00, Joanna (11 February 2019).
2127:. Hydrogen produced by this technology has been described as 1966: 1828: 1762: 1741: 1469: 1456:
converts organic substrates to hydrogen. A diverse group of
1363: 788: 428: 359:
Hydrogen that occurs naturally deep within the Earth's crust
7656:"Executive summary – Global Hydrogen Review 2023 – Analysis" 7468: 6569:"The reaction that would give us clean fossil fuels forever" 6474: 6243:"Aluminum Based Nanogalvanic Alloys for Hydrogen Generation" 4457:
Bjørnar Kruse; Sondre Grinna; Cato Buch (13 February 2002).
3310: 2554: 1974:
fields (fields of sun-tracking mirrors) of a suitable size.
1530:(electrolysis using microbes) is another possibility. Using 1035:
S). Hydrogen can be separated from other impurities by the
722:
about 53 to 70 kWh per kg could go down to about 45 kWh/kg
690:
required by the catalyst), average working efficiencies for
189: 5958: 5089:"Kværner-process with plasma arc waste disposal technology" 4770: 3807: 3242: 3082: 2173:, in which electric power is used to produce hydrogen from 2072:
Extraction of naturally-occurring hydrogen – White Hydrogen
303: 288:
Fossil hydrocarbons, mainly steam reforming of natural gas
5175: 4401:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 4115: 3829:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 3042:"Can a viable industry emerge from the hydrogen shakeout?" 7511: 6694: 5922: 5371: 4801: 4225:"Development of water electrolysis in the European Union" 4195: 3556: 3181: 3179: 3177: 330:
of water, or contributing steam to natural gas reforming
5881:"Visible-light photocatalysts: Prospects and challenges" 4259: 3485: 1043:
have carried out production of hydrogen by this method.
996:
A variation of this process was presented in 2009 using
674:
Efficiency of modern hydrogen generators is measured by
7795:"Facts on low-carbon hydrogen – A European perspective" 6441: 4797: 4795: 4015:
Wiley Interdisciplinary Reviews: Energy and Environment
3885:
Kalamaras, Christos M.; Efstathiou, Angelos M. (2013).
3697:"Wide Spread Adaption of Competitive Hydrogen Solution" 2935: 2884: 1888: 7704:
press release, November 6, 2023. Retrieved 2023-11-14.
6911: 6799: 6531: 6114: 5595: 4534:
Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13).
3646:
Bjørnar Kruse; Sondre Grinna; Cato Buch (2002-02-13).
3174: 3014:"Brown coal the hydrogen economy stepping stone | ECT" 6435: 4560:"high-rate and high efficiency 3D water electrolysis" 3672:"high-rate and high efficiency 3D water electrolysis" 2929: 2871:"Global Hydrogen Generation Market Size Report, 2030" 2667: 2593: 1617:
Hydrogen is also present naturally underground. This
1556: 1549:
Nano-galvanic aluminum-based powder developed by the
1415:
and waste streams can in principle be converted into
596:
is 70–80% efficient (a 20–30% conversion loss) while
423:. The WGSR also requires a catalyst, typically over 6920:. HYPOTHESIS IV. Kluwer Academic. pp. 172–177. 4792: 4740: 4647: 4012: 2225:. It is also used in other processes including the 2189:
via electrolysis is sometimes viewed as a subset of
3884: 3412: 2131:when emissions are released to the atmosphere, and 1919: 1438: 1017:conversion is low-temperature and high-temperature 783:
Hydrogen as a byproduct of other chemical processes
737: 669: 8064: 5827: 5577:Candid science: conversations with famous chemists 4766: 4764: 3544:"HFCIT Hydrogen Production: Natural Gas Reforming" 3311:Department of Earth Sciences (12 September 2022). 2709:Evans, Simon; Gabbatiss, Josh (30 November 2020). 2139:(CCS). Blue hydrogen has been estimated to have a 1635: 1339: 8035:"How many people does synthetic fertilizer feed?" 7718:(12 August 2021). "How green is blue hydrogen?". 5954: 5952: 5684:Jenvanitpanjakul, Peesamai (February 3–4, 2010). 5029:"Production of Liquefied Hydrogen Sourced by COG" 5003:"Different Gases from Steel Production Processes" 4491:"Hydrogen Is a Trillion Dollar Bet on the Future" 4223:Luca Bertuccioli; et al. (7 February 2014). 4149:"Electrolysis of water and the concept of charge" 3366:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d 2800:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d 2416:Fan, Lixin; Tu, Zhengkai; Chan, Siew Hwa (2021). 1827:is the electrolysis of water by decomposition of 1624:White hydrogen could be found or produced in the 1388: 375: 342:Sometimes understood to mean solar photovoltaics 8107: 8086: 7602:"Natural hydrogen the fuel of the 21 st century" 7261: 5683: 5438:"HTTR High Temperature engineering Test Reactor" 5237:An Introduction to Radiation Chemistry Chapter 7 4521:HyWeb: Knowledge – Hydrogen in the Energy Sector 4232:Client Fuel Cells and Hydrogen Joint Undertaking 4222: 3622:HyWeb: Knowledge – Hydrogen in the Energy Sector 3513:"Hydrogen Production via Steam Reforming with CO 3339:"Hydrogen energy futures – foraging or farming?" 3236: 2773:"Hydrogen energy futures – foraging or farming?" 1875: 1816:, cordgrass, rice, tomatoes, lupines, and algae 1640: 1542:, cordgrass, rice, tomatoes, lupines and algae. 1495: 1091:Nuclear radiation can break water bonds through 766: 7599: 7105: 6776:"Hydrogen production from organic solid matter" 6029: 4761: 3948:"Report and Financial Statements 30 April 2016" 3878: 3389:"Actual Worldwide Hydrogen Production from ..." 3317:Department of Earth Sciences, Oxford University 3270: 2151:(SMR) retrofitted with carbon dioxide capture. 1940:that can absorb 57% of sunlight to support the 1260:reactions to split water into its hydrogen and 1151: 676:energy consumed per standard volume of hydrogen 408:forms carbon monoxide and molecular hydrogen (H 308:Via coal gasification or in a suitable reactor 224:In most definitions, renewable electricity via 7877: 7875: 5949: 5925:Ullmann's Encyclopedia of Industrial Chemistry 5250:Nuclear Hydrogen Production Handbook Chapter 8 4903: 4860: 4709: 4676: 4515:Werner Zittel; Reinhold Wurster (1996-07-08). 3616:Werner Zittel; Reinhold Wurster (1996-07-08). 2708: 1947: 1796: 362:Obtained by mining; also referred to as white 302:Fossil hydrocarbons: brown (lignite) or black 7600:Truche, Laurent; Bazarkina, Elena F. (2019). 6888:"Power from plants using microbial fuel cell" 6600:"Hydrogen from methane without CO2 emissions" 6468: 5407:Producing hydrogen: The Thermochemical cycles 4734: 4703: 4682: 4082: 4080: 1986:, around a dozen of these cycles such as the 1819: 837:The partial oxidation reaction occurs when a 546:Electrolysis of water – green, pink or yellow 370: 8087:Francesco Calise; et al., eds. (2019). 7954: 6269:"Army discovery may offer new energy source" 6071: 6040:using milk plasma as fermentative substrate" 5878: 3976:"Hydrogen Production: Natural Gas Reforming" 3142: 3140: 3138: 1977: 1740:because it only proceeds in the presence of 1503: 1468:because it only proceeds in the presence of 820: 7872: 6950: 6729: 6065: 5994: 5918: 5916: 4438:. Fuel Cells and Hydrogen Joint Undertaking 4090:Annual Review of Energy and the Environment 3999: 3997: 3866:. Fuel Cells and Hydrogen Joint Undertaking 3391:Arno A Evers. December 2008. Archived from 2998:: CS1 maint: numeric names: authors list ( 2766: 2764: 2762: 2463: 2451:Reed, Stanley; Ewing, Jack (13 July 2021). 454:For this process, high temperature steam (H 27:Industrial production of molecular hydrogen 7847:, December 8, 2022. Retrieved 2023-11-14. 7835:: The planned factory, a joint venture by 4950:Sasidhar, Nallapaneni (30 November 2023). 4077: 3928:. Fuel Cell and Hydrogen Joint Undertaking 3445: 1761:Biological hydrogen can be produced in an 1362:Biological hydrogen can be produced in an 1158:high-temperature gas-cooled reactor (HTGR) 1012:For the production of hydrogen from coal, 228:of water. Less frequently, definitions of 198:Colors that refer to method of production 71:of water. Less frequently, definitions of 63:is usually understood to be produced from 7779: 7625: 7584: 7279: 7146: 6833: 6500: 6459: 6323: 6195:Wageningen University and Research Centre 6030:Rajanandam, Brijesh; Kiran, Siva (2011). 5904: 5629: 5344: 5138:. U.S. Energy Information Administration. 4967: 4956:Indian Journal of Environment Engineering 4837: 4827: 3902: 3592: 3582: 3481: 3479: 3477: 3364: 3354: 3219: 3135: 3091: 2953: 2840: 2798: 2788: 2693: 2619: 2495: 2450: 2435: 2415: 1724:systems involving three steps similar to 1290:High-temperature engineering test reactor 190:Classification based on production method 132:Molecular hydrogen was discovered in the 7471:International Journal of Hydrogen Energy 7302: 6732:International Journal of Hydrogen Energy 6697:Renewable and Sustainable Energy Reviews 6647:International Journal of Hydrogen Energy 6153:International Journal of Energy Research 6032:"Optimization of hydrogen production by 5997:International Journal of Hydrogen Energy 5962:International Journal of Hydrogen Energy 5913: 5374:Renewable and Sustainable Energy Reviews 4949: 4650:International Journal of Hydrogen Energy 4538:. The Bellona Foundation. Archived from 4488: 4482: 4375:thyssenkrupp-uhde-chlorine-engineers.com 4368: 4216: 4198:International Journal of Hydrogen Energy 3994: 3650:. The Bellona Foundation. Archived from 3546:. U.S. Department of Energy. 2008-12-15. 3448:International Journal of Hydrogen Energy 3415:Encyclopedia of Sustainable Technologies 2759: 2530:American Institute of Chemical Engineers 2095: 1992:cerium(IV) oxide-cerium(III) oxide cycle 1694: 1644: 1600: 1544: 1507: 1343: 699: 583: 147: 7888:Recharge | Latest renewable energy news 7881: 7866:Recharge | Latest renewable energy news 7859: 7678: 7555: 7268:Angewandte Chemie International Edition 7024:"Finland exporting TEN-T fuel stations" 6640: 6292: 6266: 6214: 4334: 3800: 3510: 2853:Recharge | Latest renewable energy news 2846: 2469: 2114: 1744:. For example, photo-fermentation with 1472:. For example, photo-fermentation with 1288:, and as such, is being studied in the 1234: 1135: 1054:can also be converted to hydrogen-rich 386:Hydrogen is industrially produced from 14: 8108: 8063: 7296: 6566: 5148: 5114:"Emissions Advantages of Gasification" 4501:from the original on 2 December 2020. 4341:. John Wiley & Sons. p. 898. 3762: 3490:. John Wiley & Sons. p. 249. 3474: 3119:"What potential for natural hydrogen?" 2044:, for the production of hydrogen from 1772:it will switch from the production of 1701:Biological hydrogen production (Algae) 1373:it will switch from the production of 1358:Biological hydrogen production (Algae) 1307: 462:) in an endothermic reaction to yield 7930:"Hydrogen – Fuels & Technologies" 7797:, ZEP Oct 2021. Confirmed 2023-12-12. 7426: 7303:Yamamura, Tetsushi (August 2, 2015). 6404: 6379: 6221:(PhD Thesis). Wageningen University. 5210: 5118:National Energy Technology Laboratory 4260:L. Lao; C. Ramshaw; H. Yeung (2011). 4086: 3731: 3648:"Hydrogen – Status and Possibilities" 3036: 3034: 2640:"So, What Exactly Is Green Hydrogen?" 2637: 1961:is a 100-kilowatt pilot plant at the 1407: 1083:that could in principle be captured. 1065: 962:and hydrogen process (CB&H) is a 247: 7819:National Renewable Energy Laboratory 7041: 6864:. September 20, 2007. Archived from 6610:from the original on 21 October 2020 6579:from the original on 26 October 2020 6423:from the original on 19 October 2020 6392:from the original on 19 October 2020 5041:from the original on 8 February 2021 3624:. Ludwig-Bölkow-Systemtechnik GmbH. 3192:Energy Research & Social Science 3146: 2723:from the original on 1 December 2020 2633: 2631: 2561:Energy Research & Social Science 2135:when emissions are captured through 1889:Photoelectrochemical water splitting 969:method, developed in the 1980s by a 825: 534:, or splitting the water molecule (H 8029: 7228: 6598:Karlsruhe Institute of Technology. 5053: 4536:"Hydrogen—Status and Possibilities" 4523:. Ludwig-Bölkow-Systemtechnik GmbH. 4489:Fickling, David (2 December 2020). 4459:"Hydrogen—Status and Possibilities" 4315:Stensvold, Tore (26 January 2016). 4267:Journal of Applied Electrochemistry 3488:Introduction to hydrogen Technology 2815: 2300:Hydrogen economy § Color codes 1712:conversion of organic substrate to 1596: 1336:, hydrogen and steam are produced. 949: 24: 8080: 7860:Collins, Leigh (25 January 2022). 7233:. Vol. 36. pp. 111–143. 5009:from the original on 27 March 2016 3744:from the original on 22 April 2018 3423:10.1016/B978-0-12-409548-9.10117-4 3031: 2971:"Blue hydrogen for a green future" 2702: 2661: 2548: 2470:Rosenow, Jan (27 September 2022). 2107:could be found or produced in the 2024: 1903:(PEC) process which is also named 1563:Aluminum based nanogalvanic alloys 1557:Nanogalvanic aluminum alloy powder 813:in steel production is similar to 621:polymer electrolyte membrane cells 435:. Depending on the quality of the 356: 339: 317: 299: 285: 267: 25: 8127: 7894:from the original on 4 June 2021. 7679:Hessler, Uwe (December 6, 2020). 6388:. American Institute of Physics. 6044:Journal of Biochemical Technology 5440:. Httr.jaea.go.jp. Archived from 4609: 3801:Petrova, Magdalena (2020-12-04). 3782:from the original on 17 June 2020 2628: 2587: 2536:from the original on 17 July 2021 2513: 2193:, but can also be referred to as 1780:, to the production of hydrogen. 1716:manifested by a diverse group of 1286:high-temperature nuclear reactors 1046: 892:and coal, assuming compositions C 680:standard temperature and pressure 8023: 7999: 7948: 7922: 7898: 7882:Collins, Leigh (19 March 2020). 7853: 7825: 7800: 7788: 7750: 7720:Energy Science & Engineering 7707: 7691: 7672: 7648: 7634: 7593: 7549: 7505: 7462: 7451: 7395: 7384: 7353: 7328: 7255: 7163: 7070: 7016: 6985: 6905: 6880: 6850: 6793: 6768: 6723: 6688: 6634: 6622: 6591: 6560: 6525: 6410: 6373: 6359: 6338: 6332: 6286: 6267:McNally, David (July 25, 2017). 6260: 6235: 6208: 6143: 6117:Current Opinion in Biotechnology 6108: 6023: 5988: 5872: 5821: 5793: 5756: 5712: 5677: 5646: 5589: 5570: 5559: 5526: 5495: 5478: 5455: 5430: 5411: 5400: 4562:. Grid-shift.com. Archived from 4173:. March 25, 2012. Archived from 3674:. Grid-shift.com. Archived from 2859:from the original on 2021-05-21. 2829:. 10 July 2023. "Energy" section 2377:(partly for hydrogen production) 2210: 2165:sources is often referred to as 1920:Photoelectrocatalytic production 1706:Fermentative hydrogen production 1488:, are reported in literature. 1454:Fermentative hydrogen production 1445:fermentative hydrogen production 1439:Fermentative hydrogen production 993:is not produced in the process. 738:Chemically assisted electrolysis 670:Industrial output and efficiency 7440:from the original on 2016-06-03 7415:from the original on 2007-04-17 7373:from the original on 2009-02-05 7342:from the original on 2013-06-22 7078:"Nuclear Hydrogen R&D Plan" 7059:from the original on 2008-09-21 7030:from the original on 2016-08-28 6894:from the original on 2021-02-08 6782:from the original on 2011-07-20 6198:(Press release). Archived from 5365: 5338: 5314: 5255: 5242: 5229: 5204: 5169: 5142: 5124: 5106: 5081: 5071: 5021: 4995: 4976: 4897: 4854: 4786:10.1016/j.electacta.2011.11.006 4755:10.1016/j.electacta.2016.07.062 4728:10.1016/j.electacta.2017.01.106 4641: 4630: 4603: 4577: 4552: 4527: 4508: 4450: 4421: 4393: 4362: 4335:Stolten, Detlef (Jan 4, 2016). 4328: 4309: 4253: 4189: 4159: 4136: 4109: 4103:10.1146/annurev.energy.24.1.227 4049: 4006: 3968: 3940: 3911: 3849: 3821: 3794: 3768: 3756: 3740:. International Energy Agency. 3725: 3713:from the original on 2018-04-22 3689: 3664: 3639: 3628:from the original on 2007-02-07 3609: 3550: 3536: 3504: 3439: 3406: 3381: 3330: 3293:from the original on 2020-12-08 3259:from the original on 2020-05-08 3163:from the original on 2020-12-13 3111: 3058: 3020:from the original on 2019-04-08 3006: 2981:from the original on 2019-05-09 2962: 2902: 2891:from the original on 2020-10-25 2877: 2863: 2735: 2670:"The green hydrogen revolution" 2650:from the original on 2022-03-23 2596:"The green hydrogen revolution" 2119:Most hydrogen is produced from 1636:Experimental production methods 1340:Photobiological water splitting 1296:, it is classified as a hybrid 1160:is one of the most promising CO 447:, a greenhouse gas that may be 7760:Sustainable Energy & Fuels 7491:10.1016/j.ijhydene.2018.08.193 6979:10.1016/j.ijhydene.2013.01.151 6752:10.1016/j.ijhydene.2006.06.034 6667:10.1016/j.ijhydene.2021.11.057 6190:"Living plants produce energy" 6094:10.1016/j.biortech.2016.12.073 6017:10.1016/j.ijhydene.2006.06.034 5982:10.1016/j.ijhydene.2016.10.021 5359:10.1016/j.biombioe.2009.02.006 4926:10.1016/j.apenergy.2018.09.125 4883:10.1016/j.apenergy.2018.09.125 4697:10.1016/j.jpowsour.2011.09.083 4670:10.1016/j.ijhydene.2014.11.033 4210:10.1016/j.ijhydene.2009.01.053 4118:Journal of Materials Chemistry 3468:10.1016/j.ijhydene.2014.12.035 3150:The national hydrogen strategy 3094:"The hydrogen colour spectrum" 2910:"Definition of Green Hydrogen" 2444: 2409: 2199:Oskarshamn Nuclear Power Plant 2068:and 10% in superheated steam. 1928:In 2015, it was reported that 1536:biological hydrogen production 1492:is another hydrogen producer. 1395:Photocatalytic water splitting 1389:Photocatalytic water splitting 1123: 908:respectively, are as follows: 617:solid oxide electrolyser cells 611:There are three main types of 376:Steam reforming – gray or blue 324:Thermochemical water splitting 182:, is generally referred to as 178:When fossil fuel derived with 13: 1: 7239:10.1016/S0065-2377(09)00404-9 5933:10.1002/14356007.a13_297.pub2 5777:10.1016/S0065-2377(09)00404-9 5132:"Emissions from burning coal" 3511:Collodi, Guido (2010-03-11). 2885:"Natural Hydrogen Energy LLC" 2847:Collins, Leigh (2021-05-18). 2402: 2375:Next Generation Nuclear Plant 2012:aluminum aluminum-oxide cycle 1876:High-temperature electrolysis 1641:Methane pyrolysis – turquoise 1551:U.S. Army Research Laboratory 1512:A microbial electrolysis cell 1496:Enzymatic hydrogen generation 1460:promote this transformation. 1316:. The chemical reaction uses 1146:photosynthetic microorganisms 1086: 845:partial oxidation (TPOX) and 793:The industrial production of 767:Hydrogen from biomass – green 641:high-temperature electrolysis 558:High-temperature electrolysis 519: 7087:. March 2004. Archived from 6417:United States Sustainability 6129:10.1016/j.copbio.2010.05.005 5815:10.1016/j.cattod.2014.11.007 5120:. U.S. Department of Energy. 4059:Materials Today: Proceedings 2695:10.1016/j.renene.2023.119041 2621:10.1016/j.renene.2023.119041 2396:Underground hydrogen storage 1152:Nuclear-assisted thermolysis 7: 8073:International Energy Agency 7808:"New Horizons for Hydrogen" 7627:10.1051/e3sconf/20199803006 7361:"353 Thermochemical cycles" 5769:Photocatalytic Technologies 5654:"DOE 2008 Report 25 %" 4071:10.1016/j.matpr.2022.04.264 3891:Conference Papers in Energy 2638:Deign, Jason (2020-06-29). 2497:10.1016/j.joule.2022.08.015 2315:Hydrogen pipeline transport 2267: 2109:Mid-continental Rift System 2100:Mid-continental Rift System 1963:Plataforma Solar de Almería 1948:Concentrating solar thermal 1812:can be used. These include 1626:Mid-continental Rift System 1606:Mid-continental Rift System 1526:Besides dark fermentation, 1116:, was feeding on primarily 625:alkaline electrolysis cells 127: 116:, and in the production of 10: 8132: 8057: 7977:10.1038/d41586-022-03699-0 7515:Natural Resources Research 6959:Journal of Hydrogen Energy 6717:10.1016/j.rser.2023.113323 6050:(2): 242–4. Archived from 5473:Progress in Nuclear Energy 5394:10.1016/j.rser.2017.05.275 5198:10.1016/j.fuel.2013.06.045 4969:10.54105/ijee.B1845.113223 3212:10.1016/j.erss.2020.101667 3066:"Hydrogen Color Explained" 2581:10.1016/j.erss.2021.102208 2437:10.1016/j.egyr.2021.08.003 2251:Hydrogen is produced as a 2214: 2177:, and the other is to use 2137:carbon capture and storage 1895:Photoelectrolysis of water 1892: 1825:High pressure electrolysis 1820:High-pressure electrolysis 1698: 1610: 1578: 1560: 1515: 1442: 1392: 1355: 1238: 786: 771:Biomass is converted into 568:high pressure electrolysis 562:High-pressure electrolysis 555: 549: 523: 458:O) reacts with methane (CH 379: 371:Current production methods 272:carbon capture and storage 47:carbon capture and storage 8089:Solar Hydrogen Production 7586:10.2138/gselements.16.1.8 7535:10.1007/s11053-014-9257-5 7436:. Interstatetraveler.us. 6826:10.1007/s11120-009-9415-5 6546:10.1038/s41929-019-0416-2 6325:10.2138/gselements.16.1.8 5622:10.1007/s11120-009-9415-5 5211:Blain, Loz (2022-10-04). 5065:www.interstatetraveler.us 4591:. US Department of Energy 4474:: CS1 maint: unfit URL ( 4399: 4280:10.1007/s10800-011-0275-2 4171:American Chemical Society 3982:. US Department of Energy 3946: 3917: 3827: 2280:Artificial photosynthesis 2185:. Hydrogen produced from 2147:rates and production via 1978:Thermochemical production 1955:concentrating solar power 1905:artificial photosynthesis 1901:photoelectrochemical cell 1797:Biocatalysed electrolysis 1628:at scale for a renewable 1574: 1504:Biocatalysed electrolysis 1282:Concentrating solar power 1037:pressure swing adsorption 998:plasma arc waste disposal 821:Other fossil fuel methods 660:photovoltaic solar panels 566:Hydrogen can be made via 216: 208: 205: 202: 8041:. Global Change Data Lab 7910:European Investment Bank 7434:"Bellona-HydrogenReport" 6034:Halobacterium salinarium 4829:10.3389/fchem.2014.00079 4685:Journal of Power Sources 4427: 3855: 3584:10.3389/fchem.2014.00079 3343:Chemical Society Reviews 3319:. Oxford, United Kingdom 3100:. London, United Kingdom 2917:Clean Energy Partnership 2777:Chemical Society Reviews 2391:Linde–Frank–Caro process 2244:Hydrogen may be used in 2141:greenhouse gas footprint 2125:carbon dioxide emissions 2042:company of the same name 1352:for hydrogen production. 1041:Japanese steel companies 777:water-gas shift reaction 417:water-gas shift reaction 221: 180:greenhouse gas emissions 7849:(subscription required) 6806:Photosynthesis Research 6641:Lumbers, Brock (2022). 6502:10.1126/science.aao5023 5602:Photosynthesis Research 5292:10.1126/science.1127376 5264:Barbara Sherwood Lollar 5061:"Hydrogen technologies" 2260:the establishment of a 2161:Hydrogen produced from 2149:steam methane reformers 1747:Rhodobacter sphaeroides 1474:Rhodobacter sphaeroides 1195:HI decomposition: 2HI→H 1007: 888:Idealized examples for 134:Kola Superdeep Borehole 108:, in the production of 39:steam methane reforming 8067:The Future of Hydrogen 7606:E3S Web of Conferences 7338:. Dlr.de. 2008-11-25. 7281:10.1002/anie.200906262 7205:10.1002/cssc.200900018 6862:Solid State Technology 6461:10.1002/cben.202000014 6215:Timmers, Ruud (2012). 6074:Bioresource Technology 5850:10.1002/adma.201601694 5742:10.1002/cssc.200900018 4808:Frontiers in Chemistry 4637:accessed June 22, 2021 3563:Frontiers in Chemistry 2955:10.1002/cben.202000014 2386:Lane hydrogen producer 2305:Hydrogen embrittlement 2233:and the production of 2101: 1855:output around 120–200 1650: 1608: 1553: 1513: 1490:Enterobacter aerogenes 1353: 709: 645:nuclear power stations 589: 276:CCS networks required 153: 7119:Nature Communications 6575:. New Scientist Ltd. 5347:Biomass and Bioenergy 2355:Hydrogen technologies 2310:Hydrogen leak testing 2175:electrolysis of water 2156:autothermal reformers 2099: 2004:copper-chlorine cycle 1996:zinc zinc-oxide cycle 1843:) and hydrogen gas (H 1695:Biological production 1684:(g) ΔH° = 74.8 kJ/mol 1648: 1604: 1548: 1511: 1347: 1294:Copper–chlorine cycle 1264:components. The term 1246:Thermochemical cycles 703: 600:of natural gas has a 594:Electrolysis of water 587: 552:Electrolysis of water 431:. The byproduct is CO 250:Thermal splitting of 151: 120:through reduction of 7085:U.S. Dept. of Energy 6993:"2003-PHOEBUS-Pag.9" 5699:Feng Chia University 4177:on December 10, 2019 3417:. pp. 293–304. 3286:. Australia: CSIRO. 2231:hydrodesulfurization 2115:Environmental impact 1756:microbial fuel cells 1726:anaerobic conversion 1532:microbial fuel cells 1298:thermochemical cycle 1241:thermochemical cycle 1235:Thermochemical cycle 1136:Pyrolysis on biomass 649:solar thermal plants 406:endothermic reaction 96:underground hydrogen 94:, and extraction of 8116:Hydrogen production 8011:energy.ec.europa.eu 7969:2022Natur.611..440C 7845:Wall Street Journal 7781:20.500.11850/422246 7714:Robert W. Howarth; 7618:2019E3SWC..9803006T 7577:2020Eleme..16....8G 7559:(1 February 2020). 7527:2015NRR....24..369L 7483:2018IJHE...4319315P 7477:(42): 19315–19326. 7197:2009ChSCh...2..471N 7139:10.1038/ncomms13549 7131:2016NatCo...713549V 6971:2013IJHE...38.4901C 6818:2009PhoRe.102..523H 6744:2007IJHE...32..200T 6709:2023RSERv.18113323P 6659:2022IJHE...47.4265L 6493:2017Sci...358..917U 6316:2020Eleme..16....8G 6166:2008IJER...32..870S 6086:2017BiTec.227..335A 6009:2007IJHE...32..200T 5974:2017IJHE...42.1989A 5897:2020APLM....8c0903D 5842:2017AdM....2901694L 5734:2009ChSCh...2..471N 5614:2009PhoRe.102..523H 5386:2018RSERv..81.1802P 5284:2006Sci...314..479L 5190:2014Fuel..117.1288G 4918:2018ApEn..231..502J 4875:2018ApEn..231..502J 4820:2014FrCh....2...79B 4774:Electrochimica Acta 4743:Electrochimica Acta 4716:Electrochimica Acta 4662:2015IJHE...40...70G 4027:2013WIREE...2..473B 3904:10.1155/2013/690627 3732:Philibert, Cédric. 3575:2014FrCh....2...79B 3460:2015IJHE...4011094D 3454:(34): 11094–11111. 3204:2020ERSS...7001667V 3098:National Grid Group 2686:2023REne..21619041S 2612:2023REne..21619041S 2573:2021ERSS...8002208G 2488:2022Joule...6.2225R 2295:Hydrogen compressor 2257:chlorine production 2008:hybrid sulfur cycle 2000:sulfur-iodine cycle 1913:multi-junction cell 1869:hydrogen compressor 1853:compressed hydrogen 1752:Electrohydrogenesis 1528:electrohydrogenesis 1522:microbial fuel cell 1518:electrohydrogenesis 1308:Ferrosilicon method 1300:because it uses an 1278:sulfur-iodine cycle 1120:produced hydrogen. 809:Gas generated from 664:potassium carbonate 315:Red, pink or purple 199: 81:hydrogen production 8091:. Academic Press. 7821:: 2–9. April 2004. 7772:10.1039/D0SE00222D 6778:. Biohydrogen.nl. 6448:ChemBioEng Reviews 6380:Fernandez, Sonia. 5830:Advanced Materials 5467:2016-12-21 at the 5423:2011-11-03 at the 5151:Energy & Fuels 4988:2014-12-08 at the 4616:greentechmedia.com 4144:Hofmann voltameter 3356:10.1039/D3CS00723E 3147:BMWi (June 2020). 2942:ChemBioEng Reviews 2790:10.1039/D3CS00723E 2457:The New York Times 2275:Ammonia production 2102: 2060:, natural gas and 1808:2010-05-17 at the 1651: 1609: 1554: 1514: 1408:Biohydrogen routes 1354: 1172:Bunsen reaction: I 1166:iodine-sulfur (IS) 1066:Depleted oil wells 1019:coal carbonization 710: 613:electrolytic cells 602:thermal efficiency 590: 478:O → CO + 3 H 270:Hydrocarbons with 206:Production source 197: 154: 8098:978-0-12-814853-2 8039:Our World in Data 7963:(7936): 440–443. 7687:. Deutsche Welle. 7317:on August 7, 2015 7248:978-0-12-374763-1 7051:(Press release). 7026:. December 2015. 6965:(12): 4901–4934. 6927:978-3-9807963-0-9 6567:Cartwright, Jon. 6487:(6365): 917–921. 6341:"Hidden hydrogen" 6296:(February 2020). 6228:978-94-6191-282-4 5942:978-3-527-30673-2 5906:10.1063/1.5140497 5786:978-0-12-374763-1 5326:www.aiche-cep.com 5163:10.1021/ef990178a 4408:level-network.com 4169:(Press release). 3836:level-network.com 3497:978-0-471-77985-8 3432:978-0-12-804792-7 2510:Article in press. 2482:(10): 2225–2228. 2320:Hydrogen purifier 2290:Hydrogen analyzer 2091:energy transition 1738:dark fermentation 1734:Photofermentation 1730:Dark fermentation 1466:dark fermentation 1462:Photofermentation 1449:dark fermentation 1383:energy efficiency 1328:. A heavy steel 1014:coal gasification 987:superheated steam 839:substoichiometric 826:Partial oxidation 762: 678:(MJ/m), assuming 633:current densities 508:Essentially, the 368: 367: 257:Methane pyrolysis 171:, referred to as 143:methane pyrolysis 92:methane pyrolysis 16:(Redirected from 8123: 8102: 8076: 8070: 8051: 8050: 8048: 8046: 8027: 8021: 8020: 8018: 8017: 8003: 7997: 7996: 7952: 7946: 7945: 7943: 7942: 7926: 7920: 7919: 7917: 7916: 7902: 7896: 7895: 7879: 7870: 7869: 7857: 7851: 7850: 7829: 7823: 7822: 7812: 7804: 7798: 7792: 7786: 7785: 7783: 7766:(6): 2967–2986. 7754: 7748: 7747: 7728:10.1002/ESE3.956 7716:Mark Z. Jacobson 7711: 7705: 7695: 7689: 7688: 7676: 7670: 7669: 7667: 7666: 7652: 7646: 7645: 7638: 7632: 7631: 7629: 7597: 7591: 7590: 7588: 7557:Gaucher, Eric C. 7553: 7547: 7546: 7509: 7503: 7502: 7466: 7460: 7455: 7449: 7448: 7446: 7445: 7430: 7424: 7423: 7421: 7420: 7414: 7407: 7399: 7393: 7388: 7382: 7381: 7379: 7378: 7372: 7365: 7357: 7351: 7350: 7348: 7347: 7332: 7326: 7325: 7323: 7322: 7313:. Archived from 7300: 7294: 7293: 7283: 7274:(9): 1574–1577. 7259: 7253: 7252: 7226: 7217: 7216: 7179: 7170: 7167: 7161: 7160: 7150: 7109: 7103: 7102: 7100: 7099: 7093: 7082: 7074: 7068: 7067: 7065: 7064: 7045: 7039: 7038: 7036: 7035: 7020: 7014: 7013: 7011: 7010: 7004: 6998:. Archived from 6997: 6989: 6983: 6982: 6954: 6948: 6947: 6909: 6903: 6902: 6900: 6899: 6884: 6878: 6877: 6875: 6873: 6854: 6848: 6847: 6837: 6812:(2–3): 523–540. 6797: 6791: 6790: 6788: 6787: 6772: 6766: 6765: 6760: 6727: 6721: 6720: 6692: 6686: 6685: 6683: 6681: 6653:(7): 4265–4283. 6638: 6632: 6626: 6620: 6619: 6617: 6615: 6595: 6589: 6588: 6586: 6584: 6564: 6558: 6557: 6534:Nature Catalysis 6529: 6523: 6522: 6504: 6472: 6466: 6465: 6463: 6439: 6433: 6432: 6430: 6428: 6408: 6402: 6401: 6399: 6397: 6377: 6371: 6370: 6363: 6357: 6356: 6354: 6352: 6336: 6330: 6329: 6327: 6294:Gaucher, Éric C. 6290: 6284: 6283: 6281: 6279: 6264: 6258: 6257: 6255: 6253: 6239: 6233: 6232: 6212: 6206: 6203: 6185: 6147: 6141: 6140: 6112: 6106: 6105: 6069: 6063: 6062: 6060: 6059: 6027: 6021: 6020: 5992: 5986: 5985: 5968:(4): 1989–2007. 5956: 5947: 5946: 5920: 5911: 5910: 5908: 5876: 5870: 5869: 5825: 5819: 5818: 5797: 5791: 5790: 5760: 5754: 5753: 5716: 5710: 5709: 5708:on July 4, 2013. 5707: 5701:. Archived from 5692: 5681: 5675: 5674: 5672: 5671: 5665: 5659:. Archived from 5658: 5650: 5644: 5643: 5633: 5593: 5587: 5574: 5568: 5563: 5557: 5556: 5554: 5553: 5547: 5541:. Archived from 5540: 5530: 5524: 5523: 5521: 5520: 5514: 5508:. Archived from 5507: 5499: 5493: 5492: 5490: 5482: 5476: 5459: 5453: 5452: 5450: 5449: 5434: 5428: 5415: 5409: 5404: 5398: 5397: 5369: 5363: 5362: 5342: 5336: 5335: 5333: 5332: 5318: 5312: 5311: 5278:(5798): 479–82. 5259: 5253: 5246: 5240: 5233: 5227: 5226: 5224: 5223: 5208: 5202: 5201: 5173: 5167: 5166: 5146: 5140: 5139: 5128: 5122: 5121: 5110: 5104: 5103: 5101: 5100: 5091:. Archived from 5085: 5079: 5075: 5069: 5068: 5057: 5051: 5050: 5048: 5046: 5040: 5033: 5025: 5019: 5018: 5016: 5014: 4999: 4993: 4980: 4974: 4973: 4971: 4947: 4938: 4937: 4901: 4895: 4894: 4858: 4852: 4851: 4841: 4831: 4799: 4790: 4789: 4768: 4759: 4758: 4738: 4732: 4731: 4707: 4701: 4700: 4680: 4674: 4673: 4645: 4639: 4634: 4628: 4627: 4625: 4623: 4618:. Wood MacKenzie 4607: 4601: 4600: 4598: 4596: 4581: 4575: 4574: 4572: 4571: 4556: 4550: 4549: 4544: 4531: 4525: 4524: 4512: 4506: 4505: 4486: 4480: 4479: 4473: 4465: 4463: 4454: 4448: 4447: 4445: 4443: 4433: 4425: 4419: 4418: 4416: 4414: 4405: 4397: 4391: 4390: 4388: 4386: 4377:. Archived from 4366: 4360: 4359: 4357: 4355: 4332: 4326: 4313: 4307: 4306: 4304: 4302: 4257: 4251: 4250: 4248: 4246: 4241:on 31 March 2015 4240: 4234:. Archived from 4229: 4220: 4214: 4213: 4193: 4187: 4186: 4184: 4182: 4163: 4157: 4156: 4151:. Archived from 4140: 4134: 4133: 4130:10.1039/b718822f 4113: 4107: 4106: 4084: 4075: 4074: 4053: 4047: 4046: 4010: 4004: 4001: 3992: 3991: 3989: 3987: 3972: 3966: 3965: 3963: 3961: 3952: 3944: 3938: 3937: 3935: 3933: 3923: 3915: 3909: 3908: 3906: 3882: 3876: 3875: 3873: 3871: 3861: 3853: 3847: 3846: 3844: 3842: 3833: 3825: 3819: 3818: 3816: 3815: 3798: 3792: 3791: 3789: 3787: 3772: 3766: 3760: 3754: 3753: 3751: 3749: 3729: 3723: 3722: 3720: 3718: 3712: 3701: 3693: 3687: 3686: 3684: 3683: 3668: 3662: 3661: 3656: 3643: 3637: 3636: 3634: 3633: 3613: 3607: 3606: 3596: 3586: 3554: 3548: 3547: 3540: 3534: 3533: 3531: 3530: 3521: 3508: 3502: 3501: 3483: 3472: 3471: 3443: 3437: 3436: 3410: 3404: 3403: 3401: 3400: 3385: 3379: 3378: 3368: 3358: 3349:(5): 2258–2263. 3334: 3328: 3327: 3325: 3324: 3308: 3302: 3301: 3299: 3298: 3292: 3285: 3274: 3268: 3267: 3265: 3264: 3258: 3251: 3240: 3234: 3233: 3223: 3183: 3172: 3171: 3169: 3168: 3162: 3155: 3144: 3133: 3132: 3130: 3129: 3115: 3109: 3108: 3106: 3105: 3089: 3080: 3079: 3077: 3076: 3062: 3056: 3055: 3053: 3052: 3038: 3029: 3028: 3026: 3025: 3010: 3004: 3003: 2997: 2989: 2987: 2986: 2966: 2960: 2959: 2957: 2933: 2927: 2926: 2924: 2923: 2914: 2906: 2900: 2899: 2897: 2896: 2881: 2875: 2874: 2867: 2861: 2860: 2844: 2838: 2837: 2835: 2834: 2819: 2813: 2812: 2802: 2792: 2783:(5): 2258–2263. 2768: 2757: 2756: 2754: 2753: 2739: 2733: 2732: 2730: 2728: 2706: 2700: 2699: 2697: 2674:Renewable Energy 2665: 2659: 2658: 2656: 2655: 2635: 2626: 2625: 2623: 2600:Renewable Energy 2591: 2585: 2584: 2552: 2546: 2545: 2543: 2541: 2517: 2511: 2509: 2499: 2467: 2461: 2460: 2448: 2442: 2441: 2439: 2413: 2340:Hydrogen station 2335:Hydrogen storage 2262:hydrogen economy 2217:Hydrogen economy 2163:renewable energy 2086:Koulikoro Region 2066:activated carbon 1988:iron oxide cycle 1932:has developed a 1683: 1682: 1681: 1671: 1670: 1669: 1630:hydrogen economy 1619:natural hydrogen 1613:Natural hydrogen 1597:Natural hydrogen 1401:renewable energy 1350:algae bioreactor 1318:sodium hydroxide 1208:decomposition: H 1113:Desulfotomaculum 1082: 1081: 1080: 1029:hydrogen sulfide 1002:plasma converter 983:activated carbon 950:Plasma pyrolysis 760: 733: 732: 731: 692:PEM electrolysis 647:or concentrated 404:. The resulting 200: 196: 165:renewable energy 67:electricity via 21: 8131: 8130: 8126: 8125: 8124: 8122: 8121: 8120: 8106: 8105: 8099: 8083: 8081:Further reading 8060: 8055: 8054: 8044: 8042: 8031:Ritchie, Hannah 8028: 8024: 8015: 8013: 8005: 8004: 8000: 7953: 7949: 7940: 7938: 7928: 7927: 7923: 7914: 7912: 7904: 7903: 7899: 7880: 7873: 7858: 7854: 7848: 7831:Dvorak, Phred, 7830: 7826: 7815:Research Review 7810: 7806: 7805: 7801: 7793: 7789: 7755: 7751: 7712: 7708: 7696: 7692: 7677: 7673: 7664: 7662: 7654: 7653: 7649: 7640: 7639: 7635: 7598: 7594: 7554: 7550: 7510: 7506: 7467: 7463: 7456: 7452: 7443: 7441: 7432: 7431: 7427: 7418: 7416: 7412: 7405: 7401: 7400: 7396: 7389: 7385: 7376: 7374: 7370: 7363: 7359: 7358: 7354: 7345: 7343: 7334: 7333: 7329: 7320: 7318: 7301: 7297: 7260: 7256: 7249: 7227: 7220: 7180: 7173: 7168: 7164: 7110: 7106: 7097: 7095: 7091: 7080: 7076: 7075: 7071: 7062: 7060: 7047: 7046: 7042: 7033: 7031: 7022: 7021: 7017: 7008: 7006: 7002: 6995: 6991: 6990: 6986: 6955: 6951: 6928: 6917: 6910: 6906: 6897: 6895: 6886: 6885: 6881: 6871: 6869: 6856: 6855: 6851: 6798: 6794: 6785: 6783: 6774: 6773: 6769: 6758: 6728: 6724: 6693: 6689: 6679: 6677: 6639: 6635: 6627: 6623: 6613: 6611: 6596: 6592: 6582: 6580: 6565: 6561: 6530: 6526: 6473: 6469: 6440: 6436: 6426: 6424: 6409: 6405: 6395: 6393: 6378: 6374: 6365: 6364: 6360: 6350: 6348: 6337: 6333: 6291: 6287: 6277: 6275: 6265: 6261: 6251: 6249: 6241: 6240: 6236: 6229: 6213: 6209: 6188: 6174:10.1002/er.1397 6148: 6144: 6113: 6109: 6070: 6066: 6057: 6055: 6028: 6024: 5993: 5989: 5957: 5950: 5943: 5921: 5914: 5877: 5873: 5826: 5822: 5803:Catalysis Today 5798: 5794: 5787: 5761: 5757: 5717: 5713: 5705: 5690: 5682: 5678: 5669: 5667: 5663: 5656: 5652: 5651: 5647: 5608:(2–3): 523–40. 5594: 5590: 5575: 5571: 5564: 5560: 5551: 5549: 5545: 5538: 5534: 5531: 5527: 5518: 5516: 5512: 5505: 5501: 5500: 5496: 5488: 5484: 5483: 5479: 5469:Wayback Machine 5460: 5456: 5447: 5445: 5436: 5435: 5431: 5425:Wayback Machine 5416: 5412: 5405: 5401: 5370: 5366: 5343: 5339: 5330: 5328: 5320: 5319: 5315: 5260: 5256: 5247: 5243: 5234: 5230: 5221: 5219: 5209: 5205: 5174: 5170: 5147: 5143: 5130: 5129: 5125: 5112: 5111: 5107: 5098: 5096: 5087: 5086: 5082: 5076: 5072: 5059: 5058: 5054: 5044: 5042: 5038: 5031: 5027: 5026: 5022: 5012: 5010: 5001: 5000: 4996: 4990:Wayback Machine 4981: 4977: 4948: 4941: 4902: 4898: 4859: 4855: 4800: 4793: 4769: 4762: 4739: 4735: 4713: 4708: 4704: 4681: 4677: 4646: 4642: 4635: 4631: 4621: 4619: 4608: 4604: 4594: 4592: 4583: 4582: 4578: 4569: 4567: 4558: 4557: 4553: 4545:on 2011-07-02. 4542: 4532: 4528: 4513: 4509: 4487: 4483: 4467: 4466: 4461: 4455: 4451: 4441: 4439: 4431: 4426: 4422: 4412: 4410: 4403: 4398: 4394: 4384: 4382: 4381:on 19 July 2018 4367: 4363: 4353: 4351: 4349: 4333: 4329: 4322:Teknisk Ukeblad 4314: 4310: 4300: 4298: 4258: 4254: 4244: 4242: 4238: 4227: 4221: 4217: 4194: 4190: 4180: 4178: 4165: 4164: 4160: 4147: 4141: 4137: 4124:(20): 2331–40. 4114: 4110: 4085: 4078: 4054: 4050: 4035:10.1002/wene.50 4011: 4007: 4002: 3995: 3985: 3983: 3974: 3973: 3969: 3959: 3957: 3950: 3945: 3941: 3931: 3929: 3921: 3916: 3912: 3883: 3879: 3869: 3867: 3859: 3854: 3850: 3840: 3838: 3831: 3826: 3822: 3813: 3811: 3799: 3795: 3785: 3783: 3774: 3773: 3769: 3761: 3757: 3747: 3745: 3730: 3726: 3716: 3714: 3710: 3704:nelhydrogen.com 3699: 3695: 3694: 3690: 3681: 3679: 3670: 3669: 3665: 3657:on 2011-07-02. 3654: 3644: 3640: 3631: 3629: 3614: 3610: 3555: 3551: 3542: 3541: 3537: 3528: 3526: 3519: 3516: 3509: 3505: 3498: 3484: 3475: 3444: 3440: 3433: 3411: 3407: 3398: 3396: 3387: 3386: 3382: 3335: 3331: 3322: 3320: 3313:"Gold hydrogen" 3309: 3305: 3296: 3294: 3290: 3283: 3275: 3271: 3262: 3260: 3256: 3249: 3241: 3237: 3184: 3175: 3166: 3164: 3160: 3153: 3145: 3136: 3127: 3125: 3123:Energy Observer 3117: 3116: 3112: 3103: 3101: 3092:national grid. 3090: 3083: 3074: 3072: 3064: 3063: 3059: 3050: 3048: 3040: 3039: 3032: 3023: 3021: 3012: 3011: 3007: 2991: 2990: 2984: 2982: 2967: 2963: 2934: 2930: 2921: 2919: 2912: 2908: 2907: 2903: 2894: 2892: 2883: 2882: 2878: 2869: 2868: 2864: 2845: 2841: 2832: 2830: 2821: 2820: 2816: 2769: 2760: 2751: 2749: 2741: 2740: 2736: 2726: 2724: 2707: 2703: 2666: 2662: 2653: 2651: 2636: 2629: 2592: 2588: 2553: 2549: 2539: 2537: 2518: 2514: 2468: 2464: 2449: 2445: 2414: 2410: 2405: 2400: 2370:Liquid hydrogen 2350:Hydrogen tanker 2330:Hydrogen sensor 2325:Hydrogen safety 2270: 2219: 2213: 2145:methane leakage 2123:, resulting in 2117: 2074: 2055: 2051: 2031:Kværner process 2027: 2025:Kværner process 1984:water splitting 1980: 1950: 1938:niobium nitride 1930:Panasonic Corp. 1922: 1897: 1891: 1878: 1846: 1842: 1834: 1822: 1814:reed sweetgrass 1810:Wayback Machine 1799: 1791: 1787: 1703: 1697: 1680: 1677: 1676: 1675: 1673: 1672:(g) → C(s) + 2 1668: 1665: 1664: 1663: 1661: 1643: 1638: 1615: 1599: 1583: 1577: 1565: 1559: 1540:reed sweetgrass 1524: 1516:Main articles: 1506: 1498: 1451: 1443:Main articles: 1441: 1434: 1410: 1397: 1391: 1360: 1342: 1334:sodium silicate 1330:pressure vessel 1310: 1302:electrochemical 1248:combine solely 1243: 1237: 1227: 1223: 1219: 1215: 1211: 1202: 1198: 1191: 1187: 1183: 1179: 1175: 1163: 1154: 1138: 1126: 1089: 1079: 1076: 1075: 1074: 1072: 1068: 1061: 1049: 1034: 1010: 992: 980: 976: 956:Kværner process 952: 945: 941: 937: 933: 927: 923: 919: 915: 907: 903: 899: 895: 884: 872: 864: 858: 828: 823: 791: 785: 769: 740: 730: 727: 726: 725: 723: 715:specific energy 707: 685: 672: 598:steam reforming 572:specific energy 564: 554: 548: 537: 532:water splitting 528: 526:Water splitting 522: 515: 504: 500: 496: 481: 477: 473: 461: 457: 446: 434: 422: 411: 396: 388:steam reforming 384: 382:Steam reforming 378: 373: 192: 130: 122:carbon monoxide 28: 23: 22: 15: 12: 11: 5: 8129: 8119: 8118: 8104: 8103: 8097: 8082: 8079: 8078: 8077: 8059: 8056: 8053: 8052: 8022: 7998: 7947: 7921: 7897: 7871: 7852: 7824: 7799: 7787: 7749: 7706: 7690: 7671: 7647: 7633: 7592: 7548: 7521:(3): 369–383. 7504: 7461: 7450: 7425: 7394: 7383: 7352: 7327: 7295: 7254: 7247: 7218: 7191:(6): 471–485. 7171: 7162: 7104: 7069: 7055:. 2008-09-18. 7040: 7015: 6984: 6949: 6926: 6915: 6904: 6879: 6849: 6792: 6767: 6738:(2): 200–206. 6722: 6687: 6633: 6621: 6590: 6559: 6524: 6467: 6454:(5): 150–158. 6434: 6403: 6372: 6358: 6331: 6285: 6259: 6234: 6227: 6207: 6205: 6204: 6202:on 2010-05-17. 6142: 6107: 6064: 6022: 5987: 5948: 5941: 5912: 5871: 5820: 5792: 5785: 5755: 5711: 5676: 5645: 5588: 5569: 5558: 5525: 5494: 5477: 5454: 5429: 5410: 5399: 5364: 5353:(5): 899–906. 5337: 5313: 5254: 5241: 5228: 5203: 5168: 5141: 5123: 5105: 5080: 5070: 5052: 5020: 4994: 4975: 4939: 4906:Applied Energy 4896: 4863:Applied Energy 4853: 4791: 4760: 4733: 4711: 4702: 4675: 4640: 4629: 4610:Deign, Jason. 4602: 4576: 4551: 4526: 4507: 4481: 4449: 4420: 4392: 4369:thyssenkrupp. 4361: 4347: 4327: 4308: 4274:(6): 645–656. 4252: 4215: 4204:(6): 2531–42. 4188: 4158: 4155:on 2010-06-13. 4135: 4108: 4076: 4048: 4021:(5): 473–487. 4005: 3993: 3967: 3939: 3910: 3877: 3848: 3820: 3793: 3767: 3755: 3724: 3688: 3663: 3638: 3608: 3549: 3535: 3514: 3503: 3496: 3473: 3438: 3431: 3405: 3380: 3329: 3303: 3269: 3235: 3173: 3134: 3110: 3081: 3057: 3030: 3005: 2961: 2948:(5): 150–158. 2928: 2901: 2876: 2862: 2839: 2814: 2758: 2734: 2701: 2660: 2644:Greentechmedia 2627: 2586: 2547: 2512: 2462: 2443: 2423:Energy Reports 2407: 2406: 2404: 2401: 2399: 2398: 2393: 2388: 2383: 2378: 2372: 2367: 2365:Industrial gas 2362: 2360:Hydrogen valve 2357: 2352: 2347: 2342: 2337: 2332: 2327: 2322: 2317: 2312: 2307: 2302: 2297: 2292: 2287: 2282: 2277: 2271: 2269: 2266: 2255:of industrial 2212: 2209: 2191:green hydrogen 2187:nuclear energy 2183:renewable fuel 2167:green hydrogen 2116: 2113: 2105:White hydrogen 2073: 2070: 2053: 2049: 2026: 2023: 1979: 1976: 1949: 1946: 1921: 1918: 1893:Main article: 1890: 1887: 1877: 1874: 1844: 1840: 1832: 1821: 1818: 1803:aquatic plants 1798: 1795: 1789: 1785: 1778:photosynthesis 1776:, i.e. normal 1699:Main article: 1696: 1693: 1686: 1685: 1678: 1666: 1642: 1639: 1637: 1634: 1611:Main article: 1598: 1595: 1579:Main article: 1576: 1573: 1568:Aluminum alloy 1561:Main article: 1558: 1555: 1505: 1502: 1497: 1494: 1440: 1437: 1432: 1409: 1406: 1393:Main article: 1390: 1387: 1379:photosynthesis 1377:, i.e. normal 1356:Main article: 1341: 1338: 1309: 1306: 1239:Main article: 1236: 1233: 1225: 1221: 1217: 1213: 1209: 1200: 1196: 1189: 1185: 1181: 1177: 1173: 1161: 1153: 1150: 1137: 1134: 1125: 1122: 1118:radiolytically 1088: 1085: 1077: 1067: 1064: 1059: 1052:Petroleum coke 1048: 1047:Petroleum coke 1045: 1032: 1009: 1006: 990: 978: 974: 951: 948: 947: 946: 943: 939: 935: 931: 928: 925: 924:→ 12 CO + 12 H 921: 917: 913: 905: 901: 897: 893: 886: 885: 882: 870: 860: 854: 827: 824: 822: 819: 804:hydrogen pinch 787:Main article: 784: 781: 768: 765: 739: 736: 728: 705: 683: 671: 668: 629:platinum group 550:Main article: 547: 544: 540:green hydrogen 535: 524:Main article: 521: 518: 513: 506: 505: 502: 498: 494: 483: 482: 479: 475: 471: 459: 455: 444: 439:(natural gas, 432: 420: 409: 394: 380:Main article: 377: 374: 372: 369: 366: 365: 363: 360: 357: 355: 349: 348: 346: 343: 340: 338: 334: 333: 331: 321: 320:Nuclear power 318: 316: 312: 311: 309: 306: 300: 298: 297:Brown or black 294: 293: 291: 289: 286: 284: 280: 279: 277: 274: 268: 266: 262: 261: 259: 254: 248: 246: 242: 241: 239: 237: 230:green hydrogen 222: 220: 214: 213: 210: 207: 204: 191: 188: 173:green hydrogen 129: 126: 73:green hydrogen 60:Green hydrogen 26: 18:Brown hydrogen 9: 6: 4: 3: 2: 8128: 8117: 8114: 8113: 8111: 8100: 8094: 8090: 8085: 8084: 8074: 8069: 8068: 8062: 8061: 8040: 8036: 8032: 8026: 8012: 8008: 8002: 7994: 7990: 7986: 7982: 7978: 7974: 7970: 7966: 7962: 7958: 7951: 7937: 7936: 7931: 7925: 7911: 7907: 7901: 7893: 7889: 7885: 7878: 7876: 7867: 7863: 7856: 7846: 7842: 7838: 7834: 7828: 7820: 7816: 7809: 7803: 7796: 7791: 7782: 7777: 7773: 7769: 7765: 7761: 7753: 7745: 7741: 7737: 7733: 7729: 7725: 7721: 7717: 7710: 7703: 7699: 7694: 7686: 7682: 7675: 7661: 7657: 7651: 7643: 7637: 7628: 7623: 7619: 7615: 7611: 7607: 7603: 7596: 7587: 7582: 7578: 7574: 7570: 7566: 7562: 7558: 7552: 7544: 7540: 7536: 7532: 7528: 7524: 7520: 7516: 7508: 7500: 7496: 7492: 7488: 7484: 7480: 7476: 7472: 7465: 7459: 7454: 7439: 7435: 7429: 7411: 7404: 7398: 7392: 7387: 7369: 7362: 7356: 7341: 7337: 7331: 7316: 7312: 7311: 7310:Asahi Shimbun 7306: 7299: 7291: 7287: 7282: 7277: 7273: 7269: 7265: 7258: 7250: 7244: 7240: 7236: 7232: 7225: 7223: 7214: 7210: 7206: 7202: 7198: 7194: 7190: 7186: 7178: 7176: 7166: 7158: 7154: 7149: 7144: 7140: 7136: 7132: 7128: 7124: 7120: 7116: 7108: 7094:on 2008-05-18 7090: 7086: 7079: 7073: 7058: 7054: 7053:Science Daily 7050: 7044: 7029: 7025: 7019: 7005:on 2009-03-27 7001: 6994: 6988: 6980: 6976: 6972: 6968: 6964: 6960: 6953: 6945: 6941: 6937: 6933: 6929: 6923: 6919: 6908: 6893: 6889: 6883: 6868:on 2018-05-15 6867: 6863: 6859: 6853: 6845: 6841: 6836: 6831: 6827: 6823: 6819: 6815: 6811: 6807: 6803: 6796: 6781: 6777: 6771: 6763: 6757: 6753: 6749: 6745: 6741: 6737: 6733: 6726: 6718: 6714: 6710: 6706: 6702: 6698: 6691: 6676: 6672: 6668: 6664: 6660: 6656: 6652: 6648: 6644: 6637: 6630: 6625: 6609: 6605: 6601: 6594: 6578: 6574: 6570: 6563: 6555: 6551: 6547: 6543: 6539: 6535: 6528: 6520: 6516: 6512: 6508: 6503: 6498: 6494: 6490: 6486: 6482: 6478: 6471: 6462: 6457: 6453: 6449: 6445: 6438: 6422: 6418: 6414: 6407: 6391: 6387: 6383: 6376: 6368: 6362: 6346: 6342: 6335: 6326: 6321: 6317: 6313: 6309: 6305: 6304: 6299: 6295: 6289: 6274: 6270: 6263: 6248: 6244: 6238: 6230: 6224: 6220: 6219: 6211: 6201: 6197: 6196: 6191: 6187: 6186: 6183: 6179: 6175: 6171: 6167: 6163: 6159: 6155: 6154: 6146: 6138: 6134: 6130: 6126: 6122: 6118: 6111: 6103: 6099: 6095: 6091: 6087: 6083: 6079: 6075: 6068: 6054:on 2013-07-31 6053: 6049: 6045: 6041: 6039: 6036:coupled with 6035: 6026: 6018: 6014: 6010: 6006: 6002: 5998: 5991: 5983: 5979: 5975: 5971: 5967: 5963: 5955: 5953: 5944: 5938: 5934: 5930: 5926: 5919: 5917: 5907: 5902: 5898: 5894: 5891:(3): 030903. 5890: 5886: 5885:APL Materials 5882: 5875: 5867: 5863: 5859: 5855: 5851: 5847: 5843: 5839: 5835: 5831: 5824: 5816: 5812: 5808: 5804: 5796: 5788: 5782: 5778: 5774: 5770: 5766: 5759: 5751: 5747: 5743: 5739: 5735: 5731: 5728:(6): 471–85. 5727: 5723: 5715: 5704: 5700: 5696: 5689: 5688: 5680: 5666:on 2017-06-17 5662: 5655: 5649: 5641: 5637: 5632: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5599: 5592: 5586: 5585:1-86094-228-8 5582: 5578: 5573: 5567: 5562: 5548:on 2012-02-20 5544: 5537: 5529: 5515:on 2017-08-10 5511: 5504: 5498: 5487: 5481: 5474: 5470: 5466: 5463: 5458: 5444:on 2014-02-03 5443: 5439: 5433: 5426: 5422: 5419: 5414: 5408: 5403: 5395: 5391: 5387: 5383: 5380:: 1802–1812. 5379: 5375: 5368: 5360: 5356: 5352: 5348: 5341: 5327: 5323: 5317: 5309: 5305: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5273: 5269: 5265: 5258: 5252: 5251: 5245: 5239: 5238: 5232: 5218: 5214: 5207: 5199: 5195: 5191: 5187: 5183: 5179: 5172: 5164: 5160: 5157:(3): 618–23. 5156: 5152: 5145: 5137: 5133: 5127: 5119: 5115: 5109: 5095:on 2014-03-13 5094: 5090: 5084: 5078: 5074: 5066: 5062: 5056: 5037: 5030: 5024: 5008: 5004: 4998: 4991: 4987: 4984: 4979: 4970: 4965: 4961: 4957: 4953: 4946: 4944: 4935: 4931: 4927: 4923: 4919: 4915: 4911: 4907: 4900: 4892: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4857: 4849: 4845: 4840: 4835: 4830: 4825: 4821: 4817: 4813: 4809: 4805: 4798: 4796: 4787: 4783: 4779: 4775: 4767: 4765: 4756: 4752: 4748: 4744: 4737: 4729: 4725: 4721: 4717: 4706: 4698: 4694: 4690: 4686: 4679: 4671: 4667: 4663: 4659: 4655: 4651: 4644: 4638: 4633: 4617: 4613: 4606: 4590: 4586: 4580: 4566:on 2012-03-22 4565: 4561: 4555: 4548: 4541: 4537: 4530: 4522: 4518: 4511: 4504: 4500: 4496: 4495:Bloomberg.com 4492: 4485: 4477: 4471: 4460: 4453: 4437: 4436:fch.europa.eu 4430: 4424: 4409: 4402: 4396: 4380: 4376: 4372: 4365: 4350: 4348:9783527674299 4344: 4340: 4339: 4331: 4324: 4323: 4318: 4312: 4297: 4293: 4289: 4285: 4281: 4277: 4273: 4269: 4268: 4263: 4256: 4237: 4233: 4226: 4219: 4211: 4207: 4203: 4199: 4192: 4176: 4172: 4168: 4162: 4154: 4150: 4145: 4139: 4131: 4127: 4123: 4119: 4112: 4104: 4100: 4096: 4092: 4091: 4083: 4081: 4072: 4068: 4064: 4060: 4052: 4044: 4040: 4036: 4032: 4028: 4024: 4020: 4016: 4009: 4000: 3998: 3981: 3977: 3971: 3956: 3955:itm-power.com 3949: 3943: 3927: 3926:fch.europa.eu 3920: 3914: 3905: 3900: 3896: 3892: 3888: 3881: 3865: 3864:fch.europa.eu 3858: 3852: 3837: 3830: 3824: 3810: 3809: 3804: 3797: 3781: 3777: 3771: 3764: 3759: 3743: 3739: 3735: 3728: 3709: 3705: 3698: 3692: 3678:on 2012-03-22 3677: 3673: 3667: 3660: 3653: 3649: 3642: 3627: 3623: 3619: 3612: 3604: 3600: 3595: 3590: 3585: 3580: 3576: 3572: 3568: 3564: 3560: 3553: 3545: 3539: 3525: 3518: 3507: 3499: 3493: 3489: 3482: 3480: 3478: 3469: 3465: 3461: 3457: 3453: 3449: 3442: 3434: 3428: 3424: 3420: 3416: 3409: 3395:on 2015-02-02 3394: 3390: 3384: 3376: 3372: 3367: 3362: 3357: 3352: 3348: 3344: 3340: 3333: 3318: 3314: 3307: 3289: 3282: 3281: 3273: 3255: 3248: 3247: 3239: 3231: 3227: 3222: 3217: 3213: 3209: 3205: 3201: 3197: 3193: 3189: 3182: 3180: 3178: 3159: 3152: 3151: 3143: 3141: 3139: 3124: 3120: 3114: 3099: 3095: 3088: 3086: 3071: 3067: 3061: 3047: 3046:The Economist 3043: 3037: 3035: 3019: 3015: 3009: 3001: 2995: 2980: 2976: 2972: 2965: 2956: 2951: 2947: 2943: 2939: 2932: 2918: 2911: 2905: 2890: 2886: 2880: 2872: 2866: 2858: 2854: 2850: 2843: 2828: 2824: 2818: 2810: 2806: 2801: 2796: 2791: 2786: 2782: 2778: 2774: 2767: 2765: 2763: 2748: 2744: 2738: 2722: 2718: 2717: 2712: 2705: 2696: 2691: 2687: 2683: 2679: 2675: 2671: 2664: 2649: 2645: 2641: 2634: 2632: 2622: 2617: 2613: 2609: 2605: 2601: 2597: 2590: 2582: 2578: 2574: 2570: 2566: 2562: 2558: 2551: 2535: 2531: 2527: 2523: 2516: 2507: 2503: 2498: 2493: 2489: 2485: 2481: 2477: 2473: 2466: 2458: 2454: 2447: 2438: 2433: 2430:: 8421–8446. 2429: 2425: 2424: 2419: 2412: 2408: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2345:Hydrogen tank 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2272: 2265: 2263: 2258: 2254: 2249: 2247: 2242: 2240: 2239:Haber process 2236: 2232: 2228: 2227:aromatization 2224: 2223:hydrocracking 2218: 2211:Hydrogen uses 2208: 2205: 2202: 2200: 2196: 2195:pink hydrogen 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2159: 2157: 2152: 2150: 2146: 2142: 2138: 2134: 2133:blue hydrogen 2130: 2129:grey hydrogen 2126: 2122: 2112: 2110: 2106: 2098: 2094: 2092: 2087: 2083: 2079: 2069: 2067: 2063: 2059: 2047: 2043: 2040: 2036: 2032: 2022: 2019: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1975: 1973: 1968: 1964: 1960: 1956: 1945: 1943: 1942:decomposition 1939: 1935: 1934:photocatalyst 1931: 1926: 1917: 1914: 1908: 1906: 1902: 1896: 1886: 1884: 1873: 1870: 1866: 1862: 1858: 1854: 1850: 1838: 1830: 1826: 1817: 1815: 1811: 1807: 1804: 1794: 1781: 1779: 1775: 1771: 1767: 1764: 1759: 1757: 1753: 1749: 1748: 1743: 1739: 1736:differs from 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1702: 1692: 1689: 1660: 1659: 1658: 1655: 1647: 1633: 1631: 1627: 1622: 1620: 1614: 1607: 1603: 1594: 1592: 1588: 1582: 1572: 1569: 1564: 1552: 1547: 1543: 1541: 1537: 1533: 1529: 1523: 1519: 1510: 1501: 1493: 1491: 1487: 1483: 1482:H. salinarium 1477: 1475: 1471: 1467: 1464:differs from 1463: 1459: 1455: 1450: 1446: 1436: 1428: 1424: 1422: 1419:with biomass 1418: 1414: 1405: 1402: 1396: 1386: 1384: 1380: 1376: 1372: 1368: 1365: 1359: 1351: 1346: 1337: 1335: 1331: 1327: 1323: 1319: 1315: 1305: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1274: 1272: 1267: 1263: 1259: 1255: 1251: 1247: 1242: 1232: 1229: 1207: 1206:Sulfuric acid 1203: 1193: 1170: 1167: 1159: 1149: 1147: 1142: 1133: 1131: 1121: 1119: 1115: 1114: 1109: 1105: 1101: 1098: 1094: 1084: 1063: 1057: 1053: 1044: 1042: 1038: 1030: 1026: 1022: 1020: 1015: 1005: 1003: 999: 994: 988: 984: 972: 968: 965: 961: 957: 942:→ 24 CO + 6 H 929: 911: 910: 909: 891: 880: 876: 868: 863: 857: 852: 851: 850: 848: 844: 840: 835: 833: 818: 816: 812: 807: 805: 800: 796: 790: 780: 778: 774: 764: 756: 754: 750: 746: 735: 719: 716: 713:(which has a 702: 698: 695: 693: 687: 681: 677: 667: 665: 661: 657: 652: 650: 646: 642: 636: 634: 630: 626: 622: 618: 614: 609: 605: 603: 599: 595: 586: 582: 579: 575: 573: 569: 563: 559: 553: 543: 541: 533: 527: 517: 511: 492: 491: 490: 488: 469: 468: 467: 465: 452: 450: 442: 438: 430: 426: 418: 413: 407: 403: 400: 391: 389: 383: 364: 361: 358: 354: 353:Gold or white 351: 350: 347: 345:Photovoltaic 344: 341: 336: 335: 332: 329: 325: 322: 319: 314: 313: 310: 307: 305: 301: 296: 295: 292: 290: 287: 282: 281: 278: 275: 273: 269: 264: 263: 260: 258: 255: 253: 249: 244: 243: 240: 238: 235: 231: 227: 223: 219: 215: 211: 201: 195: 187: 185: 184:grey hydrogen 181: 176: 174: 170: 166: 162: 161:nuclear power 158: 150: 146: 144: 139: 135: 125: 123: 119: 115: 114:Haber process 111: 107: 102: 99: 97: 93: 89: 86: 82: 78: 74: 70: 66: 62: 61: 56: 54: 53: 52:blue hydrogen 48: 44: 40: 37:made through 36: 35:gray hydrogen 32: 19: 8088: 8066: 8045:16 September 8043:. Retrieved 8038: 8025: 8014:. Retrieved 8010: 8001: 7960: 7956: 7950: 7939:. Retrieved 7933: 7924: 7913:. Retrieved 7909: 7900: 7887: 7865: 7855: 7844: 7837:Air Products 7827: 7814: 7802: 7790: 7763: 7759: 7752: 7719: 7709: 7702:Air Products 7693: 7684: 7674: 7663:. Retrieved 7659: 7650: 7636: 7609: 7605: 7595: 7568: 7564: 7551: 7518: 7514: 7507: 7474: 7470: 7464: 7453: 7442:. Retrieved 7428: 7417:. Retrieved 7397: 7386: 7375:. Retrieved 7355: 7344:. Retrieved 7330: 7319:. Retrieved 7315:the original 7308: 7298: 7271: 7267: 7257: 7230: 7188: 7184: 7165: 7125:(1): 13549. 7122: 7118: 7107: 7096:. Retrieved 7089:the original 7072: 7061:. Retrieved 7043: 7032:. Retrieved 7018: 7007:. Retrieved 7000:the original 6987: 6962: 6958: 6952: 6913: 6907: 6896:. Retrieved 6890:(in Dutch). 6882: 6870:. Retrieved 6866:the original 6861: 6852: 6809: 6805: 6795: 6784:. Retrieved 6770: 6735: 6731: 6725: 6700: 6696: 6690: 6678:. Retrieved 6650: 6646: 6636: 6624: 6612:. Retrieved 6603: 6593: 6581:. Retrieved 6573:NewScientist 6572: 6562: 6540:(1): 83–89. 6537: 6533: 6527: 6484: 6480: 6470: 6451: 6447: 6437: 6425:. Retrieved 6416: 6406: 6394:. Retrieved 6385: 6375: 6361: 6349:. Retrieved 6344: 6339:Hand, Eric. 6334: 6307: 6301: 6288: 6276:. Retrieved 6272: 6262: 6250:. Retrieved 6246: 6237: 6217: 6210: 6200:the original 6193: 6160:(9): 870–6. 6157: 6151: 6145: 6123:(5): 663–9. 6120: 6116: 6110: 6077: 6073: 6067: 6056:. Retrieved 6052:the original 6047: 6043: 6037: 6033: 6025: 6003:(2): 200–6. 6000: 5996: 5990: 5965: 5961: 5924: 5888: 5884: 5874: 5833: 5829: 5823: 5806: 5802: 5795: 5768: 5758: 5725: 5721: 5714: 5703:the original 5686: 5679: 5668:. Retrieved 5661:the original 5648: 5605: 5601: 5591: 5572: 5561: 5550:. Retrieved 5543:the original 5528: 5517:. Retrieved 5510:the original 5497: 5480: 5472: 5457: 5446:. Retrieved 5442:the original 5432: 5427:, April 2007 5413: 5402: 5377: 5373: 5367: 5350: 5346: 5340: 5329:. Retrieved 5325: 5316: 5275: 5271: 5257: 5249: 5244: 5236: 5231: 5220:. Retrieved 5216: 5206: 5181: 5177: 5171: 5154: 5150: 5144: 5135: 5126: 5117: 5108: 5097:. Retrieved 5093:the original 5083: 5073: 5064: 5055: 5043:. Retrieved 5023: 5011:. Retrieved 4997: 4978: 4959: 4955: 4909: 4905: 4899: 4866: 4862: 4856: 4811: 4807: 4777: 4773: 4746: 4742: 4736: 4719: 4715: 4705: 4688: 4684: 4678: 4653: 4649: 4643: 4632: 4620:. Retrieved 4615: 4605: 4593:. Retrieved 4588: 4579: 4568:. Retrieved 4564:the original 4554: 4546: 4540:the original 4529: 4520: 4510: 4502: 4494: 4484: 4452: 4440:. Retrieved 4435: 4423: 4411:. Retrieved 4407: 4395: 4383:. Retrieved 4379:the original 4374: 4364: 4352:. Retrieved 4337: 4330: 4320: 4311: 4299:. Retrieved 4271: 4265: 4255: 4243:. Retrieved 4236:the original 4231: 4218: 4201: 4197: 4191: 4179:. Retrieved 4175:the original 4161: 4153:the original 4138: 4121: 4117: 4111: 4094: 4088: 4062: 4058: 4051: 4018: 4014: 4008: 3984:. Retrieved 3979: 3970: 3958:. Retrieved 3954: 3942: 3930:. Retrieved 3925: 3913: 3894: 3890: 3880: 3868:. Retrieved 3863: 3851: 3839:. Retrieved 3835: 3823: 3812:. Retrieved 3806: 3796: 3784:. Retrieved 3770: 3765:, p. 37 3758: 3746:. Retrieved 3737: 3727: 3715:. Retrieved 3703: 3691: 3680:. Retrieved 3676:the original 3666: 3658: 3652:the original 3641: 3630:. Retrieved 3621: 3611: 3566: 3562: 3552: 3538: 3527:. Retrieved 3523: 3506: 3487: 3451: 3447: 3441: 3414: 3408: 3397:. Retrieved 3393:the original 3383: 3346: 3342: 3332: 3321:. Retrieved 3316: 3306: 3295:. Retrieved 3279: 3272: 3261:. Retrieved 3245: 3238: 3195: 3191: 3165:. Retrieved 3149: 3126:. Retrieved 3122: 3113: 3102:. Retrieved 3097: 3073:. Retrieved 3069: 3060: 3049:. Retrieved 3045: 3022:. Retrieved 3008: 2983:. Retrieved 2974: 2964: 2945: 2941: 2931: 2920:. Retrieved 2904: 2893:. Retrieved 2879: 2865: 2852: 2842: 2831:. Retrieved 2826: 2817: 2780: 2776: 2750:. Retrieved 2746: 2737: 2725:. Retrieved 2716:Carbon Brief 2714: 2704: 2677: 2673: 2663: 2652:. Retrieved 2643: 2603: 2599: 2589: 2564: 2560: 2550: 2538:. Retrieved 2526:CEP Magazine 2525: 2515: 2479: 2475: 2465: 2456: 2446: 2427: 2421: 2411: 2250: 2243: 2220: 2206: 2203: 2194: 2179:landfill gas 2171:power to gas 2166: 2160: 2153: 2132: 2128: 2121:fossil fuels 2118: 2103: 2075: 2046:hydrocarbons 2035:carbon black 2033:or Kvaerner 2028: 2020: 1981: 1951: 1927: 1923: 1909: 1898: 1879: 1849:electrolyzer 1823: 1800: 1782: 1760: 1745: 1720:using multi 1710:fermentative 1704: 1690: 1687: 1652: 1623: 1616: 1584: 1566: 1525: 1499: 1489: 1485: 1481: 1478: 1452: 1429: 1425: 1421:gasification 1411: 1398: 1361: 1322:ferrosilicon 1311: 1275: 1265: 1257: 1253: 1250:heat sources 1244: 1230: 1204: 1194: 1171: 1155: 1139: 1127: 1111: 1104:South Africa 1090: 1069: 1050: 1023: 1011: 995: 960:carbon black 958:or Kvaerner 953: 887: 878: 874: 866: 861: 855: 846: 842: 836: 829: 808: 799:caustic soda 792: 770: 757: 741: 720: 711: 696: 688: 675: 673: 653: 637: 610: 606: 591: 580: 576: 565: 529: 507: 484: 453: 414: 392: 385: 328:electrolysis 229: 226:electrolysis 193: 177: 155: 131: 112:through the 106:oil refining 103: 100: 88:gasification 80: 72: 69:electrolysis 58: 57: 50: 34: 29: 7185:ChemSusChem 6631:hcei.tsc.ru 6629:Proceedings 6345:science.org 6080:: 335–344. 5809:: 150–156. 5722:ChemSusChem 5184:: 1288–97. 4912:: 502–533. 4869:: 502–533. 4656:(1): 70–4. 4097:: 227–279. 4065:: 140–145. 3763:IEA H2 2019 3706:. Nel ASA. 2285:Biohydrogen 2154:The use of 2056:), such as 1859:(1740–2900 1754:is used in 1714:biohydrogen 1417:biohydrogen 1326:World War I 1130:thermolysis 1124:Thermolysis 985:and 10% in 890:heating oil 753:formic acid 212:References 169:solar power 157:Decomposing 138:lithosphere 8016:2022-12-23 8007:"Hydrogen" 7941:2022-12-23 7915:2022-12-23 7744:Q108067259 7665:2024-05-13 7571:(1): 8–9. 7444:2010-07-05 7419:2010-07-05 7377:2010-07-05 7346:2009-09-19 7321:2015-08-02 7098:2008-05-09 7063:2008-09-19 7034:2016-08-22 7009:2010-07-05 6918:production 6898:2010-07-05 6786:2010-07-05 6703:: 113323. 6614:30 October 6583:30 October 6427:19 October 6396:19 October 6351:9 December 6310:(1): 8–9. 6278:January 6, 6252:January 6, 6058:2013-03-09 5670:2009-03-06 5552:2013-12-04 5519:2013-12-04 5448:2014-01-23 5331:2021-08-22 5222:2022-10-06 5099:2009-10-13 4962:(2): 1–8. 4780:: 112–20. 4749:: 744–57. 4691:: 218–22. 4589:energy.gov 4570:2011-12-13 3980:energy.gov 3814:2021-06-20 3682:2011-12-13 3632:2010-10-01 3529:2015-11-28 3399:2008-05-09 3323:2022-09-29 3297:2020-11-28 3263:2020-03-22 3198:: 101667. 3167:2020-11-27 3128:2023-07-03 3104:2022-09-29 3075:2023-11-22 3051:2023-09-26 3024:2019-06-03 2985:2019-06-03 2922:2014-09-06 2895:2020-09-29 2833:2023-09-21 2823:"Hydrogen" 2752:2024-03-23 2727:1 December 2680:: 119041. 2654:2022-02-11 2606:: 119041. 2567:: 102208. 2403:References 2253:by-product 2246:fuel cells 2215:See also: 1959:Hydrosol-2 1766:bioreactor 1367:bioreactor 1093:radiolysis 1087:Radiolysis 1039:process. 811:coke ovens 806:analysis. 623:(PEM) and 556:See also: 520:From water 487:exothermic 425:iron oxide 7993:253525130 7736:2050-0505 7612:: 03006. 7543:128762620 7499:105839304 6936:496234379 6675:244814932 6554:210862772 6519:206663568 6347:. Science 6273:U.S. Army 5217:New Atlas 4934:117669840 4891:117669840 4722:: 39–47. 4288:1826/6464 4043:135539661 2747:Yale E360 2506:252584593 2229:process, 2093:efforts. 2039:Norwegian 1972:heliostat 1936:based on 1654:Pyrolysis 1591:aluminium 1141:Pyrolysis 1108:phylotype 1100:gold mine 1095:. In the 1025:Coke oven 971:Norwegian 967:pyrolysis 847:catalytic 832:combusted 619:(SOECs), 437:feedstock 427:or other 245:Turquoise 65:renewable 8110:Category 7985:36385542 7892:Archived 7740:Wikidata 7565:Elements 7438:Archived 7410:Archived 7368:Archived 7340:Archived 7290:20140925 7213:19536754 7157:27941752 7057:Archived 7028:Archived 6944:20274275 6892:Archived 6844:19291418 6780:Archived 6762:18477081 6680:16 March 6608:Archived 6604:Phys.Org 6577:Archived 6511:29146810 6421:Archived 6419:. BASF. 6390:Archived 6386:Phys-Org 6182:96849691 6137:20566280 6102:28042989 5866:21261127 5858:28220969 5750:19536754 5695:Taichung 5640:19291418 5465:Archived 5421:Archived 5308:22420345 5300:17053150 5136:U.S. EIA 5036:Archived 5007:Archived 4992:Nedstack 4986:Archived 4848:25309898 4622:22 April 4595:22 April 4499:Archived 4470:cite web 4442:17 April 4413:17 April 4354:22 April 4301:June 12, 4296:53760672 4181:March 9, 3986:17 April 3960:17 April 3932:17 April 3870:17 April 3841:17 April 3780:Archived 3748:22 April 3742:Archived 3717:22 April 3708:Archived 3626:Archived 3603:25309898 3517:Capture" 3375:38323342 3288:Archived 3254:Archived 3230:32835007 3158:Archived 3070:Sensonic 3018:Archived 2994:cite web 2979:Archived 2975:gasworld 2889:Archived 2857:Archived 2809:38323342 2721:Archived 2648:Archived 2534:Archived 2268:See also 2237:via the 2082:methanol 1863:, 12–20 1835:O) into 1806:Archived 1788:. The CO 1718:bacteria 1458:bacteria 1314:balloons 1258:chemical 795:chlorine 779:(WGSR). 745:methanol 682:of the H 449:captured 402:catalyst 128:Overview 118:methanol 83:include 31:Hydrogen 8075:. 2019. 8058:Sources 7965:Bibcode 7843:..."], 7614:Bibcode 7573:Bibcode 7523:Bibcode 7479:Bibcode 7193:Bibcode 7148:5159813 7127:Bibcode 6967:Bibcode 6835:2777220 6814:Bibcode 6740:Bibcode 6705:Bibcode 6655:Bibcode 6489:Bibcode 6481:Science 6312:Bibcode 6162:Bibcode 6082:Bibcode 6005:Bibcode 5970:Bibcode 5893:Bibcode 5838:Bibcode 5730:Bibcode 5631:2777220 5610:Bibcode 5382:Bibcode 5280:Bibcode 5272:Science 5186:Bibcode 4914:Bibcode 4871:Bibcode 4839:4174133 4816:Bibcode 4658:Bibcode 4385:28 July 4023:Bibcode 3897:: 1–9. 3786:17 June 3738:iea.org 3594:4174133 3571:Bibcode 3456:Bibcode 3221:7326412 3200:Bibcode 2682:Bibcode 2608:Bibcode 2569:Bibcode 2484:Bibcode 2381:Hy4Heat 2235:ammonia 2078:ammonia 2058:methane 1851:is the 1708:is the 1486:E. coli 1413:Biomass 1256:) with 1097:Mponeng 843:thermal 749:ethanol 656:voltage 441:naphtha 415:In the 252:methane 234:biomass 110:ammonia 85:biomass 77:biomass 43:methane 8095:  7991:  7983:  7957:Nature 7742:  7734:  7685:dw.com 7541:  7497:  7288:  7245:  7211:  7155:  7145:  6942:  6934:  6924:  6872:14 May 6842:  6832:  6759:  6673:  6552:  6517:  6509:  6411:BASF. 6225:  6180:  6135:  6100:  6038:E coli 5939:  5864:  5856:  5836:(20). 5783:  5748:  5638:  5628:  5583:  5306:  5298:  5045:8 July 5013:5 July 4932:  4889:  4846:  4836:  4814:: 79. 4345:  4294:  4041:  3601:  3591:  3569:: 79. 3494:  3429:  3373:  3228:  3218:  2807:  2540:6 July 2504:  2197:. The 2062:biogas 1837:oxygen 1774:oxygen 1770:sulfur 1722:enzyme 1587:carbon 1581:CC-HOD 1575:CC-HOD 1375:oxygen 1371:sulfur 1271:hybrid 1262:oxygen 1254:thermo 1056:syngas 964:plasma 938:+ 12 O 815:Syngas 773:syngas 510:oxygen 497:O → CO 493:CO + H 464:syngas 429:oxides 399:nickel 337:Yellow 209:Notes 203:Color 7989:S2CID 7817:(2). 7811:(PDF) 7539:S2CID 7495:S2CID 7413:(PDF) 7406:(PDF) 7371:(PDF) 7364:(PDF) 7092:(PDF) 7081:(PDF) 7003:(PDF) 6996:(PDF) 6756:INIST 6671:S2CID 6550:S2CID 6515:S2CID 6178:S2CID 5862:S2CID 5706:(PDF) 5691:(PDF) 5664:(PDF) 5657:(PDF) 5546:(PDF) 5539:(PDF) 5513:(PDF) 5506:(PDF) 5489:(PDF) 5304:S2CID 5039:(PDF) 5032:(PDF) 4930:S2CID 4887:S2CID 4543:(PDF) 4462:(PDF) 4432:(PDF) 4404:(PDF) 4292:S2CID 4245:2 May 4239:(PDF) 4228:(PDF) 4039:S2CID 3951:(PDF) 3922:(PDF) 3860:(PDF) 3832:(PDF) 3711:(PDF) 3700:(PDF) 3655:(PDF) 3520:(PDF) 3291:(PDF) 3284:(PDF) 3257:(PDF) 3250:(PDF) 3161:(PDF) 3154:(PDF) 2913:(PDF) 2502:S2CID 2476:Joule 1967:Spain 1829:water 1763:algae 1742:light 1470:light 1364:algae 1273:one. 1266:cycle 1220:+1/2O 1192:+2HI 920:+ 6 O 900:and C 877:CO + 789:Mekog 218:Green 163:or a 8093:ISBN 8047:2021 7981:PMID 7839:and 7732:ISSN 7286:PMID 7243:ISBN 7209:PMID 7153:PMID 6940:OSTI 6932:OCLC 6922:ISBN 6874:2018 6840:PMID 6682:2022 6616:2020 6585:2020 6507:PMID 6429:2020 6398:2020 6353:2023 6280:2020 6254:2020 6223:ISBN 6133:PMID 6098:PMID 5937:ISBN 5854:PMID 5781:ISBN 5746:PMID 5636:PMID 5581:ISBN 5296:PMID 5178:Fuel 5047:2020 5015:2020 4844:PMID 4624:2018 4597:2018 4476:link 4444:2018 4415:2018 4387:2018 4356:2018 4343:ISBN 4303:2011 4247:2018 4183:2013 3988:2018 3962:2018 3934:2018 3895:2013 3872:2018 3843:2018 3808:CNBC 3788:2020 3750:2018 3719:2018 3599:PMID 3492:ISBN 3427:ISBN 3371:PMID 3226:PMID 3000:link 2805:PMID 2729:2020 2542:2021 2080:and 2029:The 2006:and 1589:and 1520:and 1447:and 1276:The 1156:The 1008:Coal 989:. CO 954:The 797:and 560:and 304:coal 283:Gray 265:Blue 7973:doi 7961:611 7935:IEA 7841:AES 7776:hdl 7768:doi 7724:doi 7660:IEA 7622:doi 7581:doi 7531:doi 7487:doi 7276:doi 7235:doi 7201:doi 7143:PMC 7135:doi 6975:doi 6830:PMC 6822:doi 6810:102 6748:doi 6713:doi 6701:181 6663:doi 6542:doi 6497:doi 6485:358 6456:doi 6320:doi 6170:doi 6125:doi 6090:doi 6078:227 6013:doi 5978:doi 5929:doi 5901:doi 5846:doi 5811:doi 5807:252 5773:doi 5738:doi 5626:PMC 5618:doi 5606:102 5390:doi 5355:doi 5288:doi 5276:314 5194:doi 5182:117 5159:doi 4964:doi 4922:doi 4910:231 4879:doi 4867:231 4834:PMC 4824:doi 4782:doi 4751:doi 4747:212 4724:doi 4720:229 4693:doi 4689:198 4666:doi 4325:, . 4284:hdl 4276:doi 4206:doi 4126:doi 4099:doi 4067:doi 4031:doi 3899:doi 3589:PMC 3579:doi 3464:doi 3419:doi 3361:hdl 3351:doi 3216:PMC 3208:doi 2950:doi 2827:IEA 2795:hdl 2785:doi 2690:doi 2678:216 2616:doi 2604:216 2577:doi 2492:doi 2432:doi 2016:LHV 1965:in 1865:MPa 1861:psi 1857:bar 1348:An 1216:→SO 1184:O→H 1180:+2H 1176:+SO 1110:of 873:→ 2 853:2 C 501:+ H 474:+ H 412:). 8112:: 8071:. 8037:. 8033:. 8009:. 7987:. 7979:. 7971:. 7959:. 7932:. 7908:. 7890:. 7886:. 7874:^ 7864:. 7813:. 7774:. 7762:. 7738:. 7730:. 7722:. 7700:, 7683:. 7658:. 7620:. 7610:98 7608:. 7604:. 7579:. 7569:16 7567:. 7563:. 7537:. 7529:. 7519:24 7517:. 7493:. 7485:. 7475:43 7473:. 7408:. 7366:. 7307:. 7284:. 7272:49 7270:. 7266:. 7241:. 7221:^ 7207:. 7199:. 7187:. 7174:^ 7151:. 7141:. 7133:. 7121:. 7117:. 7083:. 6973:. 6963:38 6961:. 6938:. 6930:. 6860:. 6838:. 6828:. 6820:. 6808:. 6804:. 6754:. 6746:. 6736:32 6734:. 6711:. 6699:. 6669:. 6661:. 6651:47 6649:. 6645:. 6606:. 6602:. 6571:. 6548:. 6536:. 6513:. 6505:. 6495:. 6483:. 6479:. 6450:. 6446:. 6415:. 6384:. 6343:. 6318:. 6308:16 6306:. 6300:. 6271:. 6245:. 6192:. 6176:. 6168:. 6158:32 6156:. 6131:. 6121:21 6119:. 6096:. 6088:. 6076:. 6046:. 6042:. 6011:. 6001:32 5999:. 5976:. 5966:42 5964:. 5951:^ 5935:. 5927:. 5915:^ 5899:. 5887:. 5883:. 5860:. 5852:. 5844:. 5834:29 5832:. 5805:. 5779:. 5767:. 5744:. 5736:. 5724:. 5697:: 5634:. 5624:. 5616:. 5604:. 5600:. 5471:. 5388:. 5378:81 5376:. 5351:33 5349:. 5324:. 5302:. 5294:. 5286:. 5274:. 5270:. 5215:. 5192:. 5180:. 5155:15 5153:. 5134:. 5116:. 5063:. 5034:. 5005:. 4958:. 4954:. 4942:^ 4928:. 4920:. 4908:. 4885:. 4877:. 4865:. 4842:. 4832:. 4822:. 4810:. 4806:. 4794:^ 4778:60 4776:. 4763:^ 4745:. 4718:. 4687:. 4664:. 4654:40 4652:. 4614:. 4587:. 4519:. 4497:. 4493:. 4472:}} 4468:{{ 4434:. 4406:. 4373:. 4319:. 4290:. 4282:. 4272:41 4270:. 4264:. 4230:. 4202:34 4200:. 4122:18 4120:. 4095:24 4093:. 4079:^ 4063:66 4061:. 4037:. 4029:. 4017:. 3996:^ 3978:. 3953:. 3924:. 3893:. 3889:. 3862:. 3834:. 3805:. 3778:. 3736:. 3702:. 3620:. 3597:. 3587:. 3577:. 3565:. 3561:. 3522:. 3476:^ 3462:. 3452:40 3450:. 3425:. 3369:. 3359:. 3347:53 3345:. 3341:. 3315:. 3224:. 3214:. 3206:. 3196:70 3194:. 3190:. 3176:^ 3137:^ 3121:. 3096:. 3084:^ 3068:. 3044:. 3033:^ 3016:. 2996:}} 2992:{{ 2977:. 2973:. 2944:. 2940:. 2915:. 2887:. 2855:. 2851:. 2825:. 2803:. 2793:. 2781:53 2779:. 2775:. 2761:^ 2745:. 2719:. 2713:. 2688:. 2676:. 2672:. 2646:. 2642:. 2630:^ 2614:. 2602:. 2598:. 2575:. 2565:80 2563:. 2559:. 2532:. 2528:. 2524:. 2500:. 2490:. 2478:. 2474:. 2455:. 2426:. 2420:. 2264:. 2048:(C 2010:, 2002:, 1998:, 1994:, 1990:, 1957:. 1883:MJ 1839:(O 1831:(H 1784:CO 1728:. 1662:CH 1320:, 1228:O 1224:+H 1212:SO 1199:+I 1188:SO 1102:, 1073:CO 1031:(H 1021:. 1004:. 936:12 932:24 918:24 914:12 906:12 902:24 898:24 894:12 865:+ 759:CO 751:, 747:, 615:, 470:CH 466:. 451:. 326:, 236:. 98:. 90:, 55:. 8101:. 8049:. 8019:. 7995:. 7975:: 7967:: 7944:. 7918:. 7868:. 7784:. 7778:: 7770:: 7764:4 7746:. 7726:: 7668:. 7644:. 7630:. 7624:: 7616:: 7589:. 7583:: 7575:: 7545:. 7533:: 7525:: 7501:. 7489:: 7481:: 7447:. 7422:. 7380:. 7349:. 7324:. 7292:. 7278:: 7251:. 7237:: 7215:. 7203:: 7195:: 7189:2 7159:. 7137:: 7129:: 7123:7 7101:. 7066:. 7037:. 7012:. 6981:. 6977:: 6969:: 6946:. 6916:2 6901:. 6876:. 6846:. 6824:: 6816:: 6789:. 6764:. 6750:: 6742:: 6719:. 6715:: 6707:: 6684:. 6665:: 6657:: 6618:. 6587:. 6556:. 6544:: 6538:3 6521:. 6499:: 6491:: 6464:. 6458:: 6452:7 6431:. 6400:. 6369:. 6355:. 6328:. 6322:: 6314:: 6282:. 6256:. 6231:. 6184:. 6172:: 6164:: 6139:. 6127:: 6104:. 6092:: 6084:: 6061:. 6048:3 6019:. 6015:: 6007:: 5984:. 5980:: 5972:: 5945:. 5931:: 5909:. 5903:: 5895:: 5889:8 5868:. 5848:: 5840:: 5817:. 5813:: 5789:. 5775:: 5752:. 5740:: 5732:: 5726:2 5673:. 5642:. 5620:: 5612:: 5555:. 5522:. 5491:. 5451:. 5396:. 5392:: 5384:: 5361:. 5357:: 5334:. 5310:. 5290:: 5282:: 5225:. 5200:. 5196:: 5188:: 5165:. 5161:: 5102:. 5067:. 5049:. 5017:. 4972:. 4966:: 4960:3 4936:. 4924:: 4916:: 4893:. 4881:: 4873:: 4850:. 4826:: 4818:: 4812:2 4788:. 4784:: 4757:. 4753:: 4730:. 4726:: 4712:2 4699:. 4695:: 4672:. 4668:: 4660:: 4626:. 4599:. 4573:. 4478:) 4446:. 4417:. 4389:. 4358:. 4305:. 4286:: 4278:: 4249:. 4212:. 4208:: 4185:. 4146:: 4132:. 4128:: 4105:. 4101:: 4073:. 4069:: 4045:. 4033:: 4025:: 4019:2 3990:. 3964:. 3936:. 3907:. 3901:: 3874:. 3845:. 3817:. 3790:. 3752:. 3721:. 3685:. 3635:. 3605:. 3581:: 3573:: 3567:2 3532:. 3515:2 3500:. 3470:. 3466:: 3458:: 3435:. 3421:: 3402:. 3377:. 3363:: 3353:: 3326:. 3300:. 3266:. 3232:. 3210:: 3202:: 3170:. 3131:. 3107:. 3078:. 3054:. 3027:. 3002:) 2988:. 2958:. 2952:: 2946:7 2925:. 2898:. 2873:. 2836:. 2811:. 2797:: 2787:: 2755:. 2731:. 2698:. 2692:: 2684:: 2657:. 2624:. 2618:: 2610:: 2583:. 2579:: 2571:: 2544:. 2508:. 2494:: 2486:: 2480:6 2459:. 2440:. 2434:: 2428:7 2054:m 2052:H 2050:n 1845:2 1841:2 1833:2 1790:2 1786:2 1679:2 1674:H 1667:4 1433:2 1431:H 1252:( 1226:2 1222:2 1218:2 1214:4 1210:2 1201:2 1197:2 1190:4 1186:2 1182:2 1178:2 1174:2 1162:2 1078:2 1060:2 1033:2 991:2 979:m 977:H 975:n 944:2 940:2 934:H 930:C 926:2 922:2 916:H 912:C 904:H 896:H 883:2 881:H 879:m 875:n 871:2 869:O 867:n 862:m 859:H 856:n 761:2 729:2 724:H 706:2 704:H 684:2 536:2 514:2 503:2 499:2 495:2 480:2 476:2 472:4 460:4 456:2 445:2 433:2 421:2 410:2 395:4 20:)

Index

Brown hydrogen
Hydrogen
steam methane reforming
methane
carbon capture and storage
blue hydrogen
Green hydrogen
renewable
electrolysis
biomass
biomass
gasification
methane pyrolysis
underground hydrogen
oil refining
ammonia
Haber process
methanol
carbon monoxide
Kola Superdeep Borehole
lithosphere
methane pyrolysis

Decomposing
nuclear power
renewable energy
solar power
green hydrogen
greenhouse gas emissions
grey hydrogen

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.