Knowledge

Bathymetry

Source 📝

528:(GPS) (or other Global Navigation Satellite System (GNSS)) positions the soundings with respect to the surface of the earth. Sound speed profiles (speed of sound in water as a function of depth) of the water column correct for refraction or "ray-bending" of the sound waves owing to non-uniform water column characteristics such as temperature, conductivity, and pressure. A computer system processes all the data, correcting for all of the above factors as well as for the angle of each individual beam. The resulting sounding measurements are then processed either manually, semi-automatically or automatically (in limited circumstances) to produce a map of the area. As of 2010 a number of different outputs are generated, including a sub-set of the original measurements that satisfy some conditions (e.g., most representative likely soundings, shallowest in a region, etc.) or integrated 759: 782:
by powered winches. The wires had less drag and were less affected by current, did not stretch as much, and were strong enough to support their own weight to considerable depths. The winches allowed faster deployment and recovery, necessary when the depths measured were of several kilometers. Wire drag surveys continued to be used until the 1990s due to reliability and accuracy. This procedure involved towing a cable by two boats, supported by floats and weighted to keep a constant depth The wire would snag on obstacles shallower than the cable depth. This was very useful for finding navigational hazards which could be missed by soundings, but was limited to relatively shallow depths.
819:
methods developed from military sonar images produced a more vivid picture of the seafloor. Further development of sonar based technology have allowed more detail and greater resolution, and ground penetrating techniques provide information on what lies below the bottom surface. Airborne and satellite data acquisition have made further advances possible in visualisation of underwater surfaces: high-resolution aerial photography and orthoimagery is a powerful tool for mapping shallow clear waters on continental shelves, and airborne laser bathymetry, using reflected light pulses, is also very effective in those conditions, and
75: 307: 897: 2100: 476: 20: 594: 2988: 3009: 931: 846: 802:. Computers, with their ability to compute large quantities of data, have made research much easier, include the research of the world's oceans. The development of multibeam systems made it possible to obtain depth information across the width of the sonar swath, to higher resolutions, and with precise position and attitude data for the transducers, made it possible to get multiple high resolution soundings from a single pass. 790:, contoured into isobaths and early bathymetric charts of shelf topography. These provided the first insight into seafloor morphology, though mistakes were made due to horizontal positional accuracy and imprecise depths. Sidescan sonar was developed in the 1950s to 1970s and could be used to create an image of the bottom, but the technology lacked the capacity for direct depth measurement across the width of the scan. In 1957, 461: 1666: 46: 2089: 2998: 411: 810:
water. When water is clear and the seafloor is sufficiently reflective, depth can be estimated by measuring the amount of reflectance observed by a satellite and then modeling how far the light should penetrate in the known conditions. The Advanced Topographic Laser Altimeter System (ATLAS) on NASA's Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) is a photon-counting
910: 281:. Various methods have advantages and disadvantages and the specific method used depends upon the scale of the area under study, financial means, desired measurement accuracy, and additional variables. Despite modern computer-based research, the ocean seabed in many locations is less measured than the 677:
High-density airborne laser bathymetry (ALB) is a modern, highly technical, approach to the mapping the seafloor. First developed in the 1960s and 1970s, ALB is a "light detection and ranging (LiDAR) technique that uses visible, ultraviolet, and near infrared light to optically remote sense a contour
635:
The data-sets produced by Hyper-Spectral (HS) Sensors tend to range between 100 and 200 spectral bands of approximately 5–10 nm bandwidths. Hyper-Spectral Sensing, or imaging spectroscopy, is a combination of continuous remote imaging and spectroscopy producing a single set of data. Two examples
546:
Satellites are also used to measure bathymetry. Satellite radar maps deep-sea topography by detecting the subtle variations in sea level caused by the gravitational pull of undersea mountains, ridges, and other masses. On average, sea level is higher over mountains and ridges than over abyssal plains
717:
There are various LIDAR bathymetry systems that are commercially accessible. Two of these systems are the Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) and the Laser Airborne Depth Sounder (LADS). SHOALS was first developed to help the United States Army Corps of Engineers (USACE)
805:
The US Naval Oceanographic Office developed a classified version of multibeam technology in the 1960s. NOAA obtained an unclassified commercial version in the late 1970s and established protocols and standards. Data acquired with multibeam sonar have vastly increased understanding of the seafloor.
781:
in the 1870s, when similar systems using wires and a winch were used for measuring much greater depths than previously possible, but this remained a one depth at a time procedure which required very low speed for accuracy. Greater depths could be measured using weighted wires deployed and recovered
643:
The application of HS sensors in regards to the imaging of the seafloor is the detection and monitoring of chlorophyll, phytoplankton, salinity, water quality, dissolved organic materials, and suspended sediments. However, this does not provide a great visual interpretation of coastal environments.
770:
The earliest known depth measurements were made about 1800 BCE by Egyptians by probing with a pole. Later a weighted line was used, with depths marked off at intervals. This process was known as sounding. Both these methods were limited by being spot depths, taken at a point, and could easily miss
708:
ALB generally operates in the form of a pulse of non-visible light being emitted from a low-flying aircraft and a receiver recording two reflections from the water. The first of which originates from the surface of the water, and the second from the seabed. This method has been used in a number of
1493:
Wölfl, Anne-Cathrin; Snaith, Helen; Amirebrahimi, Sam; Devey, Colin W.; Dorschel, Boris; Ferrini, Vicki; Huvenne, Veerle A. I.; Jakobsson, Martin; Jencks, Jennifer; Johnston, Gordon; Lamarche, Geoffroy; Mayer, Larry; Millar, David; Pedersen, Terje Haga; Picard, Kim; Reitz, Anja; Schmitt, Thierry;
739:
An orthoimage can be created through the combination of a number of photos of the same target. The target is photographed from a number of different angles to allow for the perception of the true elevation and tilting of the object. This gives the viewer an accurate perception of the target area.
818:
Mapping of continental shelf seafloor topography using remotely sensed data has applied a variety of methods to visualise the bottom topography. Early methods included hachure maps, and were generally based on the cartographer's personal interpretation of limited available data. Acoustic mapping
785:
Single-beam echo sounders were used from the 1920s-1930s to measure the distance of the seafloor directly below a vessel at relatively close intervals along the line of travel. By running roughly parallel lines, data points could be collected at better resolution, but this method still left gaps
809:
The U.S. Landsat satellites of the 1970s and later the European Sentinel satellites, have provided new ways to find bathymetric information, which can be derived from satellite images. These methods include making use of the different depths to which different frequencies of light penetrate the
771:
significant variations in the immediate vicinity. Accuracy was also affected by water movement–current could swing the weight from the vertical and both depth and position would be affected. This was a laborious and time-consuming process and was strongly affected by weather and sea conditions.
662:
MS sensing is used more in the mapping of the seabed due to its fewer spectral bands with relatively larger bandwidths. The larger bandwidths allow for a larger spectral coverage, which is crucial in the visual detection of marine features and general spectral resolution of the images acquired.
49: 48: 53: 52: 47: 620:
Another form of mapping the seafloor is through the use of satellites. The satellites are equipped with hyper-spectral and multi-spectral sensors which are used to provide constant streams of images of coastal areas providing a more feasible method of visualising the bottom of the seabed.
54: 456:
or LADAR systems. The amount of time it takes for the sound or light to travel through the water, bounce off the seafloor, and return to the sounder informs the equipment of the distance to the seafloor. LIDAR/LADAR surveys are usually conducted by airborne systems.
827:
satellite sensors can provide a nearly constant stream of benthic environmental information. Remote sensing techniques have been used to develop new ways of visualizing dynamic benthic environments from general geomorphological features to biological coverage.
743:
High resolution orthoimagery is currently being used in the 'terrestrial mapping program', the aim of which is to 'produce high resolution topography data from Oregon to Mexico'. The orthoimagery will be used to provide the photographic data for these regions.
322:, and the way sunlight diminishes when these landforms occupy increasing depths. Tidal networks depend on the balance between sedimentary processes and hydrodynamics however, anthropogenic influences can impact the natural system more than any physical driver. 51: 584:
Occupations or careers related to bathymetry include the study of oceans and rocks and minerals on the ocean floor, and the study of underwater earthquakes or volcanoes. The taking and analysis of bathymetric measurements is one of the core areas of modern
704:
receiver. Airplanes and helicopters are the most commonly used platforms for acquiring LIDAR data over broad areas. One application of LiDAR is bathymetric LiDAR, which uses water-penetrating green light to also measure seafloor and riverbed elevations.
318:) when it interfaces with the ocean. These shapes are obvious along coastlines, but they occur also in significant ways underwater. The effectiveness of marine habitats is partially defined by these shapes, including the way they interact with and shape 736:, a scale image which includes corrections made for feature displacement such as building tilt. These corrections are made through the use of a mathematical equation, information on sensor calibration, and the application of digital elevation models. 441:
or cable lowered over a ship's side. This technique measures the depth only a singular point at a time, and is therefore inefficient. It is also subject to movements of the ship and currents moving the line out of true and therefore is not accurate.
865:
that depicts the submerged bathymetry and physiographic features of ocean and sea bottoms. Their primary purpose is to provide detailed depth contours of ocean topography as well as provide the size, shape and distribution of underwater features.
577:. For deep-water bathymetry, this is typically Mean Sea Level (MSL), but most data used for nautical charting is referenced to Mean Lower Low Water (MLLW) in American surveys, and Lowest Astronomical Tide (LAT) in other countries. Many other 814:
that uses the return time of laser light pulses from the Earth's surface to calculate altitude of the surface. ICESat-2 measurements can be combined with ship-based sonar data to fill in gaps and improve precision of maps of shallow water.
718:
in bathymetric surveying by a company called Optech in the 1990s. SHOALS is done through the transmission of a laser, of wavelength between 530 and 532 nm, from a height of approximately 200 m at speed of 60 m/s on average.
1738: 658:
The other method of satellite imaging, multi-spectral (MS) imaging, tends to divide the EM spectrum into a small number of bands, unlike its partner Hyper-Spectral Sensors which can capture a much larger number of spectral bands.
511:
and accuracy. In general, a wide swath, which is depth dependent, allows a boat to map more seafloor in less time than a single-beam echosounder by making fewer passes. The beams update many times per second (typically 0.1–50
798:, created the first three-dimensional physiographic map of the world's ocean basins. Tharp's discovery was made at the perfect time. It was one of many discoveries that took place near the same time as the invention of the 880:). A closed shape with increasingly smaller shapes inside of it can indicate an ocean trench or a seamount, or underwater mountain, depending on whether the depths increase or decrease going inward. 678:
target through both an active and passive system." What this means is that airborne laser bathymetry also uses light outside the visible spectrum to detect the curves in underwater landscape.
50: 1370:
Brock & Purkis (2009). "The emerging role of Lidar remote sensing in coastal research and resource management". In: Brock J, Purkis S (eds.). "Coastal applications of airborne lidar".
732:
High resolution orthoimagery (HRO) is the process of creating an image that combines the geometric qualities with the characteristics of photographs. The result of this process is an
876:) and are complementary to bathymetric charts. Bathymeric charts showcase depth using a series of lines and points at equal intervals, called depth contours or isobaths (a type of 1117:
Giovanni Coco, Z. Zhou, B. van Maanen, M. Olabarrieta, R. Tinoco, I. Townend. Morphodynamics of tidal networks: Advances and challenges. Marine Geology Journal. 1 December 2013.
1396:
Deronde et al. (2008). "Monitoring of the sediment dynamics along a sandy shoreline by means of airborne hyper-spectral remote sensing and LIDAR: a case study in Belgium".
891: 696:
representation of whatever the light pulses reflect off, giving an accurate representation of the surface characteristics. A LiDAR system usually consists of a
524:. (Most modern MBES systems use an integrated motion-sensor and position system that measures yaw as well as the other dynamics and position.) A boat-mounted 516:
depending on water depth), allowing faster boat speed while maintaining 100% coverage of the seafloor. Attitude sensors allow for the correction of the boat's
234:
and artificial illumination techniques to illustrate the depths being portrayed. The global bathymetry is sometimes combined with topography data to yield a
2728: 1004: 210: 2718: 1777: 685: 563: 559: 637: 570: 488: 532:(DTM) (e.g., a regular or irregular grid of points connected into a surface). Historically, selection of measurements was more common in 216: 1053: 2634: 1200: 1037: 974: 3001: 2049: 1817: 1579: 1232: 555: 2281: 1467: 1770: 2171: 1708: 2876: 2303: 2191: 758: 200:), are typically produced to support safety of surface or sub-surface navigation, and usually show seafloor relief or 2723: 1994: 1256: 1723: 151: 2181: 2141: 1536: 566: 503:(MBES) are typically used, which use hundreds of very narrow adjacent beams (typically 256) arranged in a fan-like 326: 2911: 1897: 3049: 2991: 2584: 1763: 944: 230:
information. Bathymetric maps (a more general term where navigational safety is not a concern) may also use a
507:
of typically 90 to 170 degrees across. The tightly packed array of narrow individual beams provides very high
134: 2039: 1746: 615: 1681: 850: 536:
applications while DTM construction was used for engineering surveys, geology, flow modeling, etc. Since
1411:
Seafloor Mapping Along Continental Shelves: Research and Techniques for Visualizing Benthic Environments.
1333:
Seafloor Mapping Along Continental Shelves: Research and Techniques for Visualizing Benthic Environments.
449:) mounted beneath or over the side of a boat, "pinging" a beam of sound downward at the seafloor or from 2099: 1564:
Seafloor Mapping Along Continental Shelves: Research and Techniques for Visualizing Benthic Environments
2236: 786:
between the data points, particularly between the lines. The mapping of the sea floor started by using
2771: 2176: 2136: 1718: 672: 525: 520:
on the ocean surface, and a gyrocompass provides accurate heading information to correct for vessel
2901: 2276: 2266: 2206: 1842: 1812: 992: 74: 2938: 2921: 2758: 2251: 2116: 2054: 2044: 1937: 1128: 405: 3039: 2933: 2871: 2298: 1984: 962: 914: 529: 415: 127: 562:(NOAA) performs the same role for ocean waterways. Coastal bathymetry data is available from 3044: 2766: 2748: 2256: 2151: 1786: 1635: 775: 753: 653: 630: 500: 306: 231: 499:
Starting in the early 1930s, single-beam sounders were used to make bathymetry maps. Today,
174:), lake floors, or river floors. In other words, bathymetry is the underwater equivalent to 3034: 2953: 2786: 2489: 2346: 2211: 1922: 989: – Science of measurement and description of features which affect maritime activities 795: 314:
Seabed topography (ocean topography or marine topography) refers to the shape of the land (
947: – Partitioning of a seabed acoustic image into discrete physical entities or classes 8: 2948: 2833: 2828: 2554: 2226: 2186: 1902: 1703: 986: 980: 904: 278: 235: 59: 1728: 1671: 1611: 896: 2891: 2604: 2594: 2559: 2459: 2444: 2341: 1593: 1219: 508: 469: 419: 391:
10 km with a mean depth of 3,682 m, resulting in an estimated volume of 1.332
196: 1566:. Coastal Research Library. Vol. 13 (Internet resource ed.). pp. 3–53. 1347: 1271: 2973: 2963: 2906: 2886: 2569: 2534: 2469: 2449: 2439: 2321: 2009: 1867: 1597: 1585: 1575: 1517: 1252: 1228: 965: – Interaction of shoreline seafloor topography and fluid hydrodynamic processes 956: 858: 838: 693: 611: 598: 338: 190: 170: 25: 1297: 2928: 2896: 2866: 2675: 2660: 2529: 2464: 2356: 2271: 2201: 2126: 1907: 1877: 1807: 1802: 1713: 1567: 1507: 1172: 1162: 1083: 387:, or about 1/4400 of the total mass of the Earth. The oceans cover an area of 3.618 366: 88: 445:
The data used to make bathymetric maps today typically comes from an echosounder (
2733: 2629: 2579: 2544: 2504: 2396: 2366: 2216: 2166: 2076: 2034: 1967: 1892: 1852: 1750: 1349: 869: 589:, and a fundamental component in ensuring the safe transport of goods worldwide. 578: 574: 521: 517: 370: 354: 63: 33: 29: 2843: 2838: 2743: 2738: 2574: 2514: 2509: 2241: 2131: 1952: 1887: 1862: 887: 862: 450: 434: 362: 262: 222: 67: 2088: 1571: 1196: 558:
performs or commissions most surveys of navigable inland waterways, while the
3028: 3013: 2861: 2781: 2670: 2589: 2564: 2499: 2429: 2336: 2231: 2108: 2029: 1989: 1962: 1872: 1822: 1714:
WebMapping Application for searching free and open source Bathymetry datasets
1692: 1589: 1521: 1512: 1495: 1088: 1071: 936: 824: 820: 763: 692:
to measure distances". These light pulses, along with other data, generate a
551: 374: 353:. The submerged surface has mountainous features, including a globe-spanning 319: 183: 37: 1167: 1150: 2968: 2916: 2856: 2807: 2685: 2680: 2655: 2639: 2614: 2331: 2221: 2161: 1947: 1857: 1832: 1697: 883: 877: 689: 205: 299: 2958: 2690: 2619: 2484: 2424: 2391: 2381: 2376: 2261: 2196: 2156: 2146: 2121: 2004: 1977: 1957: 1917: 1882: 1446: 1430: 968: 791: 586: 533: 504: 475: 19: 1755: 1348:
National Oceanic and Atmospheric Administration (NOAA) (15 April 2020).
1304:. NOAA National Centers for Environmental Information. 15 September 2020 983: – Model of Earth's relief including elevation and depth underwater 2776: 2624: 2599: 2494: 2474: 2401: 2386: 2371: 2361: 2326: 2246: 2066: 2061: 2024: 2019: 2014: 1912: 950: 873: 733: 727: 465: 384: 342: 315: 282: 227: 179: 175: 3008: 930: 593: 2848: 2710: 2695: 2609: 2454: 2293: 2288: 2071: 1999: 1927: 1847: 1837: 1794: 1496:"Seafloor Mapping – The Challenge of a Truly Global Ocean Bathymetry" 1177: 1072:"Seafloor Mapping – The Challenge of a Truly Global Ocean Bathymetry" 492: 334: 157: 140: 1733: 261:. Bathymetric measurements are conducted with various methods, from 2943: 2665: 2524: 2416: 2406: 2351: 1827: 1704:
High resolution bathymetry for the Great Barrier Reef and Coral Sea
1385:
Optical properties and remote sensing of inland and coastal waters.
1014: – Vertical and horizontal dimension and shape of land surface 845: 799: 787: 350: 346: 182:. The first recorded evidence of water depth measurements are from 977: – Publicly available bathymetric chart of the world's oceans 882:
Bathymetric surveys and charts are associated with the science of
712: 709:
studies to map segments of the seafloor of various coastal areas.
581:
are used in practice, depending on the locality and tidal regime.
460: 2812: 2802: 1972: 1942: 1204: 1017: 1011: 971: – Instrument that indicates depth below a reference surface 903:
Bathymetric data used to produce charts can also be converted to
484: 358: 330: 201: 1743: 543:–2005, DTMs have become more accepted in hydrographic practice. 2519: 1932: 1494:
Visbeck, Martin; Weatherall, Pauline; Wigley, Rochelle (2019).
1070:
Wölfl, A.C.; Snaith, H.; Amirebrahimi, S.; et al. (2019).
998: 165: 1126: 959: – Map depicting the submerged terrain of bodies of water 2881: 2700: 2479: 2434: 909: 811: 697: 688:, "a remote sensing method that uses light in the form of a 681: 601:
of Earth without liquid water with 20× elevation exaggeration
513: 480: 453: 446: 430: 345:. Further out in the open ocean, they include underwater and 270: 266: 1739:
Coastal Bathymetry Map for US, Canda, Europe & Australia
1492: 573:. Bathymetric data is usually referenced to tidal vertical 100: 2313: 1468:"Underwater Frontiers: A Brief History of Seafloor Mapping" 1148: 1020: – Line of lowest elevation in a watercourse or valley 438: 410: 286: 274: 118: 109: 94: 1719:
Interactive Web Map, Set Negative Elevation for Bathymetry
1129:"Exploring the Ocean Basins with Satellite Altimeter Data" 953: – A scientific instrument for measuring water depth 701: 103: 995: – Shape of the ocean surface relative to the geoid 1709:
A.PO.MA.B.-Academy of Positioning Marine and Bathymetry
1562:
Finkl, Charles W.; Makowski, Christopher, eds. (2016).
1555: 1149:
Charette, Matthew A.; Smith, Walter H. F. (June 2010).
1069: 774:
There were significant improvements with the voyage of
1474:. NCEI: National Centers for Environmental Information 414:
First printed map of oceanic bathymetry, published by
1278:. NOAA National Centers for Environmental Information 164: 'measure') is the study of underwater depth of 1441:
State of California Ocean Protection Council, 2009,
926: 115: 112: 91: 1698:
Overview for underwater terrain, data formats, etc.
1142: 684:(Light Detection and Ranging) is, according to the 429:Originally, bathymetry involved the measurement of 106: 97: 2729:North West Shelf Operational Oceanographic System 16:Study of underwater depth of lake or ocean floors 3026: 1486: 2719:Deep-ocean Assessment and Reporting of Tsunamis 1335:Internet resource edition. Volume 13. pp. 31–35 1127:Sandwell, D. T.; Smith, W. H. F. (2006-07-07). 721: 713:Examples of commercial LIDAR bathymetry systems 686:National Oceanic and Atmospheric Administration 560:National Oceanic and Atmospheric Administration 1120: 907:which are vertical sections through a feature. 638:Airborne visible/infrared imaging spectrometer 571:National Centers for Environmental Information 489:National Centers for Environmental Information 58:Animation reveals oceanic floors and seabeds. 1771: 1561: 666: 379:The mass of the oceans is approximately 1.35 1413:Internet resource edition. Volume 13. p. 23 437:. Early techniques used pre-measured heavy 1778: 1764: 1251:, New Jersey, USA: Prentice Hall College, 24:Bathymetry of the ocean floor showing the 1785: 1729:Schmidt Ocean Institute: Seafloor Mapping 1534: 1511: 1462: 1460: 1458: 1456: 1454: 1176: 1166: 1087: 647: 624: 1693:Bathymetric Data Viewer from NOAA's NCEI 1063: 908: 895: 844: 757: 591: 474: 459: 409: 305: 242:is the study of past underwater depths. 73: 62:appear mostly by a depth of 140 meters, 44: 18: 1528: 1343: 1341: 1246: 1240: 1201:National Geospatial-Intelligence Agency 975:General Bathymetric Chart of the Oceans 3027: 2050:one-dimensional Saint-Venant equations 1451: 1447:http://www.opc.ca.gov/2009/12/mapping/ 1431:https://lta.cr.usgs.gov/high_res_ortho 1194: 1056:, Henry George Liddell, Robert Scott, 1040:, Henry George Liddell, Robert Scott, 226:), and typically also provide surface 1759: 1421: 1419: 1327: 1325: 1323: 1321: 1319: 1217: 1190: 1188: 1102: 556:United States Army Corps of Engineers 2997: 1338: 1211: 1197:"NGA Explains: What is hydrography?" 1195:Audrey, Furlong (November 7, 2018). 900:Bathymetric Map of Medicine Lake, CA 636:of this kind of sensing are AVIRIS ( 605: 292: 13: 2877:National Oceanographic Data Center 2304:World Ocean Circulation Experiment 2192:Global Ocean Data Analysis Project 1537:"Sounding the Seafloor with Light" 1427:High Resolution Orthoimagery (HRO) 1416: 1316: 1185: 406:Hydrographic survey § Methods 14: 3061: 2724:Global Sea Level Observing System 1657: 1221:Remote Sensing from Air and Space 569:(NGDC), which is now merged into 493:TerrainBase Digital Terrain Model 349:features such as ocean rises and 3007: 2996: 2987: 2986: 2182:Geochemical Ocean Sections Study 2098: 2087: 1664: 929: 872:display elevation above ground ( 837:This section is an excerpt from 754:Bathymetric chart § History 567:National Geophysical Data Center 298:This section is an excerpt from 87: 2912:Ocean thermal energy conversion 2635:Vine–Matthews–Morley hypothesis 1628: 1604: 1435: 1403: 1390: 1377: 1374:, Special Issue No. 53: pp. 1–5 1364: 1290: 1264: 1001: – The bottom of an ocean 894:or other specialized purposes. 853:(formerly Loihi) with isobaths. 592: 310:World map with ocean topography 78:A seafloor map captured by NASA 1443:Mapping California's Resources 1272:"Bathymetry and Global Relief" 1111: 1096: 1047: 1031: 945:Acoustic seabed classification 399: 1: 1425:USGS, Date Last Edited 2015, 1409:Charles W. Finkl, ed., 2016, 1387:CRC Press, Boca Raton, p. 365 1331:Charles W. Finkl, ed., 2016, 1151:"The Volume of Earth's Ocean" 1024: 537: 327:coastal and oceanic landforms 70:at depths beyond 6000 meters. 2172:El Niño–Southern Oscillation 2142:Craik–Leibovich vortex force 1898:Luke's variational principle 722:High resolution orthoimagery 616:Satellite-derived bathymetry 357:system, as well as undersea 325:Marine topographies include 7: 1640:National Geographic Society 1535:Carlowicz, Michael (2020). 1500:Frontiers in Marine Science 1372:Journal of Coastal Research 1076:Frontiers in Marine Science 922: 10: 3066: 2237:Ocean dynamical thermostat 2085: 1298:"Coastal Elevation Models" 836: 751: 747: 725: 670: 651: 628: 609: 403: 297: 150: 133: 2982: 2821: 2795: 2772:Ocean acoustic tomography 2757: 2709: 2648: 2585:Mohorovičić discontinuity 2543: 2415: 2312: 2177:General circulation model 2107: 1813:Benjamin–Feir instability 1793: 1572:10.1007/978-3-319-25121-9 1541:earthobservatory.nasa.gov 1249:Introductory Oceanography 851:Kamaʻehuakanaloa Seamount 831: 673:Airborne lidar bathymetry 667:Airborne laser bathymetry 526:Global Positioning System 194:(not to be confused with 147: 'deep' and 2902:Ocean surface topography 2277:Thermohaline circulation 2267:Subsurface ocean current 2207:Hydrothermal circulation 2040:Wave–current interaction 1818:Boussinesq approximation 1513:10.3389/fmars.2019.00283 1352:. National Ocean Service 1089:10.3389/fmars.2019.00283 993:Ocean surface topography 2939:Sea surface temperature 2922:Outline of oceanography 2117:Atmospheric circulation 2055:shallow water equations 2045:Waves and shallow water 1938:Significant wave height 1616:Encyclopedia Britannica 1398:Earth Surface Processes 1247:Thurman, H. V. (1997), 1168:10.5670/oceanog.2010.51 1058:A Greek-English Lexicon 1042:A Greek-English Lexicon 220:) and selected depths ( 36:(yellow-green) and the 2934:Sea surface microlayer 2299:Wind generated current 1103:Jones, E.J.W. (1999). 963:Coastal morphodynamics 917: 901: 892:underwater engineering 854: 767: 648:Multi-spectral sensors 625:Hyper-spectral sensors 602: 530:Digital Terrain Models 501:multibeam echosounders 496: 472: 426: 416:Matthew Fontaine Maury 311: 186:over 3000 years ago. 79: 71: 42: 3050:Topography techniques 2767:Deep scattering layer 2749:World Geodetic System 2257:Princeton Ocean Model 2137:Coriolis–Stokes force 1787:Physical oceanography 1734:Seafloormapping.co.uk 1383:Bukata et al. (1995) 1218:Olsen, R. C. (2007), 913:Bathymetric chart of 912: 899: 848: 761: 726:Further information: 654:Multispectral imaging 631:Hyperspectral imaging 610:Further information: 597: 478: 463: 413: 329:ranging from coastal 309: 232:Digital Terrain Model 77: 57: 22: 2787:Underwater acoustics 2347:Perigean spring tide 2212:Langmuir circulation 1923:Rossby-gravity waves 905:bathymetric profiles 796:Bruce Charles Heezen 762:A three-dimensional 66:by 3000 meters, and 2949:Science On a Sphere 2555:Convergent boundary 2227:Modular Ocean Model 2187:Geostrophic current 1903:Mild-slope equation 1724:NOAA Ocean Explorer 1005:Seabed 2030 Project 987:Hydrographic survey 981:Global relief model 849:Bathymetric map of 339:continental shelves 300:Seabed § Topography 279:satellite altimetry 236:global relief model 197:hydrographic charts 60:Continental shelves 26:continental shelves 2605:Seafloor spreading 2595:Outer trench swell 2560:Divergent boundary 2460:Continental margin 2445:Carbonate platform 2342:Lunitidal interval 1749:2019-06-16 at the 1107:. New York: Wiley. 1105:Marine geophhysics 918: 902: 855: 768: 603: 509:angular resolution 497: 487:). Data from the 473: 470:Puerto Rico Trench 427: 312: 191:Bathymetric charts 80: 72: 43: 3022: 3021: 3014:Oceans portal 2974:World Ocean Atlas 2964:Underwater glider 2907:Ocean temperature 2570:Hydrothermal vent 2535:Submarine volcano 2470:Continental shelf 2450:Coastal geography 2440:Bathymetric chart 2322:Amphidromic point 2010:Wave nonlinearity 1868:Infragravity wave 1612:"Bathymetric map" 1581:978-3-319-25121-9 1302:www.ngdc.noaa.gov 1276:www.ngdc.noaa.gov 1234:978-0-8194-6235-0 957:Bathymetric chart 859:bathymetric chart 839:Bathymetric chart 694:three-dimensional 640:) and HYPERION. 612:Satellite imagery 606:Satellite imagery 367:submarine canyons 293:Seabed topography 245:Synonyms include 171:seabed topography 55: 3057: 3012: 3011: 3000: 2999: 2990: 2989: 2929:Pelagic sediment 2867:Marine pollution 2661:Deep ocean water 2530:Submarine canyon 2465:Continental rise 2357:Rule of twelfths 2272:Sverdrup balance 2202:Humboldt Current 2127:Boundary current 2102: 2091: 1908:Radiation stress 1878:Iribarren number 1853:Equatorial waves 1808:Ballantine scale 1803:Airy wave theory 1780: 1773: 1766: 1757: 1756: 1668: 1667: 1651: 1650: 1648: 1647: 1632: 1626: 1625: 1623: 1622: 1608: 1602: 1601: 1559: 1553: 1552: 1550: 1548: 1532: 1526: 1525: 1515: 1490: 1484: 1483: 1481: 1479: 1464: 1449: 1439: 1433: 1423: 1414: 1407: 1401: 1394: 1388: 1381: 1375: 1368: 1362: 1361: 1359: 1357: 1350:"What is LIDAR?" 1345: 1336: 1329: 1314: 1313: 1311: 1309: 1294: 1288: 1287: 1285: 1283: 1268: 1262: 1261: 1244: 1238: 1237: 1226: 1215: 1209: 1208: 1192: 1183: 1182: 1180: 1170: 1146: 1140: 1139: 1137: 1136: 1124: 1118: 1115: 1109: 1108: 1100: 1094: 1093: 1091: 1067: 1061: 1051: 1045: 1035: 939: 934: 933: 870:Topographic maps 596: 542: 539: 483:bathymetry (and 394: 390: 382: 371:oceanic plateaus 363:oceanic trenches 255:seafloor imaging 247:seafloor mapping 161: 154: 144: 137: 125: 124: 121: 120: 117: 114: 111: 108: 105: 102: 99: 96: 93: 68:oceanic trenches 64:mid-ocean ridges 56: 40:(blue to purple) 34:mid-ocean ridges 30:oceanic plateaus 3065: 3064: 3060: 3059: 3058: 3056: 3055: 3054: 3025: 3024: 3023: 3018: 3006: 2978: 2817: 2791: 2753: 2734:Sea-level curve 2705: 2644: 2630:Transform fault 2580:Mid-ocean ridge 2546: 2539: 2505:Oceanic plateau 2411: 2397:Tidal resonance 2367:Theory of tides 2308: 2217:Longshore drift 2167:Ekman transport 2103: 2097: 2096: 2095: 2094: 2093: 2092: 2083: 2035:Wave turbulence 1968:Trochoidal wave 1893:Longshore drift 1789: 1784: 1751:Wayback Machine 1689: 1688: 1687: 1669: 1665: 1660: 1655: 1654: 1645: 1643: 1634: 1633: 1629: 1620: 1618: 1610: 1609: 1605: 1582: 1560: 1556: 1546: 1544: 1533: 1529: 1491: 1487: 1477: 1475: 1466: 1465: 1452: 1440: 1436: 1424: 1417: 1408: 1404: 1400:33: pp. 280–294 1395: 1391: 1382: 1378: 1369: 1365: 1355: 1353: 1346: 1339: 1330: 1317: 1307: 1305: 1296: 1295: 1291: 1281: 1279: 1270: 1269: 1265: 1259: 1245: 1241: 1235: 1224: 1216: 1212: 1193: 1186: 1147: 1143: 1134: 1132: 1125: 1121: 1116: 1112: 1101: 1097: 1068: 1064: 1052: 1048: 1036: 1032: 1027: 935: 928: 925: 920: 919: 886:, particularly 842: 834: 794:, working with 756: 750: 730: 724: 715: 700:, scanner, and 675: 669: 656: 650: 633: 627: 618: 608: 540: 418:with data from 408: 402: 397: 396: 392: 388: 380: 355:mid-ocean ridge 303: 295: 273:techniques, to 240:Paleobathymetry 90: 86: 45: 41: 17: 12: 11: 5: 3063: 3053: 3052: 3047: 3042: 3037: 3020: 3019: 3017: 3016: 3004: 2994: 2983: 2980: 2979: 2977: 2976: 2971: 2966: 2961: 2956: 2954:Stratification 2951: 2946: 2941: 2936: 2931: 2926: 2925: 2924: 2914: 2909: 2904: 2899: 2894: 2889: 2884: 2879: 2874: 2869: 2864: 2859: 2854: 2846: 2844:Color of water 2841: 2839:Benthic lander 2836: 2831: 2825: 2823: 2819: 2818: 2816: 2815: 2810: 2805: 2799: 2797: 2793: 2792: 2790: 2789: 2784: 2779: 2774: 2769: 2763: 2761: 2755: 2754: 2752: 2751: 2746: 2744:Sea level rise 2741: 2739:Sea level drop 2736: 2731: 2726: 2721: 2715: 2713: 2707: 2706: 2704: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2658: 2652: 2650: 2646: 2645: 2643: 2642: 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2597: 2592: 2587: 2582: 2577: 2575:Marine geology 2572: 2567: 2562: 2557: 2551: 2549: 2541: 2540: 2538: 2537: 2532: 2527: 2522: 2517: 2515:Passive margin 2512: 2510:Oceanic trench 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2447: 2442: 2437: 2432: 2427: 2421: 2419: 2413: 2412: 2410: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2318: 2316: 2310: 2309: 2307: 2306: 2301: 2296: 2291: 2286: 2285: 2284: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2242:Ocean dynamics 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2132:Coriolis force 2129: 2124: 2119: 2113: 2111: 2105: 2104: 2086: 2084: 2082: 2081: 2080: 2079: 2069: 2064: 2059: 2058: 2057: 2052: 2042: 2037: 2032: 2027: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1981: 1980: 1970: 1965: 1960: 1955: 1953:Stokes problem 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1888:Kinematic wave 1885: 1880: 1875: 1870: 1865: 1860: 1855: 1850: 1845: 1840: 1835: 1830: 1825: 1820: 1815: 1810: 1805: 1799: 1797: 1791: 1790: 1783: 1782: 1775: 1768: 1760: 1754: 1753: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1700:(vterrain.org) 1695: 1670: 1663: 1662: 1661: 1659: 1658:External links 1656: 1653: 1652: 1627: 1603: 1580: 1554: 1527: 1485: 1472:www.arcgis.com 1450: 1434: 1415: 1402: 1389: 1376: 1363: 1337: 1315: 1289: 1263: 1257: 1239: 1233: 1210: 1184: 1161:(2): 112–114. 1141: 1119: 1110: 1095: 1062: 1046: 1029: 1028: 1026: 1023: 1022: 1021: 1015: 1009: 1008: 1007: 996: 990: 984: 978: 972: 966: 960: 954: 948: 941: 940: 924: 921: 888:marine geology 863:isarithmic map 843: 835: 833: 830: 749: 746: 723: 720: 714: 711: 671:Main article: 668: 665: 652:Main article: 649: 646: 629:Main article: 626: 623: 607: 604: 547:and trenches. 518:roll and pitch 451:remote sensing 435:depth sounding 433:depth through 401: 398: 375:abyssal plains 320:ocean currents 304: 296: 294: 291: 263:depth sounding 259:seabed imaging 251:seabed mapping 211:depth contours 38:abyssal plains 23: 15: 9: 6: 4: 3: 2: 3062: 3051: 3048: 3046: 3043: 3041: 3040:Geomorphology 3038: 3036: 3033: 3032: 3030: 3015: 3010: 3005: 3003: 2995: 2993: 2985: 2984: 2981: 2975: 2972: 2970: 2967: 2965: 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2923: 2920: 2919: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2862:Marine energy 2860: 2858: 2855: 2853: 2852: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2829:Acidification 2827: 2826: 2824: 2820: 2814: 2811: 2809: 2806: 2804: 2801: 2800: 2798: 2794: 2788: 2785: 2783: 2782:SOFAR channel 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2764: 2762: 2760: 2756: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2720: 2717: 2716: 2714: 2712: 2708: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2653: 2651: 2647: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2596: 2593: 2591: 2590:Oceanic crust 2588: 2586: 2583: 2581: 2578: 2576: 2573: 2571: 2568: 2566: 2565:Fracture zone 2563: 2561: 2558: 2556: 2553: 2552: 2550: 2548: 2542: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2500:Oceanic basin 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2430:Abyssal plain 2428: 2426: 2423: 2422: 2420: 2418: 2414: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2337:Internal tide 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2319: 2317: 2315: 2311: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2283: 2280: 2279: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2232:Ocean current 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2114: 2112: 2110: 2106: 2101: 2090: 2078: 2075: 2074: 2073: 2070: 2068: 2065: 2063: 2060: 2056: 2053: 2051: 2048: 2047: 2046: 2043: 2041: 2038: 2036: 2033: 2031: 2030:Wave shoaling 2028: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1990:Ursell number 1988: 1986: 1983: 1979: 1976: 1975: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1873:Internal wave 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1826: 1824: 1823:Breaking wave 1821: 1819: 1816: 1814: 1811: 1809: 1806: 1804: 1801: 1800: 1798: 1796: 1792: 1788: 1781: 1776: 1774: 1769: 1767: 1762: 1761: 1758: 1752: 1748: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1699: 1696: 1694: 1691: 1690: 1685: 1684: 1683: 1677: 1673: 1641: 1637: 1631: 1617: 1613: 1607: 1599: 1595: 1591: 1587: 1583: 1577: 1573: 1569: 1565: 1558: 1542: 1538: 1531: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1489: 1473: 1469: 1463: 1461: 1459: 1457: 1455: 1448: 1444: 1438: 1432: 1428: 1422: 1420: 1412: 1406: 1399: 1393: 1386: 1380: 1373: 1367: 1351: 1344: 1342: 1334: 1328: 1326: 1324: 1322: 1320: 1303: 1299: 1293: 1277: 1273: 1267: 1260: 1258:0-13-262072-3 1254: 1250: 1243: 1236: 1230: 1223: 1222: 1214: 1206: 1202: 1198: 1191: 1189: 1179: 1174: 1169: 1164: 1160: 1156: 1152: 1145: 1130: 1123: 1114: 1106: 1099: 1090: 1085: 1081: 1077: 1073: 1066: 1059: 1055: 1050: 1043: 1039: 1034: 1030: 1019: 1016: 1013: 1010: 1006: 1003: 1002: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 942: 938: 937:Oceans portal 932: 927: 916: 911: 906: 898: 893: 889: 885: 881: 879: 875: 871: 867: 864: 861:is a type of 860: 852: 847: 840: 829: 826: 825:multispectral 822: 821:hyperspectral 816: 813: 807: 803: 801: 797: 793: 789: 783: 780: 779: 772: 765: 764:echo sounding 760: 755: 745: 741: 737: 735: 729: 719: 710: 706: 703: 699: 695: 691: 687: 683: 679: 674: 664: 660: 655: 645: 641: 639: 632: 622: 617: 613: 600: 595: 590: 588: 582: 580: 576: 572: 568: 565: 561: 557: 553: 552:United States 548: 544: 535: 531: 527: 523: 519: 515: 510: 506: 502: 494: 490: 486: 482: 477: 471: 467: 464:The seafloor 462: 458: 455: 452: 448: 443: 440: 436: 432: 424: 423: 417: 412: 407: 386: 378: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 323: 321: 317: 308: 301: 290: 288: 284: 280: 276: 272: 268: 264: 260: 256: 252: 248: 243: 241: 237: 233: 229: 225: 224: 219: 218: 213: 212: 207: 206:contour lines 203: 199: 198: 193: 192: 187: 185: 184:Ancient Egypt 181: 177: 173: 172: 167: 163: 160: 153: 149: 146: 143: 136: 132: 129: 128:Ancient Greek 123: 84: 76: 69: 65: 61: 39: 35: 31: 27: 21: 3045:Oceanography 2969:Water column 2917:Oceanography 2892:Observations 2887:Explorations 2857:Marginal sea 2850: 2808:OSTM/Jason-2 2640:Volcanic arc 2615:Slab suction 2332:Head of tide 2222:Loop Current 2162:Ekman spiral 1948:Stokes drift 1858:Gravity wave 1833:Cnoidal wave 1680: 1679: 1678:profile for 1675: 1644:. Retrieved 1642:. 2011-03-24 1639: 1636:"bathymetry" 1630: 1619:. Retrieved 1615: 1606: 1563: 1557: 1545:. Retrieved 1540: 1530: 1503: 1499: 1488: 1476:. Retrieved 1471: 1442: 1437: 1426: 1410: 1405: 1397: 1392: 1384: 1379: 1371: 1366: 1354:. Retrieved 1332: 1306:. Retrieved 1301: 1292: 1280:. Retrieved 1275: 1266: 1248: 1242: 1220: 1213: 1158: 1155:Oceanography 1154: 1144: 1133:. Retrieved 1122: 1113: 1104: 1098: 1079: 1075: 1065: 1060:, on Perseus 1057: 1049: 1044:, on Perseus 1041: 1033: 884:oceanography 878:contour line 868: 856: 817: 808: 804: 784: 777: 773: 769: 742: 738: 731: 716: 707: 690:pulsed laser 680: 676: 661: 657: 642: 634: 619: 599:STL 3D model 583: 549: 545: 534:hydrographic 498: 479:Present-day 444: 428: 421: 324: 313: 258: 254: 250: 246: 244: 239: 228:navigational 221: 215: 209: 195: 189: 188: 169: 166:ocean floors 158: 155: 148: 141: 138: 131: 82: 81: 3035:Cartography 2959:Thermocline 2676:Mesopelagic 2649:Ocean zones 2620:Slab window 2485:Hydrography 2425:Abyssal fan 2392:Tidal range 2382:Tidal power 2377:Tidal force 2262:Rip current 2197:Gulf Stream 2157:Ekman layer 2147:Downwelling 2122:Baroclinity 2109:Circulation 2005:Wave height 1995:Wave action 1978:megatsunami 1958:Stokes wave 1918:Rossby wave 1883:Kelvin wave 1863:Green's law 1744:Seabed 2030 1131:. NOAA/NGDC 969:Depth gauge 792:Marie Tharp 788:sound waves 587:hydrography 541: 2003 400:Measurement 395:10 km. 385:metric tons 343:coral reefs 126:; from 32:(red), the 3029:Categories 2897:Reanalysis 2796:Satellites 2777:Sofar bomb 2625:Subduction 2600:Ridge push 2495:Ocean bank 2475:Contourite 2402:Tide gauge 2387:Tidal race 2372:Tidal bore 2362:Slack tide 2327:Earth tide 2247:Ocean gyre 2067:Wind setup 2062:Wind fetch 2025:Wave setup 2020:Wave radar 2015:Wave power 1913:Rogue wave 1843:Dispersion 1682:Bathymetry 1646:2019-12-17 1621:2019-12-17 1135:2007-04-21 1025:References 951:Bathometer 874:topography 778:Challenger 752:See also: 734:orthoimage 728:Orthophoto 466:topography 404:See also: 335:shorelines 316:topography 283:topography 180:topography 176:hypsometry 83:Bathymetry 2759:Acoustics 2711:Sea level 2610:Slab pull 2547:tectonics 2455:Cold seep 2417:Landforms 2294:Whirlpool 2289:Upwelling 2072:Wind wave 2000:Wave base 1928:Sea state 1848:Edge wave 1838:Cross sea 1598:132980629 1590:2211-0585 1522:2296-7745 1178:1912/3862 915:Bear Lake 485:altimetry 468:near the 359:volcanoes 351:seamounts 331:estuaries 223:soundings 2992:Category 2944:Seawater 2671:Littoral 2666:Deep sea 2525:Seamount 2407:Tideline 2352:Rip tide 2282:shutdown 2252:Overflow 1985:Undertow 1828:Clapotis 1747:Archived 1227:, SPIE, 923:See also 800:computer 383:10  347:deep sea 217:isobaths 208:(called 3002:Commons 2872:Mooring 2822:Related 2813:Jason-3 2803:Jason-1 2686:Pelagic 2681:Oceanic 2656:Benthic 1973:Tsunami 1943:Soliton 1672:Scholia 1506:: 283. 1356:21 June 1205:YouTube 1082:: 283. 1018:Thalweg 1012:Terrain 748:History 550:In the 422:Dolphin 202:terrain 2691:Photic 2520:Seabed 1933:Seiche 1674:has a 1596:  1588:  1578:  1547:8 July 1543:. NASA 1520:  1478:8 July 1308:8 July 1282:8 July 1255:  1231:  1054:μέτρον 999:Seabed 890:, and 832:Charts 579:datums 575:datums 564:NOAA's 425:(1853) 159:métron 152:μέτρον 142:bathús 2882:Ocean 2851:Alvin 2701:Swash 2545:Plate 2490:Knoll 2480:Guyot 2435:Atoll 2314:Tides 2077:model 1963:Swell 1795:Waves 1676:topic 1594:S2CID 1225:(PDF) 1038:βαθύς 812:lidar 698:laser 682:LiDAR 505:swath 481:Earth 454:LIDAR 447:sonar 431:ocean 275:buoys 271:Lidar 267:sonar 135:βαθύς 130: 2849:DSV 2834:Argo 2696:Surf 2152:Eddy 1586:ISSN 1576:ISBN 1549:2022 1518:ISSN 1480:2022 1358:2020 1310:2022 1284:2022 1253:ISBN 1229:ISBN 1203:via 823:and 776:HMS 614:and 554:the 439:rope 420:USS 373:and 341:and 333:and 287:Mars 277:and 269:and 257:and 28:and 1568:doi 1508:doi 1173:hdl 1163:doi 1084:doi 766:map 702:GPS 522:yaw 491:'s 337:to 285:of 214:or 204:as 178:or 3031:: 1638:. 1614:. 1592:. 1584:. 1574:. 1539:. 1516:. 1502:. 1498:. 1470:. 1453:^ 1429:, 1418:^ 1340:^ 1318:^ 1300:. 1274:. 1199:. 1187:^ 1171:. 1159:23 1157:. 1153:. 1078:. 1074:. 857:A 538:c. 514:Hz 377:. 369:, 365:, 361:, 289:. 265:, 253:, 249:, 238:. 1779:e 1772:t 1765:v 1686:. 1649:. 1624:. 1600:. 1570:: 1551:. 1524:. 1510:: 1504:6 1482:. 1445:, 1360:. 1312:. 1286:. 1207:. 1181:. 1175:: 1165:: 1138:. 1092:. 1086:: 1080:6 841:. 495:. 393:× 389:× 381:× 302:. 168:( 162:) 156:( 145:) 139:( 122:/ 119:i 116:r 113:t 110:ə 107:m 104:ɪ 101:θ 98:ˈ 95:ə 92:b 89:/ 85:(

Index


continental shelves
oceanic plateaus
mid-ocean ridges
abyssal plains
Continental shelves
mid-ocean ridges
oceanic trenches

/bəˈθɪmətri/
Ancient Greek
βαθύς
μέτρον
ocean floors
seabed topography
hypsometry
topography
Ancient Egypt
Bathymetric charts
hydrographic charts
terrain
contour lines
depth contours
isobaths
soundings
navigational
Digital Terrain Model
global relief model
depth sounding
sonar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.