Knowledge

X-ray optics

Source đź“ť

676: 386: 337: 206: 1478: 758:
The materials for multilayers are selected to give the highest possible reflection at each boundary and the smallest absorption or the propagation through the structure. This is usually achieved by light, low-density materials for the spacer layer and a heavier material that produces high contrast.
360:
from a surface and to measure the intensity of X-rays reflected in the specular direction (reflected angle equal to incident angle). It has been shown that a reflection off a parabolic mirror followed by a reflection off a hyperbolic mirror leads to the focusing of X-rays. Since the incoming X-rays
230:
at 100 mm from the X-ray source. Since only X-rays entering the capillaries within a very narrow angle will be totally internally reflected, only X-rays coming from a small spot will be transmitted through the optic. Polycapillary optics cannot image more than one point to another, so they are
217:
on the inside of the tubes. The array is tapered so that one end of the capillaries points at the X-ray source and the other at the sample. Polycapillary optics are achromatic and thus suitable for scanning fluorescence imaging and other applications where a broad X-ray spectrum is useful. They
714:
No material has substantial reflection for X-rays, except at very small grazing angles. Multilayers enhance the small reflectivity from a single boundary by adding the small reflected amplitudes from many boundaries coherently in phase. For example, if a single boundary has a reflectivity of
1180:
Pikuz, T. A.; Faenov, A. Ya.; Fraenkel, M.; Zigler, A.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Letardi, T.; Grilli, A.; Palladino, L.; Tomassetti, G.; Reale, A.; Reale, L.; Scafati, A.; Limongi, T.; Bonfigli, F.; Alainelli, L.; Sanchez del Rio, M. (2000).
549:
The total phase difference is derived from the sum of both the path difference and the initial phase difference (if the X-ray waves are generated from two or more different sources). It can then be concluded whether the X-ray waves reaching a point are
372:
law. The deviations can then be analyzed to obtain the density profile of the interface normal to the surface. For films with multiple layers, X-ray reflectivity may show oscillations with wavelength, analogous to the
751:/2. The shortest period that can be used in a multilayer is limited by the size of the atoms to about 2 nm, corresponding to wavelengths above 4 nm. For shorter wavelength a reduction of the incidence angle 245:
Zone plates consist of a substrate with concentric zones of a phase-shifting or absorbing material with zones getting narrower the larger their radius. The zone widths are designed so that a transmitted wave gets
759:
The absorption in the heavier material can be reduced by positioning it close to the nodes of the standing-wave field inside the structure. Good low-absorption spacer materials are Be, C, B, B
423:
Each atom re-radiates a small portion of an incoming beam's intensity as a spherical wave. If the atoms are arranged symmetrically (as is found in a crystal) with a separation
1296: 643:. Although the technology has advanced rapidly, its practical uses outside research are still limited. Efforts are ongoing, however, to introduce X-ray optics in medical 86:
of all materials is very close to 1 for X-rays, they instead tend to initially penetrate and eventually get absorbed in most materials without changing direction much.
462:
in the forward direction; the outgoing X-rays have the same energy, and thus the same wavelength, as the incoming X-rays, only with altered direction. By contrast,
625: 361:
must strike the tilted surface of the mirror, the collecting area is small. It can, however, be increased by nesting arrangements of mirrors inside each other.
596: 956: 94:
There are many different techniques used to redirect X-rays, most of them changing the directions by only minute angles. The most common principle used is
687:
The mirrors can be made of glass, ceramic, or metal foil, coated by a reflective layer. The most commonly used reflective materials for X-ray mirrors are
300:
for a focusing effect. Radii of curvature are typically less than a millimeter, making the usable X-ray beam width at most about 1 mm. To reduce the
727:
close to one. The period Λ of the multilayer that provides the in-phase addition is that of the standing wave produced by the input and output beam, Λ =
1183:
Using spherically bent crystals for obtaining high-resolution, large-field, monochromatic X-ray backlighting imaging for wide range of Bragg angles
792:
space telescope working up 79 keV was made using multilayered coatings, computer-aided manufacturing, and other techniques. The mirrors use a
470:. Such inelastic scattering reduces the energy (or increases the wavelength) of the outgoing beam. Inelastic scattering is useful for probing such 1457: 389:
Symmetrically spaced atoms cause re-radiated X-rays to reinforce each other in the specific directions where their path-length difference 2
185:
all benefit from high X-ray flux densities on the samples being investigated. This is achieved by focusing the divergent beam from the
368:
for the surface. If the interface is not perfectly sharp and smooth, the reflected intensity will deviate from that predicted by the
695:. Even with these the critical reflection angle is energy dependent. For gold at 1 keV, the critical reflection angle is 2.4°. 635:
Most X-ray optical elements (with the exception of grazing-incidence mirrors) are very small and must be designed for a particular
484:) would not have sufficient resolution to determine the atomic positions. At the other extreme, shorter-wavelength photons such as 1293: 153:
based on one or multiple Bragg reflections by crystals. X-ray spectra can also be manipulated by having the X-rays pass through a
301: 194: 1145:
Wolter, H. (1952). "Verallgemeinerte Schwarzschildsche Spiegelsysteme streifender Reflexion als Optiken für Röntgenstrahlen".
1094: 899: 789: 408:
into many specific directions. The angles and intensities of the diffracted beams indicate a three-dimensional density of
519:
that results in a new wave pattern. X-ray interference usually refers to the interaction of waves that are correlated or
312:
are often used. Lenses from other materials are also on the market: radiation resistant polymer (Epoxy based) such as
1378:
Fredenberg, Erik; Cederström, Björn; Nillius, Peter; Ribbing, Carolina; Karlsson, Staffan; Danielsson, Mats (2009).
374: 855: 182: 566:
There are a variety of techniques used to funnel X-ray photons to the appropriate location on an X-ray detector:
508: 115: 523:
with each other, either because they come from the same source or because they have the same or nearly the same
488:
are difficult to produce in large numbers, difficult to focus, and interact too strongly with matter, producing
1519: 613: 466:
occurs when energy is transferred from the incoming X-ray to an inner-shell electron, exciting it to a higher
1482: 254:
to collect light, but also for direct full-field imaging in e.g. an X-ray microscope. Zone plates are highly
130:
that use many small X-ray lenses in series to compensate by their number for the minute index of refraction,
1071: 1046: 52: 44: 1313:
Fredenberg, Erik; Cederström, Björn; Åslund, Magnus; Nillius, Peter; Danielsson, Mats (27 January 2009).
825: 636: 341: 174: 328:, and the variation of the focal length with wavelength must be taken into account for any application. 31:. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as 499:. X-rays are usually not diffracted from atomic nuclei, but only from the electrons surrounding them. 74:
energy of X-rays they interact with matter very differently. Visible light is easily redirected using
845: 481: 247: 214: 190: 103: 1453: 1534: 780:
Mo/Si is the material selection used for the near-normal incidence reflectors for EUV lithography.
607: 271: 127: 83: 664: 512: 189:
onto the sample using one out of a range of focusing optical components. This is also useful for
145:
or reduced in size using pinholes or movable slits typically made of tungsten or some other high-
292:
becomes appreciable. Since the refractive index is less than 1 for X-rays, these lenses must be
251: 1281: 859: 63: 36: 213:
Polycapillary lenses are arrays of small hollow glass tubes that guide the X-rays with many
1529: 1391: 1336: 1248: 1213: 1154: 1119: 1012: 928: 463: 369: 353: 325: 324:. Since the refractive index depends strongly on X-ray wavelength, these lenses are highly 255: 157:. This will typically reduce the low-energy part of the spectrum, and possibly parts above 95: 984:. Center for X-ray Optics and Advanced Light Source. Lawrence Berkeley National Laboratory 882:
Spiller, E. (2015). "X-Rays: Optical Elements". In Craig Hoffman; Ronald Driggers (eds.).
763:
C and Si. Some examples of the heavier materials with good contrast are W, Rh, Ru and Mo.
702:
the ability to determine the location of the arrival of an X-ray photon in two dimensions,
663:. Another application is to optimize the energy distribution of the X-ray beam to improve 8: 1314: 647:. For instance, one of the applications showing greater promise is in enhancing both the 535: 520: 471: 452: 285: 173:
Analytical X-ray techniques such as X-ray crystallography, small-angle X-ray scattering,
1395: 1340: 1252: 1217: 1158: 1123: 1016: 932: 1360: 1326: 1264: 851: 570: 459: 417: 365: 340:
Designs based on grazing-incidence reflection used in X-ray telescopes include that by
178: 40: 1409: 1352: 1268: 1239:
Dabagov, SB (2003). "Channeling of neutral particles in micro- and nanocapillaries".
1225: 1110:
Wolter, H. (1952). "Glancing Incidence Mirror Systems as Imaging Optics for X-rays".
1090: 1028: 895: 723:= 10), then the addition of 100 amplitudes from 100 boundaries can give reflectivity 660: 648: 107: 99: 32: 1364: 1260: 1399: 1344: 1256: 1221: 1186: 1162: 1127: 1020: 936: 887: 835: 813: 652: 580: 576: 345: 227: 162: 131: 48: 1003:
Snigirev, A. (1998). "Focusing high-energy x rays by compound refractive lenses".
377:. These oscillations can be used to infer layer thicknesses and other properties. 1524: 1514: 1461: 1300: 830: 805: 489: 186: 158: 154: 56: 1179: 675: 258:
and usually designed only for a narrow energy span, making it necessary to have
1190: 619: 289: 747:= 90°, or reflection at normal incidence, the period of the multilayer is Λ = 1508: 1166: 1131: 644: 543: 531: 281: 259: 219: 150: 146: 75: 28: 431:(add constructively) only in directions where their path-length difference 2 420:(0.1–10.0 nm) as the spacing between the atomic planes in the crystal. 1490: 1413: 1356: 1032: 977: 770:
normal and grazing-incidence optics for telescopes from EUV to hard X-rays,
603: 467: 293: 277: 1427: 941: 916: 443:. The incoming beam therefore appears to have been deflected by an angle 2 1404: 1379: 1024: 478: 405: 304:
of X-rays in these stacks, materials with very low atomic number such as
297: 111: 495:
Similar diffraction patterns can be produced by scattering electrons or
66:
they propagate in space in the same way, but because of the much higher
841: 586: 539: 474:, but not in determining the distribution of atoms within the crystal. 413: 412:
within the crystal. X-rays produce a diffraction pattern because their
240: 142: 123: 119: 1348: 1204:
Kumakhov, M. A. (1990). "Channeling of photons and new X-ray optics".
385: 336: 1185:. 27th IEEE International Conference on Plasma Science. p. 183. 656: 640: 524: 485: 305: 276:
Since refractive indices at X-ray wavelengths are so close to 1, the
205: 67: 1380:"A low-absorption x-ray energy filter for small-scale applications" 1331: 891: 809: 801: 793: 428: 409: 1377: 288:
are used, and they are stacked in long rows, so that the combined
1312: 838:, a type of X-ray telescope built with glancing-incidence mirrors 797: 692: 496: 321: 309: 296:
to achieve focusing, contrary to visible-light lenses, which are
284:
get impractically long. To overcome this, lenses with very small
149:
material. Narrow parts of an X-ray spectrum can be selected with
135: 1477: 317: 79: 71: 20: 364:
The ratio of reflected intensity to incident intensity is the
1206:
Nuclear Instruments and Methods in Physics Research Section B
680: 357: 262:
X-rays for efficient collection and high-resolution imaging.
250:
in a single point giving a focus. Zone plates can be used as
24: 538:
with each other if they both have exactly the same range of
1315:"An efficient pre-object collimator based on an x-ray lens" 688: 516: 313: 226:
and can achieve gains of 100 to 10000 in flux over using a
1089:. Cambridge, UK: Cambridge University Press. p. 106. 773:
microscopes, beam lines at synchrotron and FEL facilities,
639:
and energy, thus limiting their applications in divergent
223: 917:"Focusing Polycapillary Optics and Their Applications" 546:
differences at each of the constituent wavelengths.
698:The use of X-ray mirrors simultaneously requires: 616:, namely, capillary/polycapillary optical systems. 439:is equal to an integer multiple of the wavelength 404:In X-ray diffraction a beam strikes a crystal and 397:equals an integer multiple of the wavelength  1506: 231:used for illumination and collection of X-rays. 1203: 265: 1238: 848:, orbiting observatories using X-ray optics 670: 667:compared to conventional energy filtering. 1449: 1447: 1144: 1109: 743:the half angle between the two beams. For 1403: 1330: 1047:"Compound refractive X-ray optics (CRLs)" 940: 914: 709: 197:and scanning X-ray fluorescence imaging. 1002: 674: 384: 335: 209:A polycapillary lens for focusing X-rays 204: 62:Since X-rays and visible light are both 1444: 1065: 1063: 957:"Polycapillary Focusing Optics – X-Ray" 881: 595:Normal-incidence mirrors making use of 200: 1507: 1488: 886:(2nd ed.). Taylor & Francis. 195:scanning transmission X-ray microscopy 1428:"CXRO X-Ray interactions with matter" 1084: 1069: 783: 602:A normal-incidence lens much like an 134:from a crystal plane in flat or bent 1078: 1060: 877: 875: 755:toward more grazing has to be used. 884:Encyclopedia of Optical Engineering 477:Longer-wavelength photons (such as 89: 82:, but because the real part of the 13: 705:a reasonable detection efficiency. 168: 14: 1546: 1470: 872: 659:images, compared to conventional 1476: 921:X-Ray Optics and Instrumentation 856:X-ray photoelectron spectroscopy 427:, these spherical waves will be 183:X-ray photoelectron spectroscopy 110:. Other principles used include 1454:NuStar: Instrumentation: Optics 1420: 1371: 1306: 1287: 1282:An introduction to X-Ray Optics 1275: 1261:10.1070/PU2003v046n10ABEH001639 1232: 1197: 1173: 1138: 575:Grazing incidence mirrors in a 561: 554:(constructive interference) or 502: 458:X-ray diffraction is a form of 218:collect X-rays efficiently for 1103: 1039: 996: 970: 949: 915:MacDonald, Carolyn A. (2010). 908: 614:Microstructured optical arrays 380: 234: 1: 865: 331: 1226:10.1016/0168-583X(90)90123-C 558:(destructive interference). 53:X-ray phase-contrast imaging 45:small-angle X-ray scattering 7: 819: 581:X-ray reflection microscope 534:X-ray waves are only fully 490:particle–antiparticle pairs 175:wide-angle X-ray scattering 10: 1551: 1191:10.1109/PLASMA.2000.854969 788:An X-ray mirror optic for 269: 266:Compound refractive lenses 238: 215:total external reflections 128:compound refractive lenses 846:Chandra X-ray Observatory 808:(Pt/SiC) multicoating on 344:, and several by Wolter ( 248:constructive interference 104:total external reflection 1167:10.1002/andp.19524450410 1132:10.1002/andp.19524450108 739:is the wavelength, and 2 671:Mirrors for X-ray optics 608:compound refractive lens 579:, or a Kirkpatrick–Baez 272:Compound refractive lens 106:at very small angles or 84:complex refractive index 1460:1 November 2010 at the 1072:"X-ray Imaging Systems" 826:Kirkpatrick–Baez mirror 665:contrast-to-noise ratio 515:) of two or more X-ray 416:typically has the same 766:Applications include: 710:Multilayers for X-Rays 684: 679:One of the mirrors of 626:Modulation collimators 401: 349: 210: 177:, X-ray fluorescence, 141:X-ray beams are often 1520:X-ray instrumentation 860:X-ray crystallography 678: 388: 352:The basic idea is to 339: 208: 165:used for the filter. 102:angles, either using 64:electromagnetic waves 37:X-ray crystallography 1485:at Wikimedia Commons 1405:10.1364/OE.17.011388 1294:Polycapillary Optics 1085:Bradt, Hale (2007). 1025:10.1364/AO.37.000653 464:inelastic scattering 370:Fresnel reflectivity 201:Polycapillary optics 1396:2009OExpr..1711388F 1390:(14): 11388–11398. 1341:2009MedPh..36..626F 1253:2003PhyU...46.1053D 1218:1990NIMPB..48..283K 1159:1952AnP...445..286W 1124:1952AnP...445...94W 1017:1998ApOpt..37..653S 942:10.1155/2010/867049 933:2010XROI.2010E..11M 597:multilayer coatings 472:electron excitation 453:diffraction pattern 193:techniques such as 108:multilayer coatings 1299:2013-12-04 at the 1147:Annalen der Physik 1112:Annalen der Physik 982:X-Ray Data Booklet 852:X-ray spectroscopy 812:glass, allowing a 784:Hard X-ray mirrors 685: 661:anti-scatter grids 571:Lobster-eye optics 460:elastic scattering 418:order of magnitude 402: 375:Fabry–PĂ©rot effect 366:X-ray reflectivity 350: 286:radii of curvature 222:of 0.1 to 30  211: 179:X-ray spectroscopy 41:X-ray fluorescence 1481:Media related to 1349:10.1118/1.3062926 1247:(10): 1053–1075. 1096:978-0-521-53551-9 1087:Astronomy Methods 1049:. X-ray-Optics.de 901:978-1-351-24718-4 683:made of 203 foils 631:X-ray waveguides. 511:is the addition ( 100:grazing incidence 33:X-ray diffraction 23:that manipulates 19:is the branch of 1542: 1501: 1499: 1497: 1480: 1464: 1451: 1442: 1441: 1439: 1438: 1424: 1418: 1417: 1407: 1375: 1369: 1368: 1334: 1310: 1304: 1291: 1285: 1279: 1273: 1272: 1236: 1230: 1229: 1212:(1–4): 283–286. 1201: 1195: 1194: 1177: 1171: 1170: 1153:(4–5): 286–295. 1142: 1136: 1135: 1107: 1101: 1100: 1082: 1076: 1075: 1067: 1058: 1057: 1055: 1054: 1043: 1037: 1036: 1000: 994: 993: 991: 989: 974: 968: 967: 965: 964: 953: 947: 946: 944: 912: 906: 905: 879: 836:Wolter telescope 814:Wolter telescope 776:EUV lithography. 719:= 10 (amplitude 577:Wolter telescope 435: sin  393: sin  346:Wolter I–IV 342:Kirkpatrick–Baez 159:absorption edges 132:Bragg reflection 90:X-ray techniques 49:X-ray microscopy 1550: 1549: 1545: 1544: 1543: 1541: 1540: 1539: 1535:X-ray astronomy 1505: 1504: 1495: 1493: 1473: 1468: 1467: 1462:Wayback Machine 1452: 1445: 1436: 1434: 1426: 1425: 1421: 1376: 1372: 1319:Medical Physics 1311: 1307: 1301:Wayback Machine 1292: 1288: 1280: 1276: 1241:Physics-Uspekhi 1237: 1233: 1202: 1198: 1178: 1174: 1143: 1139: 1108: 1104: 1097: 1083: 1079: 1068: 1061: 1052: 1050: 1045: 1044: 1040: 1001: 997: 987: 985: 976: 975: 971: 962: 960: 955: 954: 950: 913: 909: 902: 880: 873: 868: 831:X-ray telescope 822: 806:silicon-carbide 786: 762: 712: 673: 564: 505: 383: 334: 274: 268: 243: 237: 220:photon energies 203: 171: 169:Focusing optics 155:filter (optics) 118:in the form of 92: 57:X-ray astronomy 12: 11: 5: 1548: 1538: 1537: 1532: 1527: 1522: 1517: 1503: 1502: 1491:"X-ray optics" 1486: 1472: 1471:External links 1469: 1466: 1465: 1443: 1419: 1384:Optics Express 1370: 1325:(2): 626–633. 1305: 1286: 1274: 1231: 1196: 1172: 1137: 1102: 1095: 1077: 1059: 1038: 1011:(4): 653–662. 1005:Applied Optics 995: 969: 948: 907: 900: 892:10.1081/E-EOE2 870: 869: 867: 864: 863: 862: 849: 839: 833: 828: 821: 818: 785: 782: 778: 777: 774: 771: 760: 711: 708: 707: 706: 703: 672: 669: 637:incident angle 633: 632: 629: 623: 620:Coded aperture 617: 611: 600: 593: 592:Bent crystals. 590: 584: 573: 563: 560: 504: 501: 447:, producing a 382: 379: 333: 330: 290:focusing power 270:Main article: 267: 264: 239:Main article: 236: 233: 202: 199: 191:scanning probe 170: 167: 151:monochromators 91: 88: 9: 6: 4: 3: 2: 1547: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1512: 1510: 1492: 1487: 1484: 1479: 1475: 1474: 1463: 1459: 1455: 1450: 1448: 1433: 1432:henke.lbl.gov 1429: 1423: 1415: 1411: 1406: 1401: 1397: 1393: 1389: 1385: 1381: 1374: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1333: 1328: 1324: 1320: 1316: 1309: 1302: 1298: 1295: 1290: 1283: 1278: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1235: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1192: 1188: 1184: 1176: 1168: 1164: 1160: 1156: 1152: 1148: 1141: 1133: 1129: 1125: 1121: 1117: 1113: 1106: 1098: 1092: 1088: 1081: 1073: 1066: 1064: 1048: 1042: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 999: 983: 979: 978:"Zone Plates" 973: 958: 952: 943: 938: 934: 930: 926: 922: 918: 911: 903: 897: 893: 889: 885: 878: 876: 871: 861: 857: 853: 850: 847: 843: 840: 837: 834: 832: 829: 827: 824: 823: 817: 815: 811: 807: 803: 799: 795: 791: 781: 775: 772: 769: 768: 767: 764: 756: 754: 750: 746: 742: 738: 734: 730: 726: 722: 718: 704: 701: 700: 699: 696: 694: 690: 682: 677: 668: 666: 662: 658: 654: 650: 646: 645:X-ray imaging 642: 638: 630: 627: 624: 621: 618: 615: 612: 609: 605: 601: 598: 594: 591: 588: 585: 582: 578: 574: 572: 569: 568: 567: 559: 557: 553: 547: 545: 542:and the same 541: 537: 533: 532:monochromatic 528: 526: 522: 518: 514: 513:superposition 510: 500: 498: 493: 491: 487: 483: 480: 475: 473: 469: 465: 461: 456: 454: 450: 446: 442: 438: 434: 430: 426: 421: 419: 415: 411: 407: 400: 396: 392: 387: 378: 376: 371: 367: 362: 359: 355: 347: 343: 338: 329: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 278:focal lengths 273: 263: 261: 260:monochromatic 257: 253: 249: 242: 232: 229: 225: 221: 216: 207: 198: 196: 192: 188: 184: 180: 176: 166: 164: 160: 156: 152: 148: 144: 139: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 87: 85: 81: 77: 73: 69: 65: 60: 58: 54: 50: 46: 42: 38: 34: 30: 29:visible light 26: 22: 18: 1494:. Retrieved 1489:Arndt Last. 1483:X-ray optics 1435:. Retrieved 1431: 1422: 1387: 1383: 1373: 1322: 1318: 1308: 1289: 1277: 1244: 1240: 1234: 1209: 1205: 1199: 1182: 1175: 1150: 1146: 1140: 1115: 1111: 1105: 1086: 1080: 1051:. Retrieved 1041: 1008: 1004: 998: 986:. Retrieved 981: 972: 961:. Retrieved 951: 924: 920: 910: 883: 787: 779: 765: 757: 752: 748: 744: 740: 736: 732: 731:/2 sin  728: 724: 720: 716: 713: 697: 686: 657:mammographic 634: 606:, such as a 604:optical lens 565: 562:Technologies 556:out of phase 555: 551: 548: 529: 509:interference 506: 503:Interference 494: 476: 468:energy level 457: 451:spot in the 448: 444: 440: 436: 432: 424: 422: 403: 398: 394: 390: 363: 351: 275: 244: 212: 187:X-ray source 172: 140: 116:interference 93: 61: 17:X-ray optics 16: 15: 1530:Radiography 1496:19 November 1070:Rob Petre. 587:Zone plates 540:wavelengths 479:ultraviolet 381:Diffraction 235:Zone plates 120:zone plates 112:diffraction 27:instead of 1509:Categories 1437:2016-02-19 1332:2101.07788 1053:2016-12-14 988:13 January 963:2016-12-13 866:References 842:XMM-Newton 800:(W/Si) or 653:resolution 486:gamma rays 449:reflection 414:wavelength 356:a beam of 332:Reflection 302:absorption 280:of normal 252:condensers 241:Zone plate 143:collimated 124:refraction 96:reflection 1269:115277219 1118:(1): 94. 641:radiation 525:frequency 482:radiation 410:electrons 406:diffracts 326:chromatic 306:beryllium 256:chromatic 68:frequency 1458:Archived 1414:19582053 1365:44470446 1357:19292003 1297:Archived 1033:18268637 927:: 1–17. 820:See also 816:design. 802:platinum 794:tungsten 735:, where 649:contrast 622:imaging. 552:in phase 536:coherent 530:Two non- 521:coherent 497:neutrons 429:in phase 163:elements 136:crystals 1392:Bibcode 1337:Bibcode 1249:Bibcode 1214:Bibcode 1155:Bibcode 1120:Bibcode 1074:. NASA. 1013:Bibcode 929:Bibcode 810:slumped 798:silicon 693:iridium 354:reflect 322:silicon 310:lithium 294:concave 228:pinhole 161:of the 80:mirrors 1525:Optics 1515:X-rays 1412:  1363:  1355:  1267:  1093:  1031:  898:  790:NuSTAR 507:X-ray 358:X-rays 318:nickel 298:convex 282:lenses 76:lenses 72:photon 55:, and 25:X-rays 21:optics 1361:S2CID 1327:arXiv 1265:S2CID 959:. XOS 681:XRISM 544:phase 517:waves 1498:2019 1410:PMID 1353:PMID 1091:ISBN 1029:PMID 990:2015 925:2010 896:ISBN 844:and 691:and 689:gold 651:and 320:and 314:SU-8 181:and 114:and 78:and 70:and 1400:doi 1345:doi 1257:doi 1222:doi 1187:doi 1163:doi 1128:doi 1021:doi 937:doi 888:doi 655:of 308:or 224:keV 126:in 98:at 1511:: 1456:. 1446:^ 1430:. 1408:. 1398:. 1388:17 1386:. 1382:. 1359:. 1351:. 1343:. 1335:. 1323:36 1321:. 1317:. 1263:. 1255:. 1245:46 1243:. 1220:. 1210:48 1208:. 1161:. 1151:10 1149:. 1126:. 1116:10 1114:. 1062:^ 1027:. 1019:. 1009:37 1007:. 980:. 935:. 923:. 919:. 894:. 874:^ 858:, 854:, 527:. 492:. 455:. 316:, 138:. 122:, 59:. 51:, 47:, 43:, 39:, 35:, 1500:. 1440:. 1416:. 1402:: 1394:: 1367:. 1347:: 1339:: 1329:: 1303:. 1284:. 1271:. 1259:: 1251:: 1228:. 1224:: 1216:: 1193:. 1189:: 1169:. 1165:: 1157:: 1134:. 1130:: 1122:: 1099:. 1056:. 1035:. 1023:: 1015:: 992:. 966:. 945:. 939:: 931:: 904:. 890:: 804:/ 796:/ 761:4 753:θ 749:λ 745:θ 741:θ 737:λ 733:θ 729:λ 725:R 721:r 717:R 628:. 610:. 599:. 589:. 583:. 445:θ 441:λ 437:θ 433:d 425:d 399:λ 395:θ 391:d 348:) 147:Z

Index

optics
X-rays
visible light
X-ray diffraction
X-ray crystallography
X-ray fluorescence
small-angle X-ray scattering
X-ray microscopy
X-ray phase-contrast imaging
X-ray astronomy
electromagnetic waves
frequency
photon
lenses
mirrors
complex refractive index
reflection
grazing incidence
total external reflection
multilayer coatings
diffraction
interference
zone plates
refraction
compound refractive lenses
Bragg reflection
crystals
collimated
Z
monochromators

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑