Knowledge

Small-angle X-ray scattering

Source đź“ť

167:
sample perpendicular to the direction of the primary beam that initially hit the sample. The scattering pattern contains the information on the structure of the sample. The major problem that must be overcome in SAXS instrumentation is the separation of the weak scattered intensity from the strong main beam. The smaller the desired angle, the more difficult this becomes. The problem is comparable to one encountered when trying to observe a weakly radiant object close to the Sun, like the Sun's corona. Only if the Moon blocks out the main light source does the corona become visible. Likewise, in SAXS the non-scattered beam that merely travels through the sample must be blocked,
2923: 3316: 55:. Depending on the angular range in which a clear scattering signal can be recorded, SAXS is capable of delivering structural information of dimensions between 1 and 100 nm, and of repeat distances in partially ordered systems of up to 150 nm. USAXS (ultra-small angle X-ray scattering) can resolve even larger dimensions, as the smaller the recorded angle, the larger the object dimensions that are probed. 3328: 233:) of many adjacent pinhole patterns. The resulting smearing can be easily removed using model-free algorithms or deconvolution methods based on Fourier transformation, but only if the system is isotropic. Line collimation is of great benefit for any isotropic nanostructured materials, e.g. proteins, surfactants, particle dispersion and emulsions. 208:
and the wastefulness of the collimation process—only those photons are allowed to pass that happen to fly in the right direction—the scattered intensity is small and therefore the measurement time is in the order of hours or days in case of very weak scatterers. If focusing optics like bent mirrors or bent
228:
Line-collimation instruments restrict the beam only in one dimension (rather than two as for point collimation) so that the beam cross-section is a long but narrow line. The illuminated sample volume is much larger compared to point-collimation and the scattered intensity at the same flux density is
166:
of X-rays is brought to a sample from which some of the X-rays scatter, while most simply go through the sample without interacting with it. The scattered X-rays form a scattering pattern which is then detected at a detector which is typically a 2-dimensional flat X-ray detector situated behind the
207:
beam to a small circular or elliptical spot that illuminates the sample. Thus the scattering is centro-symmetrically distributed around the primary X-ray beam and the scattering pattern in the detection plane consists of circles around the primary beam. Owing to the small illuminated sample volume
86:
SAXS is used for the determination of the microscale or nanoscale structure of particle systems in terms of such parameters as averaged particle sizes, shapes, distribution, and surface-to-volume ratio. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains
229:
proportionally larger. Thus measuring times with line-collimation SAXS instruments are much shorter compared to point-collimation and are in the range of minutes. A disadvantage is that the recorded pattern is essentially an integrated superposition (a self-
42:
scattering behaviour of X-rays when travelling through the material, recording their scattering at small angles (typically 0.1 – 10°, hence the "Small-angle" in its name). It belongs to the family of small-angle scattering (SAS) techniques along with
1213:
Filippov, Sergey K.; Verbraeken, Bart; Konarev, Petr V.; Svergun, Dmitri I.; Angelov, Borislav; Vishnevetskaya, Natalya S.; Papadakis, Christine M.; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C. (2017-08-17).
1060:
Filippov, Sergey K.; Chytil, Petr; Konarev, Petr V.; Dyakonova, Margarita; Papadakis, ChristineM.; Zhigunov, Alexander; Plestil, Josef; Stepanek, Petr; Etrych, Tomas; Ulbrich, Karel; Svergun, Dmitri I. (2012-08-13).
1108:
Filippov, Sergey K.; Franklin, John M.; Konarev, Petr V.; Chytil, Petr; Etrych, Tomas; Bogomolova, Anna; Dyakonova, Margarita; Papadakis, Christine M.; Radulescu, Aurel; Ulbrich, Karel; Stepanek, Petr (2013-11-11).
1836:
Janisova, Larisa; Gruzinov, Andrey; Zaborova, Olga V.; Velychkivska, Nadiia; Vaněk, Ondřej; Chytil, Petr; Etrych, Tomáš; Janoušková, Olga; Zhang, Xiaohan; Blanchet, Clement; Papadakis, Christine M. (2020-01-28).
1569:
Filippov, Sergey K.; Bogomolova, Anna; Kaberov, Leonid; Velychkivska, Nadiia; Starovoytova, Larisa; Cernochova, Zulfiya; Rogers, Sarah E.; Lau, Wing Man; Khutoryanskiy, Vitaliy V.; Cook, Michael T. (2016-05-31).
498:
Burger, Virginia M., Daniel J. Arenas, and Collin M. Stultz. "A structure-free method for quantifying conformational flexibility in proteins." Scientific reports 6 (2016): 29040. DOI: 10.1038/srep29040 (2016).|
1733:
Kaberov, Leonid I.; Kaberova, Zhansaya; Murmiliuk, Anastasiia; Trousil, Jiří; Sedláček, Ondřej; Konefal, Rafal; Zhigunov, Alexander; Pavlova, Ewa; Vít, Martin; Jirák, Daniel; Hoogenboom, Richard (2021-06-28).
2179: 2932: 1428:"A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[ N -(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups" 212:
crystals or collimating and monochromating optics like multilayers are used, measurement time can be greatly reduced. Point-collimation allows the orientation of non-isotropic systems (
1686:
Sergeeva, Olga; Vlasov, Petr S.; Domnina, Nina S.; Bogomolova, Anna; Konarev, Petr V.; Svergun, Dmitri I.; Walterova, Zuzana; Horsky, Jiri; Stepanek, Petr; Filippov, Sergey K. (2014).
762:
Zhang, Xiaohan; Niebuur, Bart-Jan; Chytil, Petr; Etrych, Tomas; Filippov, Sergey K.; Kikhney, Alexey; Wieland, D. C. Florian; Svergun, Dmitri I.; Papadakis, Christine M. (2018-02-12).
1924: 1572:"Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM- b -PEG- b -PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies" 2216: 1164:
Riabtseva, Anna; Kaberov, Leonid I.; Noirez, Laurence; Ryukhtin, Vasyl; Nardin, Corinne; Verbraeken, Bart; Hoogenboom, Richard; Stepanek, Petr; Filippov, Sergey K. (February 2018).
78:). However, owing to the random orientation of dissolved or partially ordered molecules, the spatial averaging leads to a loss of information in SAXS compared to crystallography. 3193: 3188: 1328:
Chaves, Matheus Andrade; Oseliero Filho, Pedro Leonidas; Jange, Camila Garcia; Sinigaglia-Coimbra, Rita; Oliveira, Cristiano Luis Pinto; Pinho, Samantha Cristina (July 2018).
1736:"Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging" 905:"Formation of core/corona nanoparticles with interpolyelectrolyte complex cores in aqueous solution: insight into chain dynamics in the complex from fluorescence quenching" 95:-like materials can be studied. The method is accurate, non-destructive and usually requires only a minimum of sample preparation. Applications are very broad and include 811:"Coassembly of Poly( N -isopropylacrylamide) with Dodecyl and Carboxyl Terminal Groups with Cationic Surfactant: Critical Comparison of Experimental and Simulation Data" 2728: 1063:"Macromolecular HPMA-Based Nanoparticles with Cholesterol for Solid-Tumor Targeting: Detailed Study of the Inner Structure of a Highly Efficient Drug Delivery System" 3244: 809:
Fanova, Anastasiia; Šindelka, Karel; Uchman, Mariusz; Limpouchová, Zuzana; Filippov, Sergey K.; Pispas, Stergios; Procházka, Karel; Štěpánek, Miroslav (2018-09-25).
2472: 960:"Temperature-induced structure switch in thermo-responsive micellar interpolyelectrolyte complexes: toward core–shell–corona and worm-like morphologies" 2233: 70:
is that a crystalline sample is not needed. Furthermore, the properties of SAXS allow investigation of conformational diversity in these molecules.
707:
Fanova, Anastasiia; Janata, Miroslav; Filippov, Sergey K.; Šlouf, Miroslav; Netopilík, Miloš; Mariani, Alessandro; Štěpánek, Miroslav (2019-08-27).
668:
Hollamby, Martin J.; Aratsu, Keisuke; Pauw, Brian R.; Rogers, Sarah E.; Smith, Andrew J.; Yamauchi, Mitsuaki; Lin, Xu; Yagai, Shiki (2016-08-16).
1839:"Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins" 670:"Simultaneous SAXS and SANS Analysis for the Detection of Toroidal Supramolecular Polymers Composed of Noncovalent Supermacrocycles in Solution" 582:
Pedersen, JS (1994). "Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions".
452:
Patil, N; Narayanan, T; Michels, L; Skjønsfjell, ETB; Guizar-Sicairos, M; Van den Brande, N; Claessens, R; Van Mele, B; Breiby, DW (May 2019).
1506:"Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles" 1426:
Zaborova, Olga V.; Filippov, Sergey K.; Chytil, Petr; Kováčik, Lubomir; Ulbrich, Karel; Yaroslavov, Alexander A.; Etrych, Tomaš (April 2018).
903:
Murmiliuk, Anastasiia; Matějíček, Pavel; Filippov, Sergey K.; Janata, Miroslav; Šlouf, Miroslav; Pispas, Stergios; Štěpánek, Miroslav (2018).
512:
Pedersen, JS (July 1997). "Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting".
87:(so-called particles) of the same or another material in any combination. Not only particles, but also the structure of ordered systems like 3062: 3249: 2974: 3140: 2432: 2274: 1504:
Mable, Charlotte J.; Derry, Matthew J.; Thompson, Kate L.; Fielding, Lee A.; Mykhaylyk, Oleksandr O.; Armes, Steven P. (2017-06-13).
151:. Different from standard RIXS measurements, the scattered photons are considered to have the same energy as the incident photons. 866:"Interpolyelectrolyte Complex and Coacervate Formation of Poly(glutamic acid) with a Dendrimer Studied by Light Scattering and SAXS" 2337: 2284: 1457:
Bressel, Katharina; Muthig, Michael; Prevost, Sylvain; Gummel, Jeremie; Narayanan, Theyencheri; Gradzielski, Michael (2012-07-24).
279: 1015:"Structure and Interactions of Block Copolymer Micelles of Brij 700 Studied by Combining Small-Angle X-ray and Neutron Scattering" 38:, determine pore sizes, characteristic distances of partially ordered materials, and much more. This is achieved by analyzing the 1956: 71: 356:"Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter" 3239: 3231: 2196: 1688:"Novel thermosensitive telechelic PEGs with antioxidant activity: synthesis, molecular properties and conformational behaviour" 191:
instead. Laboratory SAXS instruments can be divided into two main groups: point-collimation and line-collimation instruments:
3292: 3270: 2211: 320: 309:
Hamley, I.W. "Small-Angle Scattering: Theory, Instrumentation, Data, and Applications" – Wiley, 2022. ISBN 978-1-119-76830-2.
395:
Narayanan, T; Sztucki, M; Van Vaerenbergh, P; LĂ©onardon, J; Gorini, J; Claustre, L; Sever, F; Morse, J; Boesecke, P (2018).
3285: 3135: 2801: 2666: 2515: 2294: 2289: 764:"Macromolecular p HPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment" 3275: 3173: 2869: 2367: 2352: 2221: 148: 2522: 3297: 3155: 3125: 3054: 1905: 334: 274: 958:
Dähling, Claudia; Lotze, Gudrun; Drechsler, Markus; Mori, Hideharu; Pergushov, Dmitry V.; Plamper, Felix A. (2016).
3332: 3007: 2269: 2248: 547:
Pedersen, JS (2000). "Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores".
3354: 3280: 3203: 3077: 2676: 30:
technique by which nanoscale density differences in a sample can be quantified. This means that it can determine
3115: 3037: 1283:"Internal Structures of Thermosensitive Hybrid Microgels Investigated by Means of Small-Angle X-ray Scattering" 44: 1369:"Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes" 3130: 3120: 2425: 2299: 2264: 144: 3254: 2902: 2527: 2505: 2362: 2191: 2164: 285: 2806: 2560: 2455: 2342: 2309: 2279: 2243: 1949: 1631:"Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer" 290: 59: 3163: 2460: 2388: 2228: 2116: 1166:"Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles" 3359: 3178: 3107: 2565: 2555: 62:
that are used in the characterization of materials. In the case of biological macromolecules such as
3320: 3044: 2940: 2813: 2776: 2691: 2570: 2550: 2418: 2055: 3168: 3012: 2957: 2706: 2671: 1329: 1165: 143:
It is possible to enhance the X-ray scattering yield by matching the energy of X-ray source to a
1330:"Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3" 2922: 2864: 2681: 2357: 2206: 1942: 27: 453: 187:
where large bent mirrors can be used. This is why most laboratory small angle devices rely on
183:
the beam, but this is not easy when dealing with X-rays and was previously not done except on
3221: 3017: 2979: 2786: 2738: 2317: 2186: 1994: 1427: 669: 397:"A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering" 128: 2945: 2818: 2654: 2545: 2154: 2086: 2019: 1735: 1699: 1517: 971: 916: 822: 720: 681: 1791:"Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering" 8: 2962: 2950: 2825: 2791: 2771: 2106: 2081: 2060: 1111:"Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study" 250: 88: 1703: 1521: 975: 920: 826: 810: 724: 708: 685: 171:
blocking the closely adjacent scattered radiation. Most available X-ray sources produce
3211: 3022: 2967: 2510: 2347: 2126: 2091: 2024: 1873: 1838: 1771: 1668: 1546: 1505: 1459:"Shaping Vesicles–Controlling Size and Stability by Admixture of Amphiphilic Copolymer" 1403: 1368: 1349: 1263: 1195: 1146: 846: 744: 645: 618: 481: 429: 396: 217: 763: 525: 3145: 2984: 2912: 2892: 2612: 2482: 2395: 2327: 2322: 2149: 2121: 2014: 1901: 1878: 1860: 1818: 1810: 1775: 1763: 1755: 1715: 1672: 1660: 1630: 1611: 1603: 1551: 1533: 1486: 1478: 1408: 1390: 1353: 1310: 1302: 1267: 1255: 1247: 1216:"Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside" 1199: 1138: 1130: 1090: 1082: 1042: 1034: 995: 987: 940: 932: 885: 850: 838: 791: 783: 748: 736: 650: 599: 564: 529: 485: 473: 434: 416: 377: 330: 39: 1181: 1150: 177:
beams and this compounds the problem. In principle the problem could be overcome by
74:
methods encounter problems with macromolecules of higher molecular mass (> 30–40
3183: 2989: 2907: 2897: 2696: 2629: 2600: 2593: 2111: 1989: 1868: 1850: 1802: 1747: 1707: 1650: 1642: 1593: 1583: 1541: 1525: 1470: 1439: 1398: 1380: 1345: 1341: 1294: 1237: 1227: 1185: 1177: 1122: 1074: 1026: 979: 924: 877: 830: 775: 728: 689: 640: 630: 591: 556: 521: 465: 424: 408: 367: 1855: 340: 3072: 3067: 3032: 2852: 2751: 2686: 2649: 2644: 2495: 2441: 2383: 2238: 2101: 2065: 1984: 1588: 1571: 1529: 1385: 834: 732: 188: 173: 67: 1629:
Cook, Michael T.; Filippov, Sergey K.; Khutoryanskiy, Vitaliy V. (August 2017).
1232: 1215: 2882: 2847: 2835: 2830: 2796: 2766: 2756: 2715: 2659: 2583: 2537: 1751: 1281:
Suzuki, Daisuke; Nagase, Yasuhisa; Kureha, Takuma; Sato, Takaaki (2014-02-27).
779: 326: 179: 120: 1929: 1646: 635: 595: 560: 412: 372: 355: 3348: 3027: 2840: 2639: 2159: 1864: 1814: 1759: 1719: 1664: 1607: 1537: 1482: 1458: 1394: 1306: 1251: 1134: 1110: 1086: 1062: 1038: 1014: 991: 936: 889: 865: 842: 787: 740: 603: 568: 533: 477: 420: 381: 209: 75: 35: 2733: 2723: 2617: 2500: 2201: 2096: 2009: 1999: 1882: 1822: 1767: 1615: 1555: 1490: 1443: 1412: 1327: 1314: 1259: 1242: 1190: 1142: 1094: 1046: 999: 944: 795: 693: 654: 469: 454:"Probing Organic Thin Films by Coherent X-ray Imaging and X-ray Scattering" 438: 31: 3216: 2887: 2761: 2588: 2050: 230: 184: 108: 394: 2781: 2467: 2174: 2040: 1930:
A movie demonstrating small-angle scattering using laserlight on a hair
1806: 1790: 1711: 1687: 983: 959: 928: 904: 242: 163: 160: 1655: 1598: 1474: 1298: 1126: 1078: 1030: 1013:
Sommer, Cornelia; Pedersen, Jan Skov; Garamus, Vasil M. (2005-03-01).
881: 500: 2490: 1568: 52: 1835: 1282: 3087: 2857: 2605: 2045: 1367:
Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra (2016-03-28).
104: 2410: 709:"Evolution of Structure in a Comb Copolymer–Surfactant Coacervate" 3097: 2169: 200: 116: 112: 100: 96: 92: 63: 34:
size distributions, resolve the size and shape of (monodisperse)
1934: 1334:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
1212: 902: 451: 123:
and can be found in research as well as in quality control. The
2004: 1732: 1685: 808: 262: 258: 254: 246: 1163: 1059: 3092: 1979: 1965: 1425: 1107: 213: 204: 124: 48: 132: 1503: 1456: 3194:
Zeitschrift für Kristallographie – New Crystal Structures
1628: 957: 706: 3189:
Zeitschrift für Kristallographie – Crystalline Materials
761: 667: 616: 138: 99:
of all types including interpolyelectrolyte complexes,
3082: 1280: 1012: 1366: 318: 3346: 353: 236: 194: 1898:Electron Dynamics by Inelastic X-Ray Scattering 617:Gommes, CJ; Jaksch, S; Frielinghaus, H (2021). 223: 1788: 864:Leisner, Dietrich; Imae, Toyoko (2003-08-01). 249:, Germany; Hecus X-Ray Systems Graz, Austria; 2426: 1950: 3263: 863: 2433: 2419: 1957: 1943: 282:(Grazing-incidence small-angle scattering) 1872: 1854: 1789:BernadĂł, Pau; Svergun, Dmitri I. (2012). 1654: 1597: 1587: 1545: 1402: 1384: 1241: 1231: 1220:The Journal of Physical Chemistry Letters 1189: 644: 634: 514:Advances in Colloid and Interface Science 428: 371: 1895: 581: 546: 511: 72:Nuclear magnetic resonance spectroscopy 3347: 2536: 619:"Small-Angle Scattering for Beginners" 312: 241:SAXS instrument manufacturers include 2414: 1938: 139:Resonant small-angle X-ray scattering 127:source can be a laboratory source or 58:SAXS and USAXS belong to a family of 3327: 2667:Phase transformation crystallography 1432:Macromolecular Chemistry and Physics 3174:Journal of Chemical Crystallography 2440: 1896:Schuelke, Winfried (21 June 2007). 1287:The Journal of Physical Chemistry B 870:The Journal of Physical Chemistry B 501:http://hdl.handle.net/1721.1/108809 199:Point-collimation instruments have 154: 149:resonant inelastic X-ray scattering 47:, and is typically done using hard 13: 623:Journal of Applied Crystallography 584:Journal of Applied Crystallography 549:Journal of Applied Crystallography 401:Journal of Applied Crystallography 360:Journal of Applied Crystallography 319:Glatter O; Kratky O, eds. (1982). 286:Fluctuation X-ray scattering (FXS) 14: 3371: 1964: 1918: 354:Sztucki, M; Narayanan, T (2007). 275:Biological small-angle scattering 3326: 3315: 3314: 2921: 51:with a wavelength of 0.07 – 0.2 1889: 1829: 1782: 1726: 1679: 1622: 1562: 1497: 1450: 1419: 1360: 1321: 1274: 1206: 1182:10.1016/j.eurpolymj.2018.01.007 1157: 1101: 1053: 1006: 951: 896: 857: 802: 755: 700: 661: 610: 81: 3116:Bilbao Crystallographic Server 1346:10.1016/j.colsurfa.2018.04.018 575: 540: 505: 492: 445: 388: 347: 303: 131:which provides a higher X-ray 45:small-angle neutron scattering 16:Radiation scattering technique 1: 1856:10.3390/pharmaceutics12020106 526:10.1016/S0001-8686(97)00312-6 458:ACS Applied Polymer Materials 296: 237:SAXS instrument manufacturers 195:Point-collimation instruments 66:, the advantage of SAXS over 1589:10.1021/acs.langmuir.6b00284 1530:10.1021/acs.macromol.7b00475 1386:10.3390/pharmaceutics8020010 835:10.1021/acs.macromol.8b01161 733:10.1021/acs.macromol.9b00332 322:Small Angle X-ray Scattering 224:Line-collimation instruments 20:Small-angle X-ray scattering 7: 3164:Crystal Growth & Design 2456:Timeline of crystallography 1900:. Oxford University Press. 1635:Colloid and Polymer Science 1233:10.1021/acs.jpclett.7b01588 291:Wide-angle X-ray scattering 268: 220:liquids) to be determined. 60:X-ray scattering techniques 10: 3376: 2975:Nuclear magnetic resonance 2229:X-Ray Fluorescence Imaging 2117:Anomalous X-ray scattering 1752:10.1021/acs.biomac.1c00367 780:10.1021/acs.biomac.7b01579 3310: 3230: 3202: 3179:Journal of Crystal Growth 3154: 3106: 3053: 3000: 2931: 2919: 2714: 2705: 2628: 2481: 2448: 2376: 2308: 2257: 2142: 2135: 2074: 2033: 1972: 1647:10.1007/s00396-017-4084-y 636:10.1107/S1600576721010293 596:10.1107/S0021889893013810 561:10.1107/S0021889899012248 413:10.1107/S1600576718012748 373:10.1107/S0021889806045833 3045:Single particle analysis 2903:Hermann–Mauguin notation 2056:Synchrotron light source 1170:European Polymer Journal 159:In a SAXS instrument, a 145:resonant absorption edge 3169:Crystallography Reviews 3013:Isomorphous replacement 2807:Lomer–Cottrell junction 2075:Interaction with matter 2034:Sources and instruments 111:, metals, cement, oil, 3355:Small-angle scattering 2682:Spinodal decomposition 2207:Diffraction tomography 1444:10.1002/macp.201700508 694:10.1002/ange.201603370 470:10.1021/acsapm.9b00324 28:small-angle scattering 3222:Gregori Aminoff Prize 3018:Molecular replacement 2318:X-ray crystallography 2187:Soft x-ray microscopy 2155:Panoramic radiography 1995:Synchrotron radiation 1925:SAXS at a Synchrotron 147:in as it is done for 2528:Structure prediction 2087:Photoelectric effect 2020:Characteristic X-ray 257:Corporation, Japan; 2792:Cottrell atmosphere 2772:Partial dislocation 2516:Restriction theorem 2107:Photodisintegration 2082:Rayleigh scattering 2061:Free-electron laser 1704:2014RSCAd...441763S 1698:(79): 41763–41771. 1522:2017MaMol..50.4465M 976:2016SMat...12.5127D 921:2018SMat...14.7578M 827:2018MaMol..51.7295F 725:2019MaMol..52.6303F 686:2016AngCh.12810044H 680:(34): 10044–10047. 253:. the Netherlands, 251:Malvern Panalytical 3212:Carl Hermann Medal 3023:Molecular dynamics 2870:Defects in diamond 2865:Stone–Wales defect 2511:Reciprocal lattice 2473:Biocrystallography 2348:X-ray reflectivity 2127:X-ray fluorescence 2092:Compton scattering 2025:High-energy X-rays 1807:10.1039/C1MB05275F 1712:10.1039/C4RA06978A 984:10.1039/C6SM00757K 929:10.1039/C8SM01174E 343:on April 21, 2008. 3342: 3341: 3306: 3305: 2913:Thermal ellipsoid 2878: 2877: 2787:Frank–Read source 2747: 2746: 2613:Aperiodic crystal 2579: 2578: 2461:Crystallographers 2408: 2407: 2404: 2403: 2396:X-ray lithography 2328:Backscatter X-ray 2323:X-ray diffraction 2150:X-ray radiography 2122:X-ray diffraction 2015:Siegbahn notation 1740:Biomacromolecules 1582:(21): 5314–5323. 1516:(11): 4465–4473. 1475:10.1021/nn300359q 1299:10.1021/jp410983x 1226:(16): 3800–3804. 1127:10.1021/bm401186z 1121:(11): 4061–4070. 1115:Biomacromolecules 1079:10.1021/bm3008555 1067:Biomacromolecules 1031:10.1021/la047489k 970:(23): 5127–5137. 915:(37): 7578–7585. 882:10.1021/jp027365l 876:(32): 8078–8087. 821:(18): 7295–7308. 768:Biomacromolecules 719:(16): 6303–6310. 674:Angewandte Chemie 265:, United States. 129:synchrotron light 3367: 3360:X-ray scattering 3330: 3329: 3318: 3317: 3261: 3260: 3184:Kristallografija 3038:Gerchberg–Saxton 2933:Characterisation 2925: 2908:Structure factor 2712: 2711: 2697:Ostwald ripening 2534: 2533: 2479: 2478: 2435: 2428: 2421: 2412: 2411: 2234:X-ray holography 2140: 2139: 2112:Radiation damage 1959: 1952: 1945: 1936: 1935: 1912: 1911: 1893: 1887: 1886: 1876: 1858: 1833: 1827: 1826: 1786: 1780: 1779: 1746:(7): 2963–2975. 1730: 1724: 1723: 1683: 1677: 1676: 1658: 1641:(8): 1351–1358. 1626: 1620: 1619: 1601: 1591: 1566: 1560: 1559: 1549: 1501: 1495: 1494: 1469:(7): 5858–5865. 1454: 1448: 1447: 1423: 1417: 1416: 1406: 1388: 1364: 1358: 1357: 1325: 1319: 1318: 1293:(8): 2194–2204. 1278: 1272: 1271: 1245: 1235: 1210: 1204: 1203: 1193: 1161: 1155: 1154: 1105: 1099: 1098: 1073:(8): 2594–2604. 1057: 1051: 1050: 1025:(6): 2137–2149. 1010: 1004: 1003: 955: 949: 948: 900: 894: 893: 861: 855: 854: 806: 800: 799: 759: 753: 752: 704: 698: 697: 665: 659: 658: 648: 638: 629:(6): 1832–1843. 614: 608: 607: 579: 573: 572: 544: 538: 537: 509: 503: 496: 490: 489: 464:(7): 1787–1797. 449: 443: 442: 432: 407:(6): 1511–1524. 392: 386: 385: 375: 351: 345: 344: 339:. Archived from 316: 310: 307: 155:SAXS instruments 3375: 3374: 3370: 3369: 3368: 3366: 3365: 3364: 3345: 3344: 3343: 3338: 3302: 3259: 3226: 3198: 3150: 3102: 3073:CrystalExplorer 3049: 3033:Phase retrieval 2996: 2927: 2926: 2917: 2874: 2853:Schottky defect 2752:Perfect crystal 2743: 2739:Abnormal growth 2701: 2687:Supersaturation 2650:Miscibility gap 2631: 2624: 2575: 2532: 2496:Bravais lattice 2477: 2444: 2442:Crystallography 2439: 2409: 2400: 2384:X-ray astronomy 2372: 2304: 2253: 2239:X-ray telescope 2131: 2102:Photoionization 2070: 2066:X-ray nanoprobe 2029: 1985:Absorption edge 1973:Characteristics 1968: 1963: 1921: 1916: 1915: 1908: 1894: 1890: 1834: 1830: 1787: 1783: 1731: 1727: 1684: 1680: 1627: 1623: 1567: 1563: 1502: 1498: 1455: 1451: 1424: 1420: 1365: 1361: 1326: 1322: 1279: 1275: 1243:1854/LU-8534833 1211: 1207: 1191:1854/LU-8561215 1162: 1158: 1106: 1102: 1058: 1054: 1011: 1007: 956: 952: 901: 897: 862: 858: 807: 803: 760: 756: 705: 701: 666: 662: 615: 611: 580: 576: 545: 541: 510: 506: 497: 493: 450: 446: 393: 389: 352: 348: 337: 317: 313: 308: 304: 299: 271: 239: 226: 203:that shape the 197: 157: 141: 121:pharmaceuticals 84: 68:crystallography 17: 12: 11: 5: 3373: 3363: 3362: 3357: 3340: 3339: 3337: 3336: 3324: 3311: 3308: 3307: 3304: 3303: 3301: 3300: 3295: 3290: 3289: 3288: 3283: 3278: 3267: 3265: 3258: 3257: 3252: 3247: 3242: 3236: 3234: 3228: 3227: 3225: 3224: 3219: 3214: 3208: 3206: 3200: 3199: 3197: 3196: 3191: 3186: 3181: 3176: 3171: 3166: 3160: 3158: 3152: 3151: 3149: 3148: 3143: 3138: 3133: 3128: 3123: 3118: 3112: 3110: 3104: 3103: 3101: 3100: 3095: 3090: 3085: 3080: 3075: 3070: 3065: 3059: 3057: 3051: 3050: 3048: 3047: 3042: 3041: 3040: 3030: 3025: 3020: 3015: 3010: 3008:Direct methods 3004: 3002: 2998: 2997: 2995: 2994: 2993: 2992: 2987: 2977: 2972: 2971: 2970: 2965: 2955: 2954: 2953: 2948: 2937: 2935: 2929: 2928: 2920: 2918: 2916: 2915: 2910: 2905: 2900: 2895: 2893:Ewald's sphere 2890: 2885: 2879: 2876: 2875: 2873: 2872: 2867: 2862: 2861: 2860: 2855: 2845: 2844: 2843: 2838: 2836:Frenkel defect 2833: 2831:Bjerrum defect 2823: 2822: 2821: 2811: 2810: 2809: 2804: 2799: 2797:Peierls stress 2794: 2789: 2784: 2779: 2774: 2769: 2767:Burgers vector 2759: 2757:Stacking fault 2754: 2748: 2745: 2744: 2742: 2741: 2736: 2731: 2726: 2720: 2718: 2716:Grain boundary 2709: 2703: 2702: 2700: 2699: 2694: 2689: 2684: 2679: 2674: 2669: 2664: 2663: 2662: 2660:Liquid crystal 2657: 2652: 2647: 2636: 2634: 2626: 2625: 2623: 2622: 2621: 2620: 2610: 2609: 2608: 2598: 2597: 2596: 2591: 2580: 2577: 2576: 2574: 2573: 2568: 2563: 2558: 2553: 2548: 2542: 2540: 2531: 2530: 2525: 2523:Periodic table 2520: 2519: 2518: 2513: 2508: 2503: 2498: 2487: 2485: 2476: 2475: 2470: 2465: 2464: 2463: 2452: 2450: 2446: 2445: 2438: 2437: 2430: 2423: 2415: 2406: 2405: 2402: 2401: 2399: 2398: 2393: 2392: 2391: 2380: 2378: 2374: 2373: 2371: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2314: 2312: 2306: 2305: 2303: 2302: 2297: 2292: 2287: 2282: 2277: 2272: 2267: 2261: 2259: 2255: 2254: 2252: 2251: 2246: 2241: 2236: 2231: 2226: 2225: 2224: 2219: 2214: 2204: 2199: 2194: 2189: 2184: 2183: 2182: 2177: 2167: 2162: 2157: 2152: 2146: 2144: 2137: 2133: 2132: 2130: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2078: 2076: 2072: 2071: 2069: 2068: 2063: 2058: 2053: 2048: 2043: 2037: 2035: 2031: 2030: 2028: 2027: 2022: 2017: 2012: 2007: 2002: 1997: 1992: 1987: 1982: 1976: 1974: 1970: 1969: 1962: 1961: 1954: 1947: 1939: 1933: 1932: 1927: 1920: 1919:External links 1917: 1914: 1913: 1906: 1888: 1828: 1801:(1): 151–167. 1781: 1725: 1678: 1621: 1561: 1510:Macromolecules 1496: 1449: 1438:(7): 1700508. 1418: 1359: 1320: 1273: 1205: 1156: 1100: 1052: 1005: 950: 895: 856: 815:Macromolecules 801: 774:(2): 470–480. 754: 713:Macromolecules 699: 660: 609: 590:(4): 595–608. 574: 555:(3): 637–640. 539: 504: 491: 444: 387: 346: 335: 327:Academic Press 311: 301: 300: 298: 295: 294: 293: 288: 283: 277: 270: 267: 261:, France; and 238: 235: 225: 222: 196: 193: 156: 153: 140: 137: 83: 80: 36:macromolecules 15: 9: 6: 4: 3: 2: 3372: 3361: 3358: 3356: 3353: 3352: 3350: 3335: 3334: 3325: 3323: 3322: 3313: 3312: 3309: 3299: 3296: 3294: 3291: 3287: 3284: 3282: 3279: 3277: 3274: 3273: 3272: 3269: 3268: 3266: 3262: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3237: 3235: 3233: 3229: 3223: 3220: 3218: 3215: 3213: 3210: 3209: 3207: 3205: 3201: 3195: 3192: 3190: 3187: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3162: 3161: 3159: 3157: 3153: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3122: 3119: 3117: 3114: 3113: 3111: 3109: 3105: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3060: 3058: 3056: 3052: 3046: 3043: 3039: 3036: 3035: 3034: 3031: 3029: 3028:Patterson map 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3005: 3003: 2999: 2991: 2988: 2986: 2983: 2982: 2981: 2978: 2976: 2973: 2969: 2966: 2964: 2961: 2960: 2959: 2956: 2952: 2949: 2947: 2944: 2943: 2942: 2939: 2938: 2936: 2934: 2930: 2924: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2898:Friedel's law 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2880: 2871: 2868: 2866: 2863: 2859: 2856: 2854: 2851: 2850: 2849: 2846: 2842: 2841:Wigner effect 2839: 2837: 2834: 2832: 2829: 2828: 2827: 2826:Interstitials 2824: 2820: 2817: 2816: 2815: 2812: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2773: 2770: 2768: 2765: 2764: 2763: 2760: 2758: 2755: 2753: 2750: 2749: 2740: 2737: 2735: 2732: 2730: 2727: 2725: 2722: 2721: 2719: 2717: 2713: 2710: 2708: 2704: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2672:Precipitation 2670: 2668: 2665: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2642: 2641: 2640:Phase diagram 2638: 2637: 2635: 2633: 2627: 2619: 2616: 2615: 2614: 2611: 2607: 2604: 2603: 2602: 2599: 2595: 2592: 2590: 2587: 2586: 2585: 2582: 2581: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2547: 2544: 2543: 2541: 2539: 2535: 2529: 2526: 2524: 2521: 2517: 2514: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2493: 2492: 2489: 2488: 2486: 2484: 2480: 2474: 2471: 2469: 2466: 2462: 2459: 2458: 2457: 2454: 2453: 2451: 2447: 2443: 2436: 2431: 2429: 2424: 2422: 2417: 2416: 2413: 2397: 2394: 2390: 2387: 2386: 2385: 2382: 2381: 2379: 2375: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2315: 2313: 2311: 2307: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2262: 2260: 2256: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2223: 2220: 2218: 2215: 2213: 2210: 2209: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2181: 2178: 2176: 2173: 2172: 2171: 2168: 2166: 2163: 2161: 2160:Tomosynthesis 2158: 2156: 2153: 2151: 2148: 2147: 2145: 2141: 2138: 2134: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2079: 2077: 2073: 2067: 2064: 2062: 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2038: 2036: 2032: 2026: 2023: 2021: 2018: 2016: 2013: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1991: 1990:Moseley's law 1988: 1986: 1983: 1981: 1978: 1977: 1975: 1971: 1967: 1966:X-ray science 1960: 1955: 1953: 1948: 1946: 1941: 1940: 1937: 1931: 1928: 1926: 1923: 1922: 1909: 1907:9780191523281 1903: 1899: 1892: 1884: 1880: 1875: 1870: 1866: 1862: 1857: 1852: 1848: 1844: 1843:Pharmaceutics 1840: 1832: 1824: 1820: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1785: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1729: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1682: 1674: 1670: 1666: 1662: 1657: 1652: 1648: 1644: 1640: 1636: 1632: 1625: 1617: 1613: 1609: 1605: 1600: 1595: 1590: 1585: 1581: 1577: 1573: 1565: 1557: 1553: 1548: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1500: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1453: 1445: 1441: 1437: 1433: 1429: 1422: 1414: 1410: 1405: 1400: 1396: 1392: 1387: 1382: 1378: 1374: 1373:Pharmaceutics 1370: 1363: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1324: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1277: 1269: 1265: 1261: 1257: 1253: 1249: 1244: 1239: 1234: 1229: 1225: 1221: 1217: 1209: 1201: 1197: 1192: 1187: 1183: 1179: 1175: 1171: 1167: 1160: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1056: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 965: 961: 954: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 906: 899: 891: 887: 883: 879: 875: 871: 867: 860: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 805: 797: 793: 789: 785: 781: 777: 773: 769: 765: 758: 750: 746: 742: 738: 734: 730: 726: 722: 718: 714: 710: 703: 695: 691: 687: 683: 679: 675: 671: 664: 656: 652: 647: 642: 637: 632: 628: 624: 620: 613: 605: 601: 597: 593: 589: 585: 578: 570: 566: 562: 558: 554: 550: 543: 535: 531: 527: 523: 519: 515: 508: 502: 495: 487: 483: 479: 475: 471: 467: 463: 459: 455: 448: 440: 436: 431: 426: 422: 418: 414: 410: 406: 402: 398: 391: 383: 379: 374: 369: 366:: s459–s462. 365: 361: 357: 350: 342: 338: 336:0-12-286280-5 332: 328: 324: 323: 315: 306: 302: 292: 289: 287: 284: 281: 278: 276: 273: 272: 266: 264: 260: 256: 252: 248: 244: 234: 232: 221: 219: 215: 211: 210:monochromator 206: 202: 192: 190: 186: 182: 181: 176: 175: 170: 165: 162: 161:monochromatic 152: 150: 146: 136: 134: 130: 126: 122: 118: 114: 110: 106: 103:, microgels, 102: 98: 94: 90: 79: 77: 73: 69: 65: 61: 56: 54: 50: 46: 41: 37: 33: 29: 25: 21: 3331: 3319: 3264:Associations 3232:Organisation 2724:Disclination 2655:Polymorphism 2618:Quasicrystal 2561:Orthorhombic 2501:Miller index 2449:Key concepts 2332: 2258:Spectroscopy 2202:Ptychography 2136:Applications 2097:Auger effect 2000:Water window 1897: 1891: 1846: 1842: 1831: 1798: 1795:Mol. BioSyst 1794: 1784: 1743: 1739: 1728: 1695: 1691: 1681: 1638: 1634: 1624: 1579: 1575: 1564: 1513: 1509: 1499: 1466: 1462: 1452: 1435: 1431: 1421: 1376: 1372: 1362: 1337: 1333: 1323: 1290: 1286: 1276: 1223: 1219: 1208: 1173: 1169: 1159: 1118: 1114: 1103: 1070: 1066: 1055: 1022: 1018: 1008: 967: 963: 953: 912: 908: 898: 873: 869: 859: 818: 814: 804: 771: 767: 757: 716: 712: 702: 677: 673: 663: 626: 622: 612: 587: 583: 577: 552: 548: 542: 517: 513: 507: 494: 461: 457: 447: 404: 400: 390: 363: 359: 349: 341:the original 321: 314: 305: 240: 227: 198: 185:synchrotrons 178: 172: 168: 158: 142: 119:, foods and 115:, plastics, 109:polymersomes 85: 82:Applications 57: 32:nanoparticle 23: 19: 18: 3217:Ewald Prize 2985:Diffraction 2963:Diffraction 2946:Diffraction 2888:Bragg plane 2883:Bragg's law 2762:Dislocation 2677:Segregation 2589:Crystallite 2506:Point group 2051:Synchrotron 1340:: 112–121. 1176:: 518–527. 964:Soft Matter 909:Soft Matter 520:: 171–210. 245:, Austria; 231:convolution 189:collimation 3349:Categories 3001:Algorithms 2990:Scattering 2968:Scattering 2951:Scattering 2819:Slip bands 2782:Cross slip 2632:transition 2566:Tetragonal 2556:Monoclinic 2468:Metallurgy 2310:Scattering 2175:Helical CT 2041:X-ray tube 1849:(2): 106. 1656:2299/19649 1599:2299/17369 297:References 247:Bruker AXS 243:Anton Paar 3108:Databases 2571:Triclinic 2551:Hexagonal 2491:Unit cell 2483:Structure 1865:1999-4923 1815:1742-206X 1776:235659596 1760:1525-7797 1720:2046-2069 1673:100587522 1665:0303-402X 1608:0743-7463 1538:0024-9297 1483:1936-0851 1395:1999-4923 1379:(2): 10. 1354:103002028 1307:1520-6106 1268:206664063 1252:1948-7185 1200:102663271 1135:1525-7797 1087:1525-7797 1039:0743-7463 992:1744-683X 937:1744-683X 890:1520-6106 851:105195163 843:0024-9297 788:1525-7797 749:202079335 741:0024-9297 604:1600-5767 569:1600-5767 534:0001-8686 486:189992231 478:2637-6105 421:1600-5767 382:1600-5767 174:divergent 105:liposomes 3321:Category 3156:Journals 3088:OctaDist 3083:JANA2020 3055:Software 2941:Electron 2858:F-center 2645:Eutectic 2606:Fiveling 2601:Twinning 2594:Equiaxed 2046:Betatron 1883:32013056 1823:21947276 1768:34180669 1616:27159129 1576:Langmuir 1556:28626247 1491:22713309 1463:ACS Nano 1413:27043614 1315:24517119 1260:28759235 1151:36632159 1143:24083567 1095:22793269 1047:15752000 1019:Langmuir 1000:27194585 945:30140809 796:29381335 655:34963770 439:30546286 269:See also 201:pinholes 180:focusing 117:proteins 113:polymers 101:micelles 97:colloids 89:lamellae 64:proteins 3333:Commons 3281:Germany 2958:Neutron 2848:Vacancy 2707:Defects 2692:GP-zone 2538:Systems 2389:History 2143:Imaging 1874:7076460 1700:Bibcode 1692:RSC Adv 1547:5472368 1518:Bibcode 1404:4932473 972:Bibcode 917:Bibcode 823:Bibcode 721:Bibcode 682:Bibcode 646:8662971 430:6276275 218:sheared 169:without 93:fractal 40:elastic 26:) is a 3276:France 3271:Europe 3204:Awards 2734:Growth 2584:Growth 2377:Others 2338:GISAXS 2010:L-edge 2005:K-edge 1904:  1881:  1871:  1863:  1821:  1813:  1774:  1766:  1758:  1718:  1671:  1663:  1614:  1606:  1554:  1544:  1536:  1489:  1481:  1411:  1401:  1393:  1352:  1313:  1305:  1266:  1258:  1250:  1198:  1149:  1141:  1133:  1093:  1085:  1045:  1037:  998:  990:  943:  935:  888:  849:  841:  794:  786:  747:  739:  653:  643:  602:  567:  532:  484:  476:  437:  427:  419:  380:  333:  263:Xenocs 259:Xenocs 255:Rigaku 214:fibres 91:, and 49:X-rays 3298:Japan 3245:IOBCr 3098:SHELX 3093:Olex2 2980:X-ray 2630:Phase 2546:Cubic 2368:EDXRD 2290:XANES 2285:EXAFS 2275:ARPES 2222:3DXRD 1980:X-ray 1772:S2CID 1669:S2CID 1350:S2CID 1264:S2CID 1196:S2CID 1147:S2CID 847:S2CID 745:S2CID 482:S2CID 280:GISAS 205:X-ray 125:X-ray 3240:IUCr 3141:ICDD 3136:ICSD 3121:CCDC 3068:Coot 3063:CCP4 2814:Slip 2777:Kink 2353:RIXS 2343:WAXS 2333:SAXS 2244:DFXM 2212:XDCT 2197:STXM 2192:XPCI 2180:XACT 1902:ISBN 1879:PMID 1861:ISSN 1819:PMID 1811:ISSN 1764:PMID 1756:ISSN 1716:ISSN 1661:ISSN 1612:PMID 1604:ISSN 1552:PMID 1534:ISSN 1487:PMID 1479:ISSN 1409:PMID 1391:ISSN 1311:PMID 1303:ISSN 1256:PMID 1248:ISSN 1139:PMID 1131:ISSN 1091:PMID 1083:ISSN 1043:PMID 1035:ISSN 996:PMID 988:ISSN 941:PMID 933:ISSN 886:ISSN 839:ISSN 792:PMID 784:ISSN 737:ISSN 651:PMID 600:ISSN 565:ISSN 530:ISSN 474:ISSN 435:PMID 417:ISSN 378:ISSN 331:ISBN 164:beam 133:flux 24:SAXS 3255:DMG 3250:RAS 3146:PDB 3131:COD 3126:CIF 3078:DSR 2802:GND 2729:CSL 2358:XRS 2300:XFH 2295:EDS 2280:AES 2270:XPS 2265:XAS 2249:DXA 2217:DCT 2165:CDI 1869:PMC 1851:doi 1803:doi 1748:doi 1708:doi 1651:hdl 1643:doi 1639:295 1594:hdl 1584:doi 1542:PMC 1526:doi 1471:doi 1440:doi 1436:219 1399:PMC 1381:doi 1342:doi 1338:549 1295:doi 1291:118 1238:hdl 1228:doi 1186:hdl 1178:doi 1123:doi 1075:doi 1027:doi 980:doi 925:doi 878:doi 874:107 831:doi 776:doi 729:doi 690:doi 678:128 641:PMC 631:doi 592:doi 557:doi 522:doi 466:doi 425:PMC 409:doi 368:doi 76:kDa 3351:: 3293:US 3286:UK 2363:XS 2170:CT 1877:. 1867:. 1859:. 1847:12 1845:. 1841:. 1817:. 1809:. 1797:. 1793:. 1770:. 1762:. 1754:. 1744:22 1742:. 1738:. 1714:. 1706:. 1694:. 1690:. 1667:. 1659:. 1649:. 1637:. 1633:. 1610:. 1602:. 1592:. 1580:32 1578:. 1574:. 1550:. 1540:. 1532:. 1524:. 1514:50 1512:. 1508:. 1485:. 1477:. 1465:. 1461:. 1434:. 1430:. 1407:. 1397:. 1389:. 1375:. 1371:. 1348:. 1336:. 1332:. 1309:. 1301:. 1289:. 1285:. 1262:. 1254:. 1246:. 1236:. 1222:. 1218:. 1194:. 1184:. 1174:99 1172:. 1168:. 1145:. 1137:. 1129:. 1119:14 1117:. 1113:. 1089:. 1081:. 1071:13 1069:. 1065:. 1041:. 1033:. 1023:21 1021:. 1017:. 994:. 986:. 978:. 968:12 966:. 962:. 939:. 931:. 923:. 913:14 911:. 907:. 884:. 872:. 868:. 845:. 837:. 829:. 819:51 817:. 813:. 790:. 782:. 772:19 770:. 766:. 743:. 735:. 727:. 717:52 715:. 711:. 688:. 676:. 672:. 649:. 639:. 627:54 625:. 621:. 598:. 588:27 586:. 563:. 553:33 551:. 528:. 518:70 516:. 480:. 472:. 460:. 456:. 433:. 423:. 415:. 405:51 403:. 399:. 376:. 364:40 362:. 358:. 329:. 325:. 216:, 135:. 107:, 53:nm 2434:e 2427:t 2420:v 1958:e 1951:t 1944:v 1910:. 1885:. 1853:: 1825:. 1805:: 1799:8 1778:. 1750:: 1722:. 1710:: 1702:: 1696:4 1675:. 1653:: 1645:: 1618:. 1596:: 1586:: 1558:. 1528:: 1520:: 1493:. 1473:: 1467:6 1446:. 1442:: 1415:. 1383:: 1377:8 1356:. 1344:: 1317:. 1297:: 1270:. 1240:: 1230:: 1224:8 1202:. 1188:: 1180:: 1153:. 1125:: 1097:. 1077:: 1049:. 1029:: 1002:. 982:: 974:: 947:. 927:: 919:: 892:. 880:: 853:. 833:: 825:: 798:. 778:: 751:. 731:: 723:: 696:. 692:: 684:: 657:. 633:: 606:. 594:: 571:. 559:: 536:. 524:: 488:. 468:: 462:1 441:. 411:: 384:. 370:: 22:(

Index

small-angle scattering
nanoparticle
macromolecules
elastic
small-angle neutron scattering
X-rays
nm
X-ray scattering techniques
proteins
crystallography
Nuclear magnetic resonance spectroscopy
kDa
lamellae
fractal
colloids
micelles
liposomes
polymersomes
polymers
proteins
pharmaceuticals
X-ray
synchrotron light
flux
resonant absorption edge
resonant inelastic X-ray scattering
monochromatic
beam
divergent
focusing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑