Knowledge

X-ray fluorescence

Source 📝

3364:
absorption coefficient of silicon at the wavelength of the aluminium Kα line is 50 m/kg, whereas that of iron is 377 m/kg. This means that fluorescent X-rays generated by a given concentration of aluminium in a matrix of iron are absorbed about seven times more (that is 377/50) compared with the fluorescent X-rays generated by the same concentration of aluminium, but in a silicon matrix. That would lead to about one seventh of the count rate, once the X-rays are detected. Fortunately, mass absorption coefficients are well known and can be calculated. However, to calculate the absorption for a multi-element sample, the composition must be known. For analysis of an unknown sample, an iterative procedure is therefore used. To derive the mass absorption accurately, data for the concentration of elements not measured by XRF may be needed, and various strategies are employed to estimate these. As an example, in cement analysis, the concentration of oxygen (which is not measured) is calculated by assuming that all other elements are present as standard oxides.
683:
high-precision analyses can be obtained in under 30 s. Another advantage of this arrangement is that the fixed-geometry monochromators have no continuously moving parts, and so are very reliable. Reliability is important in production environments where instruments are expected to work without interruption for months at a time. Disadvantages of simultaneous spectrometers include relatively high cost for complex analyses, since each channel used is expensive. The number of elements that can be measured is limited to 15–20, because of space limitations on the number of monochromators that can be crowded around the fluorescing sample. The need to accommodate multiple monochromators means that a rather open arrangement around the sample is required, leading to relatively long tube-sample-crystal distances, which leads to lower detected intensities and more scattering. The instrument is inflexible, because if a new element is to be measured, a new measurement channel has to be bought and installed.
3378:
those calculable from theory. When a powder is pressed into a tablet, the finer minerals concentrate at the surface. Spherical grains tend to migrate to the surface more than do angular grains. In machined metals, the softer components of an alloy tend to smear across the surface. Considerable care and ingenuity are required to minimize these effects. Because they are artifacts of the method of sample preparation, these effects can not be compensated by theoretical corrections, and must be "calibrated in". This means that the calibration materials and the unknowns must be compositionally and mechanically similar, and a given calibration is applicable only to a limited range of materials. Glasses most closely approach the ideal of homogeneity and isotropy, and for accurate work, minerals are usually prepared by dissolving them in a borate glass, and casting them into a flat disc or "bead". Prepared in this form, a virtually universal calibration is applicable.
690:
wavelengths, in each case selecting the appropriate X-ray tube power, the appropriate crystal, and the appropriate detector arrangement. The length of the measurement program is essentially unlimited, so this arrangement is very flexible. Because there is only one monochromator, the tube-sample-crystal distances can be kept very short, resulting in minimal loss of detected intensity. The obvious disadvantage is relatively long analysis time, particularly when many elements are being analysed, not only because the elements are measured in sequence, but also because a certain amount of time is taken in readjusting the monochromator geometry between measurements. Furthermore, the frenzied activity of the monochromator during an analysis program is a challenge for mechanical reliability. However, modern sequential instruments can achieve reliability almost as good as that of simultaneous instruments, even in continuous-usage applications.
3287:
long wavelengths (over 5 nm) are to be detected. The argon is ionised by incoming X-ray photons, and the electric field multiplies this charge into a measurable pulse. The methane suppresses the formation of fluorescent photons caused by recombination of the argon ions with stray electrons. The anode wire is typically tungsten or nichrome of 20–60 μm diameter. Since the pulse strength obtained is essentially proportional to the ratio of the detector chamber diameter to the wire diameter, a fine wire is needed, but it must also be strong enough to be maintained under tension so that it remains precisely straight and concentric with the detector. The window needs to be conductive, thin enough to transmit the X-rays effectively, but thick and strong enough to minimize diffusion of the detector gas into the high vacuum of the monochromator chamber. Materials often used are beryllium metal,
700:
tolerances for this placement and for the flatness of the surface must be very tight in order to maintain a repeatable X-ray flux. Ways of obtaining sample discs vary: metals may be machined to shape, minerals may be finely ground and pressed into a tablet, and glasses may be cast to the required shape. A further reason for obtaining a flat and representative sample surface is that the secondary X-rays from lighter elements often only emit from the top few micrometres of the sample. In order to further reduce the effect of surface irregularities, the sample is usually spun at 5–20 rpm. It is necessary to ensure that the sample is sufficiently thick to absorb the entire primary beam. For higher-Z materials, a few millimetres thickness is adequate, but for a light-element matrix such as coal, a thickness of 30–40 mm is needed.
626:
portability. This type of instrument is commonly used for portable quality control screening applications, such as testing toys for lead (Pb) content, sorting scrap metals, and measuring the lead content of residential paint. On the other hand, the low resolution and problems with low count rate and long dead-time makes them inferior for high-precision analysis. They are, however, very effective for high-speed, multi-elemental analysis. Field Portable XRF analysers currently on the market weigh less than 2 kg, and have limits of detection on the order of 2 parts per million of lead (Pb) in pure sand. Using a Scanning Electron Microscope and using EDX, studies have been broadened to organic based samples such as biological samples and polymers.
495:
for any distance. Because of this, for high-performance analysis, the path from tube to sample to detector is maintained under vacuum (around 10 Pa residual pressure). This means in practice that most of the working parts of the instrument have to be located in a large vacuum chamber. The problems of maintaining moving parts in vacuum, and of rapidly introducing and withdrawing the sample without losing vacuum, pose major challenges for the design of the instrument. For less demanding applications, or when the sample is damaged by a vacuum (e.g. a volatile sample), a helium-swept X-ray chamber can be substituted, with some loss of low-Z (Z =
439: 3382:
atomic number is low. When measuring trace amounts of an element, or when measuring on a variable light matrix, background correction becomes necessary. This is really only feasible on a sequential spectrometer. Line overlap is a common problem, bearing in mind that the spectrum of a complex mineral can contain several hundred measurable lines. Sometimes it can be overcome by measuring a less-intense, but overlap-free line, but in certain instances a correction is inevitable. For instance, the Kα is the only usable line for measuring sodium, and it overlaps the zinc Lβ (L
136: 597:
are, however, typically more drawn out in time (photons did not arrive exactly at the same time) than single photon events and pulse-length discrimination can thus be used to filter most of these out. Even so, a small number of pile-up peaks will remain and pile-up correction should be built into the software in applications that require trace analysis. To make the most efficient use of the detector, the tube current should be reduced to keep multi-photon events (before discrimination) at a reasonable level, e.g. 5–20%.
744: 736: 3306:
voltage proportional to the photon energy. The crystal must be protected with a relatively thick aluminium/beryllium foil window, which limits the use of the detector to wavelengths below 0.25 nm. Scintillation counters are often connected in series with a gas flow proportional counter: the latter is provided with an outlet window opposite the inlet, to which the scintillation counter is attached. This arrangement is particularly used in sequential spectrometers.
923:), RbAP (rubidium hydrogen phthalate) and TlAP (thallium(I) hydrogen phthalate). In addition, there is an increasing use of "layered synthetic microstructures" (LSMs), which are "sandwich" structured materials comprising successive thick layers of low atomic number matrix, and monatomic layers of a heavy element. These can in principle be custom-manufactured to diffract any desired long wavelength, and are used extensively for elements in the range Li to Mg. 5190: 757:(typically 8-fold) with higher resolution (typically 4-fold) and lower background. However, the mechanics of keeping Rowland circle geometry in a variable-angle monochromator is extremely difficult. In the case of fixed-angle monochromators (for use in simultaneous spectrometers), crystals bent to a logarithmic spiral shape give the best focusing performance. The manufacture of curved crystals to acceptable tolerances increases their price considerably. 638: 28: 53: 555: 3276: 3320: 486:) which counts individual photons as they pass through. The counter is a chamber containing a gas that is ionized by X-ray photons. A central electrode is charged at (typically) +1700 V with respect to the conducting chamber walls, and each photon triggers a pulse-like cascade of current across this field. The signal is amplified and transformed into an accumulating digital count. These counts are then processed to obtain analytical data. 704: 182: 630: 528: 2991: 5202: 20: 174: 568:
X-ray photon passes through, it causes a swarm of electron-hole pairs to form, and this causes a voltage pulse. To obtain sufficiently low conductivity, the detector must be maintained at low temperature, and liquid-nitrogen cooling must be used for the best resolution. With some loss of resolution, the much more convenient Peltier cooling can be employed.
466:
the same photon to measure the photon energy correctly (peak length discrimination is used to eliminate events that seem to have been produced by two X-ray photons arriving almost simultaneously). The spectrum is then built up by dividing the energy spectrum into discrete bins and counting the number of pulses registered within each energy bin.
69: 31: 30: 35: 34: 29: 306:) target are most commonly used, because their output can readily be "tuned" for the application, and because higher power can be deployed relative to other techniques. X-ray generators in the range 20–60 kV are used, which allow excitation of a broad range of atoms. The continuous spectrum consists of " 36: 3377:
consist of effects of inhomogeneities of the sample, and unrepresentative conditions at its surface. Samples are ideally homogeneous and isotropic, but they often deviate from this ideal. Mixtures of multiple crystalline components in mineral powders can result in absorption effects that deviate from
3286:
are used mainly for detection of longer wavelengths. Gas flows through it continuously. Where there are multiple detectors, the gas is passed through them in series, then led to waste. The gas is usually 90% argon, 10% methane ("P10"), although the argon may be replaced with neon or helium where very
3058:
This means, that by intense study of these spectral lines, one can obtain several crucial pieces of information from a sample. Especially, if there are references that have been studied in detail and can be used to make out differences. The information collected from this kind of measurement include:
731:
is a stack of parallel metal plates, spaced a few tenths of a millimeter apart. To improve angular resolution, one must lengthen the collimator, and/or reduce the plate spacing. This arrangement has the advantage of simplicity and relatively low cost, but the collimators reduce intensity and increase
465:
ionizes a large number of detector atoms with the amount of charge produced being proportional to the energy of the incoming photon. The charge is then collected and the process repeats itself for the next photon. Detector speed is obviously critical, as all charge carriers measured have to come from
3381:
Further corrections that are often employed include background correction and line overlap correction. The background signal in an XRF spectrum derives primarily from scattering of primary beam photons by the sample surface. Scattering varies with the sample mass absorption, being greatest when mean
756:
The Rowland circle geometry ensures that the slits are both in focus, but in order for the Bragg condition to be met at all points, the crystal must first be bent to a radius of 2R (where R is the radius of the Rowland circle), then ground to a radius of R. This arrangement allows higher intensities
494:
The fluorescence process is inefficient, and the secondary radiation is much weaker than the primary beam. Furthermore, the secondary radiation from lighter elements is of relatively low energy (long wavelength) and has low penetrating power, and is severely attenuated if the beam passes through air
3363:
X-rays to some extent. Each element has a characteristic absorption spectrum which consists of a "saw-tooth" succession of fringes, each step-change of which has wavelength close to an emission line of the element. Absorption attenuates the secondary X-rays leaving the sample. For example, the mass
625:
spectrometers in that they are smaller, simpler in design and have fewer engineered parts, however the accuracy and resolution of EDX spectrometers are lower than for WDX. EDX spectrometers can also use miniature X-ray tubes or gamma sources, which makes them cheaper and allows miniaturization and
567:
These consist essentially of a 3–5 mm thick silicon junction type p-i-n diode (same as PIN diode) with a bias of −1000 V across it. The lithium-drifted centre part forms the non-conducting i-layer, where Li compensates the residual acceptors which would otherwise make the layer p-type. When an
689:
have a single variable-geometry monochromator (but usually with an arrangement for selecting from a choice of crystals), a single detector assembly (but usually with more than one detector arranged in tandem), and a single electronic pack. The instrument is programmed to move through a sequence of
3298:
are similar to the gas flow proportional counter, except that the gas does not flow through it. The gas is usually krypton or xenon at a few atmospheres pressure. They are applied usually to wavelengths in the 0.15–0.6 nm range. They are applicable in principle to longer wavelengths, but are
3257:
Detectors used for wavelength dispersive spectrometry need to have high pulse processing speeds in order to cope with the very high photon count rates that can be obtained. In addition, they need sufficient energy resolution to allow filtering-out of background noise and spurious photons from the
605:
Considerable computer power is dedicated to correcting for pulse-pile up and for extraction of data from poorly resolved spectra. These elaborate correction processes tend to be based on empirical relationships that may change with time, so that continuous vigilance is required in order to obtain
596:
amplifiers. It takes time for the amplifier to shape the pulse for optimum resolution, and there is therefore a trade-off between resolution and count-rate: long processing time for good resolution results in "pulse pile-up" in which the pulses from successive photons overlap. Multi-photon events
3305:
consist of a scintillating crystal (typically of sodium iodide doped with thallium) attached to a photomultiplier. The crystal produces a group of scintillations for each photon absorbed, the number being proportional to the photon energy. This translates into a pulse from the photomultiplier of
699:
In order to keep the geometry of the tube-sample-detector assembly constant, the sample is normally prepared as a flat disc, typically of diameter 20–50 mm. This is located at a standardized, small distance from the tube window. Because the X-ray intensity follows an inverse-square law, the
674:
on a single crystal before being detected. Although wavelength dispersive spectrometers are occasionally used to scan a wide range of wavelengths, producing a spectrum plot as in EDS, they are usually set up to make measurements only at the wavelength of the emission lines of the elements of
609:
Digital pulse processors are widely used in high performance nuclear instrumentation. They are able to effectively reduce pile-up and base line shifts, allowing for easier processing. A low pass filter is integrated, improving the signal to noise ratio. The Digital Pulse Processor requires a
682:
have a number of "channels" dedicated to analysis of a single element, each consisting of a fixed-geometry crystal monochromator, a detector, and processing electronics. This allows a number of elements to be measured simultaneously, and in the case of high-powered instruments, complete
883:
Crystals with simple structures tend to give the best diffraction performance. Crystals containing heavy atoms can diffract well, but also fluoresce more in the higher energy region, causing interference. Crystals that are water-soluble, volatile or organic tend to give poor stability.
3291:
and aluminised polypropylene. Ultra-thin windows (down to 1 μm) for use with low-penetration long wavelengths are very expensive. The pulses are sorted electronically by "pulse height selection" in order to isolate those pulses deriving from the secondary X-ray photons being counted.
3370:
occurs where the secondary X-rays emitted by a heavier element are sufficiently energetic to stimulate additional secondary emission from a lighter element. This phenomenon can also be modelled, and corrections can be made provided that the full matrix composition can be deduced.
926:
In scientific methods that use X-ray/neutron or electron diffraction the before mentioned planes of a diffraction can be doubled to display higher order reflections. The given planes, resulting from Miller indices, can be calculated for a single crystal. The resulting values for
33: 198:
energy. Following removal of an inner electron by an energetic photon provided by a primary radiation source, an electron from an outer shell drops into its place. There are a limited number of ways in which this can happen, as shown in Figure 1. The main transitions are
470:
detector types vary in resolution, speed and the means of cooling (a low number of free charge carriers is critical in the solid state detectors): proportional counters with resolutions of several hundred eV cover the low end of the performance spectrum, followed by
550:
spectrometers (EDX or EDS), the detector allows the determination of the energy of the photon when it is detected. Detectors historically have been based on silicon semiconductors, in the form of lithium-drifted silicon crystals, or high-purity silicon wafers.
343:
analysis, the fluorescent X-rays emitted by the material sample are directed into a solid-state detector which produces a "continuous" distribution of pulses, the voltages of which are proportional to the incoming photon energies. This signal is processed by a
769:. In this model, a given reflection is associated with a set of evenly spaced sheets running through the crystal, usually passing through the centers of the atoms of the crystal lattice. The orientation of a particular set of sheets is identified by its 3581:
Pessanha, Sofia; Queralt, Ignasi; Carvalho, Maria Luísa; Sampaio, Jorge Miguel (1 October 2019). "Determination of gold leaf thickness using X-ray fluorescence spectrometry: Accuracy comparison using analytical methodology and Monte Carlo simulations".
163:
left behind. In falling, energy is released in the form of a photon, the energy of which is equal to the energy difference of the two orbitals involved. Thus, the material emits radiation, which has energy characteristic of the atoms present. The term
935:. So a single crystal can be variable in the way, that many reflection configurations of that crystal can be used to reflect different energy ranges. The Germanium (Ge111) crystal, for example, can also be used as a Ge333, Ge444 and more. 218:, and so on. Each of these transitions yields a fluorescent photon with a characteristic energy equal to the difference in energy of the initial and final orbital. The wavelength of this fluorescent radiation can be calculated from 3323:
A glass "bead" specimen for XRF analysis being cast at around 1100 °C in a Herzog automated fusion machine in a cement plant quality control laboratory. 1 (top): fusing, 2: preheating the mould, 3: pouring the melt, 4: cooling the
1546:
The spectral lines used for elemental analysis of chemicals are selected on the basis of intensity, accessibility by the instrument, and lack of line overlaps. Typical lines used, and their wavelengths, are as follows:
789:. William Lawrence Bragg proposed a model in which the incoming X-rays are scattered specularly (mirror-like) from each plane; from that assumption, X-rays scattered from adjacent planes will combine constructively ( 310:" radiation: radiation produced when high-energy electrons passing through the tube are progressively decelerated by the material of the tube anode (the "target"). A typical tube output spectrum is shown in Figure 3. 515:
in 1928. Today, the method is used as a non-destructive analytical technique, and as a process control tool in many extractive and processing industries. In principle, the lightest element that can be analysed is
363:. The diffraction grating used is usually a single crystal. By varying the angle of incidence and take-off on the crystal, a small X-ray wavelength range can be selected. The wavelength obtained is given by 32: 4301: 421: 716:
The common feature of monochromators is the maintenance of a symmetrical geometry between the sample, the crystal and the detector. In this geometry the Bragg diffraction condition is obtained.
3754: 941:
Notice, that the Ge222 configuration is forbidden due to diffraction rules stating, that all allowed reflections must be with all odd or all even Miller indices that, combined, result in
3333:
At first sight, the translation of X-ray photon count-rates into elemental concentrations would appear to be straightforward: WDX separates the X-ray lines efficiently, and the rate of
3460:
X-ray fluorescence imaging is a newer technique that allows control over depth, in addition to horizontal and vertical aiming, for example, when analysing buried layers in a painting.
846: 274:
analysis). Once sorted, the intensity of each characteristic radiation is directly related to the amount of each element in the material. This is the basis of a powerful technique in
261: 4338: 3239: 159:
of the atom. The removal of an electron in this way makes the electronic structure of the atom unstable, and electrons in higher orbitals "fall" into the lower orbital to fill the
4042: 3025:-line spectra and the surrounding chemical environment of the ionized metal atom, measurements of the so-called valence-to-core (V2C) energy region become increasingly viable. 3168: 3312:
can be used in theory, and their applications are increasing as their technology improves, but historically their use for WDX has been restricted by their slow response (see
151:
may take place. Ionization consists of the ejection of one or more electrons from the atom, and may occur if the atom is exposed to radiation with an energy greater than its
3055:-line intensities and energies shift with oxidation state of the metal and with the species of ligand(s). Spin states in a compound tend to affect this kind of measurement. 3207: 3136: 3097: 3664: 3053: 3023: 732:
scattering, and reduce the area of sample and crystal that can be "seen". The simplicity of the geometry is especially useful for variable-geometry monochromators.
313:
For portable XRF spectrometers, copper target is usually bombared with high energy electrons, that are produced either by impact laser or by pyroelectric crystals.
512: 170:
is applied to phenomena in which the absorption of radiation of a specific energy results in the re-emission of radiation of a different energy (generally lower).
962: 982: 4834: 3739: 4355: 3249:
facilities, although a number of so-called "in-lab"-spectrometers have been developed and used for pre-beamtime (time at a synchrotron) measurements.
508: 2998:
X-ray diffraction (XRD) is still the most used method for structural analysis of chemical compounds. Yet, with increasing detail on the relation of
320:(such as Cd, Co, Fe, Pu and Am) can be used without the need for an elaborate power supply, allowing for easier use in small, portable instruments. 4817: 4812: 938:
For that reason the corresponding indices used for a particular experimental setup always get noted behind the crystal material(e.g. Ge111, Ge444)
719:
The X-ray emission lines are very narrow (see figure 2), so the angles must be defined with considerable precision. This is achieved in two ways:
520:(Z = 4), but due to instrumental limitations and low X-ray yields for the light elements, it is often difficult to quantify elements lighter than 328: 4961: 4664: 3654:
Kawai, Jun. "Pyroelectric X-Ray Emission." X-Ray Spectroscopy for Chemical State Analysis. Singapore: Springer Nature Singapore, 2022. 107-133.
4951: 4554: 290:
In order to excite the atoms, a source of radiation is required, with sufficient energy to expel tightly held inner electrons. Conventional
4854: 4827: 3950:(2013). "Chapter 2. Technologies for Detecting Metals in Single Cells. Section 4, Intrinsic X-Ray Fluorescence". In Banci, Lucia (ed.). 4762: 60:
X-ray fluorescence spectrometer which are used to check for metals coating thickness and any of potential contamination of unapproved
4822: 4396: 4966: 4459: 4406: 667: 659: 622: 352: 271: 331:, the X-ray beam can be very small and very intense. As a result, atomic information on the sub-micrometer scale can be obtained. 4078: 3517: – Resonant and recoil-free emission and absorption of gamma radiation by atomic nuclei, resonant fluorescence of gamma rays 4782: 4318: 1455: 1399: 4906: 4772: 4719: 4333: 3987: 3967: 3723: 3398:
It is also possible to create a characteristic secondary X-ray emission using other incident radiation to excite the sample:
3288: 3173:
Structural electronic configuration around the central metal atom (determine intensity, broadening, tailing and piloting of
278:. Figure 2 shows the typical form of the sharp fluorescent spectral lines obtained in the wavelength-dispersive method (see 5206: 5161: 4889: 4874: 4800: 4416: 4411: 3313: 618: 547: 541: 467: 373: 340: 267: 4489: 4474: 4343: 4047: 23:
A Philips PW1606 X-ray fluorescence spectrometer with automated sample feed in a cement plant quality control laboratory
3504: 4911: 4744: 4597: 4547: 4018: 3941: 3925: 3911: 3897: 3883: 3869: 4899: 4894: 4792: 4767: 4734: 4391: 4370: 3439: 3435: 45: 478:
In wavelength-dispersive analysis, the single-wavelength radiation produced by the monochromator is passed into a
4971: 4956: 4936: 3678: 3665:"High-energy x-ray production with pyroelectric crystals | Journal of Applied Physics | AIP Publishing" 728: 5248: 5166: 4739: 4674: 4582: 807: 576:
More recently, high-purity silicon wafers with low conductivity have become routinely available. Cooled by the
5156: 584:
cooled Si(Li) detector still has the best resolution (i.e. ability to distinguish different photon energies).
228: 4916: 4879: 4724: 4421: 4386: 3520: 3483: 1101: 892: 3299:
limited by the problem of manufacturing a thin window capable of withstanding the high pressure difference.
577: 449:
In energy-dispersive analysis, dispersion and detection are a single operation, as already mentioned above.
5194: 4754: 4540: 4484: 4454: 4313: 4286: 1371: 920: 3786:"Confocal X-ray Fluorescence Imaging and XRF Tomography for Three-Dimensional Trace Element Microanalysis" 5238: 4464: 4431: 4401: 4365: 4071: 3469: 3451: 5233: 4941: 4859: 4510: 4350: 4238: 348:(MCA) which produces an accumulating digital spectrum that can be processed to obtain analytical data. 3756:
A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource
3423:
When radiated by an X-ray beam, the sample also emits other radiations that can be used for analysis:
507:
The use of a primary X-ray beam to excite fluorescent radiation from the sample was first proposed by
185:
Figure 3: Spectrum of a rhodium target tube operated at 60 kV, showing continuous spectrum and K lines
790: 5120: 4946: 4177: 3509: 3176: 3105: 3066: 524:(Z = 11), unless background corrections and very comprehensive inter-element corrections are made. 3337:
of secondary photons is proportional to the element concentration. However, the number of photons
3212: 5228: 4869: 4805: 4679: 4638: 3141: 4002: 3994: 3031: 3001: 797:
between the plane and the X-ray results in a path-length difference that is an integer multiple
5059: 4479: 4328: 4064: 3390:) line. Thus zinc, if present, must be analysed in order to properly correct the sodium value. 646: 458: 443: 155:. X-rays and gamma rays can be energetic enough to expel tightly held electrons from the inner 3713: 5253: 5064: 4884: 4439: 4308: 4116: 3495: 345: 5069: 4628: 4276: 4208: 4141: 3769: 3591: 3431: 475:
detectors, while the Si(Li), Ge(Li) and SDDs occupy the high end of the performance scale.
450: 317: 275: 195: 96: 8: 5034: 5019: 4926: 4921: 4864: 4729: 4711: 4643: 4633: 4577: 4563: 4228: 4203: 4182: 3457: 3406: 356: 266:
The fluorescent radiation can be analysed either by sorting the energies of the photons (
3595: 3514: 944: 5105: 4684: 4469: 4213: 4146: 3633: 967: 438: 92: 3834: 1483: 5049: 5044: 4517: 4449: 4444: 4271: 4243: 4136: 4014: 3998: 3990: 3983: 3973: 3963: 3947: 3937: 3921: 3907: 3893: 3879: 3865: 3838: 3719: 3637: 3625: 3617: 3475: 2982:
Other lines are often used, depending on the type of sample and equipment available.
1556: 908: 766: 200: 152: 5136: 3563: 3258:
primary beam or from crystal fluorescence. There are four common types of detector:
87:
from a material that has been excited by being bombarded with high-energy X-rays or
4999: 4931: 4233: 4111: 3955: 3830: 3797: 3607: 3603: 3599: 3547: 888: 279: 219: 135: 116: 5243: 5054: 4505: 4360: 4223: 4187: 4106: 4037: 4008: 3931: 3859: 3479: 1343: 916: 581: 479: 291: 3959: 645:
used for X-ray fluorescence analysis of individual grains of mineral specimens,
5009: 4623: 3544:
Multilayers quantitative X-ray fluorescence analysis applied to easel paintings
3543: 3447: 3342: 932: 483: 364: 307: 156: 3802: 3785: 3551: 461:
SDD) are used. They all share the same detection principle: An incoming X-ray
5222: 5085: 5029: 4689: 4281: 4032: 3621: 743: 593: 496: 360: 160: 68: 5146: 5110: 5004: 4994: 4669: 4618: 4323: 4218: 4131: 4121: 3977: 3890:
A Practical Guide for the Preparation of Specimens for XRF and XRD Analysis
3842: 3629: 996: 770: 735: 355:
analysis, the fluorescent X-rays emitted by the sample are directed into a
166: 112: 3474:
A 2001 review, addresses the application of portable instrumentation from
16:
Emission of secondary X-rays from a material excited by high-energy X-rays
5090: 5024: 5014: 4172: 3246: 765:
An intuitive understanding of X-ray diffraction can be obtained from the
671: 324: 120: 3612: 3028:
Scientists noted that after ionization of 3d-transition metal atom, the
5171: 5151: 4592: 4587: 4296: 4162: 3954:. Metal Ions in Life Sciences. Vol. 12. Springer. pp. 15–40. 3393: 642: 637: 144: 88: 4532: 3341:
is also affected by the physical properties of the sample: so-called "
3275: 610:
significant amount of energy to run, but it provides precise results.
554: 139:
Figure 1: Physics of X-ray fluorescence in a schematic representation.
52: 5039: 4694: 3711: 3319: 1129: 896: 633:
Figure 6: Schematic arrangement of wavelength dispersive spectrometer
517: 472: 454: 124: 41: 3818: 703: 5141: 4607: 4167: 3858:
Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., Wolff, H.,
3498: – Frequencies of light emitted by atoms or chemical compounds 3427: 3402: 3063:
Oxidation state of the central metal atom in a compound (shifts of
1287: 904: 629: 527: 299: 295: 3715:
Transmission electron microscopy: a textbook for materials science
181: 5095: 4777: 4291: 3482:
perspectives. It provides a guide to the development of a set of
2990: 1427: 900: 430:
is the spacing of atomic layers parallel to the crystal surface.
303: 204: 108: 83:) is the emission of characteristic "secondary" (or fluorescent) 57: 4056: 5115: 4126: 4051: 3771:
X-ray Crystal Spectrometers and Monochromators in Microanalysis
3643: 521: 462: 84: 19: 3580: 580:, this provides a cheap and convenient detector, although the 4101: 4087: 270:
analysis) or by separating the wavelengths of the radiation (
104: 100: 3102:
Spin states of transition metal complexes (general shape of
851:
The desirable characteristics of a diffraction crystal are:
5100: 3416: 1315: 148: 61: 173: 3412: 1021: 663: 3876:
Principles and Practice of X-ray Spectrometric Analysis
3500:
Pages displaying short descriptions of redirect targets
3486:
if regulatory compliance guidelines are not available.
3279:
Figure 11: Arrangement of gas flow proportional counter
722: 147:
X-rays or to gamma rays, ionization of their component
4013:
2nd ed.; Marcel Dekker Inc.: New York, 2002; Vol. 29;
3819:"Field portable XRF analysis of environmental samples" 592:
The pulses generated by the detector are processed by
3215: 3179: 3144: 3108: 3069: 3034: 3004: 970: 947: 810: 653: 416:{\displaystyle n\cdot \lambda =2d\cdot \sin(\theta )} 376: 231: 3816: 3525:
Pages displaying wikidata descriptions as a fallback
3394:
Other spectroscopic methods using the same principle
177:
Figure 2: Typical wavelength dispersive XRF spectrum
3454:(AES) normally uses an electron beam as the probe. 531:
Figure 4: Schematic arrangement of EDX spectrometer
3233: 3201: 3162: 3130: 3091: 3047: 3017: 976: 956: 840: 675:interest. This is achieved in two different ways: 415: 255: 3861:Handbook of Practical X-Ray Fluorescence Analysis 535: 5220: 3712:David Bernard Williams; C. Barry Carter (1996). 3546:, Anal Bioanal Chem. 2009 Dec; 395(7): 2015-20. 3328: 4962:Serial block-face scanning electron microscopy 4665:Detectors for transmission electron microscopy 3679:"Radioisotope X-Ray Fluorescence Spectrometry" 739:Figure 8: Flat crystal with Soller collimators 4548: 4072: 3345:". These fall broadly into three categories: 887:Commonly used crystal materials include LiF ( 558:Figure 5: Schematic form of a Si(Li) detector 327:or the X-rays are focused by an optic like a 3930:Jenkins, R., R.W. Gould, R. W., Gedcke, D., 2985: 751: 285: 203:: an L→K transition is traditionally called 111:and building materials, and for research in 3946: 3463: 3440:electron spectroscopy for chemical analysis 1541: 453:or various types of solid-state detectors ( 316:Alternatively, gamma ray sources, based on 189: 4555: 4541: 4079: 4065: 3888:Buhrke, V. E., Jenkins, R., Smith, D. K., 3817:Kalnickya, Dennis J.; Raj Singhvi (2001). 873:Stability in air and on exposure to X-rays 3801: 3783: 3611: 841:{\displaystyle 2d\sin \theta =n\lambda .} 4041:) is being considered for deletion. See 3744:(PDF) June 2016, last checked 20.07.2020 3318: 3274: 2989: 915:-(hydroxymethyl)-methane, also known as 742: 734: 702: 636: 628: 553: 526: 437: 256:{\displaystyle \lambda ={\frac {hc}{E}}} 194:Each element has electronic orbitals of 180: 172: 134: 67: 51: 26: 18: 4562: 3878:, Kluwer Academic / Plenum Publishers, 99:, particularly in the investigation of 5221: 4007:Van Grieken, R. E., Markowicz, A. A., 3718:. Vol. 2. Springer. p. 559. 3245:These measurements are mostly done at 4536: 4060: 988:Properties of commonly used crystals 785:), and let their spacing be noted by 707:Figure 7: Bragg diffraction condition 694: 606:chemical data of adequate precision. 130: 5201: 3810: 870:Low thermal coefficient of expansion 760: 723:Flat crystal with Söller collimators 542:Energy-dispersive X-ray spectroscopy 502: 143:When materials are exposed to short- 91:. The phenomenon is widely used for 747:Figure 9: Curved crystal with slits 562: 298:bombardment of a heavy metal (i.e. 13: 3542:De Viguerie L, Sole VA, Walter P, 3505:List of materials analysis methods 801:of the X-ray wavelength λ.(Fig.7) 654:Wavelength dispersive spectrometry 571: 489: 14: 5265: 4598:Timeline of microscope technology 4086: 4045:to help reach a consensus. › 4024: 2994:Figure 10:K-Beta Mainline and V2C 711: 621:spectrometers are different from 5200: 5189: 5188: 3698:Glocker, R., and Schreiber, H., 3436:X-ray photoelectron spectroscopy 3099:-mainline in low-spin complexes) 670:), the photons are separated by 442:A portable XRF analyzer using a 4957:Precession electron diffraction 3933:Quantitative X-ray Spectrometry 3904:X-ray Fluorescence Spectrometry 3777: 3762: 3747: 3417:particle induced X-ray emission 867:Absence of interfering elements 214:, an M→L transition is called L 210:, an M→K transition is called K 4010:Handbook of X-Ray Spectrometry 3916:Jenkins, R., De Vries, J. L., 3823:Journal of Hazardous Materials 3732: 3705: 3692: 3671: 3657: 3648: 3604:10.1016/j.apradiso.2019.06.014 3584:Applied Radiation and Isotopes 3574: 3556: 3536: 3446:The de-excitation also ejects 3284:Gas flow proportional counters 3262:gas flow proportional counters 536:Energy dispersive spectrometry 410: 404: 1: 4030: 3852: 3835:10.1016/S0304-3894(00)00330-7 3774:2001, last checked 20.07.2020 3759:2013, last checked 20.07.2020 3521:X-ray fluorescence holography 3329:Extracting analytical results 3202:{\displaystyle K_{\beta 2,5}} 3131:{\displaystyle K_{\beta 1,3}} 3092:{\displaystyle K_{\beta 1,3}} 893:ammonium dihydrogen phosphate 600: 587: 334: 46:Syndics of the Drapers' Guild 3918:Practical X-ray Spectrometry 3790:Microscopy and Microanalysis 3252: 3234:{\displaystyle K_{\beta ''}} 984:is the order of reflection. 921:potassium hydrogen phthalate 861:Narrow diffracted peak width 680:"Simultaneous" spectrometers 433: 323:When the energy source is a 72:A handheld XRF analyzer gun. 7: 3960:10.1007/978-94-007-5561-1_2 3741:Advanced X-Ray Spectroscopy 3489: 3470:Verification and validation 3452:Auger electron spectroscopy 3163:{\displaystyle K_{\beta '}} 10: 5270: 4942:Immune electron microscopy 4860:Annular dark-field imaging 4675:Everhart–Thornley detector 4351:X-Ray Fluorescence Imaging 4239:Anomalous X-ray scattering 3467: 3375:Sample macroscopic effects 3355:sample macroscopic effects 3048:{\displaystyle K_{\beta }} 3018:{\displaystyle K_{\beta }} 855:High diffraction intensity 767:Bragg model of diffraction 687:"Sequential" spectrometers 539: 5184: 5129: 5096:Hitachi High-Technologies 5078: 4987: 4980: 4847: 4791: 4753: 4710: 4703: 4657: 4606: 4570: 4498: 4430: 4379: 4264: 4257: 4196: 4155: 4094: 3920:, Springer-Verlag, 1973, 3803:10.1017/S1431927605503167 3552:10.1007/s00216-009-2997-0 2986:Structural analysis lines 992: 791:constructive interference 752:Curved crystal with slits 482:(a detector similar to a 286:Primary radiation sources 5121:Thermo Fisher Scientific 4947:Geometric phase analysis 4835:Aberration-Corrected TEM 4178:Synchrotron light source 4043:templates for discussion 3952:Metallomics and the Cell 3686:Technical Reports Series 3530: 3510:Micro-X-ray fluorescence 3464:Instrument qualification 1542:Elemental analysis lines 1015: 1012: 1009: 1006: 1003: 1000: 995: 613: 190:Characteristic radiation 123:and art objects such as 4870:Charge contrast imaging 4680:Field electron emission 4197:Interaction with matter 4156:Sources and instruments 3310:Semiconductor detectors 3271:semiconductor detectors 864:High peak-to-background 58:Helmut Fischer(company) 5060:Thomas Eugene Everhart 4329:Diffraction tomography 3523: – imaging method 3325: 3303:Scintillation counters 3280: 3268:scintillation counters 3235: 3203: 3164: 3132: 3093: 3049: 3019: 2995: 978: 958: 842: 748: 740: 708: 650: 647:U.S. Geological Survey 634: 559: 532: 459:silicon drift detector 446: 444:silicon drift detector 417: 257: 186: 178: 140: 73: 65: 49: 24: 5249:Scientific techniques 5065:Vernon Ellis Cosslett 4885:Dark-field microscopy 4440:X-ray crystallography 4309:Soft x-ray microscopy 4277:Panoramic radiography 4117:Synchrotron radiation 3948:Penner-Hahn, James E. 3702:, 85, (1928), p. 1089 3496:Emission spectroscopy 3468:Further information: 3322: 3278: 3236: 3204: 3165: 3133: 3094: 3050: 3020: 2993: 979: 959: 843: 746: 738: 706: 660:wavelength dispersive 640: 632: 557: 530: 451:Proportional counters 441: 418: 353:wavelength-dispersive 346:multichannel analyzer 272:wavelength-dispersive 258: 184: 176: 138: 71: 55: 39: 22: 5070:Vladimir K. Zworykin 4720:Correlative light EM 4629:Electron diffraction 4209:Photoelectric effect 4142:Characteristic X-ray 3564:"X-Ray Fluorescence" 3432:photoelectric effect 3296:Sealed gas detectors 3265:sealed gas detectors 3213: 3177: 3142: 3106: 3067: 3032: 3002: 968: 945: 808: 771:three Miller indices 374: 318:radioactive isotopes 276:analytical chemistry 229: 40:XRF scanning of the 5035:Manfred von Ardenne 5020:Gerasimos Danilatos 4927:Electron tomography 4922:Electron holography 4865:Cathodoluminescence 4644:Secondary electrons 4634:Electron scattering 4578:Electron microscopy 4564:Electron microscopy 4229:Photodisintegration 4204:Rayleigh scattering 4183:Free-electron laser 3700:Annalen der Physik. 3596:2019AppRI.152....6P 3458:Confocal microscopy 3438:(XPS), also called 3407:electron microprobe 3289:aluminised PET film 989: 641:Chemist operates a 357:diffraction grating 5239:X-ray spectroscopy 5157:Digital Micrograph 4763:Environmental SEM 4685:Field emission gun 4649:X-ray fluorescence 4470:X-ray reflectivity 4249:X-ray fluorescence 4214:Compton scattering 4147:High-energy X-rays 3864:, Springer, 2006, 3784:L. Vincze (2005). 3339:leaving the sample 3326: 3281: 3231: 3199: 3160: 3128: 3089: 3045: 3015: 2996: 1013:thermal expansion 987: 974: 957:{\displaystyle 4n} 954: 876:Ready availability 838: 749: 741: 709: 695:Sample preparation 651: 635: 560: 533: 457:, Si(Li), Ge(Li), 447: 413: 253: 187: 179: 141: 131:Underlying physics 93:elemental analysis 77:X-ray fluorescence 74: 66: 50: 25: 5234:Molecular physics 5216: 5215: 5180: 5179: 5050:Nestor J. Zaluzec 5045:Maximilian Haider 4843: 4842: 4530: 4529: 4526: 4525: 4518:X-ray lithography 4450:Backscatter X-ray 4445:X-ray diffraction 4272:X-ray radiography 4244:X-ray diffraction 4137:Siegbahn notation 3988:978-94-007-5561-1 3969:978-94-007-5560-4 3936:, Marcel Dekker, 3725:978-0-306-45324-3 3352:X-ray enhancement 2980: 2979: 1539: 1538: 977:{\displaystyle n} 909:indium antimonide 793:) when the angle 761:Crystal materials 729:Söller collimator 548:energy-dispersive 503:Chemical analysis 341:energy-dispersive 268:energy-dispersive 251: 153:ionization energy 97:chemical analysis 37: 5261: 5204: 5203: 5192: 5191: 5000:Bodo von Borries 4985: 4984: 4745:Photoemission EM 4708: 4707: 4557: 4550: 4543: 4534: 4533: 4356:X-ray holography 4262: 4261: 4234:Radiation damage 4081: 4074: 4067: 4058: 4057: 3982:electronic-book 3981: 3847: 3846: 3814: 3808: 3807: 3805: 3781: 3775: 3766: 3760: 3751: 3745: 3736: 3730: 3729: 3709: 3703: 3696: 3690: 3689: 3683: 3675: 3669: 3668: 3661: 3655: 3652: 3646: 3641: 3615: 3578: 3572: 3571: 3560: 3554: 3540: 3526: 3515:Mössbauer effect 3501: 3349:X-ray absorption 3240: 3238: 3237: 3232: 3230: 3229: 3228: 3208: 3206: 3205: 3200: 3198: 3197: 3169: 3167: 3166: 3161: 3159: 3158: 3157: 3137: 3135: 3134: 3129: 3127: 3126: 3098: 3096: 3095: 3090: 3088: 3087: 3054: 3052: 3051: 3046: 3044: 3043: 3024: 3022: 3021: 3016: 3014: 3013: 1594:wavelength (nm) 1550: 1549: 990: 986: 983: 981: 980: 975: 963: 961: 960: 955: 931:are then called 889:lithium fluoride 847: 845: 844: 839: 796: 563:Si(Li) detectors 422: 420: 419: 414: 292:X-ray generators 262: 260: 259: 254: 252: 247: 239: 117:forensic science 38: 5269: 5268: 5264: 5263: 5262: 5260: 5259: 5258: 5219: 5218: 5217: 5212: 5176: 5125: 5074: 5055:Ondrej Krivanek 4976: 4839: 4787: 4749: 4735:Liquid-Phase EM 4699: 4658:Instrumentation 4653: 4611: 4602: 4566: 4561: 4531: 4522: 4506:X-ray astronomy 4494: 4426: 4375: 4361:X-ray telescope 4253: 4224:Photoionization 4192: 4188:X-ray nanoprobe 4151: 4107:Absorption edge 4095:Characteristics 4090: 4085: 4046: 4027: 3970: 3892:, Wiley, 1998, 3874:Bertin, E. P., 3855: 3850: 3829:(1–2): 93–122. 3815: 3811: 3782: 3778: 3767: 3763: 3752: 3748: 3737: 3733: 3726: 3710: 3706: 3697: 3693: 3681: 3677: 3676: 3672: 3663: 3662: 3658: 3653: 3649: 3579: 3575: 3562: 3561: 3557: 3541: 3537: 3533: 3524: 3499: 3492: 3472: 3466: 3448:Auger electrons 3430:ejected by the 3396: 3389: 3385: 3331: 3255: 3221: 3220: 3216: 3214: 3211: 3210: 3184: 3180: 3178: 3175: 3174: 3150: 3149: 3145: 3143: 3140: 3139: 3113: 3109: 3107: 3104: 3103: 3074: 3070: 3068: 3065: 3064: 3039: 3035: 3033: 3030: 3029: 3009: 3005: 3003: 3000: 2999: 2988: 2973: 2959: 2945: 2931: 2917: 2903: 2889: 2875: 2861: 2847: 2833: 2819: 2805: 2791: 2777: 2763: 2749: 2735: 2721: 2707: 2693: 2679: 2665: 2651: 2637: 2623: 2609: 2595: 2581: 2567: 2553: 2539: 2525: 2511: 2497: 2483: 2469: 2455: 2441: 2427: 2413: 2399: 2385: 2371: 2357: 2343: 2329: 2315: 2301: 2287: 2273: 2259: 2245: 2231: 2217: 2203: 2189: 2175: 2161: 2147: 2133: 2119: 2105: 2091: 2077: 2063: 2049: 2035: 2021: 2007: 1993: 1979: 1965: 1951: 1937: 1923: 1909: 1895: 1881: 1856: 1842: 1828: 1803: 1789: 1775: 1750: 1736: 1722: 1697: 1683: 1669: 1644: 1630: 1616: 1583:wavelength (nm) 1572:wavelength (nm) 1561:wavelength (nm) 1544: 1487: 969: 966: 965: 946: 943: 942: 917:pentaerythritol 858:High dispersion 809: 806: 805: 794: 763: 754: 725: 714: 697: 662:spectrometers ( 656: 616: 603: 590: 582:liquid nitrogen 574: 572:Wafer detectors 565: 544: 538: 505: 499:) intensities. 492: 490:X-ray intensity 480:photomultiplier 436: 375: 372: 371: 337: 288: 240: 238: 230: 227: 226: 217: 213: 208: 192: 133: 27: 17: 12: 11: 5: 5267: 5257: 5256: 5251: 5246: 5241: 5236: 5231: 5229:Atomic physics 5214: 5213: 5211: 5210: 5198: 5185: 5182: 5181: 5178: 5177: 5175: 5174: 5169: 5164: 5162:Direct methods 5159: 5154: 5149: 5144: 5139: 5133: 5131: 5127: 5126: 5124: 5123: 5118: 5113: 5108: 5103: 5098: 5093: 5088: 5082: 5080: 5076: 5075: 5073: 5072: 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5027: 5022: 5017: 5012: 5010:Ernst G. Bauer 5007: 5002: 4997: 4991: 4989: 4982: 4978: 4977: 4975: 4974: 4969: 4964: 4959: 4954: 4949: 4944: 4939: 4934: 4929: 4924: 4919: 4914: 4909: 4904: 4903: 4902: 4892: 4887: 4882: 4877: 4872: 4867: 4862: 4857: 4851: 4849: 4845: 4844: 4841: 4840: 4838: 4837: 4832: 4831: 4830: 4820: 4815: 4810: 4809: 4808: 4797: 4795: 4789: 4788: 4786: 4785: 4780: 4775: 4770: 4765: 4759: 4757: 4751: 4750: 4748: 4747: 4742: 4737: 4732: 4727: 4722: 4716: 4714: 4705: 4701: 4700: 4698: 4697: 4692: 4687: 4682: 4677: 4672: 4667: 4661: 4659: 4655: 4654: 4652: 4651: 4646: 4641: 4636: 4631: 4626: 4624:Bremsstrahlung 4621: 4615: 4613: 4604: 4603: 4601: 4600: 4595: 4590: 4585: 4580: 4574: 4572: 4568: 4567: 4560: 4559: 4552: 4545: 4537: 4528: 4527: 4524: 4523: 4521: 4520: 4515: 4514: 4513: 4502: 4500: 4496: 4495: 4493: 4492: 4487: 4482: 4477: 4472: 4467: 4462: 4457: 4452: 4447: 4442: 4436: 4434: 4428: 4427: 4425: 4424: 4419: 4414: 4409: 4404: 4399: 4394: 4389: 4383: 4381: 4377: 4376: 4374: 4373: 4368: 4363: 4358: 4353: 4348: 4347: 4346: 4341: 4336: 4326: 4321: 4316: 4311: 4306: 4305: 4304: 4299: 4289: 4284: 4279: 4274: 4268: 4266: 4259: 4255: 4254: 4252: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4211: 4206: 4200: 4198: 4194: 4193: 4191: 4190: 4185: 4180: 4175: 4170: 4165: 4159: 4157: 4153: 4152: 4150: 4149: 4144: 4139: 4134: 4129: 4124: 4119: 4114: 4109: 4104: 4098: 4096: 4092: 4091: 4084: 4083: 4076: 4069: 4061: 4055: 4054: 4026: 4025:External links 4023: 4022: 4021: 4005: 3968: 3944: 3928: 3914: 3900: 3886: 3872: 3854: 3851: 3849: 3848: 3809: 3776: 3761: 3746: 3731: 3724: 3704: 3691: 3670: 3656: 3647: 3573: 3555: 3534: 3532: 3529: 3528: 3527: 3518: 3512: 3507: 3502: 3491: 3488: 3465: 3462: 3444: 3443: 3421: 3420: 3410: 3395: 3392: 3387: 3383: 3357: 3356: 3353: 3350: 3343:matrix effects 3330: 3327: 3273: 3272: 3269: 3266: 3263: 3254: 3251: 3243: 3242: 3227: 3224: 3219: 3196: 3193: 3190: 3187: 3183: 3171: 3156: 3153: 3148: 3125: 3122: 3119: 3116: 3112: 3100: 3086: 3083: 3080: 3077: 3073: 3042: 3038: 3012: 3008: 2987: 2984: 2978: 2977: 2974: 2971: 2968: 2965: 2963: 2960: 2957: 2954: 2951: 2949: 2946: 2943: 2940: 2937: 2935: 2932: 2929: 2926: 2922: 2921: 2918: 2915: 2912: 2909: 2907: 2904: 2901: 2898: 2895: 2893: 2890: 2887: 2884: 2881: 2879: 2876: 2873: 2870: 2866: 2865: 2862: 2859: 2856: 2853: 2851: 2848: 2845: 2842: 2839: 2837: 2834: 2831: 2828: 2825: 2823: 2820: 2817: 2814: 2810: 2809: 2806: 2803: 2800: 2797: 2795: 2792: 2789: 2786: 2783: 2781: 2778: 2775: 2772: 2769: 2767: 2764: 2761: 2758: 2754: 2753: 2750: 2747: 2744: 2741: 2739: 2736: 2733: 2730: 2727: 2725: 2722: 2719: 2716: 2713: 2711: 2708: 2705: 2702: 2698: 2697: 2694: 2691: 2688: 2685: 2683: 2680: 2677: 2674: 2671: 2669: 2666: 2663: 2660: 2657: 2655: 2652: 2649: 2646: 2642: 2641: 2638: 2635: 2632: 2629: 2627: 2624: 2621: 2618: 2615: 2613: 2610: 2607: 2604: 2601: 2599: 2596: 2593: 2590: 2586: 2585: 2582: 2579: 2576: 2573: 2571: 2568: 2565: 2562: 2559: 2557: 2554: 2551: 2548: 2545: 2543: 2540: 2537: 2534: 2530: 2529: 2526: 2523: 2520: 2517: 2515: 2512: 2509: 2506: 2503: 2501: 2498: 2495: 2492: 2489: 2487: 2484: 2481: 2478: 2474: 2473: 2470: 2467: 2464: 2461: 2459: 2456: 2453: 2450: 2447: 2445: 2442: 2439: 2436: 2433: 2431: 2428: 2425: 2422: 2418: 2417: 2414: 2411: 2408: 2405: 2403: 2400: 2397: 2394: 2391: 2389: 2386: 2383: 2380: 2377: 2375: 2372: 2369: 2366: 2362: 2361: 2358: 2355: 2352: 2349: 2347: 2344: 2341: 2338: 2335: 2333: 2330: 2327: 2324: 2321: 2319: 2316: 2313: 2310: 2306: 2305: 2302: 2299: 2296: 2293: 2291: 2288: 2285: 2282: 2279: 2277: 2274: 2271: 2268: 2265: 2263: 2260: 2257: 2254: 2250: 2249: 2246: 2243: 2240: 2237: 2235: 2232: 2229: 2226: 2223: 2221: 2218: 2215: 2212: 2209: 2207: 2204: 2201: 2198: 2194: 2193: 2190: 2187: 2184: 2181: 2179: 2176: 2173: 2170: 2167: 2165: 2162: 2159: 2156: 2153: 2151: 2148: 2145: 2142: 2138: 2137: 2134: 2131: 2128: 2125: 2123: 2120: 2117: 2114: 2111: 2109: 2106: 2103: 2100: 2097: 2095: 2092: 2089: 2086: 2082: 2081: 2078: 2075: 2072: 2069: 2067: 2064: 2061: 2058: 2055: 2053: 2050: 2047: 2044: 2041: 2039: 2036: 2033: 2030: 2026: 2025: 2022: 2019: 2016: 2013: 2011: 2008: 2005: 2002: 1999: 1997: 1994: 1991: 1988: 1985: 1983: 1980: 1977: 1974: 1970: 1969: 1966: 1963: 1960: 1957: 1955: 1952: 1949: 1946: 1943: 1941: 1938: 1935: 1932: 1929: 1927: 1924: 1921: 1918: 1914: 1913: 1910: 1907: 1904: 1901: 1899: 1896: 1893: 1890: 1887: 1885: 1882: 1879: 1876: 1873: 1871: 1868: 1865: 1861: 1860: 1857: 1854: 1851: 1848: 1846: 1843: 1840: 1837: 1834: 1832: 1829: 1826: 1823: 1820: 1818: 1815: 1812: 1808: 1807: 1804: 1801: 1798: 1795: 1793: 1790: 1787: 1784: 1781: 1779: 1776: 1773: 1770: 1767: 1765: 1762: 1759: 1755: 1754: 1751: 1748: 1745: 1742: 1740: 1737: 1734: 1731: 1728: 1726: 1723: 1720: 1717: 1714: 1712: 1709: 1706: 1702: 1701: 1698: 1695: 1692: 1689: 1687: 1684: 1681: 1678: 1675: 1673: 1670: 1667: 1664: 1661: 1659: 1656: 1653: 1649: 1648: 1645: 1642: 1639: 1636: 1634: 1631: 1628: 1625: 1622: 1620: 1617: 1614: 1611: 1608: 1606: 1603: 1600: 1596: 1595: 1592: 1589: 1586: 1584: 1581: 1578: 1575: 1573: 1570: 1567: 1564: 1562: 1559: 1554: 1543: 1540: 1537: 1536: 1533: 1530: 1527: 1524: 1521: 1518: 1515: 1511: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1489: 1485: 1480: 1479: 1476: 1473: 1470: 1467: 1464: 1461: 1458: 1452: 1451: 1448: 1445: 1442: 1439: 1436: 1433: 1430: 1424: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1396: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1368: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1340: 1339: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1312: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1284: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1258: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1232: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1206: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1180: 1179: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1154: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1126: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1098: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1072: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1046: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1018: 1017: 1014: 1011: 1008: 1005: 1002: 999: 994: 973: 953: 950: 881: 880: 877: 874: 871: 868: 865: 862: 859: 856: 849: 848: 837: 834: 831: 828: 825: 822: 819: 816: 813: 762: 759: 753: 750: 724: 721: 713: 712:Monochromators 710: 696: 693: 692: 691: 684: 655: 652: 615: 612: 602: 599: 589: 586: 578:Peltier effect 573: 570: 564: 561: 540:Main article: 537: 534: 504: 501: 491: 488: 484:Geiger counter 435: 432: 424: 423: 412: 409: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 336: 333: 308:bremsstrahlung 287: 284: 264: 263: 250: 246: 243: 237: 234: 215: 211: 206: 196:characteristic 191: 188: 132: 129: 15: 9: 6: 4: 3: 2: 5266: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5226: 5224: 5209: 5208: 5199: 5197: 5196: 5187: 5186: 5183: 5173: 5170: 5168: 5165: 5163: 5160: 5158: 5155: 5153: 5150: 5148: 5145: 5143: 5140: 5138: 5135: 5134: 5132: 5128: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5097: 5094: 5092: 5089: 5087: 5086:Carl Zeiss AG 5084: 5083: 5081: 5079:Manufacturers 5077: 5071: 5068: 5066: 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5030:James Hillier 5028: 5026: 5023: 5021: 5018: 5016: 5013: 5011: 5008: 5006: 5003: 5001: 4998: 4996: 4993: 4992: 4990: 4986: 4983: 4979: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4950: 4948: 4945: 4943: 4940: 4938: 4935: 4933: 4930: 4928: 4925: 4923: 4920: 4918: 4915: 4913: 4910: 4908: 4905: 4901: 4898: 4897: 4896: 4893: 4891: 4888: 4886: 4883: 4881: 4878: 4876: 4873: 4871: 4868: 4866: 4863: 4861: 4858: 4856: 4853: 4852: 4850: 4846: 4836: 4833: 4829: 4826: 4825: 4824: 4821: 4819: 4816: 4814: 4811: 4807: 4804: 4803: 4802: 4799: 4798: 4796: 4794: 4790: 4784: 4783:Ultrafast SEM 4781: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4760: 4758: 4756: 4752: 4746: 4743: 4741: 4740:Low-energy EM 4738: 4736: 4733: 4731: 4728: 4726: 4723: 4721: 4718: 4717: 4715: 4713: 4709: 4706: 4702: 4696: 4693: 4691: 4690:Magnetic lens 4688: 4686: 4683: 4681: 4678: 4676: 4673: 4671: 4668: 4666: 4663: 4662: 4660: 4656: 4650: 4647: 4645: 4642: 4640: 4639:Kikuchi lines 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4616: 4614: 4609: 4605: 4599: 4596: 4594: 4591: 4589: 4586: 4584: 4581: 4579: 4576: 4575: 4573: 4569: 4565: 4558: 4553: 4551: 4546: 4544: 4539: 4538: 4535: 4519: 4516: 4512: 4509: 4508: 4507: 4504: 4503: 4501: 4497: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4437: 4435: 4433: 4429: 4423: 4420: 4418: 4415: 4413: 4410: 4408: 4405: 4403: 4400: 4398: 4395: 4393: 4390: 4388: 4385: 4384: 4382: 4378: 4372: 4369: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4345: 4342: 4340: 4337: 4335: 4332: 4331: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4303: 4300: 4298: 4295: 4294: 4293: 4290: 4288: 4285: 4283: 4282:Tomosynthesis 4280: 4278: 4275: 4273: 4270: 4269: 4267: 4263: 4260: 4256: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4201: 4199: 4195: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4160: 4158: 4154: 4148: 4145: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4113: 4112:Moseley's law 4110: 4108: 4105: 4103: 4100: 4099: 4097: 4093: 4089: 4088:X-ray science 4082: 4077: 4075: 4070: 4068: 4063: 4062: 4059: 4053: 4049: 4044: 4040: 4039: 4034: 4029: 4028: 4020: 4019:0-8247-0600-5 4016: 4012: 4011: 4006: 4004: 4000: 3996: 3992: 3989: 3985: 3979: 3975: 3971: 3965: 3961: 3957: 3953: 3949: 3945: 3943: 3942:0-8247-9554-7 3939: 3935: 3934: 3929: 3927: 3926:0-387-91029-8 3923: 3919: 3915: 3913: 3912:0-471-29942-1 3909: 3905: 3902:Jenkins, R., 3901: 3899: 3898:0-471-19458-1 3895: 3891: 3887: 3885: 3884:0-306-30809-6 3881: 3877: 3873: 3871: 3870:3-540-28603-9 3867: 3863: 3862: 3857: 3856: 3844: 3840: 3836: 3832: 3828: 3824: 3820: 3813: 3804: 3799: 3795: 3791: 3787: 3780: 3773: 3772: 3768:D.B. Wittry: 3765: 3758: 3757: 3750: 3743: 3742: 3735: 3727: 3721: 3717: 3716: 3708: 3701: 3695: 3687: 3680: 3674: 3666: 3660: 3651: 3645: 3639: 3635: 3631: 3627: 3623: 3619: 3614: 3609: 3605: 3601: 3597: 3593: 3589: 3585: 3577: 3569: 3565: 3559: 3553: 3549: 3545: 3539: 3535: 3522: 3519: 3516: 3513: 3511: 3508: 3506: 3503: 3497: 3494: 3493: 3487: 3485: 3481: 3477: 3471: 3461: 3459: 3455: 3453: 3449: 3441: 3437: 3433: 3429: 3426: 3425: 3424: 3418: 3414: 3411: 3408: 3404: 3401: 3400: 3399: 3391: 3379: 3376: 3372: 3369: 3365: 3362: 3359:All elements 3354: 3351: 3348: 3347: 3346: 3344: 3340: 3336: 3321: 3317: 3315: 3311: 3307: 3304: 3300: 3297: 3293: 3290: 3285: 3277: 3270: 3267: 3264: 3261: 3260: 3259: 3250: 3248: 3225: 3222: 3217: 3194: 3191: 3188: 3185: 3181: 3172: 3154: 3151: 3146: 3123: 3120: 3117: 3114: 3110: 3101: 3084: 3081: 3078: 3075: 3071: 3062: 3061: 3060: 3056: 3040: 3036: 3026: 3010: 3006: 2992: 2983: 2975: 2969: 2966: 2964: 2961: 2955: 2952: 2950: 2947: 2941: 2938: 2936: 2933: 2927: 2924: 2923: 2919: 2913: 2910: 2908: 2905: 2899: 2896: 2894: 2891: 2885: 2882: 2880: 2877: 2871: 2868: 2867: 2863: 2857: 2854: 2852: 2849: 2843: 2840: 2838: 2835: 2829: 2826: 2824: 2821: 2815: 2812: 2811: 2807: 2801: 2798: 2796: 2793: 2787: 2784: 2782: 2779: 2773: 2770: 2768: 2765: 2759: 2756: 2755: 2751: 2745: 2742: 2740: 2737: 2731: 2728: 2726: 2723: 2717: 2714: 2712: 2709: 2703: 2700: 2699: 2695: 2689: 2686: 2684: 2681: 2675: 2672: 2670: 2667: 2661: 2658: 2656: 2653: 2647: 2644: 2643: 2639: 2633: 2630: 2628: 2625: 2619: 2616: 2614: 2611: 2605: 2602: 2600: 2597: 2591: 2588: 2587: 2583: 2577: 2574: 2572: 2569: 2563: 2560: 2558: 2555: 2549: 2546: 2544: 2541: 2535: 2532: 2531: 2527: 2521: 2518: 2516: 2513: 2507: 2504: 2502: 2499: 2493: 2490: 2488: 2485: 2479: 2476: 2475: 2471: 2465: 2462: 2460: 2457: 2451: 2448: 2446: 2443: 2437: 2434: 2432: 2429: 2423: 2420: 2419: 2415: 2409: 2406: 2404: 2401: 2395: 2392: 2390: 2387: 2381: 2378: 2376: 2373: 2367: 2364: 2363: 2359: 2353: 2350: 2348: 2345: 2339: 2336: 2334: 2331: 2325: 2322: 2320: 2317: 2311: 2308: 2307: 2303: 2297: 2294: 2292: 2289: 2283: 2280: 2278: 2275: 2269: 2266: 2264: 2261: 2255: 2252: 2251: 2247: 2241: 2238: 2236: 2233: 2227: 2224: 2222: 2219: 2213: 2210: 2208: 2205: 2199: 2196: 2195: 2191: 2185: 2182: 2180: 2177: 2171: 2168: 2166: 2163: 2157: 2154: 2152: 2149: 2143: 2140: 2139: 2135: 2129: 2126: 2124: 2121: 2115: 2112: 2110: 2107: 2101: 2098: 2096: 2093: 2087: 2084: 2083: 2079: 2073: 2070: 2068: 2065: 2059: 2056: 2054: 2051: 2045: 2042: 2040: 2037: 2031: 2028: 2027: 2023: 2017: 2014: 2012: 2009: 2003: 2000: 1998: 1995: 1989: 1986: 1984: 1981: 1975: 1972: 1971: 1967: 1961: 1958: 1956: 1953: 1947: 1944: 1942: 1939: 1933: 1930: 1928: 1925: 1919: 1916: 1915: 1911: 1905: 1902: 1900: 1897: 1891: 1888: 1886: 1883: 1877: 1874: 1872: 1869: 1866: 1863: 1862: 1858: 1852: 1849: 1847: 1844: 1838: 1835: 1833: 1830: 1824: 1821: 1819: 1816: 1813: 1810: 1809: 1805: 1799: 1796: 1794: 1791: 1785: 1782: 1780: 1777: 1771: 1768: 1766: 1763: 1760: 1757: 1756: 1752: 1746: 1743: 1741: 1738: 1732: 1729: 1727: 1724: 1718: 1715: 1713: 1710: 1707: 1704: 1703: 1699: 1693: 1690: 1688: 1685: 1679: 1676: 1674: 1671: 1665: 1662: 1660: 1657: 1654: 1651: 1650: 1646: 1640: 1637: 1635: 1632: 1626: 1623: 1621: 1618: 1612: 1609: 1607: 1604: 1601: 1598: 1597: 1593: 1590: 1587: 1585: 1582: 1579: 1576: 1574: 1571: 1568: 1565: 1563: 1560: 1558: 1555: 1552: 1551: 1548: 1534: 1531: 1528: 1525: 1522: 1519: 1516: 1514:6 nm LSM 1513: 1512: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1488: 1482: 1481: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1457: 1454: 1453: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1429: 1426: 1425: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1401: 1398: 1397: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1373: 1370: 1369: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1345: 1342: 1341: 1337: 1334: 1331: 1328: 1325: 1322: 1319: 1317: 1314: 1313: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1289: 1286: 1285: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1259: 1255: 1252: 1249: 1246: 1243: 1240: 1237: 1234: 1233: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1207: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1181: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1155: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1131: 1128: 1127: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1103: 1100: 1099: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1073: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1047: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1023: 1020: 1019: 998: 991: 985: 971: 951: 948: 939: 936: 934: 930: 924: 922: 918: 914: 910: 906: 902: 898: 894: 890: 885: 878: 875: 872: 869: 866: 863: 860: 857: 854: 853: 852: 835: 832: 829: 826: 823: 820: 817: 814: 811: 804: 803: 802: 800: 792: 788: 784: 780: 776: 772: 768: 758: 745: 737: 733: 730: 720: 717: 705: 701: 688: 685: 681: 678: 677: 676: 673: 669: 665: 661: 648: 644: 639: 631: 627: 624: 620: 611: 607: 598: 595: 594:pulse-shaping 585: 583: 579: 569: 556: 552: 549: 543: 529: 525: 523: 519: 514: 510: 500: 498: 497:atomic number 487: 485: 481: 476: 474: 469: 464: 460: 456: 452: 445: 440: 431: 429: 407: 401: 398: 395: 392: 389: 386: 383: 380: 377: 370: 369: 368: 366: 362: 361:monochromator 358: 354: 349: 347: 342: 332: 330: 329:polycapillary 326: 321: 319: 314: 311: 309: 305: 301: 297: 293: 283: 281: 280:Moseley's law 277: 273: 269: 248: 244: 241: 235: 232: 225: 224: 223: 221: 209: 202: 197: 183: 175: 171: 169: 168: 162: 158: 154: 150: 146: 137: 128: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 70: 63: 59: 54: 47: 43: 21: 5254:Fluorescence 5205: 5193: 5147:EM Data Bank 5111:Nion Company 5005:Dennis Gabor 4995:Albert Crewe 4773:Confocal SEM 4670:Electron gun 4648: 4619:Auger effect 4380:Spectroscopy 4324:Ptychography 4258:Applications 4248: 4219:Auger effect 4122:Water window 4048:Spectroscopy 4036: 4009: 3951: 3932: 3917: 3903: 3889: 3875: 3860: 3826: 3822: 3812: 3793: 3789: 3779: 3770: 3764: 3755: 3749: 3740: 3734: 3714: 3707: 3699: 3694: 3685: 3673: 3659: 3650: 3613:10261/206347 3587: 3583: 3576: 3567: 3558: 3538: 3473: 3456: 3445: 3422: 3397: 3380: 3374: 3373: 3367: 3366: 3360: 3358: 3338: 3334: 3332: 3309: 3308: 3302: 3301: 3295: 3294: 3283: 3282: 3256: 3244: 3057: 3027: 2997: 2981: 1545: 940: 937: 933:Laue indices 928: 925: 912: 886: 882: 850: 798: 786: 782: 778: 774: 764: 755: 726: 718: 715: 698: 686: 679: 657: 617: 608: 604: 591: 575: 566: 545: 506: 493: 477: 448: 427: 425: 350: 338: 322: 315: 312: 289: 265: 220:Planck's Law 193: 167:fluorescence 165: 142: 113:geochemistry 80: 76: 75: 5091:FEI Company 5025:Harald Rose 5015:Ernst Ruska 4704:Microscopes 4612:with matter 4610:interaction 4173:Synchrotron 4031:‹ The 3997:electronic- 3753:D.Sokaras: 3738:S. DeBeer: 3368:Enhancement 3247:synchrotron 3170:-mainlines) 1016:durability 1007:max λ (nm) 1004:min λ (nm) 672:diffraction 365:Bragg's law 325:synchrotron 294:, based on 201:given names 121:archaeology 5223:Categories 5172:Multislice 4988:Developers 4848:Techniques 4593:Microscope 4588:Micrograph 4432:Scattering 4297:Helical CT 4163:X-ray tube 3853:References 3335:generation 1010:intensity 929:h, k and l 643:goniometer 601:Processing 588:Amplifiers 335:Dispersion 145:wavelength 89:gamma rays 64:materials 44:-painting 5040:Max Knoll 4695:Stigmator 4003:1868-0402 3995:1559-0836 3906:, Wiley, 3638:189944850 3622:0969-8043 3568:ColourLex 3428:electrons 3253:Detectors 3223:β 3186:β 3152:β 3115:β 3076:β 3041:β 3011:β 1247:forbidden 1244:forbidden 1169:forbidden 1166:forbidden 993:material 897:germanium 833:λ 824:θ 821:⁡ 518:beryllium 513:Schreiber 473:PIN diode 455:PIN diode 434:Detection 408:θ 402:⁡ 396:⋅ 384:λ 381:⋅ 233:λ 125:paintings 42:Rembrandt 5195:Category 5142:CrysTBox 5130:Software 4801:Cryo-TEM 4608:Electron 4168:Betatron 4033:template 3978:23595669 3843:11267748 3630:31203095 3590:: 6–10. 3490:See also 3403:electron 3226:″ 3155:′ 1288:Graphite 964:, where 919:), KAP ( 913:tetrakis 907:, InSb ( 905:graphite 891:), ADP ( 879:Low cost 300:tungsten 296:electron 157:orbitals 109:ceramics 5207:Commons 4855:4D STEM 4828:4D STEM 4806:Cryo-ET 4778:SEM-XRF 4768:CryoSEM 4725:Cryo-EM 4583:History 4511:History 4265:Imaging 4035:below ( 3796:: 682. 3592:Bibcode 3419:(PIXE). 3241:-lines) 2976:0.0724 2920:0.0740 2864:0.0756 2808:0.0773 2752:0.0791 2724:0.05357 2696:0.0809 2668:0.05599 2640:0.0828 2612:0.05859 2584:0.0847 2556:0.06136 2528:0.0868 2500:0.06433 2472:0.0888 2444:0.06751 2416:0.0911 2388:0.07094 2360:0.0933 2332:0.07462 2304:0.0956 2276:0.07859 2248:0.0980 2220:0.08288 2192:0.1005 2164:0.08753 2136:0.1031 2108:0.09256 2080:0.1057 2052:0.09801 2024:0.1085 1968:0.1114 1912:0.1144 1859:0.1175 1806:0.1207 1753:0.1241 1700:0.1276 1647:0.1313 1588:element 1577:element 1566:element 1553:element 1509:  1273:0,17839 1270:0,14673 1221:0,16314 1218:0,13625 1195:0,21752 1192:0,17839 1001:d (nm) 911:), PE ( 901:silicon 899:), Si ( 895:), Ge ( 649:, 1958. 509:Glocker 359:-based 304:rhodium 5244:X-rays 5152:EMsoft 5137:CASINO 5116:TESCAN 4981:Others 4880:cryoEM 4571:Basics 4499:Others 4460:GISAXS 4132:L-edge 4127:K-edge 4052:Curlie 4038:Curlie 4017:  4001:  3993:  3986:  3976:  3966:  3940:  3924:  3910:  3896:  3882:  3868:  3841:  3722:  3688:(115). 3644:murals 3636:  3628:  3620:  3450:, but 3442:(ESCA) 3415:beam: 3405:beam: 3361:absorb 3324:"bead" 3209:- and 3138:- and 2962:0.1351 2948:0.3289 2934:0.1789 2906:0.1391 2892:0.3439 2878:0.1936 2850:0.1433 2836:0.3600 2822:0.2102 2794:0.1476 2780:0.3772 2766:0.2290 2738:0.1522 2710:0.2504 2682:0.1570 2654:0.2749 2626:0.1620 2598:0.3032 2570:0.1672 2542:0.3359 2514:0.1727 2486:0.3742 2458:0.1784 2430:0.4193 2402:0.1845 2374:0.4729 2346:0.1909 2318:0.5373 2290:0.1977 2262:0.6158 2234:0.2047 2206:0.7126 2178:0.2121 2122:0.2200 2066:0.2282 2010:0.2370 1996:0.1040 1954:0.2463 1940:0.1105 1898:0.2562 1884:0.1176 1845:0.2666 1831:0.1254 1792:0.2776 1778:0.1340 1739:0.2892 1725:0.1435 1686:0.3016 1672:0.1541 1633:0.3149 1619:0.1658 1526:11.276 1506:  1503:  1500:  1497:  1435:0.3135 1351:0.4371 1323:0.3740 1295:0.3354 1267:0,0894 1241:0,1789 1215:0,0816 1189:0,1088 1163:0,1633 1137:0.3266 1109:0.5320 1081:0.0901 1055:0.1424 1029:0.2014 522:sodium 463:photon 426:where 101:metals 85:X-rays 5106:Leica 4952:PINEM 4818:HRTEM 4813:EFTEM 4490:EDXRD 4412:XANES 4407:EXAFS 4397:ARPES 4344:3DXRD 4102:X-ray 3682:(PDF) 3634:S2CID 3531:Notes 2150:0.834 2094:0.989 2038:1.191 1982:1.461 1926:1.832 1870:2.362 1523:1.566 1494:0.586 1469:2.434 1466:0.338 1463:1.295 1441:0.589 1438:0.082 1413:2.453 1410:0.341 1407:1.305 1385:2.490 1382:0.346 1379:1.325 1363:+++++ 1357:0.821 1354:0.114 1329:0.703 1326:0.098 1301:0.630 1298:0.088 1143:0.614 1140:0.085 1115:1.000 1112:0.139 1087:0.169 1084:0.024 1061:0.268 1058:0.037 1038:+++++ 1035:0.379 1032:0.053 997:plane 614:Usage 468:EDXRF 149:atoms 105:glass 5167:IUCr 5101:JEOL 4972:WBDF 4967:WDXS 4917:EBIC 4912:EELS 4907:ECCI 4895:EBSD 4875:CBED 4823:STEM 4475:RIXS 4465:WAXS 4455:SAXS 4366:DFXM 4334:XDCT 4319:STXM 4314:XPCI 4302:XACT 4015:ISBN 3999:ISSN 3991:ISSN 3984:ISBN 3974:PMID 3964:ISBN 3938:ISBN 3922:ISBN 3908:ISBN 3894:ISBN 3880:ISBN 3866:ISBN 3839:PMID 3720:ISBN 3642:and 3626:PMID 3618:ISSN 3484:SOPs 1817:3.16 1764:4.47 1711:6.76 1658:11.4 1605:22.8 1591:line 1580:line 1569:line 1557:line 1520:6.00 1460:1010 1456:TlAP 1450:+++ 1404:1010 1400:RbAP 1376:1010 1338:+++ 1332:++++ 1316:InSb 1310:+++ 1304:++++ 1282:+++ 1256:+++ 1230:+++ 1204:+++ 1178:+++ 1152:+++ 1096:+++ 1070:+++ 1044:+++ 511:and 161:hole 95:and 62:RoHS 4937:FEM 4932:FIB 4900:TKD 4890:EDS 4793:TEM 4755:SEM 4730:EMP 4480:XRS 4422:XFH 4417:EDS 4402:AES 4392:XPS 4387:XAS 4371:DXA 4339:DCT 4287:CDI 4050:at 3956:doi 3831:doi 3798:doi 3608:hdl 3600:doi 3588:152 3548:doi 3413:ion 3316:). 3314:EDX 2650:1,2 2594:1,2 2538:1,2 2482:1,2 2426:1,2 2370:1,2 2314:1,2 2258:1,2 2202:1,2 2146:1,2 2090:1,2 2034:1,2 1978:1,2 1922:1,2 1535:++ 1529:+++ 1491:400 1478:++ 1472:+++ 1432:111 1422:++ 1394:++ 1372:KAP 1360:+++ 1348:002 1320:111 1292:001 1276:+++ 1264:620 1250:+++ 1238:310 1224:+++ 1212:444 1198:+++ 1186:333 1172:+++ 1160:222 1146:+++ 1134:111 1124:++ 1106:101 1102:ADP 1078:420 1075:LiF 1064:+++ 1052:220 1049:LiF 1041:+++ 1026:200 1022:LiF 903:), 818:sin 668:WDS 666:or 664:WDX 658:In 623:WDX 619:EDX 546:In 399:sin 351:In 339:In 302:or 282:). 81:XRF 5225:: 4712:EM 4485:XS 4292:CT 3972:. 3962:. 3837:. 3827:83 3825:. 3821:. 3794:11 3792:. 3788:. 3684:. 3632:. 3624:. 3616:. 3606:. 3598:. 3586:. 3566:. 3480:QC 3476:QA 3434:: 3386:-M 2970:Lα 2967:No 2956:Lα 2953:Ir 2942:Lα 2939:Te 2928:Kα 2925:Co 2914:Lα 2911:Md 2900:Lα 2897:Os 2886:Lα 2883:Sb 2872:Kα 2869:Fe 2858:Lα 2855:Fm 2844:Lα 2841:Re 2830:Lα 2827:Sn 2816:Kα 2813:Mn 2802:Lα 2799:Es 2788:Lα 2774:Lα 2771:In 2760:Kα 2757:Cr 2746:Lα 2743:Cf 2732:Lα 2729:Ta 2718:Kα 2715:Cd 2704:Kα 2690:Lα 2687:Bk 2676:Lα 2673:Hf 2662:Kα 2659:Ag 2648:Kα 2645:Ti 2634:Lα 2631:Cm 2620:Lα 2617:Lu 2606:Kα 2603:Pd 2592:Kα 2589:Sc 2578:Lα 2575:Am 2564:Lα 2561:Yb 2550:Kα 2547:Rh 2536:Kα 2533:Ca 2522:Lα 2519:Pu 2508:Lα 2505:Tm 2494:Kα 2491:Ru 2480:Kα 2466:Lα 2463:Np 2452:Lα 2449:Er 2438:Kα 2435:Tc 2424:Kα 2421:Ar 2410:Lα 2396:Lα 2393:Ho 2382:Kα 2379:Mo 2368:Kα 2365:Cl 2354:Lα 2351:Pa 2340:Lα 2337:Dy 2326:Kα 2323:Nb 2312:Kα 2298:Lα 2295:Th 2284:Lα 2281:Tb 2270:Kα 2267:Zr 2256:Kα 2242:Lα 2239:Ac 2228:Lα 2225:Gd 2214:Kα 2200:Kα 2197:Si 2186:Lα 2183:Ra 2172:Lα 2169:Eu 2158:Kα 2155:Sr 2144:Kα 2141:Al 2130:Lα 2127:Fr 2116:Lα 2113:Sm 2102:Kα 2099:Rb 2088:Kα 2085:Mg 2074:Lα 2071:Rn 2060:Lα 2057:Pm 2046:Kα 2043:Kr 2032:Kα 2029:Na 2018:Lα 2015:At 2004:Lα 2001:Nd 1990:Kα 1987:Br 1976:Kα 1973:Ne 1962:Lα 1959:Po 1948:Lα 1945:Pr 1934:Kα 1931:Se 1920:Kα 1906:Lα 1903:Bi 1892:Lα 1889:Ce 1878:Kα 1875:As 1867:Kα 1853:Lα 1850:Pb 1839:Lα 1836:La 1825:Kα 1822:Ge 1814:Kα 1800:Lα 1797:Tl 1786:Lα 1783:Ba 1772:Kα 1769:Ga 1761:Kα 1747:Lα 1744:Hg 1733:Lα 1730:Cs 1719:Kα 1716:Zn 1708:Kα 1694:Lα 1691:Au 1680:Lα 1677:Xe 1666:Kα 1663:Cu 1655:Kα 1652:Be 1641:Lα 1638:Pt 1627:Lα 1613:Kα 1610:Ni 1602:Kα 1599:Li 1486:66 1484:YB 1475:++ 1444:++ 1428:Si 1419:++ 1416:++ 1391:++ 1388:++ 1366:+ 1344:PE 1261:Ge 1235:Ge 1209:Ge 1183:Ge 1157:Ge 1130:Ge 1121:++ 1093:++ 1090:++ 1067:++ 781:, 777:, 727:A 367:: 222:: 127:. 119:, 115:, 107:, 103:, 56:A 4556:e 4549:t 4542:v 4080:e 4073:t 4066:v 3980:. 3958:: 3845:. 3833:: 3806:. 3800:: 3728:. 3667:. 3640:. 3610:: 3602:: 3594:: 3570:. 3550:: 3478:/ 3409:; 3388:4 3384:2 3218:K 3195:5 3192:, 3189:2 3182:K 3147:K 3124:3 3121:, 3118:1 3111:K 3085:3 3082:, 3079:1 3072:K 3037:K 3007:K 2972:1 2958:1 2944:1 2930:1 2916:1 2902:1 2888:1 2874:1 2860:1 2846:1 2832:1 2818:1 2804:1 2790:1 2785:W 2776:1 2762:1 2748:1 2734:1 2720:1 2706:1 2701:V 2692:1 2678:1 2664:1 2636:1 2622:1 2608:1 2580:1 2566:1 2552:1 2524:1 2510:1 2496:1 2477:K 2468:1 2454:1 2440:1 2412:1 2407:U 2398:1 2384:1 2356:1 2342:1 2328:1 2309:S 2300:1 2286:1 2272:1 2253:P 2244:1 2230:1 2216:1 2211:Y 2188:1 2174:1 2160:1 2132:1 2118:1 2104:1 2076:1 2062:1 2048:1 2020:1 2006:1 1992:1 1964:1 1950:1 1936:1 1917:F 1908:1 1894:1 1880:1 1864:O 1855:1 1841:1 1827:1 1811:N 1802:1 1788:1 1774:1 1758:C 1749:1 1735:1 1721:1 1705:B 1696:1 1682:1 1668:1 1643:1 1629:1 1624:I 1615:1 1532:+ 1517:- 1447:+ 1335:+ 1307:+ 1279:+ 1253:+ 1227:+ 1201:+ 1175:+ 1149:+ 1118:+ 972:n 952:n 949:4 836:. 830:n 827:= 815:d 812:2 799:n 795:θ 787:d 783:l 779:k 775:h 773:( 428:d 411:) 405:( 393:d 390:2 387:= 378:n 249:E 245:c 242:h 236:= 216:α 212:β 207:α 205:K 79:( 48:.

Index


Rembrandt
Syndics of the Drapers' Guild

Helmut Fischer(company)
RoHS

X-rays
gamma rays
elemental analysis
chemical analysis
metals
glass
ceramics
geochemistry
forensic science
archaeology
paintings

wavelength
atoms
ionization energy
orbitals
hole
fluorescence


characteristic
given names
Kα

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.