Knowledge

Sodium–sulfur battery

Source 📝

229:
getters to the sodium, but even so wetting will fail below 200 °C. Before the cell can begin operation, it must be heated, which creates extra costs. To tackle this challenge, case studies to couple sodium–sulfur batteries to thermal solar energy systems. The heat energy collected from the sun would be used to pre-heat the cells and maintain the high temperatures for short periods between use. Once running, the heat produced by charging and discharging cycles is sufficient to maintain operating temperatures and usually no external source is required.
667:
energy, room temperature operation mitigates safety issues such as explosions which can occur due to failure of the solid electrolyte during operation at high temperatures. Research and development of sodium–sulfur batteries that can operate at room temperature is ongoing. Despite the higher theoretical energy density of sodium–sulfur cells at room temperature compared to high temperature, operation at room temperature introduces challenges like:
1989: 20: 88:. Poor market adoption of molten sodium-sulfur batteries is due to their safety and durability issues, such as a short cycle life of fewer than 1000 cycles on average (although there are reports of 15 year operation with 300 cycles per year). In 2023, only one company (NGK Insulators of Japan) produces molten NaS batteries on a commercial scale. 447:) are abundant in Japan. The first large-scale field testing took place at TEPCO's Tsunashima substation between 1993 and 1996, using 3 x 2 MW, 6.6 kV battery banks. Based on the findings from this trial, improved battery modules were developed and were made commercially available in 2000. The commercial NaS battery bank offers: 1132: 591:
periods. In addition to this power shifting, sodium-sulfur batteries could be used to assist in stabilizing the power output of the wind farm during wind fluctuations. These types of batteries present an option for energy storage in locations where other storage options are not feasible. For example,
666:
One of the main shortcomings of traditional sodium–sulfur batteries is that they require high temperatures to operate. This means that they must be preheated before use, and that they will consume some of their stored energy (up to 14%) to maintain this temperature when not in use. Aside from saving
490:
announced that they had developed a low temperature molten sodium ion battery that can output power at under 100 °C. The batteries have double the energy density of Li-ion and considerably lower cost. Sumitomo Electric Industry CEO Masayoshi Matsumoto indicated that the company planned to begin
1402:
Y. Dong, I. W. Chen and J. Li, "Transverse and longitudinal degradations in ceramic solid electrolytes." Chemistry of Materials, 34, 5749 (2022) 10.1021/acs.chemmater.2c00329; L. C. De Jonghe, "Impurities and solid electrolyte failure." Solid State Ionics, 7, 61 (1982) 10.1016/0167-2738(82)90070-4;
228:
above 250 °C, but a poor conductor of electrons, and thus avoids self-discharge. Sodium metal does not fully wet the BASE below 400 °C due to a layer of oxide(s) separating them; this temperature can be lowered to 300 °C by coating the BASE with certain metals and/or by adding oxygen
508:
During charge, sodium metal dendrites tend to form (slowly after several cycles) and propagate (rather quickly once they nucleate) into the intergrain boundaries in the solid beta-alumina electrolyte, eventually leading to internal short-circuiting and immediate failure. In general, a significant
474:
announced that it would test a wind farm energy storage battery based on twenty 50 kW sodium–sulfur batteries. The 80 tonne, 2 semi-trailer sized battery is expected to have 7.2 MW·h of capacity at a charge and discharge rate of 1 MW. Since then, NGK announced several large-scale deployments
177:
For operation, the entire battery must be heated to, or above, the melting point of sulfur at 119 °C. Sodium has a lower melting point, around 98 °C, so a battery that holds molten sulfur holds molten sodium by default. This presents a serious safety concern; sodium can be spontaneously
516:
Beta-alumina surface layer on the Na side turns grey after > 100 cycles. This is caused by a slower growth of micron-size sodium metal globules in the triple-junctions between the grains of the solid electrolyte. This process is possible, because the electronic conductivity of beta-alumina is
772:
The problem occurs when the soluble polysulfide forms migrate to the anode, where they form the insoluble polysulfides. These insoluble polysulfides form as dendrites on the anode which can damage the battery and interfere with the movement of sodium ions into the electrolyte. Furthermore, the
1133:
https://www.amazon.com/Long-Hard-Road-Lithium-Ion-Electric/dp/1612497624/ref=sr_1_1?crid=176CB5599LUX6&keywords=long+hard+road+the+lithium-ion+battery+and+the+electric+car&qid=1697893528&sprefix=Long+Hard+Road%3A+The+Lithium-Ion+Battery+and+the+Electric+Car%2Caps%2C68&sr=8-1
524:
Darkening of the beta-alumina also occurs on the sulfur side upon passing electric current, albeit at a slower schedule that the darkening on the sodium side. It is believed to be due to the deposition of carbon, which is added to the bulk sulfur to provide electronic conductivity.
126:
catholyte in place of molten sodium polysulfide, has had greater commercial interest in the past, but As of 2023 there are no commercial manufacturers of ZEBRA. Room-temperature sodium–sulfur batteries are also known. They use neither liquid sodium nor liquid sulfur nor sodium
773:
insoluble polysulfides at the anode cannot be converted back into sulfur when the battery is being recharged, which means that less sulfur is available for the battery to function (capacity loss). Research is being conducted into how the shuttle effect can be avoided.
692:
The shuttle effect in sodium–sulfur batteries leads to a loss of capacity, which can be defined as a reduction in the amount of energy that can be extracted from the battery. When the battery is being discharged, sodium ions react with sulfur (which is in the
499:
Molten sodium beta-alumina batteries failed to meet the durability and safety expectations, that were the basis of several commercialization attempts in the 1980s. A characteristic lifetime of NaS batteries was determined as 1,000-2,000 cycles in a
378:-hours per gram. The material fully coated ("wetted") the electrolyte. After 100 charge/discharge cycles, a test battery maintained about 97% of its initial storage capacity. The lower operating temperature allowed the use of a less-expensive 236:, the Na ion migrates to the sulfur container. The electron drives an electric current through the molten sodium to the contact, through the electrical load and back to the sulfur container. Here, another electron reacts with sulfur to form S 57:, and is fabricated from inexpensive and non-toxic materials. However, due to the high operating temperature required (usually between 300 and 350 °C), as well as the highly corrosive and reactive nature of sodium and 84:(300-400 Wh/L), molten sodium–sulfur batteries have not achieved a wide-scale deployment: there have been only ca. 200 installations, with a combined energy of 4 GWh and power of 0.56 GW, worldwide. vs. 948 GWh for 434:
Ltd. declared their interest in researching the NaS battery in 1983, and became the primary drivers behind the development of this type ever since. TEPCO chose the NaS battery because all its component elements
586:
and solar generation plants. In the case of a wind farm, the battery would store energy during times of high wind but low power demand. This stored energy could then be discharged from the batteries during
1433:
Z. Munshi, P. S. Nicholson and D. Weaver, "Effect of localized temperature development at flaw tips on the degradation of na-β/β″-alumina." Solid State Ionics, 37, 271 (1990) 10.1016/0167-2738(90)90187-V
642:
mission concept is also considering the use of this type of battery, as the rover and its payload are being designed to function for about 50 days on the hot surface of Venus without a cooling system.
166:, from corrosion on the inside. This outside container serves as the positive electrode, while the liquid sodium serves as the negative electrode. The container is sealed at the top with an airtight 960: 95:: large cells have less relative heat loss, so maintaining their high operating temperatures is easier. Commercially available cells are typically large with high capacities (up to 500 Ah). 1424:
M. Liu and L. C. De Jonahe, "Chemical stability of sodium beta -alumina electrolyte in sulfur/sodium polysulfide melts." Journal of the Electrochemical Society, 135, 741 (1988) 10.1149/1.2095734
1403:
D. Gourier, A. Wicker and D. Vivien, "E.S.R. Study of chemical coloration of β and β″ aluminates by metallic sodium." Materials Research Bulletin, 17, 363 (1982) 10.1016/0025-5408(82)90086-1
623:
Because of its high energy density, the NaS battery has been proposed for space applications. Sodium–sulfur cells can be made space-qualified: in fact a test sodium-sulfur cell flew on the
950:
Spoerke, Erik D., Martha M. Gross, Stephen J. Percival, and Leo J. Small. "Molten Sodium Batteries." Energy-Sustainable Advanced Materials (2021): 59-84. doi: 10.1007/978-3-030-57492-5_3 .
356:
was not achieved during that time. Also, the battery life was estimated to be only 2 years. However, the program was terminated in 1995, after two of the leased car batteries caught fire.
1384:
A. C. Buechele, L. C. De Jonghe and D. Hitchcock, "Degradation of sodium β”-alumina: Effect of microstructure." Journal of the Electrochemical Society, 130, 1042 (1983) 10.1149/1.2119881
1393:
D. C. Hitchcock and L. C. De Jonghe, "Time-dependent degradation in sodium-beta” alumina solid electrolytes." Journal of the Electrochemical Society, 133, 355 (1986) 10.1149/1.2108578
546:
Passing current (e.g. >1 A/cm2) through beta-alumina can cause temperature gradient (e.g. > 50 °C/ 2 mm) in the electrolyte, which in turn results in a thermal stress.
517:
small but not zero. The formation of such sodium metal globules gradually increases the electronic conductivity of the electrolyte and causes electronic leakage and self-discharge;
574:
NaS batteries can be deployed to support the electric grid, or for stand-alone renewable power applications. Under some market conditions, NaS batteries provide value via energy
1375:
L. C. De Jonghe, L. Feldman and A. Beuchele, "Slow degradation and electron conduction in sodium/beta-aluminas." Journal of Materials Science, 16, 780 (1981) 10.1007/BF02402796
1363:
Y. Dong, I. W. Chen, and J. Li, "Transverse and longitudinal degradations in ceramic solid electrolytes." Chemistry of Materials, 34, 5749 (2022) 10.1021/acs.chemmater.2c00329
658:
prototype in 1991. The high operating temperature of sodium-sulfur batteries presented difficulties for electric vehicle use, however. The Ecostar never went into production.
539:
Disproportionation of sulfur into aluminium sulfate and sodium polysulfide has been suggested as a degradation pathway. This mechanism is not mentioned in later publications.
174:) membrane, which selectively conducts Na. In commercial applications the cells are arranged in blocks for better heat conservation and are encased in a vacuum-insulated box. 394:
as part of the "Moonlight Project" in 1980. This project sought to develop a durable utility power storage device meeting the criteria shown below in a 10-year project.
1338:"Sumitomo Electric Industries, Ltd. - Press Release (2014) Development of "sEMSA," a New Energy Management System for Business Establishment/Plant Applications" 1513: 1879: 680:
Formation of dendrites on the sodium anode which create short-circuits in the battery. This is contributed to by the shuttle effect which is explained below.
276:
presents a hazard, because it spontaneously burns in contact with air and moisture, thus the system must be protected from water and oxidizing atmospheres.
467:
As of 2007, 165 MW of capacity were installed in Japan. NGK announced in 2008 a plan to expand its NaS factory output from 90 MW a year to 150 MW a year.
182:, equipped with such a battery, burst into flame during recharging, leading Ford to abandon the attempted development of molten NaS batteries for cars. 1354:
R. O. Ansell and J. I. Ansell, "Modeling the reliability of sodium-sulfur cells." Reliab. Eng. Syst. Saf., 17, 127 (1987) 10.1016/0143-8174(87)90011-4
1526:
The facility offers energy-storage capabilities similar to those of pumped hydro facilities while helping to improve the balance of supply and demand
464:
Japan Wind Development opened a 51 MW wind farm that incorporates a 34 MW sodium-sulfur battery system at Futamata in Aomori Prefecture in May 2008.
1443: 131:, but rather operate on entirely different principles and face different challenges than the high-temperature molten NaS batteries discussed here. 1872: 324:. The car had a 100-mile driving range, which was twice as much as any other fully electric car demonstrated earlier. 68 of such vehicles were 1254: 1685:— originally presented as paper AIAA-2008-5796, 6th AIAA International Energy Conversion Engineering Conf., Cleveland OH, July 28–30, 2008. 391: 1214: 65:
applications, rather than for use in vehicles. Molten Na-S batteries are scalable in size: there is a 1 MW microgrid support system on
1461:
Walawalkar, R.; Apt, J.; Mancini, R. (2007). "Economics of electric energy storage for energy arbitrage and regulation in New York".
608: 532:
Oxygen depletion in the alumina near the sodium electrode has been suggested as a possible cause for the following crack formation.
1918: 1144: 292:
Mitsubishi Materials Corporation plant caught fire. Following the incident, NGK temporarily suspended production of NaS batteries.
1654: 811:
Wen, Z.; Hu, Y.; Wu, X.; Han, J.; Gu, Z. (2013). "Main Challenges for High Performance NAS Battery: Materials and Interfaces".
1084: 91:
Like many high-temperature batteries, sodium–sulfur cells become more economical with increasing size. This is because of the
1169: 158:
is usually made in a cylindrical configuration. The entire cell is enclosed by a steel casing that is protected, usually by
1724:
Wang, Yanjie; Zhang, Yingjie; Cheng, Hongyu; Ni, Zhicong; Wang, Ying; Xia, Guanghui; Li, Xue; Zeng, Xiaoyuan (2021-03-11).
578:(charging battery when electricity is abundant/cheap, and discharging into the grid when electricity is more valuable) and 1696: 615:, Japan. The facility offers energy storage to help manage energy levels during peak times with renewable energy sources. 879:
Adelhelm, Philipp; Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine; Janek, Juergen (2015-04-23).
1298: 2189: 2076: 66: 1271: 974: 1577: 345: 2229: 1114: 997:"Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage" 858: 683:
Shorter cycle life which means that the cells must be replaced more often than their high-temperature counterparts.
2404: 2399: 2239: 604: 593: 2167: 349: 206: 171: 128: 1538: 1319: 582:. NaS batteries are a possible energy storage technology to support renewable energy generation, specifically 2249: 631:
of 150 W·h/kg (3 x nickel–hydrogen battery energy density), operating at 350 °C. It was launched on the
597: 565: 374:
In 2014, researchers identified a liquid sodium–caesium alloy that operates at 150 °C and produces 420
1911: 1861: 509:
threshold current density needs to be exceeded before such rapid Mode I fracture-degradation is initiated.
483: 264:
As the cell discharges, the sodium level drops. During the charging phase the reverse process takes place.
2214: 2081: 2254: 2224: 2209: 2177: 1792:"Towards high performance room temperature sodium–sulfur batteries: Strategies to avoid shuttle effect" 787: 382:
external casing instead of steel, offsetting some of the increased cost associated with using caesium.
341: 1849:"AEP'S Appalachian Power unit to install first U.S. use of commercial-scale energy storage technology" 2016: 1414:-alumina solid electrolytes." Journal of the Electrochemical Society, 133, 6 (1986) 10.1149/1.2108548 2284: 2182: 1560:
Koenig, A. A.; Rasmussen, J. R. (1990). "Development of a high specific power sodium sulfur cell".
1251: 1043:
Chen. (2015). A Combined Sodium Sulphur Battery/Solar Thermal Collector System for Energy Storage.
881:"From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries" 569: 461:
A demonstration project used NaS battery at Japan Wind Development Co.'s Miura Wind Park in Japan.
420: 1601:
Auxer, William (June 9–12, 1986). "The PB sodium sulfur cell for satellite battery applications".
151:, compared with liquid-metal batteries where the anode, the cathode and the membrane are liquids. 2409: 2289: 2234: 2219: 2172: 2152: 2111: 2086: 2066: 2046: 1904: 1791: 639: 2378: 2279: 416: 390:
The NaS battery was one of four battery types selected as candidates for intensive research by
333: 284:
Early on the morning of September 21, 2011, a 2000 kilowatt NaS battery system manufactured by
2244: 2140: 2061: 782: 412: 329: 309: 35: 2122: 2106: 2091: 1927: 1803: 1606: 1008: 880: 427: 155: 288:, owned by Tokyo Electric Power Company used for storing electricity and installed at the 8: 2274: 2259: 2194: 2162: 2157: 1973: 792: 561: 92: 85: 62: 54: 32: 1807: 1610: 1092: 1012: 2264: 2135: 1946: 1760: 1725: 1583: 1070: 913: 828: 612: 579: 317: 305: 58: 1988: 1045:
International Conference on Computer Science and Environmental Engineering (CSEE 2015)
2338: 2026: 1827: 1819: 1765: 1747: 1637: 1587: 1573: 1026: 995:
Lu, X.; Li, G.; Kim, J. Y.; Mei, D.; Lemmon, J. P.; Sprenkle, V. L.; Liu, J. (2014).
918: 900: 457:
Lifetime of 2,500 cycles at 100% depth of discharge (DOD), or 4,500 cycles at 80% DOD
2056: 1337: 1320:"The world's largest "virtual battery plant" is now operating in the Arabian desert" 1057:
Oshima, T.; Kajita, M.; Okuno, A. (2005). "Development of Sodium–Sulfur Batteries".
832: 352:. Despite the low materials cost, these batteries were expensive to produce, as the 2204: 2199: 2011: 1951: 1811: 1755: 1737: 1676: 1618: 1614: 1565: 1489: 1470: 1066: 1016: 908: 892: 820: 655: 487: 353: 289: 210: 194: 491:
production in 2015. Initial applications are envisaged to be buildings and buses.
364: 359:
As of 2009, a lower temperature, solid electrode version was under development in
2071: 1998: 1258: 1190: 1131:
Long Hard Road: The Lithium-Ion Battery and the Electric Car. 2022. C.J. Murray.
628: 209:(BASE) cylinder from the container of molten sulfur, which is fabricated from an 167: 1474: 674:
Volume expansion of sulfur, which creates mechanical stresses within the battery
2307: 1961: 1815: 1700: 1603:
Proceedings of the International Power Sources Symposium, 32nd, Cherry Hill, NJ
431: 371:
membrane to allow operation at 90 °C with all components remaining solid.
337: 285: 81: 50: 1742: 635:
mission in November 1997, and demonstrated 10 days of experimental operation.
2393: 1941: 1823: 1751: 1726:"Research Progress toward Room Temperature Sodium Sulfur Batteries: A Review" 1569: 904: 624: 313: 99: 1667:
Landis, G.A.; Harrison, R. (2010). "Batteries for Venus Surface Operation".
178:
inflammable in air, and sulfur is highly flammable. Several examples of the
2145: 2101: 2036: 1978: 1956: 1831: 1769: 1514:"Mitsubishi Installs 50 MW Energy Storage System to Japanese Power Company" 1277: 1030: 922: 824: 651: 321: 179: 77: 1848: 1191:"PNNL: News - 'Wetting' a battery's appetite for renewable energy storage" 935: 850: 2373: 2358: 2096: 2021: 896: 471: 320:
resumed its work on a Na-S battery powered electric car, which was named
241: 140: 1896: 205:
donates electrons to the external circuit. The sodium is separated by a
2317: 2051: 2031: 1412:
D. C. Hitchcock, "Oxygen depletion and slow crack growth in sodium beta
1021: 996: 163: 2363: 2353: 2343: 2312: 1968: 1641: 588: 583: 575: 46: 1680: 1632:
Garner, J. C.; Baker, W. E.; Braun, W.; Kim, J. (31 December 1995).
1229:"Japanese Companies Test System to Stabilize Output from Wind Power" 2041: 1228: 600:(CAES) requires some type of geologic feature such as a salt cave. 233: 159: 697:
form) at the cathode to form polysulfides in the following steps:
2348: 1790:
Tang, Wenwen; Aslam, Muhammad Kashif; Xu, Maowen (January 2022).
504:
distribution with k=0.5. There are several degradation pathways:
501: 444: 379: 368: 214: 148: 70: 19: 1880:"Low-cost battery built with four times the capacity of lithium" 650:
The first large-scale use of sodium–sulfur batteries was in the
596:
facilities require significant space and water resources, while
632: 440: 436: 375: 325: 273: 218: 202: 191: 43: 39: 170:
lid. An essential part of the cell is the presence of a BASE (
2333: 1562:
Proceedings of the 34th International Power Sources Symposium
198: 144: 878: 1444:"Aquion Energy to build microgrid battery system in Hawaii" 661: 360: 627:. The NaS flight experiment demonstrated a battery with a 2368: 1873:
Advanced Energy Storage for Renewable Energy Technologies
961:"Lithium Battery Production by Country: Top 12 Countries" 476: 225: 244:. The discharge process can be represented as follows: 1539:"World's largest sodium–sulphur ESS deployed in Japan" 1145:"New battery could change world, one house at a time" 475:
including a virtual plant distributed on 10 sites in
23:
Cut-away schematic diagram of a sodium–sulfur battery
1460: 1276:(in Japanese). Ngk.co.jp. 2008-07-28. Archived from 1631: 1605:. A88-16601 04–44. Electrochemical Society: 49–54. 1059:
International Journal of Applied Ceramic Technology
671:
Poor conductivity of sulfur and sodium polysulfides
279: 1660: 1657:Geoffrey Landis, NASA Glenn Research Center. 2012. 1634:Sodium Sulfur Battery Cell Space Flight Experiment 1056: 2391: 1723: 1299:"Xcel Energy to trial wind power storage system" 677:Low reaction rates between the sodium and sulfur 645: 1862:"Giant battery smooths out variable wind power" 1648: 1559: 1666: 1172:. The American Ceramic Society. September 2009 555: 1912: 1855:. American Electric Power. 19 September 2005. 1785: 1783: 1781: 1779: 1719: 1717: 851:"Pourable batteries could store green power" 401:8 hour charge/8 hour discharge at rated load 1789: 61:, these batteries are primarily suited for 1919: 1905: 1776: 1252:"Can Batteries Save Embattled Wind Power?" 994: 975:"Ford Unplugs Electric Vans After 2 Fires" 810: 763:reacts further with sodium ions to form Na 744:reacts further with sodium ions to form Na 725:reacts further with sodium ions to form Na 1926: 1759: 1741: 1714: 1487: 1085:"Q&A Concerning the NAS Battery Fire" 1020: 912: 1859: 1796:Journal of Colloid and Interface Science 1245: 1112: 662:Room-temperature sodium–sulfur batteries 18: 1371: 1369: 946: 944: 844: 842: 69:CA (USA) and a 50 MW/300 MWh system in 2392: 1089:NAS Battery Fire Incident and Response 714:, which is soluble in the electrolyte. 1900: 1694: 1600: 1091:. NGK Insulators, Ltd. Archived from 848: 687: 98:A similar type of battery called the 49:. This type of battery has a similar 1366: 990: 988: 941: 839: 1226: 885:Beilstein Journal of Nanotechnology 733:, which is also electrolyte-soluble 224:BASE is a good conductor of sodium 13: 1860:LaMonica, Martin (4 August 2010). 1115:"New battery packs powerful punch" 1071:10.1111/j.1744-7402.2004.tb00179.x 451:Capacity: 25–250 kWh per bank 407:Lifetime of 1,500 cycles or better 312:in the 1960s to power early-model 14: 2421: 1841: 985: 479:totaling 108 MW/648 MWh in 2019. 346:Electric Power Research Institute 197:sodium at the core serves as the 1987: 1170:"Ceramatec's home power storage" 300: 280:2011 Tsukuba Plant fire incident 1688: 1669:Journal of Propulsion and Power 1625: 1594: 1553: 1531: 1506: 1481: 1454: 1436: 1427: 1418: 1406: 1396: 1387: 1378: 1357: 1348: 1330: 1312: 1291: 1264: 1220: 1208: 1183: 1162: 1137: 1125: 1106: 1077: 1050: 861:from the original on 2009-03-28 605:Mitsubishi Electric Corporation 594:pumped-storage hydroelectricity 550: 139:Typical batteries have a solid 134: 1699:. Greencar.com. Archived from 1037: 967: 953: 929: 872: 804: 426:A consortium formed by TEPCO ( 411:The other three were improved 350:California Air Resources Board 295: 217:. The sulfur is absorbed in a 207:beta-alumina solid electrolyte 172:beta-alumina solid electrolyte 129:beta-alumina solid electrolyte 1: 1488:Stahlkopf, Karl (June 2006). 1113:Davidson, Paul (2007-07-05). 813:Advanced Functional Materials 798: 646:Transport and heavy machinery 609:largest sodium–sulfur battery 598:compressed-air energy storage 566:Battery storage power station 494: 1697:"Ford Ecostar EV, Ron Cogan" 484:Sumitomo Electric Industries 190:During the discharge phase, 185: 7: 1475:10.1016/j.enpol.2006.09.005 1301:. BusinessGreen. 4 Mar 2008 776: 556:Grid and standalone systems 404:Efficiency of 70% or better 29:sodium–sulfur (NaS) battery 16:Type of molten-salt battery 10: 2426: 1816:10.1016/j.jcis.2021.07.114 849:Bland, Eric (2009-03-26). 654:demonstration vehicle, an 559: 417:redox flow (vanadium type) 342:Southern California Edison 2326: 2298: 2120: 2077:Metal–air electrochemical 1996: 1985: 1934: 1743:10.3390/molecules26061535 1695:Cogan, Ron (2007-10-01). 607:commissioned the world's 267: 232:When sodium gives off an 63:stationary energy storage 1884:The University of Sydney 1655:Venus Landsailing Rover. 1570:10.1109/IPSS.1990.145783 1490:"Taking Wind Mainstream" 1272: 1233:Japan for Sustainability 702:Sodium ions react with S 618: 570:Stand-alone power system 385: 1619:2027/uc1.31822015751399 1261:by Hiroki Yomogita 2008 979:Bloomberg Business News 640:Venus Landsailing Rover 76:Despite their very low 2405:Metal-sulfur batteries 2400:Rechargeable batteries 2379:Semipermeable membrane 2168:Lithium–iron–phosphate 825:10.1002/adfm.201200473 788:Lithium–sulfur battery 421:zinc–bromine batteries 334:Detroit Edison Company 24: 2250:Rechargeable alkaline 1928:Electrochemical cells 1001:Nature Communications 783:List of battery types 767:S, which is insoluble 752:, which is insoluble. 330:United Parcel Service 213:metal serving as the 143:membrane between the 86:lithium-ion batteries 55:lithium-ion batteries 22: 2230:Nickel–metal hydride 1273:2008年|ニュース|日本ガイシ株式会社 897:10.3762/bjnano.6.105 428:Tokyo Electric Power 2240:Polysulfide–bromide 2082:Nickel oxyhydroxide 1974:Thermogalvanic cell 1808:2022JCIS..606...22T 1611:1986poso.symp...49A 1149:Ammiraglio61's Blog 1013:2014NatCo...5.4578L 963:. 10 February 2023. 793:Molten-salt battery 562:Grid energy storage 398:1,000 kW class 201:, meaning that the 73:, Kyushu, (Japan). 59:sodium polysulfides 2003:(non-rechargeable) 1947:Concentration cell 1257:2011-09-27 at the 1227:jfs (2007-09-23). 1022:10.1038/ncomms5578 857:. Discovery News. 688:The Shuttle Effect 613:Fukuoka Prefecture 580:voltage regulation 306:Ford Motor Company 25: 2387: 2386: 454:Efficiency of 87% 38:that uses liquid 2417: 2183:Lithium–titanate 2128: 2004: 1991: 1952:Electric battery 1921: 1914: 1907: 1898: 1897: 1893: 1891: 1890: 1869: 1856: 1836: 1835: 1787: 1774: 1773: 1763: 1745: 1721: 1712: 1711: 1709: 1708: 1692: 1686: 1684: 1664: 1658: 1652: 1646: 1645: 1629: 1623: 1622: 1598: 1592: 1591: 1557: 1551: 1550: 1548: 1546: 1535: 1529: 1528: 1523: 1521: 1510: 1504: 1503: 1501: 1500: 1485: 1479: 1478: 1458: 1452: 1451: 1440: 1434: 1431: 1425: 1422: 1416: 1410: 1404: 1400: 1394: 1391: 1385: 1382: 1376: 1373: 1364: 1361: 1355: 1352: 1346: 1345: 1334: 1328: 1327: 1316: 1310: 1309: 1307: 1306: 1295: 1289: 1288: 1286: 1285: 1268: 1262: 1249: 1243: 1242: 1240: 1239: 1224: 1218: 1217:. ulvac-uc.co.jp 1212: 1206: 1205: 1203: 1202: 1197:. August 1, 2014 1187: 1181: 1180: 1178: 1177: 1166: 1160: 1159: 1157: 1156: 1141: 1135: 1129: 1123: 1122: 1110: 1104: 1103: 1101: 1100: 1081: 1075: 1074: 1054: 1048: 1041: 1035: 1034: 1024: 992: 983: 982: 971: 965: 964: 957: 951: 948: 939: 938:, NGK Insulators 936:NAS case studies 933: 927: 926: 916: 876: 870: 869: 867: 866: 846: 837: 836: 808: 656:electric vehicle 488:Kyoto University 354:economy of scale 125: 124: 123: 113: 112: 111: 2425: 2424: 2420: 2419: 2418: 2416: 2415: 2414: 2390: 2389: 2388: 2383: 2322: 2301: 2294: 2215:Nickel–hydrogen 2173:Lithium–polymer 2129: 2126: 2125: 2116: 2005: 2002: 2001: 1992: 1983: 1930: 1925: 1888: 1886: 1878: 1847: 1844: 1839: 1802:(Pt 1): 22–37. 1788: 1777: 1722: 1715: 1706: 1704: 1693: 1689: 1681:10.2514/1.41886 1665: 1661: 1653: 1649: 1630: 1626: 1599: 1595: 1580: 1558: 1554: 1544: 1542: 1537: 1536: 1532: 1519: 1517: 1516:. 11 March 2016 1512: 1511: 1507: 1498: 1496: 1486: 1482: 1459: 1455: 1442: 1441: 1437: 1432: 1428: 1423: 1419: 1411: 1407: 1401: 1397: 1392: 1388: 1383: 1379: 1374: 1367: 1362: 1358: 1353: 1349: 1336: 1335: 1331: 1318: 1317: 1313: 1304: 1302: 1297: 1296: 1292: 1283: 1281: 1274: 1270: 1269: 1265: 1259:Wayback Machine 1250: 1246: 1237: 1235: 1225: 1221: 1213: 1209: 1200: 1198: 1189: 1188: 1184: 1175: 1173: 1168: 1167: 1163: 1154: 1152: 1143: 1142: 1138: 1130: 1126: 1111: 1107: 1098: 1096: 1083: 1082: 1078: 1055: 1051: 1042: 1038: 993: 986: 973: 972: 968: 959: 958: 954: 949: 942: 934: 930: 877: 873: 864: 862: 847: 840: 809: 805: 801: 779: 770: 766: 762: 758: 751: 747: 743: 739: 732: 728: 724: 720: 713: 709: 705: 696: 690: 664: 648: 629:specific energy 621: 572: 560:Main articles: 558: 553: 497: 482:In March 2011, 388: 303: 298: 282: 270: 259: 255: 251: 248:2 Na + 4 S → Na 239: 188: 137: 122: 119: 118: 117: 115: 110: 107: 106: 105: 103: 102:, which uses a 93:square–cube law 67:Catalina Island 17: 12: 11: 5: 2423: 2413: 2412: 2410:Energy storage 2407: 2402: 2385: 2384: 2382: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2330: 2328: 2324: 2323: 2321: 2320: 2315: 2310: 2308:Atomic battery 2304: 2302: 2299: 2296: 2295: 2293: 2292: 2287: 2282: 2280:Vanadium redox 2277: 2272: 2267: 2262: 2257: 2255:Silver–cadmium 2252: 2247: 2242: 2237: 2232: 2227: 2225:Nickel–lithium 2222: 2217: 2212: 2210:Nickel–cadmium 2207: 2202: 2197: 2192: 2187: 2186: 2185: 2180: 2178:Lithium–sulfur 2175: 2170: 2165: 2155: 2150: 2149: 2148: 2138: 2132: 2130: 2127:(rechargeable) 2123:Secondary cell 2121: 2118: 2117: 2115: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2049: 2047:Edison–Lalande 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2008: 2006: 1997: 1994: 1993: 1986: 1984: 1982: 1981: 1976: 1971: 1966: 1965: 1964: 1962:Trough battery 1959: 1949: 1944: 1938: 1936: 1932: 1931: 1924: 1923: 1916: 1909: 1901: 1895: 1894: 1876: 1870: 1857: 1843: 1842:External links 1840: 1838: 1837: 1775: 1713: 1687: 1675:(4): 649–654. 1659: 1647: 1624: 1593: 1578: 1564:. p. 30. 1552: 1541:. 3 March 2016 1530: 1505: 1480: 1453: 1448:spacedaily.com 1435: 1426: 1417: 1405: 1395: 1386: 1377: 1365: 1356: 1347: 1342:global-sei.com 1329: 1326:. 30 Jan 2019. 1311: 1290: 1263: 1244: 1219: 1207: 1182: 1161: 1136: 1124: 1105: 1076: 1049: 1036: 984: 981:. 6 June 1994. 966: 952: 940: 928: 871: 838: 802: 800: 797: 796: 795: 790: 785: 778: 775: 769: 768: 764: 760: 756: 753: 749: 745: 741: 737: 734: 730: 726: 722: 718: 715: 711: 707: 703: 699: 694: 689: 686: 685: 684: 681: 678: 675: 672: 663: 660: 652:Ford "Ecostar" 647: 644: 620: 617: 557: 554: 552: 549: 548: 547: 544: 543: 542: 537: 536: 535: 530: 529: 528: 522: 521: 520: 514: 513: 512: 496: 493: 459: 458: 455: 452: 432:NGK Insulators 409: 408: 405: 402: 399: 387: 384: 338:US Post Office 308:pioneered the 302: 299: 297: 294: 290:Tsukuba, Japan 286:NGK Insulators 281: 278: 269: 266: 262: 261: 257: 253: 249: 237: 187: 184: 136: 133: 120: 108: 82:energy density 51:energy density 15: 9: 6: 4: 3: 2: 2422: 2411: 2408: 2406: 2403: 2401: 2398: 2397: 2395: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2331: 2329: 2325: 2319: 2316: 2314: 2311: 2309: 2306: 2305: 2303: 2297: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2270:Sodium–sulfur 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2245:Potassium ion 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2160: 2159: 2156: 2154: 2151: 2147: 2144: 2143: 2142: 2139: 2137: 2134: 2133: 2131: 2124: 2119: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2062:Lithium metal 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2017:Aluminium–air 2015: 2013: 2010: 2009: 2007: 2000: 1995: 1990: 1980: 1977: 1975: 1972: 1970: 1967: 1963: 1960: 1958: 1955: 1954: 1953: 1950: 1948: 1945: 1943: 1942:Galvanic cell 1940: 1939: 1937: 1933: 1929: 1922: 1917: 1915: 1910: 1908: 1903: 1902: 1899: 1885: 1881: 1877: 1874: 1871: 1867: 1863: 1858: 1854: 1853:News Releases 1850: 1846: 1845: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1784: 1782: 1780: 1771: 1767: 1762: 1757: 1753: 1749: 1744: 1739: 1735: 1731: 1727: 1720: 1718: 1703:on 2008-12-03 1702: 1698: 1691: 1682: 1678: 1674: 1670: 1663: 1656: 1651: 1643: 1639: 1635: 1628: 1620: 1616: 1612: 1608: 1604: 1597: 1589: 1585: 1581: 1579:0-87942-604-7 1575: 1571: 1567: 1563: 1556: 1540: 1534: 1527: 1515: 1509: 1495: 1494:IEEE Spectrum 1491: 1484: 1476: 1472: 1468: 1464: 1463:Energy Policy 1457: 1449: 1445: 1439: 1430: 1421: 1415: 1409: 1399: 1390: 1381: 1372: 1370: 1360: 1351: 1343: 1339: 1333: 1325: 1321: 1315: 1300: 1294: 1280:on 2010-03-23 1279: 1275: 1267: 1260: 1256: 1253: 1248: 1234: 1230: 1223: 1216: 1211: 1196: 1192: 1186: 1171: 1165: 1150: 1146: 1140: 1134: 1128: 1120: 1116: 1109: 1095:on 2012-10-28 1094: 1090: 1086: 1080: 1072: 1068: 1064: 1060: 1053: 1046: 1040: 1032: 1028: 1023: 1018: 1014: 1010: 1006: 1002: 998: 991: 989: 980: 976: 970: 962: 956: 947: 945: 937: 932: 924: 920: 915: 910: 906: 902: 898: 894: 891:: 1016–1055. 890: 886: 882: 875: 860: 856: 852: 845: 843: 834: 830: 826: 822: 818: 814: 807: 803: 794: 791: 789: 786: 784: 781: 780: 774: 754: 735: 716: 701: 700: 698: 682: 679: 676: 673: 670: 669: 668: 659: 657: 653: 643: 641: 636: 634: 630: 626: 625:Space Shuttle 616: 614: 610: 606: 603:In 2016, the 601: 599: 595: 590: 585: 581: 577: 571: 567: 563: 545: 541: 540: 538: 534: 533: 531: 527: 526: 523: 519: 518: 515: 511: 510: 507: 506: 505: 503: 492: 489: 485: 480: 478: 473: 468: 465: 462: 456: 453: 450: 449: 448: 446: 442: 438: 433: 429: 424: 422: 418: 414: 406: 403: 400: 397: 396: 395: 393: 383: 381: 377: 372: 370: 367:. They use a 366: 362: 357: 355: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 314:electric cars 311: 307: 301:United States 293: 291: 287: 277: 275: 265: 247: 246: 245: 243: 235: 230: 227: 222: 220: 216: 212: 208: 204: 200: 196: 193: 183: 181: 175: 173: 169: 165: 161: 157: 152: 150: 146: 142: 132: 130: 101: 100:ZEBRA battery 96: 94: 89: 87: 83: 79: 74: 72: 68: 64: 60: 56: 52: 48: 45: 41: 37: 34: 31:is a type of 30: 21: 2285:Zinc–bromine 2269: 2092:Silver oxide 2027:Chromic acid 1999:Primary cell 1979:Voltaic pile 1957:Flow battery 1887:. Retrieved 1883: 1865: 1852: 1799: 1795: 1733: 1729: 1705:. Retrieved 1701:the original 1690: 1672: 1668: 1662: 1650: 1633: 1627: 1602: 1596: 1561: 1555: 1543:. Retrieved 1533: 1525: 1518:. Retrieved 1508: 1497:. Retrieved 1493: 1483: 1466: 1462: 1456: 1447: 1438: 1429: 1420: 1413: 1408: 1398: 1389: 1380: 1359: 1350: 1341: 1332: 1323: 1314: 1303:. Retrieved 1293: 1282:. Retrieved 1278:the original 1266: 1247: 1236:. Retrieved 1232: 1222: 1210: 1199:. Retrieved 1194: 1185: 1174:. Retrieved 1164: 1153:. Retrieved 1151:. 2010-01-15 1148: 1139: 1127: 1118: 1108: 1097:. Retrieved 1093:the original 1088: 1079: 1062: 1058: 1052: 1044: 1039: 1004: 1000: 978: 969: 955: 931: 888: 884: 874: 863:. Retrieved 854: 816: 812: 806: 771: 691: 665: 649: 637: 622: 602: 573: 551:Applications 498: 481: 469: 466: 463: 460: 425: 410: 389: 373: 358: 322:Ford Ecostar 304: 283: 271: 263: 231: 223: 189: 180:Ford Ecostar 176: 153: 138: 135:Construction 97: 90: 78:capital cost 75: 28: 26: 2374:Salt bridge 2359:Electrolyte 2290:Zinc–cerium 2275:Solid state 2260:Silver–zinc 2235:Nickel–zinc 2220:Nickel–iron 2195:Molten salt 2163:Dual carbon 2158:Lithium ion 2153:Lithium–air 2112:Zinc–carbon 2087:Silicon–air 2067:Lithium–air 1736:(6): 1535. 1469:(4): 2558. 819:(8): 1005. 472:Xcel Energy 376:milliampere 296:Development 242:polysulfide 141:electrolyte 42:and liquid 33:molten-salt 2394:Categories 2327:Cell parts 2318:Solar cell 2300:Other cell 2265:Sodium ion 2136:Automotive 1889:2022-12-13 1707:2010-04-12 1545:22 January 1520:22 January 1499:2010-04-12 1305:2010-04-12 1284:2010-04-12 1238:2010-04-12 1215:(Japanese) 1201:2016-06-25 1176:2014-06-26 1155:2014-06-26 1099:2014-06-26 1065:(3): 269. 1047:, 428–439. 865:2010-04-12 799:References 706:to form Na 584:wind farms 495:Challenges 316:. In 1989 164:molybdenum 47:electrodes 2364:Half-cell 2354:Electrode 2313:Fuel cell 2190:Metal–air 2141:Lead–acid 2057:Leclanché 1969:Fuel cell 1824:0021-9797 1752:1420-3049 1730:Molecules 1588:111022668 1119:USA Today 905:2190-4286 589:peak load 576:arbitrage 470:In 2010, 430:Co.) and 413:lead–acid 365:Ceramatec 240:, sodium 195:elemental 186:Operation 80:and high 2344:Catalyst 2205:Nanowire 2200:Nanopore 2146:gel–VRLA 2107:Zinc–air 2012:Alkaline 1832:34384963 1770:33799697 1255:Archived 1195:pnnl.gov 1031:25081362 1007:: 4578. 923:25977873 859:Archived 833:94930296 777:See also 234:electron 221:sponge. 160:chromium 2349:Cathode 2102:Zamboni 2072:Mercury 2037:Daniell 1804:Bibcode 1761:7999928 1607:Bibcode 1009:Bibcode 914:4419580 502:Weibull 445:alumina 380:polymer 369:NASICON 310:battery 215:cathode 168:alumina 149:cathode 71:Fukuoka 36:battery 2339:Binder 2097:Weston 2022:Bunsen 1875:(gone) 1830:  1822:  1768:  1758:  1750:  1642:187010 1640:  1586:  1576:  1324:Quartz 1029:  921:  911:  903:  831:  633:STS-87 568:, and 443:, and 441:sulfur 437:sodium 419:, and 348:, and 326:leased 274:sodium 268:Safety 260:~ 2 V) 219:carbon 192:molten 44:sulfur 40:sodium 2334:Anode 2052:Grove 2032:Clark 1935:Types 1584:S2CID 855:MSNBC 829:S2CID 619:Space 386:Japan 272:Pure 211:inert 199:anode 145:anode 2369:Ions 1866:CNET 1828:PMID 1820:ISSN 1766:PMID 1748:ISSN 1638:OSTI 1574:ISBN 1547:2020 1522:2020 1027:PMID 919:PMID 901:ISSN 638:The 486:and 392:MITI 361:Utah 318:Ford 258:cell 226:ions 162:and 156:cell 154:The 147:and 116:AlCl 104:NiCl 2042:Dry 1812:doi 1800:606 1756:PMC 1738:doi 1677:doi 1615:hdl 1566:doi 1471:doi 1067:doi 1017:doi 909:PMC 893:doi 821:doi 611:in 477:UAE 363:by 328:to 53:to 2396:: 1882:. 1864:. 1851:. 1826:. 1818:. 1810:. 1798:. 1794:. 1778:^ 1764:. 1754:. 1746:. 1734:26 1732:. 1728:. 1716:^ 1673:26 1671:. 1636:. 1613:. 1582:. 1572:. 1524:. 1492:. 1467:35 1465:. 1446:. 1368:^ 1340:. 1322:. 1231:. 1193:. 1147:. 1117:. 1087:. 1061:. 1025:. 1015:. 1003:. 999:. 987:^ 977:. 943:^ 917:. 907:. 899:. 887:. 883:. 853:. 841:^ 827:. 817:23 815:. 755:Na 736:Na 717:Na 564:, 439:, 423:. 415:, 344:, 340:, 336:, 332:, 256:(E 203:Na 27:A 1920:e 1913:t 1906:v 1892:. 1868:. 1834:. 1814:: 1806:: 1772:. 1740:: 1710:. 1683:. 1679:: 1644:. 1621:. 1617:: 1609:: 1590:. 1568:: 1549:. 1502:. 1477:. 1473:: 1450:. 1344:. 1308:. 1287:. 1241:. 1204:. 1179:. 1158:. 1121:. 1102:. 1073:. 1069:: 1063:1 1033:. 1019:: 1011:: 1005:5 925:. 895:: 889:6 868:. 835:. 823:: 765:2 761:4 759:S 757:2 750:2 748:S 746:2 742:4 740:S 738:2 731:4 729:S 727:2 723:8 721:S 719:2 712:8 710:S 708:2 704:8 695:8 693:S 435:( 254:4 252:S 250:2 238:n 121:3 114:/ 109:2

Index


molten-salt
battery
sodium
sulfur
electrodes
energy density
lithium-ion batteries
sodium polysulfides
stationary energy storage
Catalina Island
Fukuoka
capital cost
energy density
lithium-ion batteries
square–cube law
ZEBRA battery
beta-alumina solid electrolyte
electrolyte
anode
cathode
cell
chromium
molybdenum
alumina
beta-alumina solid electrolyte
Ford Ecostar
molten
elemental
anode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.