Knowledge

Richtmyer–Meshkov instability

Source 📝

816: 478: 485: 28:
begins with small amplitude perturbations which initially grow linearly with time. This is followed by a nonlinear regime with bubbles appearing in the case of a light fluid penetrating a heavy fluid, and with spikes appearing in the case of a heavy fluid penetrating a light fluid. A chaotic regime
217: 210: 811:{\displaystyle {\displaystyle {\displaystyle ((1+2/\beta c^{2})\omega ^{2}-2k_{\parallel }^{2}/\beta )((1+2/\beta c^{2})\omega ^{4}-(2/\beta +1)k^{2}\omega ^{2}+2k_{\parallel }^{2}k^{2}/\beta )-2d_{s}^{2}k_{\parallel }^{2}k^{2}\omega ^{2}(\omega ^{2}-k^{2})/\beta =0}}} 473:{\displaystyle {\displaystyle (\omega ^{2}-2k_{\parallel }^{2}/\beta )(\omega ^{4}-(2/\beta +1)k^{2}\omega ^{2}+2k_{\parallel }^{2}k^{2}/\beta )-2d_{s}^{2}k_{\parallel }^{2}k^{2}\omega ^{2}(\omega ^{2}-k^{2})/\beta =0}} 46: 828:
provided a theoretical prediction, and E. E. Meshkov (Евгений Евграфович Мешков) provided experimental verification. Materials in the cores of stars, like Cobalt-56 from
860:(MTF). Mixing of the shell material and fuel is not desired and efforts are made to minimize any tiny imperfections or irregularities which will be magnified by RMI. 1069:"On the collapse of a Gas Cavity by an Imploding Molten Lead Shell and Richtmyer–Meshkov Instability" Victoria Suponitsky, et al. General Fusion Inc, 2013 1161: 1156: 867:
may benefit from RMI as the fuel-oxidants interface is enhanced by the breakup of the fuel into finer droplets. Also in studies of
205:{\displaystyle (\omega ^{2}-2k_{\parallel }^{2}/\beta )(\omega ^{4}-(2/\beta +1)k^{2}\omega ^{2}+2k_{\parallel }^{2}k^{2}/\beta )=0} 1146: 868: 1213: 29:
eventually is reached and the two fluids mix. This instability can be considered the impulsive-acceleration limit of the
905: 890: 880: 833: 30: 1179: 20:
occurs when two fluids of different density are impulsively accelerated. Normally this is by the passage of a
1203: 845: 1151: 931: 900: 857: 986:
Richtmyer, Robert D. (1960). "Taylor Instability in a Shock Acceleration of Compressible Fluids".
1198: 1013:
Meshkov, E. E (1969). "Instability of the Interface of Two Gases Accelerated by a Shock Wave".
832:
were observed earlier than expected. This was evidence of mixing due to Richtmyer–Meshkov and
1208: 1172:
Conjugate Filter OscillationReduction (CFOR) scheme for the 2D Richtmyer–Meshkov instability
1079: 1091: 1022: 943: 8: 825: 1095: 1026: 947: 1123: 1038: 1166: 1115: 1107: 1042: 1127: 1056: 1162:
Propagation of Fast Deflagrations and Marginal Detonations in Hydrogen-Air Mixtures
1099: 1030: 995: 959: 951: 871:(DDT) processes show that RMI-induced flame acceleration can result in detonation. 1141: 1183: 1157:
Emergence of Detonation in the Flowfield Induced by Richtmyer–Meshkov Instability
955: 932:"Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales" 895: 885: 1192: 1177:
Experiments on the Richtmyer–Meshkov instability at the University of Arizona
1111: 910: 1103: 999: 1119: 25: 1171: 964: 1034: 21: 1176: 849: 1147:
New type of interface evolution in the Richtmyer–Meshkov instability
864: 829: 1167:
Mushrooms+Snakes: a visualization of Richtmyer–Meshkov instability
856:
fuel layer is shock-accelerated. This instability is also seen in
853: 1152:
Recent Advances in Indirect Drive ICF Target Physics at LLNL
1080:"Richtmyer–Meshkov instabilities in stratified fluids" 492: 490: 488: 222: 220: 49: 848:
target, the hot shell material surrounding the cold
810: 472: 204: 1190: 1090:(1). American Physical Society (APS): 410–419. 988:Communications on Pure and Applied Mathematics 1077: 985: 963: 1012: 1191: 36: 869:deflagration to detonation transition 929: 1078:Mikaelian, Karnig O. (1985-01-01). 18:Richtmyer–Meshkov instability (RMI) 13: 14: 1225: 1135: 1142:Wisconsin Shock Tube Laboratory 1057:"Richtmyer meshkov instability" 1063: 1049: 1006: 979: 936:Physica D: Nonlinear Phenomena 923: 787: 761: 702: 640: 620: 604: 574: 571: 568: 526: 496: 493: 451: 425: 366: 304: 284: 268: 265: 223: 193: 131: 111: 95: 92: 50: 1: 916: 834:Rayleigh–Taylor instabilities 906:Kelvin–Helmholtz instability 891:Plateau–Rayleigh instability 7: 1214:Fluid dynamic instabilities 956:10.1016/j.physd.2020.132838 930:Zhou, Ye (September 2021). 881:Rayleigh–Taylor instability 874: 863:Supersonic combustion in a 846:inertial confinement fusion 844:During the implosion of an 839: 31:Rayleigh–Taylor instability 10: 1230: 820: 24:. The development of the 858:magnetized target fusion 1104:10.1103/physreva.31.410 1000:10.1002/cpa.3160130207 812: 474: 206: 1015:Soviet Fluid Dynamics 813: 475: 207: 1204:Plasma instabilities 901:Kármán vortex street 486: 218: 47: 1096:1985PhRvA..31..410M 1027:1972FlDy....4..101M 948:2021PhyD..42332838Z 740: 725: 683: 559: 404: 389: 347: 256: 174: 83: 37:Dispersion Relation 1182:2006-12-30 at the 1035:10.1007/BF01015969 808: 806: 804: 726: 711: 669: 545: 470: 468: 390: 375: 333: 242: 202: 160: 69: 1084:Physical Review A 1221: 1131: 1070: 1067: 1061: 1060: 1053: 1047: 1046: 1010: 1004: 1003: 983: 977: 976: 974: 972: 967: 927: 817: 815: 814: 809: 807: 805: 794: 786: 785: 773: 772: 760: 759: 750: 749: 739: 734: 724: 719: 698: 693: 692: 682: 677: 662: 661: 652: 651: 630: 616: 615: 603: 602: 590: 564: 558: 553: 538: 537: 525: 524: 512: 479: 477: 476: 471: 469: 458: 450: 449: 437: 436: 424: 423: 414: 413: 403: 398: 388: 383: 362: 357: 356: 346: 341: 326: 325: 316: 315: 294: 280: 279: 261: 255: 250: 235: 234: 211: 209: 208: 203: 189: 184: 183: 173: 168: 153: 152: 143: 142: 121: 107: 106: 88: 82: 77: 62: 61: 1229: 1228: 1224: 1223: 1222: 1220: 1219: 1218: 1189: 1188: 1184:Wayback Machine 1138: 1074: 1073: 1068: 1064: 1055: 1054: 1050: 1011: 1007: 984: 980: 970: 968: 928: 924: 919: 877: 842: 830:Supernova 1987A 826:R. D. Richtmyer 823: 790: 781: 777: 768: 764: 755: 751: 745: 741: 735: 730: 720: 715: 694: 688: 684: 678: 673: 657: 653: 647: 643: 626: 611: 607: 598: 594: 586: 560: 554: 549: 533: 529: 520: 516: 508: 491: 489: 487: 484: 483: 454: 445: 441: 432: 428: 419: 415: 409: 405: 399: 394: 384: 379: 358: 352: 348: 342: 337: 321: 317: 311: 307: 290: 275: 271: 257: 251: 246: 230: 226: 221: 219: 216: 215: 185: 179: 175: 169: 164: 148: 144: 138: 134: 117: 102: 98: 84: 78: 73: 57: 53: 48: 45: 44: 39: 12: 11: 5: 1227: 1217: 1216: 1211: 1206: 1201: 1199:Fluid dynamics 1187: 1186: 1174: 1169: 1164: 1159: 1154: 1149: 1144: 1137: 1136:External links 1134: 1133: 1132: 1072: 1071: 1062: 1048: 1021:(5): 101–104. 1005: 994:(2): 297–319. 978: 921: 920: 918: 915: 914: 913: 908: 903: 898: 896:Salt fingering 893: 888: 886:Mushroom cloud 883: 876: 873: 841: 838: 822: 819: 803: 800: 797: 793: 789: 784: 780: 776: 771: 767: 763: 758: 754: 748: 744: 738: 733: 729: 723: 718: 714: 710: 707: 704: 701: 697: 691: 687: 681: 676: 672: 668: 665: 660: 656: 650: 646: 642: 639: 636: 633: 629: 625: 622: 619: 614: 610: 606: 601: 597: 593: 589: 585: 582: 579: 576: 573: 570: 567: 563: 557: 552: 548: 544: 541: 536: 532: 528: 523: 519: 515: 511: 507: 504: 501: 498: 495: 467: 464: 461: 457: 453: 448: 444: 440: 435: 431: 427: 422: 418: 412: 408: 402: 397: 393: 387: 382: 378: 374: 371: 368: 365: 361: 355: 351: 345: 340: 336: 332: 329: 324: 320: 314: 310: 306: 303: 300: 297: 293: 289: 286: 283: 278: 274: 270: 267: 264: 260: 254: 249: 245: 241: 238: 233: 229: 225: 201: 198: 195: 192: 188: 182: 178: 172: 167: 163: 159: 156: 151: 147: 141: 137: 133: 130: 127: 124: 120: 116: 113: 110: 105: 101: 97: 94: 91: 87: 81: 76: 72: 68: 65: 60: 56: 52: 41:For ideal MHD 38: 35: 9: 6: 4: 3: 2: 1226: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1196: 1194: 1185: 1181: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1139: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1076: 1075: 1066: 1058: 1052: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1001: 997: 993: 989: 982: 966: 961: 957: 953: 949: 945: 941: 937: 933: 926: 922: 912: 911:Hydrodynamics 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 878: 872: 870: 866: 861: 859: 855: 851: 847: 837: 835: 831: 827: 818: 801: 798: 795: 791: 782: 778: 774: 769: 765: 756: 752: 746: 742: 736: 731: 727: 721: 716: 712: 708: 705: 699: 695: 689: 685: 679: 674: 670: 666: 663: 658: 654: 648: 644: 637: 634: 631: 627: 623: 617: 612: 608: 599: 595: 591: 587: 583: 580: 577: 565: 561: 555: 550: 546: 542: 539: 534: 530: 521: 517: 513: 509: 505: 502: 499: 481: 465: 462: 459: 455: 446: 442: 438: 433: 429: 420: 416: 410: 406: 400: 395: 391: 385: 380: 376: 372: 369: 363: 359: 353: 349: 343: 338: 334: 330: 327: 322: 318: 312: 308: 301: 298: 295: 291: 287: 281: 276: 272: 262: 258: 252: 247: 243: 239: 236: 231: 227: 213: 212:For Hall MHD 199: 196: 190: 186: 180: 176: 170: 165: 161: 157: 154: 149: 145: 139: 135: 128: 125: 122: 118: 114: 108: 103: 99: 89: 85: 79: 74: 70: 66: 63: 58: 54: 42: 34: 32: 27: 23: 19: 1209:Astrophysics 1087: 1083: 1065: 1051: 1018: 1014: 1008: 991: 987: 981: 969:. Retrieved 965:10871/124449 939: 935: 925: 862: 843: 824: 482: 214: 43: 40: 17: 15: 26:instability 1193:Categories 942:: 132838. 917:References 22:shock wave 1112:0556-2791 1043:123494913 796:β 775:− 766:ω 753:ω 732:∥ 706:− 700:β 675:∥ 655:ω 632:β 618:− 609:ω 592:β 566:β 551:∥ 540:− 531:ω 514:β 480:For QMHD 460:β 439:− 430:ω 417:ω 396:∥ 370:− 364:β 339:∥ 319:ω 296:β 282:− 273:ω 263:β 248:∥ 237:− 228:ω 191:β 166:∥ 146:ω 123:β 109:− 100:ω 90:β 75:∥ 64:− 55:ω 1180:Archived 1128:21139629 875:See also 865:scramjet 840:Examples 1120:9895490 1092:Bibcode 1023:Bibcode 971:15 July 944:Bibcode 821:History 1126:  1118:  1110:  1041:  1124:S2CID 1039:S2CID 1116:PMID 1108:ISSN 973:2022 16:The 1100:doi 1031:doi 996:doi 960:hdl 952:doi 940:423 836:. 33:. 1195:: 1122:. 1114:. 1106:. 1098:. 1088:31 1086:. 1082:. 1037:. 1029:. 1017:. 992:13 990:. 958:. 950:. 938:. 934:. 1130:. 1102:: 1094:: 1059:. 1045:. 1033:: 1025:: 1019:4 1002:. 998:: 975:. 962:: 954:: 946:: 854:T 852:– 850:D 802:0 799:= 792:/ 788:) 783:2 779:k 770:2 762:( 757:2 747:2 743:k 737:2 728:k 722:2 717:s 713:d 709:2 703:) 696:/ 690:2 686:k 680:2 671:k 667:2 664:+ 659:2 649:2 645:k 641:) 638:1 635:+ 628:/ 624:2 621:( 613:4 605:) 600:2 596:c 588:/ 584:2 581:+ 578:1 575:( 572:( 569:) 562:/ 556:2 547:k 543:2 535:2 527:) 522:2 518:c 510:/ 506:2 503:+ 500:1 497:( 494:( 466:0 463:= 456:/ 452:) 447:2 443:k 434:2 426:( 421:2 411:2 407:k 401:2 392:k 386:2 381:s 377:d 373:2 367:) 360:/ 354:2 350:k 344:2 335:k 331:2 328:+ 323:2 313:2 309:k 305:) 302:1 299:+ 292:/ 288:2 285:( 277:4 269:( 266:) 259:/ 253:2 244:k 240:2 232:2 224:( 200:0 197:= 194:) 187:/ 181:2 177:k 171:2 162:k 158:2 155:+ 150:2 140:2 136:k 132:) 129:1 126:+ 119:/ 115:2 112:( 104:4 96:( 93:) 86:/ 80:2 71:k 67:2 59:2 51:(

Index

shock wave
instability
Rayleigh–Taylor instability
R. D. Richtmyer
Supernova 1987A
Rayleigh–Taylor instabilities
inertial confinement fusion
D
T
magnetized target fusion
scramjet
deflagration to detonation transition
Rayleigh–Taylor instability
Mushroom cloud
Plateau–Rayleigh instability
Salt fingering
Kármán vortex street
Kelvin–Helmholtz instability
Hydrodynamics
"Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales"
Bibcode
2021PhyD..42332838Z
doi
10.1016/j.physd.2020.132838
hdl
10871/124449
doi
10.1002/cpa.3160130207
Bibcode
1972FlDy....4..101M

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.