Knowledge

Kármán vortex street

Source 📝

435:
considered at the temperature being considered. On the other hand, the reference length is always an arbitrary parameter, so particular attention should be put when comparing flows around different obstacles or in channels of different shapes: the global Reynolds numbers should be referred to the same reference length. This is actually the reason for which the most precise sources for airfoil and channel flow data specify the reference length at the Reynolds number. The reference length can vary depending on the analysis to be performed: for a body with circle sections such as circular cylinders or spheres, one usually chooses the diameter; for an airfoil, a generic non-circular cylinder or a
900:
was first necessary to know the pressure distribution around the cylinder in a steady flow. Much to his surprise, Hiemenz found that the flow in his channel oscillated violently. When he reported this to Prandtl, the latter told him: 'Obviously your cylinder is not circular.' However, even after very careful machining of the cylinder, the flow continued to oscillate. Then Hiemenz was told that possibly the channel was not symmetric, and he started to adjust it. I was not concerned with this problem, but every morning when I came in the laboratory I asked him, 'Herr Hiemenz, is the flow steady now?' He answered very sadly, 'It always oscillates.'
20: 694: 1959: 110: 547: 94: 69:" of suspended telephone or power lines and the vibration of a car antenna at certain speeds. Mathematical modeling of von Kármán vortex street can be performed using different techniques including but not limited to solving the full Navier-Stokes equations with k-epsilon, SST, k-omega and Reynolds stress, and large eddy simulation (LES) turbulence models, by numerically solving some dynamic equations such as the 1746: 573: 483:≈ 47. Eddies are shed continuously from each side of the circle boundary, forming rows of vortices in its wake. The alternation leads to the core of a vortex in one row being opposite the point midway between two vortex cores in the other row, giving rise to the distinctive pattern shown in the picture. Ultimately, the 598: 434:
For common flows (the ones which can usually be considered as incompressible or isothermal), the kinematic viscosity is everywhere uniform over all the flow field and constant in time, so there is no choice on the viscosity parameter, which becomes naturally the kinematic viscosity of the fluid being
681:
When a tuned mass damper is installed on a cylindrical structure, such as a tall chimney or mast, it helps to reduce the vibration amplitudes caused by vortex shedding. The tuned mass damper consists of a mass that is attached to the structure through springs or dampers. In many cases, the spring is
455:
as the flow speed parameter for comparing different profiles). On the other hand, for fairings and struts the given parameter is usually the dimension of internal structure to be streamlined (let us think for simplicity it is a beam with circular section), and the main target is to minimize the drag
899:
had a doctoral candidate, Karl Hiemenz, to whom he gave the task of constructing a water channel in which he could observe the separation of the flow behind a cylinder. The object was to check experimentally the separation point calculated by means of the boundary-layer theory. For this purpose, it
617:
In low turbulence, tall buildings can produce a Kármán street, so long as the structure is uniform along its height. In urban areas where there are many other tall structures nearby, the turbulence produced by these can prevent the formation of coherent vortices. Periodic crosswind forces set up by
558:
The flow of atmospheric air over obstacles such as islands or isolated mountains sometimes gives birth to von Kármán vortex streets. When a cloud layer is present at the relevant altitude, the streets become visible. Such cloud layer vortex streets have been photographed from satellites. The vortex
689:
The effectiveness of a tuned mass damper in mitigating vortex shedding-induced vibrations depends on factors such as the mass of the damper, its placement on the structure, and the tuning of the system. Engineers carefully analyze the structural dynamics and characteristics of the vortex shedding
450:
For an aerodynamic profile the reference length depends on the analysis. In fact, the profile chord is usually chosen as the reference length also for aerodynamic coefficient for wing sections and thin profiles in which the primary target is to maximize the lift coefficient or the lift/drag ratio
916:
whilst wading through water. Vortices could be seen in the water, and von Kármán noted that "The problem for historians may have been why Christopher was carrying Jesus through the water. For me it was why the vortices". It has been suggested by researchers that the painting is one from the 14th
579: 577: 574: 578: 685:
As the structure is subjected to vortex shedding-induced vibrations, the tuned mass damper oscillates in an out-of-phase motion with the structure. This counteracts the vibrations, reducing their amplitudes and minimizing the potential for resonance and structural damage.
576: 604: 602: 599: 603: 456:
coefficient or the drag/lift ratio. The main design parameter which becomes naturally also a reference length is therefore the profile thickness (the profile dimension or area perpendicular to the flow direction), rather than the profile chord.
714:
projections resembling large screw threads are sometimes placed at the top, which effectively create asymmetric three-dimensional flow, thereby discouraging the alternate shedding of vortices; this is also found in some car antennas.
1151:
Farazande, S. and Bayindir, C., The Interaction of Von Kármán Vortices with the Solitons of the Complex GinzburgLandau Equation. International Conference on Applied Mathematics in Engineering (ICAME) September 1–3, 2021 - Balikesir,
682:
replaced by suspending the mass on cables such that it forms a pendulum system with the same resonance frequency. The mass is carefully tuned to have a natural frequency that matches the dominant frequency of the vortex shedding.
601: 2153: 796: 705:
Another solution to prevent the unwanted vibration of such cylindrical bodies is a longitudinal fin that can be fitted on the downstream side, which, provided it is longer than the diameter of the cylinder, prevents the
256:
like the body speed relative to the fluid at rest, or an inviscid flow speed, computed through the Bernoulli equation), which is the original global flow parameter, i.e. the target to be non-dimensionalised.
1282: 200: 89:
Animation of vortex street created by a cylindrical object; the flow on opposite sides of the object is given different colors, showing that the vortices are shed from alternating sides of the object
366: 86: 575: 836: 718:
Another countermeasure with tall buildings is using variation in the diameter with height, such as tapering - that prevents the entire building from being driven at the same frequency.
622:
caused, which can damage the structure, hence it is important for engineers to account for the possible effects of vortex shedding when designing a wide range of structures, from
1805: 637:. For monitoring such engineering structures, the efficient measurements of von Kármán streets can be performed using smart sensing algorithms such as compressive sensing. 678:(TMD). A tuned mass damper is a device consisting of a mass-spring system that is specifically designed and tuned to counteract the vibrations induced by vortex shedding. 600: 254: 396: 735: 425: 305: 710:
from interacting, and consequently they remain attached. Obviously, for a tall building or mast, the relative wind could come from any direction. For this reason,
1470: 276: 223: 105:
mountains. This phenomenon observed from ground level is extremely rare, as most cloud-related Kármán vortex street activity is viewed from space.
1770:"Flow visualisation of the vortex shedding mechanism on circular cylinder using hydrogen bubbles illuminated by a laser sheet in a water channel" 1750: 1376:
Etling, D. (1990-03-01). "Mesoscale vortex shedding from large islands: A comparison with laboratory experiments of rotating stratified flows".
26:
of the vortex street behind a circular cylinder in air; the flow is made visible through release of glycerol vapour in the air near the cylinder
559:
street can reach over 400 km (250 mi) from the obstacle and the diameter of the vortices are normally 20–40 km (12–25 mi).
1161:
Monkewitz, P. A., Williamson, C. H. K. and Miller, G. D., Phase dynamics of Kármán vortices in cylinder wakes. Physics of Fluids, 8, 1, 1996.
1142:
Albarède, P., & Provansal, M. Quasi-periodic cylinder wakes and the Ginzburg–Landau model. Journal of Fluid Mechanics, 291, 191-222, 1995.
148: 317: 1848: 1355: 649: 1816: 801: 1607: 1557: 1516: 1033: 1025: 610:
The same cylinder, now with a fin, suppressing the vortex street by reducing the region in which the side eddies can interact
443:
or the profile thickness, or some other given widths that are in fact stable design inputs; for flow channels usually the
2134: 1096:"Effects of Turbulence Model and Numerical Time Steps on von Karman Flow Behavior and Drag Accuracy of Circular Cylinder" 487:
of the vortices is consumed by viscosity as they move further down stream, and the regular pattern disappears. Above the
1312:
Barkley, D.; Henderson, R.D. (1996). "Three-dimensional Floquet stability analysis of the wake of a circular cylinder".
1474: 1238:
Jackson, C.P. (1987). "A finite-element study of the onset of vortex shedding in flow past variously shaped bodies".
1001: 1757: 2172: 1841: 936: 475:
of the fluid. For the wake of a circular cylinder, for which the reference length is conventionally the diameter
519: 1049:
Bayındır, Cihan; Namlı, Barış (2021). "Efficient sensing of von Kármán vortices using compressive sensing".
2114: 656: 70: 1834: 933: – Swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime 491:
value of 188.5, the flow becomes three-dimensional, with periodic variation along the cylinder. Above
674:
To prevent vortex shedding and mitigate the unwanted vibration of cylindrical bodies is the use of a
648:, especially when built together in clusters. Vortex shedding caused the collapse of three towers at 619: 659:
was originally attributed to excessive vibration due to vortex shedding, but was actually caused by
551: 954: 877: 62: 1948: 1587: 1793: 1773: 1496: 514:
lateral (sideways) forces on the body in question, causing it to vibrate. If the vortex shedding
232: 1537: 374: 403: 283: 2208: 930: 918: 868:(1850–1922) who first investigated the steady humming or singing of telegraph wires in 1878. 707: 464: 1436: 1385: 1321: 1247: 1194: 1107: 698: 97:
A look at the Kármán vortex street effect from ground level, as air flows quickly from the
66: 1120: 1095: 117:
A vortex street forms only at a certain range of flow velocities, specified by a range of
8: 2182: 2142: 1926: 1427:
Irwin, Peter A. (September 2010). "Vortices and tall buildings: A recipe for resonance".
905: 660: 472: 440: 308: 1440: 1389: 1325: 1251: 1198: 1111: 904:
In his autobiography, von Kármán described how his discovery was inspired by an Italian
2120: 2020: 1857: 1563: 1409: 1337: 1263: 1215: 1184: 1172: 1125: 1076: 1058: 444: 261: 208: 23: 2154:
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
2203: 2147: 2047: 2042: 1983: 1973: 1911: 1724: 1603: 1567: 1553: 1512: 1452: 1413: 1401: 1267: 1220: 1129: 1080: 1029: 1021: 997: 675: 586: 428: 1341: 1072: 1998: 1714: 1595: 1545: 1504: 1444: 1393: 1329: 1294: 1255: 1210: 1202: 1115: 1068: 989: 865: 74: 960: 957: – Motions induced on bodies within a fluid flow due to vortices in the fluid 1921: 948: 942: 881: 861: 791:{\displaystyle {\text{St}}=0.198\left(1-{\frac {19.7}{{\text{Re}}_{d}}}\right)\ } 693: 535: 468: 118: 51: 47: 19: 1599: 885: 2109: 2104: 2037: 1701:
Mizota, Taketo; Zdravkovich, Mickey; Graw, Kai-U.; Leder, Alfred (March 2000).
1508: 909: 896: 527: 526:. It is this forced vibration that, at the correct frequency, causes suspended 439:
or a revolution body like a fuselage or a submarine, it is usually the profile
142: 31: 1785: 1769: 1549: 1333: 1259: 951: – Oscillating flow effect resulting from fluid passing over a blunt body 141:
in the flow of a fluid around a body or in a channel, and may be defined as a
2197: 2099: 2094: 1728: 1456: 1405: 1298: 645: 102: 98: 1958: 666:
Kármán turbulence is also a problem for airplanes, especially when landing.
510:
distribution. This means that the alternate shedding of vortices can create
2010: 1933: 1916: 1702: 1654:
Aerodynamics: Selected Topics in the Light of Their Historical Development
1224: 1206: 993: 690:
phenomenon to determine the optimal parameters for the tuned mass damper.
85: 2128: 2086: 2005: 1901: 1896: 981: 641: 496: 2075: 2070: 1988: 1891: 1544:, Chichester, UK: John Wiley & Sons, Ltd, p. 362, 2018-10-12, 1397: 634: 531: 436: 226: 109: 1691:
Von Kármán, T. (1954). Aerodynamics (Vol. 203). Columbus: McGraw-Hill.
1448: 1173:"Stability of two-dimensional potential flows using bicomplex numbers" 2177: 2080: 1826: 1719: 1594:, Hoboken, NJ, USA: John Wiley & Sons, Inc., pp. 1375–1392, 880:, he acknowledged that the vortex street had been studied earlier by 626: 623: 523: 515: 511: 138: 963: – Tendency of a fluid jet to stay attached to a convex surface 618:
vortices along object's sides can be highly undesirable, due to the
1906: 1871: 1189: 1063: 507: 503: 546: 93: 2032: 2027: 2015: 1993: 1978: 1886: 1797: 1777: 630: 463:
values varies with the size and shape of the body from which the
134: 1745: 1503:, Hoboken, NJ, USA: John Wiley & Sons, Inc., p. 1076, 1171:
Kleine, Vitor G.; Hanifi, Ardeshir; Henningson, Dan S. (2022).
484: 43: 1497:"Aerodynamic Sound Sources in Vehicles—Prediction and Control" 945: – Ratio of inertial to viscous forces acting on a liquid 2065: 1631:
Math. Phys. Klasse pp. 509–517 (1911) and pp. 547–556 (1912).
1586:
Crocker, Malcolm J. (2007-09-19), Crocker, Malcolm J. (ed.),
1283:"Bénard-von Kármán instability: transient and forced regimes" 913: 711: 55: 499:, vortex shedding becomes irregular and turbulence sets in. 451:(i.e. as usual in thin airfoil theory, one would employ the 1943: 1881: 1876: 726:
This formula generally holds true for the range 250 < Re
479:
of the circular cylinder, the lower limit of this range is
1700: 278:= a characteristic length parameter of the body or channel 133:) Reynolds number for a flow is a measure of the ratio of 1588:"Vibration Response of Structures to Fluid Flow and Wind" 1356:"Rapid Response - LANCE - Terra/MODIS 2010/226 14:55 UTC" 1495:
Ahmed, Syed R. (2007-09-19), Crocker, Malcolm J. (ed.),
195:{\displaystyle \mathrm {Re} _{L}={\frac {UL}{\nu _{0}}}} 550:
Kármán vortex street caused by wind flowing around the
145:
parameter of the global speed of the whole fluid flow:
1170: 361:{\displaystyle \nu _{0}={\frac {\mu _{0}}{\rho _{0}}}} 804: 738: 538:
on a car to vibrate more strongly at certain speeds.
406: 377: 320: 286: 264: 235: 211: 151: 1280: 61:
It is named after the engineer and fluid dynamicist
1093: 506:flow pattern forms around the body and changes the 311:
parameter of the fluid, which in turn is the ratio:
229:(i.e. the flow speed far from the fluid boundaries 830: 790: 419: 390: 360: 299: 270: 248: 217: 194: 2195: 1542:Noise and Vibration Control in Automotive Bodies 1311: 860:This dimensionless parameter St is known as the 65:, and is responsible for such phenomena as the " 1786:"Guadalupe Island Produces von Kármán Vortices" 1094:Amalia, E.; Moelyadi, M. A.; Ihsan, M. (2018). 917:century that can be found in the museum of the 1656:(Cornell University Press, Ithaca), pp. 68–69. 1842: 1665:A. Mallock, 1907: On the resistance of air. 1281:Provansal, M.; Mathis, C.; Boyer, L. (1987). 1048: 1796:from the original on 2021-12-22 – via 1776:from the original on 2021-12-22 – via 113:A vortex street in a 2D liquid of hard disks 1435:(9). American Institute of Physics: 68–69. 979: 831:{\displaystyle {\text{St}}={\frac {fd}{U}}} 1849: 1835: 1718: 1680:Comptes Rendus de l'Académie des Sciences 1214: 1188: 1119: 1062: 1682:(Paris), vol. 147, pp. 839–842, 970–972. 864:and is named after the Czech physicist, 692: 545: 108: 92: 84: 50:, which is responsible for the unsteady 18: 1592:Handbook of Noise and Vibration Control 1585: 1501:Handbook of Noise and Vibration Control 1237: 562: 2196: 1856: 1806:"Various Views of von Karman Vortices" 1375: 1044: 1042: 16:Repeating pattern of swirling vortices 1830: 1640:T. von Kármán: and H. Rubach, 1912: 1494: 1426: 1100:Journal of Physics: Conference Series 939: – Phenomenon of fluid mechanics 888:. Kármán tells the story in his book 42:) is a repeating pattern of swirling 1471:"Airport Opening Ceremony Postponed" 980:J.E. Cooper (2001). S. Braun (ed.). 2135:The Chemical Basis of Morphogenesis 1629:Nachr. Ges. Wissenschaft. Göttingen 1378:Meteorology and Atmospheric Physics 1039: 13: 522:of a body or structure, it causes 447:about which the fluid is flowing. 241: 157: 154: 14: 2220: 1738: 585:Simulated vortex street around a 541: 502:When a single vortex is shed, an 1957: 1744: 596: 571: 1694: 1685: 1672: 1659: 1646: 1634: 1621: 1579: 1530: 1488: 1463: 1420: 1369: 1348: 1305: 1274: 1121:10.1088/1742-6596/1005/1/012012 1073:10.1016/j.compfluid.2021.104975 46:, caused by a process known as 1642:Phys. Z.", vol. 13, pp. 49–59. 1231: 1164: 1155: 1145: 1136: 1087: 1010: 973: 657:original Tacoma Narrows Bridge 398:= the reference fluid density. 125:), typically above a limiting 1: 1358:. Rapidfire.sci.gsfc.nasa.gov 967: 1758:"von Karman vortex shedding" 937:Kelvin–Helmholtz instability 844:= vortex shedding frequency. 669: 7: 1762:Encyclopedia of Mathematics 1600:10.1002/9780470209707.ch116 924: 701:fitted to break up vortices 652:in 1965 during high winds. 650:Ferrybridge Power Station C 644:can be created in concrete 249:{\displaystyle U_{\infty }} 80: 10: 2225: 1509:10.1002/9780470209707.ch87 1314:Journal of Fluid Mechanics 1287:Journal of Fluid Mechanics 1240:Journal of Fluid Mechanics 871: 850:= diameter of the cylinder 721: 495:on the order of 10 at the 2165: 2115:D'Arcy Wentworth Thompson 2058: 1966: 1955: 1864: 1751:Von Kármán vortex streets 1550:10.1002/9781119515500.ch6 1334:10.1017/S0022112096002777 1260:10.1017/S0022112087002234 986:Encyclopedia of Vibration 620:vortex-induced vibrations 391:{\displaystyle \rho _{0}} 1299:10.1017/S002211208700223 955:Vortex-induced vibration 427:= the free stream fluid 420:{\displaystyle \mu _{0}} 300:{\displaystyle \nu _{0}} 129:value of about 90. The ( 71:Ginzburg–Landau equation 40:von Kármán vortex street 589:cylindrical obstruction 1207:10.1098/rspa.2022.0165 1051:Computers & Fluids 1020:. McGraw-Hill (1963): 994:10.1006/rwvb.2001.0125 982:"Aeroelastic Response" 902: 832: 792: 702: 555: 552:Juan Fernández Islands 471:, as well as with the 421: 392: 362: 301: 272: 250: 219: 196: 114: 106: 90: 27: 1949:Widmanstätten pattern 1016:Theodore von Kármán, 931:Eddy (fluid dynamics) 894: 876:Although named after 833: 793: 696: 554:off the Chilean coast 549: 422: 393: 363: 302: 273: 251: 220: 197: 112: 96: 88: 58:around blunt bodies. 22: 1753:at Wikimedia Commons 1703:"Science in culture" 802: 736: 563:Engineering problems 404: 375: 318: 284: 262: 233: 209: 149: 36:Kármán vortex street 2183:Mathematics and art 2173:Pattern recognition 2143:Aristid Lindenmayer 1669:, A79, pp. 262–265. 1441:2010PhT....63i..68I 1390:1990MAP....43..145E 1326:1996JFM...322..215B 1252:1987JFM...182...23J 1199:2022RSPSA.47820165K 1112:2018JPhCS1005a2012A 988:. Elsevier: 87–97. 921:church in Bologna. 912:carrying the child 878:Theodore von Kármán 661:aeroelastic flutter 655:The failure of the 473:kinematic viscosity 309:kinematic viscosity 63:Theodore von Kármán 2121:On Growth and Form 2021:Logarithmic spiral 1858:Patterns in nature 1822:on March 12, 2016. 1678:H. Bénard, 1908: 1398:10.1007/BF01028117 828: 788: 703: 640:Even more serious 556: 534:to "sing" and the 518:is similar to the 445:hydraulic diameter 417: 388: 358: 307:= the free stream 297: 268: 246: 225:= the free stream 215: 192: 115: 107: 91: 75:bicomplex variable 52:separation of flow 28: 2191: 2190: 2148:Benoît Mandelbrot 2048:Self-organization 1984:Natural selection 1974:Pattern formation 1749:Media related to 1652:T. Kármán, 1954. 1609:978-0-470-20970-7 1559:978-1-119-51550-0 1518:978-0-470-20970-7 1449:10.1063/1.3490510 1034:978-0-486-43485-8 1026:978-0-07-067602-2 826: 808: 787: 778: 770: 742: 676:tuned mass damper 605: 580: 520:natural frequency 429:dynamic viscosity 356: 271:{\displaystyle L} 218:{\displaystyle U} 190: 73:, or by use of a 2216: 1999:Sexual selection 1961: 1851: 1844: 1837: 1828: 1827: 1823: 1821: 1815:. Archived from 1810: 1801: 1781: 1765: 1748: 1733: 1732: 1722: 1720:10.1038/35005158 1698: 1692: 1689: 1683: 1676: 1670: 1667:Proc. Royal Soc. 1663: 1657: 1650: 1644: 1638: 1632: 1627:T. von Kármán: 1625: 1619: 1618: 1617: 1616: 1583: 1577: 1576: 1575: 1574: 1534: 1528: 1527: 1526: 1525: 1492: 1486: 1485: 1483: 1482: 1473:. Archived from 1467: 1461: 1460: 1424: 1418: 1417: 1373: 1367: 1366: 1364: 1363: 1352: 1346: 1345: 1309: 1303: 1302: 1278: 1272: 1271: 1235: 1229: 1228: 1218: 1192: 1168: 1162: 1159: 1153: 1149: 1143: 1140: 1134: 1133: 1123: 1091: 1085: 1084: 1066: 1046: 1037: 1028:. Dover (1994): 1014: 1008: 1007: 977: 866:Vincenc Strouhal 856:= flow velocity. 837: 835: 834: 829: 827: 822: 814: 809: 806: 797: 795: 794: 789: 785: 784: 780: 779: 777: 776: 771: 768: 762: 743: 740: 607: 606: 582: 581: 426: 424: 423: 418: 416: 415: 397: 395: 394: 389: 387: 386: 367: 365: 364: 359: 357: 355: 354: 345: 344: 335: 330: 329: 306: 304: 303: 298: 296: 295: 277: 275: 274: 269: 255: 253: 252: 247: 245: 244: 224: 222: 221: 216: 201: 199: 198: 193: 191: 189: 188: 179: 171: 166: 165: 160: 119:Reynolds numbers 2224: 2223: 2219: 2218: 2217: 2215: 2214: 2213: 2194: 2193: 2192: 2187: 2161: 2054: 1962: 1953: 1860: 1855: 1819: 1808: 1804: 1784: 1768: 1756: 1741: 1736: 1699: 1695: 1690: 1686: 1677: 1673: 1664: 1660: 1651: 1647: 1639: 1635: 1626: 1622: 1614: 1612: 1610: 1584: 1580: 1572: 1570: 1560: 1536: 1535: 1531: 1523: 1521: 1519: 1493: 1489: 1480: 1478: 1469: 1468: 1464: 1425: 1421: 1374: 1370: 1361: 1359: 1354: 1353: 1349: 1310: 1306: 1279: 1275: 1236: 1232: 1177:Proc. R. Soc. A 1169: 1165: 1160: 1156: 1150: 1146: 1141: 1137: 1092: 1088: 1047: 1040: 1015: 1011: 1004: 978: 974: 970: 949:Vortex shedding 943:Reynolds number 927: 882:Arnulph Mallock 874: 862:Strouhal number 815: 813: 805: 803: 800: 799: 772: 767: 766: 761: 754: 750: 739: 737: 734: 733: 731: 724: 672: 615: 614: 613: 612: 611: 608: 597: 592: 591: 590: 583: 572: 565: 544: 411: 407: 405: 402: 401: 382: 378: 376: 373: 372: 350: 346: 340: 336: 334: 325: 321: 319: 316: 315: 291: 287: 285: 282: 281: 263: 260: 259: 240: 236: 234: 231: 230: 210: 207: 206: 184: 180: 172: 170: 161: 153: 152: 150: 147: 146: 83: 48:vortex shedding 17: 12: 11: 5: 2222: 2212: 2211: 2206: 2189: 2188: 2186: 2185: 2180: 2175: 2169: 2167: 2163: 2162: 2160: 2159: 2158: 2157: 2145: 2140: 2139: 2138: 2126: 2125: 2124: 2112: 2110:Wilson Bentley 2107: 2105:Joseph Plateau 2102: 2097: 2092: 2091: 2090: 2078: 2073: 2068: 2062: 2060: 2056: 2055: 2053: 2052: 2051: 2050: 2045: 2043:Plateau's laws 2040: 2038:Fluid dynamics 2035: 2025: 2024: 2023: 2018: 2013: 2003: 2002: 2001: 1996: 1991: 1986: 1976: 1970: 1968: 1964: 1963: 1956: 1954: 1952: 1951: 1946: 1941: 1936: 1931: 1930: 1929: 1924: 1919: 1914: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1868: 1866: 1862: 1861: 1854: 1853: 1846: 1839: 1831: 1825: 1824: 1802: 1790:NOAASatellites 1782: 1766: 1754: 1740: 1739:External links 1737: 1735: 1734: 1693: 1684: 1671: 1658: 1645: 1633: 1620: 1608: 1578: 1558: 1529: 1517: 1487: 1462: 1419: 1384:(1): 145–151. 1368: 1347: 1304: 1273: 1230: 1163: 1154: 1144: 1135: 1086: 1038: 1009: 1002: 971: 969: 966: 965: 964: 958: 952: 946: 940: 934: 926: 923: 910:St Christopher 873: 870: 858: 857: 851: 845: 825: 821: 818: 812: 783: 775: 765: 760: 757: 753: 749: 746: 727: 723: 720: 697:Chimneys with 671: 668: 646:cooling towers 629:to industrial 609: 595: 594: 593: 584: 570: 569: 568: 567: 566: 564: 561: 543: 542:In meteorology 540: 453:chord Reynolds 432: 431: 414: 410: 399: 385: 381: 353: 349: 343: 339: 333: 328: 324: 313: 312: 294: 290: 279: 267: 257: 243: 239: 214: 187: 183: 178: 175: 169: 164: 159: 156: 143:nondimensional 139:viscous forces 101:eastward over 82: 79: 32:fluid dynamics 15: 9: 6: 4: 3: 2: 2221: 2210: 2207: 2205: 2202: 2201: 2199: 2184: 2181: 2179: 2176: 2174: 2171: 2170: 2168: 2164: 2156: 2155: 2151: 2150: 2149: 2146: 2144: 2141: 2137: 2136: 2132: 2131: 2130: 2127: 2123: 2122: 2118: 2117: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2100:Ernst Haeckel 2098: 2096: 2095:Adolf Zeising 2093: 2089: 2088: 2084: 2083: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2064: 2063: 2061: 2057: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2030: 2029: 2026: 2022: 2019: 2017: 2014: 2012: 2009: 2008: 2007: 2004: 2000: 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1981: 1980: 1977: 1975: 1972: 1971: 1969: 1965: 1960: 1950: 1947: 1945: 1942: 1940: 1939:Vortex street 1937: 1935: 1932: 1928: 1925: 1923: 1920: 1918: 1917:Quasicrystals 1915: 1913: 1910: 1909: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1869: 1867: 1863: 1859: 1852: 1847: 1845: 1840: 1838: 1833: 1832: 1829: 1818: 1814: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1752: 1747: 1743: 1742: 1730: 1726: 1721: 1716: 1713:(6775): 226. 1712: 1708: 1704: 1697: 1688: 1681: 1675: 1668: 1662: 1655: 1649: 1643: 1637: 1630: 1624: 1611: 1605: 1601: 1597: 1593: 1589: 1582: 1569: 1565: 1561: 1555: 1551: 1547: 1543: 1539: 1533: 1520: 1514: 1510: 1506: 1502: 1498: 1491: 1477:on 2016-07-26 1476: 1472: 1466: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1429:Physics Today 1423: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1357: 1351: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1300: 1296: 1292: 1288: 1284: 1277: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1234: 1226: 1222: 1217: 1212: 1208: 1204: 1200: 1196: 1191: 1186: 1182: 1178: 1174: 1167: 1158: 1148: 1139: 1131: 1127: 1122: 1117: 1113: 1109: 1106:(1): 012012. 1105: 1101: 1097: 1090: 1082: 1078: 1074: 1070: 1065: 1060: 1056: 1052: 1045: 1043: 1035: 1031: 1027: 1023: 1019: 1013: 1005: 1003:9780122270857 999: 995: 991: 987: 983: 976: 972: 962: 961:Coandă effect 959: 956: 953: 950: 947: 944: 941: 938: 935: 932: 929: 928: 922: 920: 915: 911: 907: 901: 898: 893: 891: 887: 883: 879: 869: 867: 863: 855: 852: 849: 846: 843: 840: 839: 838: 823: 819: 816: 810: 781: 773: 763: 758: 755: 751: 747: 744: 732:< 200000: 730: 719: 716: 713: 709: 700: 695: 691: 687: 683: 679: 677: 667: 664: 662: 658: 653: 651: 647: 643: 638: 636: 632: 628: 625: 621: 588: 560: 553: 548: 539: 537: 533: 529: 525: 521: 517: 513: 509: 505: 500: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 459:The range of 457: 454: 448: 446: 442: 438: 430: 412: 408: 400: 383: 379: 371: 370: 369: 351: 347: 341: 337: 331: 326: 322: 310: 292: 288: 280: 265: 258: 237: 228: 212: 205: 204: 203: 185: 181: 176: 173: 167: 162: 144: 140: 136: 132: 128: 124: 120: 111: 104: 103:Mojave Desert 100: 99:Pacific Ocean 95: 87: 78: 76: 72: 68: 64: 59: 57: 53: 49: 45: 41: 37: 33: 25: 24:Visualisation 21: 2209:Aerodynamics 2152: 2133: 2119: 2085: 2011:Chaos theory 1938: 1934:Tessellation 1817:the original 1812: 1789: 1761: 1710: 1706: 1696: 1687: 1679: 1674: 1666: 1661: 1653: 1648: 1641: 1636: 1628: 1623: 1613:, retrieved 1591: 1581: 1571:, retrieved 1541: 1538:"Wind Noise" 1532: 1522:, retrieved 1500: 1490: 1479:. Retrieved 1475:the original 1465: 1432: 1428: 1422: 1381: 1377: 1371: 1360:. Retrieved 1350: 1317: 1313: 1307: 1290: 1286: 1276: 1243: 1239: 1233: 1183:(20220165). 1180: 1176: 1166: 1157: 1147: 1138: 1103: 1099: 1089: 1054: 1050: 1018:Aerodynamics 1017: 1012: 985: 975: 919:San Domenico 903: 895: 890:Aerodynamics 889: 886:Henri Bénard 875: 859: 853: 847: 841: 728: 725: 717: 704: 688: 684: 680: 673: 665: 654: 639: 616: 557: 504:asymmetrical 501: 492: 488: 480: 476: 460: 458: 452: 449: 433: 314: 130: 126: 122: 116: 60: 39: 35: 29: 2129:Alan Turing 2087:Liber Abaci 2006:Mathematics 1912:in crystals 1902:Soap bubble 1897:Phyllotaxis 1320:: 215–241. 642:instability 635:skyscrapers 532:power lines 497:drag crisis 2198:Categories 2076:Empedocles 2071:Pythagoras 1989:Camouflage 1927:in biology 1922:in flowers 1892:Parastichy 1615:2023-08-11 1573:2023-08-11 1524:2023-08-11 1481:2016-10-18 1362:2013-12-20 1190:2203.05857 1064:2005.08325 1057:: 104975. 968:References 627:periscopes 437:bluff body 227:flow speed 2178:Emergence 2081:Fibonacci 1813:NASA page 1729:1476-4687 1568:240055532 1457:0031-9228 1414:122276209 1406:1436-5065 1268:123071463 1246:: 23–45. 1130:126372504 1081:234828962 759:− 670:Solutions 624:submarine 528:telephone 524:resonance 516:frequency 409:μ 380:ρ 368:between: 348:ρ 338:μ 323:ν 289:ν 242:∞ 182:ν 2204:Vortices 1907:Symmetry 1865:Patterns 1794:Archived 1774:Archived 1342:53610776 1293:: 1–22. 1225:35702595 925:See also 906:painting 631:chimneys 512:periodic 508:pressure 135:inertial 81:Analysis 44:vortices 2166:Related 2033:Crystal 2028:Physics 2016:Fractal 1994:Mimicry 1979:Biology 1887:Meander 1798:YouTube 1778:YouTube 1437:Bibcode 1386:Bibcode 1322:Bibcode 1248:Bibcode 1216:9185835 1195:Bibcode 1108:Bibcode 897:Prandtl 872:History 798:where: 722:Formula 712:helical 699:strakes 587:no-slip 536:antenna 202:where: 67:singing 2059:People 1967:Causes 1727:  1707:Nature 1606:  1566:  1556:  1515:  1455:  1412:  1404:  1340:  1266:  1223:  1213:  1152:Turkey 1128:  1079:  1032:  1024:  1000:  786:  708:eddies 485:energy 465:eddies 131:global 38:(or a 2066:Plato 1872:Crack 1820:(PDF) 1809:(PDF) 1564:S2CID 1410:S2CID 1338:S2CID 1264:S2CID 1185:arXiv 1126:S2CID 1077:S2CID 1059:arXiv 914:Jesus 748:0.198 441:chord 56:fluid 54:of a 1944:Wave 1882:Foam 1877:Dune 1725:ISSN 1604:ISBN 1554:ISBN 1513:ISBN 1453:ISSN 1402:ISSN 1221:PMID 1104:1005 1030:ISBN 1022:ISBN 998:ISBN 884:and 764:19.7 633:and 469:shed 467:are 34:, a 1715:doi 1711:404 1596:doi 1546:doi 1505:doi 1445:doi 1394:doi 1330:doi 1318:322 1295:doi 1291:182 1256:doi 1244:182 1211:PMC 1203:doi 1181:478 1116:doi 1069:doi 1055:226 990:doi 908:of 530:or 489:Re 137:to 30:In 2200:: 1811:. 1792:. 1788:. 1772:. 1760:. 1723:. 1709:. 1705:. 1602:, 1590:, 1562:, 1552:, 1540:, 1511:, 1499:, 1451:. 1443:. 1433:63 1431:. 1408:. 1400:. 1392:. 1382:43 1380:. 1336:. 1328:. 1316:. 1289:. 1285:. 1262:. 1254:. 1242:. 1219:. 1209:. 1201:. 1193:. 1179:. 1175:. 1124:. 1114:. 1102:. 1098:. 1075:. 1067:. 1053:. 1041:^ 996:. 984:. 892:: 807:St 769:Re 741:St 663:. 493:Re 481:Re 461:Re 127:Re 123:Re 77:. 1850:e 1843:t 1836:v 1800:. 1780:. 1764:. 1731:. 1717:: 1598:: 1548:: 1507:: 1484:. 1459:. 1447:: 1439:: 1416:. 1396:: 1388:: 1365:. 1344:. 1332:: 1324:: 1301:. 1297:: 1270:. 1258:: 1250:: 1227:. 1205:: 1197:: 1187:: 1132:. 1118:: 1110:: 1083:. 1071:: 1061:: 1036:. 1006:. 992:: 854:U 848:d 842:f 824:U 820:d 817:f 811:= 782:) 774:d 756:1 752:( 745:= 729:d 477:d 413:0 384:0 352:0 342:0 332:= 327:0 293:0 266:L 238:U 213:U 186:0 177:L 174:U 168:= 163:L 158:e 155:R 121:(

Index


Visualisation
fluid dynamics
vortices
vortex shedding
separation of flow
fluid
Theodore von Kármán
singing
Ginzburg–Landau equation
bicomplex variable


Pacific Ocean
Mojave Desert

Reynolds numbers
inertial
viscous forces
nondimensional
flow speed
kinematic viscosity
dynamic viscosity
bluff body
chord
hydraulic diameter
eddies
shed
kinematic viscosity
energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.