Knowledge

Flow separation

Source 📝

29: 648: 142: 656:
recirculating flow and the flow through the central region of the duct is called the dividing streamline. The point where the dividing streamline attaches to the wall again is called the reattachment point. As the flow goes farther downstream it eventually achieves an equilibrium state and has no reverse flow.
655:
Boundary layer separation can occur for internal flows. It can result from such causes such as a rapidly expanding duct of pipe. Separation occurs due to an adverse pressure gradient encountered as the flow expands, causing an extended region of separated flow. The part of the flow that separates the
116:
differential between the front and rear surfaces of the object. It causes buffeting of aircraft structures and control surfaces. In internal passages separation causes stalling and vibrations in machinery blading and increased losses (lower efficiency) in inlets and compressors. Much effort and
276: 638:
distribution, the separation resistance of a turbulent boundary layer increases slightly with increasing Reynolds number. In contrast, the separation resistance of a laminar boundary layer is independent of Reynolds number — a somewhat counterintuitive fact.
687:. Vortices shed from the bluff downstream surface of a structure at a frequency depending on the speed of the flow. Vortex shedding produces an alternating force which can lead to vibrations in the structure. If the shedding frequency coincides with a 691:
of the structure, it can cause structural failure. These vibrations could be established and reflected at different frequencies based on their origin in adjacent solid or fluid bodies and could either damp or amplify the resonance.
539: 163: 125:
surface contours and added features which delay flow separation and keep the flow attached for as long as possible. Examples include the fur on a tennis ball, dimples on a golf ball,
85:
Separation occurs in flow that is slowing down, with pressure increasing, after passing the thickest part of a streamline body or passing through a widening passage, for example.
897: 449: 96:
that the speed of the boundary layer relative to the surface has stopped and reversed direction. The flow becomes detached from the surface, and instead takes the forms of
793: 345: 664:
When the boundary layer separates, its remnants form a shear layer and the presence of a separated flow region between the shear layer and surface modifies the outside
636: 583: 70:
present in the layer of fluid close to the surface. The flow can be externally, around a body, or internally, in an enclosed passage. Boundary layers can be either
305: 385: 365: 676:
and loss of lift, all of which are undesirable. For internal flows, flow separation produces an increase in the flow losses, and stall-type phenomena such as
104:. The fluid exerts a constant pressure on the surface once it has separated instead of a continually increasing pressure if still attached. In 145:
Graphical representation of the velocity profile in the boundary layer. The last profile represents reverse flow which shows separated flow.
777: 395:
The tendency of a boundary layer to separate primarily depends on the distribution of the adverse or negative edge velocity gradient
790: 461: 593:
flow, the former being able to tolerate nearly an order of magnitude stronger flow deceleration. A secondary influence is the
833:
Fielding, Suzanne. "Laminar Boundary Layer Separation." 27 October 2005. The University of Manchester. 12 March 2008 <
271:{\displaystyle u{\partial u \over \partial s}=-{1 \over \rho }{dp \over ds}+{\nu }{\partial ^{2}u \over \partial y^{2}}} 451:
along the surface, which in turn is directly related to the pressure and its gradient by the differential form of the
876: 858: 78:. A reasonable assessment of whether the boundary layer will be laminar or turbulent can be made by calculating the 821: 711: 668:
and pressure field. In the case of airfoils, the pressure field modification results in an increase in
398: 905: 834: 684: 150: 93: 89: 924: 929: 812:
Wilcox, David C. Basic Fluid Mechanics. 3rd ed. Mill Valley: DCW Industries, Inc., 2007. 664-668.
801: 889: 310: 600: 547: 903:
Marie Curie Network on Advances in Numerical and Analytical Tools for Detached Flow Prediction
28: 97: 8: 688: 452: 284: 157:. The streamwise momentum equation inside the boundary layer is approximately stated as 701: 370: 350: 872: 854: 773: 683:
Another effect of boundary layer separation is regular shedding vortices, known as a
677: 130: 909: 797: 594: 79: 33: 20: 673: 665: 154: 75: 59: 52: 40: 647: 918: 898:
Aerodynamics in Sports Equipment, Recreation and Machines – Golf – Instructor
716: 669: 109: 307:
are streamwise and normal coordinates. An adverse pressure gradient is when
141: 864: 756: 706: 590: 387:
and possibly go to zero if the adverse pressure gradient is strong enough.
122: 105: 71: 822:
https://www.aps.org/units/dfd/resources/upload/prandtl_vol58no12p42_48.pdf
455:, which is the same as the momentum equation for the outer inviscid flow. 118: 586: 126: 772:
Fundamentals of Aerodynamics 5th edition, John D. Anderson, Jr. 2011,
92:. The boundary layer separates when it has travelled far enough in an 67: 835:
https://community.dur.ac.uk/suzanne.fielding/teaching/BLT/sec4c.pdf
113: 129:
on a glider, which induce an early transition to turbulent flow;
88:
Flowing against an increasing pressure is known as flowing in an
101: 63: 51:
is the detachment of a boundary layer from a surface into a
902: 734:
White (2010), "Fluid Mechanics", Section 7.1 (7th edition)
534:{\displaystyle \rho u_{o}{du_{o} \over ds}=-{dp \over ds}} 16:
Detachment of a boundary layer from a surface into a wake
108:, flow separation results in reduced lift and increased 659: 603: 550: 464: 401: 373: 353: 313: 287: 166: 62:
exists whenever there is relative movement between a
806: 630: 577: 533: 443: 379: 359: 339: 299: 270: 651:A schematic of internal boundary layer separation 916: 800:, from School of Engineering and Electronics, 347:, which then can be seen to cause the velocity 19:For the repainted ship by Tauba Auerbach, see 585:required for separation are much greater for 672:, and if severe enough will also result in 136: 153:imposed on the boundary layer by the outer 390: 149:The flow reversal is primarily caused by 32:Airflow separating from a wing at a high 646: 140: 27: 917: 642: 117:research has gone into the design of 871:, Pitman Publishing Limited, London 660:Effects of boundary layer separation 13: 252: 238: 181: 173: 14: 941: 883: 444:{\displaystyle du_{o}/ds(s)<0} 827: 815: 783: 766: 750: 737: 728: 680:, both undesirable phenomena. 544:But the general magnitudes of 432: 426: 82:of the local flow conditions. 1: 893:-Golf Ball Dimples & Drag 843: 791:Separation of Boundary Layers 747:, Section 4.20 (5th edition) 722: 7: 695: 10: 948: 849:Anderson, John D. (2004), 743:Anderson, John D. (2004), 340:{\displaystyle dp/ds>0} 18: 631:{\displaystyle du_{o}/ds} 578:{\displaystyle du_{o}/ds} 151:adverse pressure gradient 137:Adverse pressure gradient 94:adverse pressure gradient 90:adverse pressure gradient 66:and a solid surface with 49:boundary layer separation 908:2 November 2018 at the 802:University of Edinburgh 851:Introduction to Flight 745:Introduction to Flight 652: 632: 597:. For a given adverse 579: 535: 445: 391:Influencing parameters 381: 361: 341: 301: 272: 146: 36: 789:Balmer, David (2003) 650: 633: 580: 536: 446: 382: 362: 342: 302: 273: 144: 31: 796:17 July 2020 at the 712:D'Alembert's paradox 685:Kármán vortex street 601: 548: 462: 399: 371: 351: 311: 285: 164: 689:resonance frequency 643:Internal separation 300:{\displaystyle s,y} 702:Triple-deck theory 653: 628: 575: 531: 453:Bernoulli relation 441: 377: 367:to decrease along 357: 337: 297: 268: 147: 37: 778:978 0 07 339810 5 529: 503: 380:{\displaystyle s} 360:{\displaystyle u} 266: 224: 204: 188: 131:vortex generators 937: 838: 831: 825: 819: 813: 810: 804: 787: 781: 770: 764: 754: 748: 741: 735: 732: 678:compressor surge 637: 635: 634: 629: 621: 616: 615: 584: 582: 581: 576: 568: 563: 562: 540: 538: 537: 532: 530: 528: 520: 512: 504: 502: 494: 493: 492: 479: 477: 476: 450: 448: 447: 442: 419: 414: 413: 386: 384: 383: 378: 366: 364: 363: 358: 346: 344: 343: 338: 324: 306: 304: 303: 298: 277: 275: 274: 269: 267: 265: 264: 263: 250: 246: 245: 235: 233: 225: 223: 215: 207: 205: 197: 189: 187: 179: 171: 112:, caused by the 947: 946: 940: 939: 938: 936: 935: 934: 925:Boundary layers 915: 914: 910:Wayback Machine 886: 853:, McGraw-Hill. 846: 841: 832: 828: 820: 816: 811: 807: 798:Wayback Machine 788: 784: 771: 767: 755: 751: 742: 738: 733: 729: 725: 698: 662: 645: 617: 611: 607: 602: 599: 598: 595:Reynolds number 564: 558: 554: 549: 546: 545: 521: 513: 511: 495: 488: 484: 480: 478: 472: 468: 463: 460: 459: 415: 409: 405: 400: 397: 396: 393: 372: 369: 368: 352: 349: 348: 320: 312: 309: 308: 286: 283: 282: 259: 255: 251: 241: 237: 236: 234: 229: 216: 208: 206: 196: 180: 172: 170: 165: 162: 161: 139: 80:Reynolds number 45:flow separation 34:angle of attack 24: 21:Flow Separation 17: 12: 11: 5: 945: 944: 933: 932: 930:Fluid dynamics 927: 913: 912: 900: 895: 885: 884:External links 882: 881: 880: 862: 845: 842: 840: 839: 826: 814: 805: 782: 765: 763:, Section 4.14 749: 736: 726: 724: 721: 720: 719: 714: 709: 704: 697: 694: 666:potential flow 661: 658: 644: 641: 627: 624: 620: 614: 610: 606: 574: 571: 567: 561: 557: 553: 542: 541: 527: 524: 519: 516: 510: 507: 501: 498: 491: 487: 483: 475: 471: 467: 440: 437: 434: 431: 428: 425: 422: 418: 412: 408: 404: 392: 389: 376: 356: 336: 333: 330: 327: 323: 319: 316: 296: 293: 290: 279: 278: 262: 258: 254: 249: 244: 240: 232: 228: 222: 219: 214: 211: 203: 200: 195: 192: 186: 183: 178: 175: 169: 155:potential flow 138: 135: 68:viscous forces 60:boundary layer 41:fluid dynamics 15: 9: 6: 4: 3: 2: 943: 942: 931: 928: 926: 923: 922: 920: 911: 907: 904: 901: 899: 896: 894: 892: 888: 887: 878: 877:0-273-01120-0 874: 870: 866: 863: 860: 859:0-07-282569-3 856: 852: 848: 847: 836: 830: 823: 818: 809: 803: 799: 795: 792: 786: 780:, Figure 4.46 779: 775: 769: 762: 758: 753: 746: 740: 731: 727: 718: 717:Magnus effect 715: 713: 710: 708: 705: 703: 700: 699: 693: 690: 686: 681: 679: 675: 671: 670:pressure drag 667: 657: 649: 640: 625: 622: 618: 612: 608: 604: 596: 592: 588: 572: 569: 565: 559: 555: 551: 525: 522: 517: 514: 508: 505: 499: 496: 489: 485: 481: 473: 469: 465: 458: 457: 456: 454: 438: 435: 429: 423: 420: 416: 410: 406: 402: 388: 374: 354: 334: 331: 328: 325: 321: 317: 314: 294: 291: 288: 260: 256: 247: 242: 230: 226: 220: 217: 212: 209: 201: 198: 193: 190: 184: 176: 167: 160: 159: 158: 156: 152: 143: 134: 133:on aircraft. 132: 128: 124: 120: 115: 111: 110:pressure drag 107: 103: 99: 95: 91: 86: 83: 81: 77: 73: 69: 65: 61: 56: 54: 50: 46: 42: 35: 30: 26: 22: 891:Aerospaceweb 890: 869:Aerodynamics 868: 865:L. J. Clancy 850: 829: 817: 808: 785: 768: 761:Aerodynamics 760: 757:L. J. Clancy 752: 744: 739: 730: 707:Aerodynamics 682: 663: 654: 543: 394: 280: 148: 123:hydrodynamic 106:aerodynamics 87: 84: 57: 48: 44: 38: 25: 127:turbulators 119:aerodynamic 919:Categories 844:References 723:Footnotes 589:than for 587:turbulent 509:− 466:ρ 253:∂ 239:∂ 231:ν 202:ρ 194:− 182:∂ 174:∂ 76:turbulent 906:Archived 867:(1975), 794:Archived 696:See also 114:pressure 102:vortices 824:, Fig 3 759:(1975) 591:laminar 72:laminar 875:  857:  776:  281:where 98:eddies 837:>. 674:stall 64:fluid 873:ISBN 855:ISBN 774:ISBN 436:< 332:> 121:and 100:and 53:wake 74:or 47:or 39:In 921:: 58:A 55:. 43:, 879:. 861:. 626:s 623:d 619:/ 613:o 609:u 605:d 573:s 570:d 566:/ 560:o 556:u 552:d 526:s 523:d 518:p 515:d 506:= 500:s 497:d 490:o 486:u 482:d 474:o 470:u 439:0 433:) 430:s 427:( 424:s 421:d 417:/ 411:o 407:u 403:d 375:s 355:u 335:0 329:s 326:d 322:/ 318:p 315:d 295:y 292:, 289:s 261:2 257:y 248:u 243:2 227:+ 221:s 218:d 213:p 210:d 199:1 191:= 185:s 177:u 168:u 23:.

Index

Flow Separation

angle of attack
fluid dynamics
wake
boundary layer
fluid
viscous forces
laminar
turbulent
Reynolds number
adverse pressure gradient
adverse pressure gradient
eddies
vortices
aerodynamics
pressure drag
pressure
aerodynamic
hydrodynamic
turbulators
vortex generators

adverse pressure gradient
potential flow
Bernoulli relation
turbulent
laminar
Reynolds number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.