Knowledge

Remineralisation

Source đź“ť

1015: 2166:(DOC). Studies have shown that it is larger sinking particles that transport matter down to the sea floor while suspended particles and dissolved organics are mostly consumed by remineralisation. This happens in part due to the fact that organisms must typically ingest nutrients smaller than they are, often by orders of magnitude. With the microbial community making up 90% of marine biomass, it is particles smaller than the microbes (on the order of 10) that will be taken up for remineralisation. 106: 688: 2127: 971:. The zonation of these favored acceptors can be seen in Figure 1. Moving downwards from the surface through the zonation of these deep ocean sediments, acceptors are used and depleted. Once depleted the next acceptor of lower favorability takes its place. Thermodynamically, oxygen represents the most favorable electron accepted but is quickly used up in the water sediment interface and 925: 748:, however, remineralization is used to describe a link in the chain of elemental cycling within a specific ecosystem. In particular, remineralization represents the point where organic material constructed by living organisms is broken down into basal inorganic components that are not obviously identifiable as having come from an organic source. This differs from the process of 2118:
conditions, in which oxygen is readily available, aerobic respiration will be favored due to its high energy yield. Once the use of oxygen through respiration exceeds the input of oxygen due to bioturbation and diffusion, the environment will become anoxic and organic matter will be broken down via other means, such as denitrification and manganese reduction.
1027:
makes it to the seafloor without being remineralised and 90% of that remaining material is remineralised in sediments itself. Once in the sediment, organic remineralisation may occur through a variety of reactions. The following reactions are the primary ways in which organic matter is remineralised,
755:
Biogeochemists study this process across all ecosystems for a variety of reasons. This is done primarily to investigate the flow of material and energy in a given system, which is key to understanding the productivity of that ecosystem along with how it recycles material versus how much is entering
2158:
For most areas of the ocean, the highest rates of carbon remineralisation occur at depths between 100–1,200 m (330–3,940 ft) in the water column, decreasing down to about 1,200 m where remineralisation rates remain pretty constant at 0.1 ÎĽmol kg yr. As a result of this, the pool of
2134:
In most open ocean ecosystems only a small fraction of organic matter reaches the seafloor. Biological activity in the photic zone of most water bodies tends to recycle material so well that only a small fraction of organic matter ever sinks out of that top photosynthetic layer. Remineralisation
978:
concentrations extends only millimeters to centimeters down into the sediment in most locations of the deep sea. This favorability indicates an organism's ability to obtain higher energy from the reaction which helps them compete with other organisms. In the absence of these acceptors, organic
2138:
What fraction does escape varies depending on the location of interest. For example, in the North Sea, values of carbon deposition are ~1% of primary production while that value is <0.5% in the open oceans on average. Therefore, most of nutrients remain in the water column, recycled by the
2117:
Redox zonation refers to how the processes that transfer terminal electrons as a result of organic matter degradation vary depending on time and space. Certain reactions will be favored over others due to their energy yield as detailed in the energy acceptor cascade detailed above. In oxic
881: 764:
While it is important to note that the process of remineralization is a series of complex biochemical pathways , it can often be simplified as a series of one-step processes for ecosystem-level models and calculations. A generic form of these reactions is shown by:
1018:
Relative favorability of reduction reactions in marine sediments based on thermodynamic energetics. Origin of arrows indicate energy associated with half-cell reaction. Length of arrow indicates an estimate of ΔG for the reaction (Adapted from Libes,
1093:
to remineralise organic matter as it provides the second largest amount of energy. In depths below where denitrification is favored, reactions such as Manganese Reduction, Iron Reduction, Sulfate Reduction, Methane Reduction (also known as
2582:
Feely, Richard A.; Sabine, Christopher L.; Schlitzer, Reiner; Bullister, John L.; Mecking, Sabine; Greeley, Dana (1 February 2004). "Oxygen Utilization and Organic Carbon Remineralisation in the Upper Water Column of the Pacific Ocean".
1770: 1583: 1070:
Aerobic respiration is the most preferred remineralisation reaction due to its high energy yield. Although oxygen is quickly depleted in the sediments and is generally exhausted centimeters from the sediment-water interface.
1949: 886:
The above generic equation starts with two reactants: some piece of organic matter (composed of organic carbon) and an oxidant. Most organic carbon exists in a reduced form which is then oxidized by the oxidant (such as
2135:
within this top layer occurs rapidly and due to the higher concentrations of organisms and the availability of light, those remineralised nutrients are often taken up by autotrophs just as rapidly as they are released.
1409: 1263: 2096: 979:
matter can also be degraded through methanogenesis, but the net oxidation of this organic matter is not fully represented by this process. Each pathway and the stoichiometry of its reaction are listed in table 1.
771: 756:
the system. Understanding the rates and dynamics of organic matter remineralization in a given system can help in determining how or why some ecosystems might be more productive than others.
2769: 997:
and the constant mixing of this material which can change the relative importance of each respiration pathway. For the microbial perspective please reference the
951:
and determines the obtainability of energy to organisms that live there. From the water interface moving toward deeper sediments, the order of these acceptors is
2677:
Lefévre, D.; Denis, M.; Lambert, C. E.; Miquel, J. -C. (1 February 1996). "Is DOC the main source of organic matter remineralization in the ocean water column?".
2626:
Karl, David M.; Knauer, George A.; Martin, John H. (1 March 1988). "Downward flux of particulate organic matter in the ocean: a particle decomposition paradox".
905:, water and a collection of simple nutrients like nitrate or phosphate that can then be taken up by other organisms. The above general form, when considering 1597: 2155:) organisms and via respiration will remineralise the compounds from the organic form back to inorganic, making them available for primary producers again. 1423: 719: 1784: 932:
The degradation of organic matter through respiration in the modern ocean is facilitated by different electron acceptors, their favorability based on
2739: 450: 876:{\displaystyle {\ce {{Organic\ Matter}+Oxidant->{Liberated\ Simple\ Nutrients}+{\underset {Carbon~Dioxide}{CO2}}+{\underset {Water}{H2O}}}}} 1280: 1134: 1102:(ΔG). In a water body, sediment seabed, or soil, the sorting of these chemical reactions with depth in order of energy provided is called a 1967: 671: 2380:
Postma, Dieke; Jakobsen, Rasmus (1 September 1996). "Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface".
2320: 712: 2723: 2566: 2449: 2424: 2364: 2303: 2273: 2238: 916:
though the reactants and products are essentially analogous to the short-hand equations used for multi-cellular respiration.
732:
The term "remineralization" is used in several contexts across different disciplines. The term is most commonly used in the
912:
as the oxidant, is the equation for respiration. In this context specifically, the above equation represents bacterial
705: 65:
Remineralisation is normally viewed as it relates to the cycling of the major biologically important elements such as
20: 2159:
remineralised carbon (which generally takes the form of carbon dioxide) tends to increase in the photic zone.
81:
settings, where it forms a significant link in the biogeochemical dynamics and cycling of aquatic ecosystems.
2206: 2201: 993:
pathways to metabolize other oxides such as manganese, iron, and sulfate. It is also important to figure in
582: 577: 410: 211: 740:
fields, where it describes the development or redevelopment of mineralized structures in organisms such as
2747: 1099: 405: 692: 639: 2502: 2541:
De La Rocha, C. L. (2006). "The Biological Pump". In Holland, Heinrich D.; Turekian, Karl K. (eds.).
741: 633: 292: 2800: 2196: 2163: 998: 913: 179: 928:
Sketch of major electron acceptors in marine sediment porewater based on idealized relative depths
415: 287: 2265: 2259: 924: 2185: 937: 604: 429: 2255: 2805: 2466: 1080: 990: 167: 2686: 2635: 2546: 2481: 2389: 199: 8: 2596: 1065: 752:
which is a more general descriptor of larger structures degrading to smaller structures.
121: 2690: 2639: 2550: 2485: 2393: 1765:{\displaystyle {\ce {OM + 236Fe2O3 + 410H2O -> 106CO2 + 16NH3 + H3PO4 + 472Fe(OH)2}}} 2810: 2659: 2608: 2523: 654: 644: 495: 461: 378: 371: 282: 131: 43: 2719: 2698: 2651: 2600: 2562: 2558: 2527: 2515: 2507: 2445: 2420: 2401: 2360: 2299: 2269: 2234: 1578:{\displaystyle {\ce {OM + 260MnO2 + 174H2O -> 106CO2 + 8N2 + H3PO4 + 260Mn(OH)2}}} 933: 659: 569: 238: 172: 97: 78: 2612: 901:
and energy that can be harnessed by the organism. This process generally produces CO
2694: 2663: 2643: 2592: 2554: 2497: 2489: 2397: 2335: 619: 609: 589: 206: 51: 2465:
Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; Baar, Hein J. W. de (14 May 2004).
2713: 2293: 2190: 2175: 2140: 1944:{\displaystyle {\ce {OM + 59H2SO4 -> 106CO2 + 16NH3 + H3PO4 + 59H2S + 62H2O}}} 1090: 1014: 745: 485: 361: 275: 243: 77:. While crucial to all ecosystems, the process receives special consideration in 27: 2112: 1959: 1103: 1095: 895: 627: 490: 477: 331: 304: 299: 39: 2340: 2794: 2655: 2604: 2511: 2292:
Altenbach, Alexander; Bernhard, Joan M.; Seckbach, Joseph (20 October 2011).
2180: 749: 649: 594: 434: 397: 260: 218: 189: 184: 2493: 2519: 1086: 1028:
in them general organic matter (OM) is often represented by the shorthand:
994: 664: 341: 336: 318: 136: 2144: 1404:{\displaystyle {\ce {OM + 104HNO3 -> 106CO2 + 60N2 + H3PO4 + 138H2O}}} 1024: 614: 599: 542: 456: 223: 155: 1258:{\displaystyle {\ce {OM + 150O2 -> 106CO2 + 16HNO3 + H3PO4 + 78H2O}}} 105: 2152: 737: 194: 74: 2295:
Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies
2091:{\displaystyle {\ce {OM + 59H2O -> 47CO2 + 59CH4 + 16NH3 + H3PO4}}} 2647: 2148: 960: 537: 530: 424: 270: 228: 47: 42:(those molecules derived from a biological source) into its simplest 2417:
The Benthic Boundary Layer: Transport Processes and Biogeochemistry
2126: 948: 945: 733: 525: 515: 250: 233: 70: 59: 55: 16:
Breakdown of organic matter to simple chemicals by living organisms
1098:), become favored respectively. This favorability is governed by 968: 956: 520: 445: 366: 255: 141: 952: 549: 66: 2581: 941: 265: 2712:
Schulze, Ernst-Detlef; Mooney, Harold A. (6 December 2012).
50:
as they are responsible for liberating the energy stored in
2467:"Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping" 964: 383: 322: 2676: 2291: 2084: 2071: 2055: 2035: 2015: 1992: 1934: 1911: 1891: 1878: 1862: 1842: 1822: 1809: 1758: 1727: 1714: 1698: 1678: 1655: 1635: 1622: 1571: 1540: 1527: 1511: 1491: 1468: 1448: 1394: 1374: 1361: 1345: 1325: 1305: 1248: 1228: 1215: 1199: 1179: 1159: 860: 828: 46:
forms. These transformations form a crucial link within
54:
and recycling matter within the system to be reused as
2464: 2147:
organisms will utilize the materials produced by the
2130:
Food web showing the flow of carbon in the open ocean
2121: 1970: 1787: 1600: 1426: 1283: 1137: 989:
in the surface sediments, a majority of microbes use
774: 2681:. The Coastal Ocean in a Global Change Perspective. 2258:. In Vernberg, F. John; Vernberg, Winona B. (eds.). 1085:
In instances in which the environment is suboxic or
2090: 1943: 1764: 1577: 1403: 1257: 875: 2740:"International Census of Marine Microbes (ICoMM)" 1023:A quarter of all organic material that exits the 2792: 2625: 1004: 38:) refers to the breakdown or transformation of 2379: 2711: 759: 713: 2545:. Vol. 6. Pergamon Press. p. 625. 919: 2540: 2503:11370/e821600e-4560-49e8-aeec-18eeb17549e3 2261:Functional Adaptations of Marine Organisms 720: 706: 84: 2718:. Springer Science & Business Media. 2501: 2339: 2298:. Springer Science & Business Media. 2228: 2044: 2024: 2004: 1981: 1923: 1900: 1851: 1831: 1798: 1736: 1687: 1667: 1644: 1611: 1549: 1500: 1480: 1457: 1437: 1383: 1334: 1314: 1294: 1237: 1188: 1168: 1148: 2770:"Microbe Size - Boundless Open Textbook" 2414: 2253: 2125: 1074: 1013: 923: 2746:. Census of Marine Life. Archived from 2354: 2793: 2442:Introduction to Marine Biogeochemistry 1059: 2439: 2321:"Oxygen dynamics of marine sediments" 1271: 1114: 2318: 2287: 2285: 2224: 2222: 2715:Biodiversity and Ecosystem Function 2162:Most remineralisation is done with 1089:, organisms will prefer to utilize 944:chemistry is the basis for life in 13: 2597:10.1023/B:JOCE.0000038317.01279.aa 2122:Remineralisation in the open ocean 14: 2822: 2373: 2282: 2219: 2106: 21:Remineralization (disambiguation) 2357:Geochemistry of Marine Sediments 687: 686: 104: 2762: 2732: 2705: 2670: 2619: 2575: 2534: 2382:Geochimica et Cosmochimica Acta 982:Due to this quick depletion of 451:microbial calcite precipitation 2559:10.1016/B0-08-043751-6/06107-7 2458: 2433: 2408: 2359:. Princeton University Press. 2348: 2312: 2247: 2233:. Princeton University Press. 1998: 1825: 1748: 1742: 1661: 1561: 1555: 1474: 1308: 1162: 793: 1: 2231:Ocean Biogeochemical Dynamics 2212: 2207:Immobilization (soil science) 2202:Mineralization (soil science) 1005:Remineralisation in sediments 411:marine biogenic calcification 2699:10.1016/0924-7963(95)00003-8 2402:10.1016/0016-7037(96)00156-1 1009: 7: 2419:. Oxford University Press. 2264:. Academic Press. pp.  2169: 640:Biomineralising polychaetes 406:amorphous calcium carbonate 92:Part of a series related to 10: 2827: 2415:Boudreau, Bernard (2001). 2254:Vernberg, F. John (1981). 2110: 1078: 1063: 760:Remineralization reactions 672:Burgess Shale preservation 18: 2679:Journal of Marine Systems 2341:10.1080/17451000801888726 2229:Sarmiento, Jorge (2006). 1125: 1117: 1111: 920:Electron acceptor cascade 744:or bone. In the field of 634:Cupriavidus metallidurans 2543:Treatise on Geochemistry 2197:Mineralization (biology) 2164:dissolved organic carbon 999:electron transport chain 355:Teeth, scales, tusks etc 2585:Journal of Oceanography 2494:10.1126/science.1095491 2355:Burdige, David (2006). 2328:Marine Biology Research 2193:(soil remineralisation) 416:calcareous nannofossils 212:Choanoflagellate lorica 85:Role in biogeochemistry 2131: 2092: 1958:Methane fermentation ( 1945: 1766: 1579: 1405: 1259: 1020: 938:laws of thermodynamics 929: 877: 605:Magnetotactic bacteria 430:oolitic aragonite sand 288:scaly-foot snail shell 2440:Libes, Susan (2009). 2319:Glud, Ronnie (2008). 2129: 2093: 1946: 1767: 1580: 1406: 1260: 1081:Anaerobic respiration 1075:Anaerobic respiration 1017: 934:Gibbs free energy law 927: 878: 2256:"Benthic Macrofauna" 1968: 1785: 1598: 1424: 1418:Manganese reduction 1281: 1135: 772: 19:For other uses, see 2691:1996JMS.....7..281L 2640:1988Natur.332..438K 2551:2003TrGeo...6...83D 2486:2004Sci...304.1005T 2480:(5673): 1005–1008. 2394:1996GeCoA..60.3169P 2086: 2073: 2057: 2037: 2017: 1994: 1936: 1913: 1893: 1880: 1864: 1844: 1824: 1811: 1760: 1729: 1716: 1700: 1680: 1657: 1637: 1624: 1573: 1542: 1529: 1513: 1493: 1470: 1450: 1396: 1376: 1363: 1347: 1327: 1307: 1250: 1230: 1217: 1201: 1181: 1161: 1066:Aerobic respiration 1060:Aerobic respiration 862: 830: 332:Vertebrate skeleton 122:Mineralized tissues 2444:. Academic Press. 2132: 2088: 2074: 2061: 2045: 2025: 2005: 1982: 1941: 1924: 1901: 1881: 1868: 1852: 1832: 1812: 1799: 1779:Sulfate reduction 1762: 1740: 1717: 1704: 1688: 1668: 1645: 1625: 1612: 1575: 1553: 1530: 1517: 1501: 1481: 1458: 1438: 1401: 1384: 1364: 1351: 1335: 1315: 1295: 1255: 1238: 1218: 1205: 1189: 1169: 1149: 1021: 930: 873: 870: 850: 842: 818: 496:diatomaceous earth 462:Great Calcite Belt 379:Scale microfossils 372:otolithic membrane 283:small shelly fauna 256:echinoderm stereom 132:Biocrystallization 2725:978-3-642-58001-7 2634:(6163): 438–441. 2568:978-0-08-043751-4 2451:978-0-12-088530-5 2426:978-0-19-511881-0 2388:(17): 3169–3175. 2366:978-0-691-09506-6 2305:978-94-007-1896-8 2275:978-0-12-718280-3 2240:978-0-691-01707-5 2104: 2103: 2077: 2064: 2048: 2028: 2008: 1997: 1985: 1974: 1939: 1927: 1916: 1904: 1884: 1871: 1855: 1835: 1815: 1802: 1791: 1747: 1739: 1720: 1707: 1691: 1671: 1660: 1648: 1628: 1615: 1604: 1560: 1552: 1533: 1520: 1504: 1484: 1473: 1461: 1441: 1430: 1399: 1387: 1367: 1354: 1338: 1318: 1298: 1287: 1253: 1241: 1221: 1208: 1192: 1172: 1152: 1141: 1129:Oxygen reduction 1112:Respiration type 1100:Gibbs Free Energy 869: 865: 853: 848: 840: 837: 834: 821: 817: 811: 808: 805: 802: 799: 792: 785: 782: 779: 730: 729: 660:permineralization 645:Mineral nutrients 570:Mineral evolution 239:foraminifera test 98:Biomineralization 52:organic molecules 2818: 2785: 2784: 2782: 2780: 2766: 2760: 2759: 2757: 2755: 2750:on 17 March 2016 2736: 2730: 2729: 2709: 2703: 2702: 2685:(2–4): 281–291. 2674: 2668: 2667: 2648:10.1038/332438a0 2623: 2617: 2616: 2579: 2573: 2572: 2538: 2532: 2531: 2505: 2471: 2462: 2456: 2455: 2437: 2431: 2430: 2412: 2406: 2405: 2377: 2371: 2370: 2352: 2346: 2345: 2343: 2325: 2316: 2310: 2309: 2289: 2280: 2279: 2251: 2245: 2244: 2226: 2097: 2095: 2094: 2089: 2087: 2085: 2082: 2075: 2072: 2069: 2062: 2056: 2053: 2046: 2036: 2033: 2026: 2016: 2013: 2006: 1995: 1993: 1990: 1983: 1972: 1950: 1948: 1947: 1942: 1940: 1937: 1935: 1932: 1925: 1914: 1912: 1909: 1902: 1892: 1889: 1882: 1879: 1876: 1869: 1863: 1860: 1853: 1843: 1840: 1833: 1823: 1820: 1813: 1810: 1807: 1800: 1789: 1771: 1769: 1768: 1763: 1761: 1759: 1756: 1751: 1745: 1737: 1728: 1725: 1718: 1715: 1712: 1705: 1699: 1696: 1689: 1679: 1676: 1669: 1658: 1656: 1653: 1646: 1636: 1633: 1626: 1623: 1620: 1613: 1602: 1584: 1582: 1581: 1576: 1574: 1572: 1569: 1564: 1558: 1550: 1541: 1538: 1531: 1528: 1525: 1518: 1512: 1509: 1502: 1492: 1489: 1482: 1471: 1469: 1466: 1459: 1449: 1446: 1439: 1428: 1410: 1408: 1407: 1402: 1400: 1397: 1395: 1392: 1385: 1375: 1372: 1365: 1362: 1359: 1352: 1346: 1343: 1336: 1326: 1323: 1316: 1306: 1303: 1296: 1285: 1275:Denitrification 1264: 1262: 1261: 1256: 1254: 1251: 1249: 1246: 1239: 1229: 1226: 1219: 1216: 1213: 1206: 1200: 1197: 1190: 1180: 1177: 1170: 1160: 1157: 1150: 1139: 1109: 1108: 1055: 988: 977: 911: 893: 882: 880: 879: 874: 872: 871: 867: 866: 863: 861: 858: 851: 843: 841: 838: 835: 832: 829: 826: 819: 812: 809: 806: 803: 800: 797: 790: 786: 783: 780: 777: 722: 715: 708: 695: 690: 689: 610:Magnetoreception 590:Ballast minerals 185:Cephalopod shell 180:Brachiopod shell 127:Remineralisation 108: 89: 88: 36:remineralization 32:remineralisation 2826: 2825: 2821: 2820: 2819: 2817: 2816: 2815: 2801:Biogeochemistry 2791: 2790: 2789: 2788: 2778: 2776: 2768: 2767: 2763: 2753: 2751: 2738: 2737: 2733: 2726: 2710: 2706: 2675: 2671: 2624: 2620: 2580: 2576: 2569: 2539: 2535: 2469: 2463: 2459: 2452: 2438: 2434: 2427: 2413: 2409: 2378: 2374: 2367: 2353: 2349: 2323: 2317: 2313: 2306: 2290: 2283: 2276: 2252: 2248: 2241: 2227: 2220: 2215: 2191:John D. Hamaker 2176:Biological pump 2172: 2124: 2115: 2109: 2083: 2078: 2070: 2065: 2054: 2049: 2034: 2029: 2014: 2009: 1991: 1986: 1971: 1969: 1966: 1965: 1933: 1928: 1910: 1905: 1890: 1885: 1877: 1872: 1861: 1856: 1841: 1836: 1821: 1816: 1808: 1803: 1788: 1786: 1783: 1782: 1757: 1752: 1741: 1726: 1721: 1713: 1708: 1697: 1692: 1677: 1672: 1654: 1649: 1634: 1629: 1621: 1616: 1601: 1599: 1596: 1595: 1592:Iron reduction 1570: 1565: 1554: 1539: 1534: 1526: 1521: 1510: 1505: 1490: 1485: 1467: 1462: 1447: 1442: 1427: 1425: 1422: 1421: 1393: 1388: 1373: 1368: 1360: 1355: 1344: 1339: 1324: 1319: 1304: 1299: 1284: 1282: 1279: 1278: 1247: 1242: 1227: 1222: 1214: 1209: 1198: 1193: 1178: 1173: 1158: 1153: 1138: 1136: 1133: 1132: 1091:denitrification 1083: 1077: 1068: 1062: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1012: 1007: 987: 983: 976: 972: 922: 910: 906: 904: 899: 892: 888: 859: 854: 849: 847: 831: 827: 822: 816: 796: 776: 775: 773: 770: 769: 762: 746:biogeochemistry 726: 685: 678: 677: 676: 564: 556: 555: 554: 510: 502: 501: 500: 486:biogenic silica 480: 470: 469: 468: 453: 441: 420: 400: 390: 389: 388: 356: 348: 347: 346: 326: 311: 310: 309: 276:gastropod shell 244:testate amoebae 234:diatom frustule 159: 148: 147: 146: 116: 87: 28:biogeochemistry 24: 17: 12: 11: 5: 2824: 2814: 2813: 2808: 2803: 2787: 2786: 2761: 2731: 2724: 2704: 2669: 2618: 2574: 2567: 2533: 2457: 2450: 2432: 2425: 2407: 2372: 2365: 2347: 2334:(4): 243–289. 2311: 2304: 2281: 2274: 2246: 2239: 2217: 2216: 2214: 2211: 2210: 2209: 2204: 2199: 2194: 2188: 2183: 2178: 2171: 2168: 2123: 2120: 2113:Redox gradient 2111:Main article: 2108: 2107:Redox zonation 2105: 2102: 2101: 2098: 2081: 2068: 2060: 2052: 2043: 2040: 2032: 2023: 2020: 2012: 2003: 2000: 1989: 1980: 1977: 1963: 1960:Methanogenesis 1955: 1954: 1951: 1931: 1922: 1919: 1908: 1899: 1896: 1888: 1875: 1867: 1859: 1850: 1847: 1839: 1830: 1827: 1819: 1806: 1797: 1794: 1780: 1776: 1775: 1772: 1755: 1750: 1744: 1735: 1732: 1724: 1711: 1703: 1695: 1686: 1683: 1675: 1666: 1663: 1652: 1643: 1640: 1632: 1619: 1610: 1607: 1593: 1589: 1588: 1585: 1568: 1563: 1557: 1548: 1545: 1537: 1524: 1516: 1508: 1499: 1496: 1488: 1479: 1476: 1465: 1456: 1453: 1445: 1436: 1433: 1419: 1415: 1414: 1411: 1391: 1382: 1379: 1371: 1358: 1350: 1342: 1333: 1330: 1322: 1313: 1310: 1302: 1293: 1290: 1276: 1273: 1269: 1268: 1265: 1245: 1236: 1233: 1225: 1212: 1204: 1196: 1187: 1184: 1176: 1167: 1164: 1156: 1147: 1144: 1130: 1127: 1123: 1122: 1116: 1113: 1104:redox gradient 1096:Methanogenesis 1079:Main article: 1076: 1073: 1064:Main article: 1061: 1058: 1051: 1047: 1043: 1039: 1035: 1031: 1011: 1008: 1006: 1003: 985: 974: 921: 918: 908: 902: 897: 890: 884: 883: 857: 846: 825: 815: 795: 789: 761: 758: 728: 727: 725: 724: 717: 710: 702: 699: 698: 697: 696: 680: 679: 675: 674: 669: 668: 667: 662: 652: 647: 642: 637: 630: 625: 617: 612: 607: 602: 597: 592: 587: 586: 585: 583:immobilization 580: 578:mineralization 572: 566: 565: 562: 561: 558: 557: 553: 552: 547: 546: 545: 535: 534: 533: 528: 518: 512: 511: 508: 507: 504: 503: 499: 498: 493: 491:siliceous ooze 488: 482: 481: 478:Silicification 476: 475: 472: 471: 467: 466: 465: 464: 459: 454: 442: 440: 439: 438: 437: 432: 421: 419: 418: 413: 408: 402: 401: 396: 395: 392: 391: 387: 386: 381: 376: 375: 374: 364: 358: 357: 354: 353: 350: 349: 345: 344: 339: 334: 328: 327: 317: 316: 313: 312: 308: 307: 302: 300:Sponge spicule 297: 296: 295: 293:estuary shells 290: 285: 280: 279: 278: 273: 268: 258: 248: 247: 246: 241: 236: 231: 226: 216: 215: 214: 204: 203: 202: 197: 192: 182: 177: 176: 175: 170: 161: 160: 154: 153: 150: 149: 145: 144: 139: 134: 129: 124: 118: 117: 114: 113: 110: 109: 101: 100: 94: 93: 86: 83: 40:organic matter 15: 9: 6: 4: 3: 2: 2823: 2812: 2809: 2807: 2804: 2802: 2799: 2798: 2796: 2775: 2771: 2765: 2749: 2745: 2741: 2735: 2727: 2721: 2717: 2716: 2708: 2700: 2696: 2692: 2688: 2684: 2680: 2673: 2665: 2661: 2657: 2653: 2649: 2645: 2641: 2637: 2633: 2629: 2622: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2586: 2578: 2570: 2564: 2560: 2556: 2552: 2548: 2544: 2537: 2529: 2525: 2521: 2517: 2513: 2509: 2504: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2468: 2461: 2453: 2447: 2443: 2436: 2428: 2422: 2418: 2411: 2403: 2399: 2395: 2391: 2387: 2383: 2376: 2368: 2362: 2358: 2351: 2342: 2337: 2333: 2329: 2322: 2315: 2307: 2301: 2297: 2296: 2288: 2286: 2277: 2271: 2267: 2263: 2262: 2257: 2250: 2242: 2236: 2232: 2225: 2223: 2218: 2208: 2205: 2203: 2200: 2198: 2195: 2192: 2189: 2187: 2184: 2182: 2181:Decomposition 2179: 2177: 2174: 2173: 2167: 2165: 2160: 2156: 2154: 2150: 2146: 2145:Heterotrophic 2142: 2136: 2128: 2119: 2114: 2099: 2079: 2066: 2058: 2050: 2041: 2038: 2030: 2021: 2018: 2010: 2001: 1987: 1978: 1975: 1964: 1961: 1957: 1956: 1952: 1929: 1920: 1917: 1906: 1897: 1894: 1886: 1873: 1865: 1857: 1848: 1845: 1837: 1828: 1817: 1804: 1795: 1792: 1781: 1778: 1777: 1773: 1753: 1733: 1730: 1722: 1709: 1701: 1693: 1684: 1681: 1673: 1664: 1650: 1641: 1638: 1630: 1617: 1608: 1605: 1594: 1591: 1590: 1586: 1566: 1546: 1543: 1535: 1522: 1514: 1506: 1497: 1494: 1486: 1477: 1463: 1454: 1451: 1443: 1434: 1431: 1420: 1417: 1416: 1412: 1389: 1380: 1377: 1369: 1356: 1348: 1340: 1331: 1328: 1320: 1311: 1300: 1291: 1288: 1277: 1274: 1270: 1266: 1243: 1234: 1231: 1223: 1210: 1202: 1194: 1185: 1182: 1174: 1165: 1154: 1145: 1142: 1131: 1128: 1124: 1120: 1110: 1107: 1105: 1101: 1097: 1092: 1088: 1082: 1072: 1067: 1057: 1026: 1016: 1002: 1000: 996: 992: 980: 970: 966: 962: 958: 954: 950: 947: 943: 939: 935: 926: 917: 915: 900: 855: 844: 823: 813: 787: 768: 767: 766: 757: 753: 751: 750:decomposition 747: 743: 739: 738:physiological 735: 723: 718: 716: 711: 709: 704: 703: 701: 700: 694: 684: 683: 682: 681: 673: 670: 666: 663: 661: 658: 657: 656: 655:Fossilization 653: 651: 650:Microbial mat 648: 646: 643: 641: 638: 636: 635: 631: 629: 626: 624: 622: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 595:Magnetofossil 593: 591: 588: 584: 581: 579: 576: 575: 573: 571: 568: 567: 560: 559: 551: 548: 544: 541: 540: 539: 536: 532: 529: 527: 524: 523: 522: 519: 517: 514: 513: 506: 505: 497: 494: 492: 489: 487: 484: 483: 479: 474: 473: 463: 460: 458: 455: 452: 449: 448: 447: 444: 443: 436: 435:aragonite sea 433: 431: 428: 427: 426: 423: 422: 417: 414: 412: 409: 407: 404: 403: 399: 398:Calcification 394: 393: 385: 382: 380: 377: 373: 370: 369: 368: 365: 363: 360: 359: 352: 351: 343: 340: 338: 335: 333: 330: 329: 324: 320: 319:Endoskeletons 315: 314: 306: 303: 301: 298: 294: 291: 289: 286: 284: 281: 277: 274: 272: 269: 267: 264: 263: 262: 261:mollusc shell 259: 257: 254: 253: 252: 249: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 221: 220: 219:Protist shell 217: 213: 210: 209: 208: 205: 201: 198: 196: 193: 191: 190:cirrate shell 188: 187: 186: 183: 181: 178: 174: 171: 169: 166: 165: 163: 162: 157: 152: 151: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 119: 112: 111: 107: 103: 102: 99: 96: 95: 91: 90: 82: 80: 76: 72: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 22: 2806:Oceanography 2777:. Retrieved 2773: 2764: 2752:. Retrieved 2748:the original 2744:www.coml.org 2743: 2734: 2714: 2707: 2682: 2678: 2672: 2631: 2627: 2621: 2591:(1): 45–52. 2588: 2584: 2577: 2542: 2536: 2477: 2473: 2460: 2441: 2435: 2416: 2410: 2385: 2381: 2375: 2356: 2350: 2331: 2327: 2314: 2294: 2260: 2249: 2230: 2161: 2157: 2153:chemotrophic 2137: 2133: 2116: 1118: 1084: 1069: 1022: 995:bioturbation 981: 931: 885: 763: 754: 731: 665:petrifaction 632: 620: 615:Microfossils 362:Limpet teeth 342:Ossification 337:Bone mineral 271:chiton shell 156:Exoskeletons 137:Biointerface 126: 64: 35: 31: 25: 2779:29 February 2754:29 February 2149:autotrophic 1025:photic zone 914:respiration 600:Magnetosome 543:phosphorite 509:Other forms 457:calcite sea 224:coccosphere 168:exoskeleton 2795:Categories 2213:References 1272:Anaerobic 936:, and the 195:cuttlebone 164:Arthropod 75:phosphorus 48:ecosystems 2811:Limnology 2774:Boundless 2656:0028-0836 2605:0916-8370 2528:129790522 2512:0036-8075 1999:⟶ 1826:⟶ 1662:⟶ 1475:⟶ 1309:⟶ 1163:⟶ 1115:Reaction 1010:Reactions 991:anaerobic 961:manganese 949:sediments 810:Nutrients 798:Liberated 794:⟶ 734:medicinal 621:engrailed 538:Phosphate 531:oil shale 425:Aragonite 229:coccolith 60:organisms 58:by other 56:nutrients 44:inorganic 2613:67846685 2520:15143279 2170:See also 1126:Aerobic 946:deep sea 940:. This 693:Category 574:In soil 526:alginite 516:Bone bed 251:Seashell 158:(shells) 71:nitrogen 2687:Bibcode 2664:4356597 2636:Bibcode 2547:Bibcode 2482:Bibcode 2474:Science 2390:Bibcode 2266:179–230 2186:f-ratio 969:sulfate 957:nitrate 894:) into 839:Dioxide 791:Oxidant 778:Organic 563:Related 521:Kerogen 446:Calcite 367:Otolith 200:gladius 173:cuticle 142:Biofilm 115:General 79:aquatic 2722:  2662:  2654:  2628:Nature 2611:  2603:  2565:  2526:  2518:  2510:  2448:  2423:  2363:  2302:  2272:  2237:  1774:-21.0 1413:-28.4 1267:-29.9 1087:anoxic 1019:2011). 967:, and 953:oxygen 836:  833:Carbon 807:  804:Simple 801:  784:Matter 781:  691:  550:Pyrena 207:Lorica 67:carbon 2660:S2CID 2609:S2CID 2524:S2CID 2470:(PDF) 2324:(PDF) 2151:(and 2141:biota 2100:-5.6 1953:-6.1 1587:-7.2 942:redox 868:Water 742:teeth 628:Druse 323:bones 266:nacre 2781:2016 2756:2016 2720:ISBN 2652:ISSN 2601:ISSN 2563:ISBN 2516:PMID 2508:ISSN 2446:ISBN 2421:ISBN 2361:ISBN 2300:ISBN 2270:ISBN 2235:ISBN 965:iron 736:and 623:gene 384:Tusk 305:Test 73:and 34:(or 2695:doi 2644:doi 2632:332 2593:doi 2555:doi 2498:hdl 2490:doi 2478:304 2398:doi 2336:doi 1829:106 1734:472 1665:106 1642:410 1609:236 1547:260 1478:106 1455:174 1440:MnO 1435:260 1381:138 1312:106 1297:HNO 1292:104 1191:HNO 1166:106 1146:150 1038:(NH 1036:106 1030:(CH 26:In 2797:: 2772:. 2742:. 2693:. 2658:. 2650:. 2642:. 2630:. 2607:. 2599:. 2589:60 2587:. 2561:. 2553:. 2522:. 2514:. 2506:. 2496:. 2488:. 2476:. 2472:. 2396:. 2386:60 2384:. 2330:. 2326:. 2284:^ 2268:. 2221:^ 2143:. 2076:PO 2047:NH 2042:16 2027:CH 2022:59 2007:CO 2002:47 1979:59 1973:OM 1962:) 1921:62 1898:59 1883:PO 1854:NH 1849:16 1834:CO 1814:SO 1796:59 1790:OM 1746:OH 1738:Fe 1719:PO 1690:NH 1685:16 1670:CO 1614:Fe 1603:OM 1559:OH 1551:Mn 1532:PO 1483:CO 1429:OM 1366:PO 1332:60 1317:CO 1286:OM 1235:78 1220:PO 1186:16 1171:CO 1140:OM 1121:G 1106:. 1056:. 1050:PO 1046:(H 1044:16 1034:O) 1001:. 963:, 959:, 955:, 896:CO 820:CO 69:, 62:. 30:, 2783:. 2758:. 2728:. 2701:. 2697:: 2689:: 2683:7 2666:. 2646:: 2638:: 2615:. 2595:: 2571:. 2557:: 2549:: 2530:. 2500:: 2492:: 2484:: 2454:. 2429:. 2404:. 2400:: 2392:: 2369:. 2344:. 2338:: 2332:4 2308:. 2278:. 2243:. 2080:4 2067:3 2063:H 2059:+ 2051:3 2039:+ 2031:4 2019:+ 2011:2 1996:O 1988:2 1984:H 1976:+ 1938:O 1930:2 1926:H 1918:+ 1915:S 1907:2 1903:H 1895:+ 1887:4 1874:3 1870:H 1866:+ 1858:3 1846:+ 1838:2 1818:4 1805:2 1801:H 1793:+ 1754:2 1749:) 1743:( 1731:+ 1723:4 1710:3 1706:H 1702:+ 1694:3 1682:+ 1674:2 1659:O 1651:2 1647:H 1639:+ 1631:3 1627:O 1618:2 1606:+ 1567:2 1562:) 1556:( 1544:+ 1536:4 1523:3 1519:H 1515:+ 1507:2 1503:N 1498:8 1495:+ 1487:2 1472:O 1464:2 1460:H 1452:+ 1444:2 1432:+ 1398:O 1390:2 1386:H 1378:+ 1370:4 1357:3 1353:H 1349:+ 1341:2 1337:N 1329:+ 1321:2 1301:3 1289:+ 1252:O 1244:2 1240:H 1232:+ 1224:4 1211:3 1207:H 1203:+ 1195:3 1183:+ 1175:2 1155:2 1151:O 1143:+ 1119:Δ 1054:) 1052:4 1048:3 1042:) 1040:3 1032:2 986:2 984:O 975:2 973:O 909:2 907:O 903:2 898:2 891:2 889:O 864:O 856:2 852:H 845:+ 824:2 814:+ 788:+ 721:e 714:t 707:v 325:) 321:( 23:.

Index

Remineralization (disambiguation)
biogeochemistry
organic matter
inorganic
ecosystems
organic molecules
nutrients
organisms
carbon
nitrogen
phosphorus
aquatic
Biomineralization

Mineralized tissues
Remineralisation
Biocrystallization
Biointerface
Biofilm
Exoskeletons
exoskeleton
cuticle
Brachiopod shell
Cephalopod shell
cirrate shell
cuttlebone
gladius
Lorica
Choanoflagellate lorica
Protist shell

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑