Knowledge

Radiation hardening

Source đź“ť

1571: 342: 829: 807: 1044:). This increases area of a chip design by a factor of 5, so must be reserved for smaller designs. But it has the secondary advantage of also being "fail-safe" in real time. In the event of a single-bit failure (which may be unrelated to radiation), the voting logic will continue to produce the correct result without resorting to a 575:, making the N-type MOSFET transistors easier and the P-type ones more difficult to switch on. The accumulated charge can be high enough to keep the transistors permanently open (or closed), leading to device failure. Some self-healing takes place over time, but this effect is not too significant. This effect is the same as 794:
device failure. White neutron beams—ostensibly the most representative SEE test method—are usually derived from solid target-based sources, resulting in flux non-uniformity and small beam areas. White neutron beams also have some measure of uncertainty in their energy spectrum, often with high thermal neutron content.
1055:
timer from running out. If radiation causes the processor to operate incorrectly, it is unlikely the software will work correctly enough to clear the watchdog timer. The watchdog eventually times out and forces a hard reset to the system. This is considered a last resort to other methods of radiation hardening.
921:
provides increased radiation resistance. Due to the high development costs of new radiation hardened processes, the smallest "true" rad-hard (RHBP, Rad-Hard By Process) process is 150 nm as of 2016, however, rad-hard 65 nm FPGAs were available that used some of the techniques used in "true"
793:
While proton beams are widely used for SEE testing due to availability, at lower energies proton irradiation can often underestimate SEE susceptibility. Furthermore, proton beams expose devices to risk of total ionizing dose (TID) failure which can cloud proton testing results or result in pre-mature
605:. Permanent damage may occur if the duration of the pulse is too long, or if the pulse causes junction damage or a latchup. Latchups are commonly caused by the X-rays and gamma radiation flash of a nuclear explosion. Crystal oscillators may stop oscillating for the duration of the flash due to prompt 687:
are state changes of memory or register bits caused by a single ion interacting with the chip. They do not cause lasting damage to the device, but may cause lasting problems to a system which cannot recover from such an error. Soft error, reversible. In very sensitive devices, a single ion can cause
494:
The effects can vary wildly depending on all the parameters – type of radiation, total dose and radiation flux, combination of types of radiation, and even the kind of device load (operating frequency, operating voltage, actual state of the transistor during the instant it is struck by the particle)
522:
tend to show changes in electrical parameters at levels of 10 to 10 neutrons/cm, CMOS devices aren't affected until 10 neutrons/cm. The sensitivity of the devices may increase together with increasing level of integration and decreasing size of individual structures. There is also a risk of induced
797:
The disadvantages of both proton and spallation neutron sources can be avoided by using mono-energetic 14 MeV neutrons for SEE testing. A potential concern is that mono-energetic neutron-induced single event effects will not accurately represent the real-world effects of broad-spectrum atmospheric
764:
SEB may occur in power MOSFETs when the substrate right under the source region gets forward-biased and the drain-source voltage is higher than the breakdown voltage of the parasitic structures. The resulting high current and local overheating then may destroy the device. Hard error, irreversible.
1054:
A watchdog timer will perform a hard reset of a system unless some sequence is performed that generally indicates the system is alive, such as a write operation from an onboard processor. During normal operation, software schedules a write to the watchdog timer at regular intervals to prevent the
1713:
Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020).
292:
produce high energy protons and electrons, and the secondary particles produced by their interactions produce significant radiation damage on sensitive control and particle detector components, of the order of magnitude of 10 MRad/year for systems such as the
587:
crystals are especially sensitive. Radiation performance curves for TID testing may be generated for all resultant effects testing procedures. These curves show performance trends throughout the TID test process and are included in the radiation test report.
95:) components are based on their non-hardened equivalents, with some design and manufacturing variations that reduce the susceptibility to radiation damage. Due to the extensive development and testing required to produce a radiation-tolerant design of a 596:
The short-time high-intensity pulse of radiation, typically occurring during a nuclear explosion. The high radiation flux creates photocurrents in the entire body of the semiconductor, causing transistors to randomly open, changing logical states of
1032:
boards may independently compute an answer to a calculation and compare their answers. Any system that produces a minority result will recalculate. Logic may be added such that if repeated errors occur from the same system, that board is shut down.
322:
in the packaging of the chips were producing alpha particles, which were then occasionally discharging some of the capacitors used to store the DRAM data bits. These effects have been reduced today by using purer packaging materials, and employing
653:, a destructive latchup and burnout. Single event effects have importance for electronics in satellites, aircraft, and other civilian and military aerospace applications. Sometimes, in circuits not involving latches, it is helpful to introduce 102:
Radiation-hardened products are typically tested to one or more resultant-effects tests, including total ionizing dose (TID), enhanced low dose rate effects (ELDRS), neutron and proton displacement damage, and single event effects (SEEs).
1168:
Nuclear hardness is determined for specified or actual quantified environmental conditions and physical parameters, such as peak radiation levels, overpressure, velocities, energy absorbed, and electrical stress. It is achieved through
740:) until the device is power-cycled. As the effect can happen between the power source and substrate, destructively high current can be involved and the part may fail. Hard error, irreversible. Bulk CMOS devices are most susceptible. 562:
and causes slow gradual degradation of the device's performance. A total dose greater than 5000 rads delivered to silicon-based devices in seconds to minutes will cause long-term degradation. In CMOS devices, the radiation creates
2084: 435:("healing") of the damaged lattice, leading to a lower degree of damage than with the same doses delivered in low intensity over a long time (LDR or Low Dose Rate). This type of problem is particularly significant in 1093:
The market size for radiation hardened electronics used in space applications was estimated to be $ 2.35 billion in 2021. A new study has estimated that this will reach approximately $ 4.76 billion by the year 2032.
948:, is considered a likely candidate to provide radiation hardened, rewritable, non-volatile conductor memory. Physical principles and early tests suggest that MRAM is not susceptible to ionization-induced data loss. 798:
neutrons. However, recent studies have indicated that, to the contrary, mono-energetic neutrons—particularly 14 MeV neutrons—can be used to quite accurately understand SEE cross-sections in modern microelectronics.
2314:"Radiation-Hardened Electronics for Space Application Market - A Global and Regional Analysis: Focus on Platform, Manufacturing Technique, Material Type, Component, and Country - Analysis and Forecast, 2022-2032" 748:
Single-event snapback is similar to SEL but not requiring the PNPN structure, can be induced in N-channel MOS transistors switching large currents, when an ion hits near the drain junction and causes
1063:
Radiation-hardened and radiation tolerant components are often used in military and aerospace applications, including point-of-load (POL) applications, satellite system power supplies, step down
1018:(ECC memory) uses redundant bits to check for and possibly correct corrupted data. Since radiation's effects damage the memory content even when the system is not accessing the RAM, a " 579:
in high-integration high-speed electronics. Crystal oscillators are somewhat sensitive to radiation doses, which alter their frequency. The sensitivity can be greatly reduced by using
304:(EMP), neutron radiation, and a flux of both primary and secondary charged particles. In case of a nuclear war they pose a potential concern for all civilian and military electronics. 1048:. System level voting between three separate processor systems will generally need to use some circuit-level voting logic to perform the votes between the three processor systems. 1557: 773:
SEGR was observed in power MOSFETs when a heavy ion hits the gate region while a high voltage is applied to the gate. A local breakdown then happens in the insulating layer of
531:
instruments. Induced radiation, together with residual radiation from impurities in used materials, can cause all sorts of single-event problems during the device's lifetime.
2809: 668:
SET happens when the charge collected from an ionization event discharges in the form of a spurious signal traveling through the circuit. This is de facto the effect of an
567:
in the gate insulation layers, which cause photocurrents during their recombination, and the holes trapped in the lattice defects in the insulator create a persistent gate
461:
Ionization effects are caused by charged particles, including the ones with energy too low to cause lattice effects. The ionization effects are usually transient, creating
2393: 962:. SRAM cells have more transistors per cell than usual (which is 4T or 6T), which makes the cells more tolerant to SEUs at the cost of higher power consumption and size. 244:. The atmosphere filters most of these, so they are primarily a concern for spacecraft and high-altitude aircraft, but can also affect ordinary computers on the surface. 645:
track behind. This ionization may cause a highly localized effect similar to the transient dose one - a benign glitch in output, a less benign bit flip in memory or a
899:
chips were available in radiation-hardened versions (RadHard). While SOI eliminates latchup events, TID and SEE hardness are not guaranteed to be improved.
1022:" circuit must continuously sweep the RAM; reading out the data, checking the redundant bits for data errors, then writing back any corrections to the RAM. 2289: 1930:
Normand, Eugene; Dominik, Laura (20–23 July 2010). "Cross Comparison Guide for Results of Neutron SEE Testing of Microelectronics Applicable to Avionics".
689: 2327: 1324: 1663: 641:
Single-event effects (SEE) have been studied extensively since the 1970s. When a high-energy particle travels through a semiconductor, it leaves an
2201: 506:
A neutron interacting with the semiconductor lattice will displace its atoms. This leads to an increase in the count of recombination centers and
2567:
León-Florian, E.; Schönbacher, H.; Tavlet, M. (1993). Data compilation of dosimetry methods and radiation sources for material testing (Report).
934: 453:). Components certified as ELDRS (Enhanced Low Dose Rate Sensitive) free, do not show damage with fluxes below 0.01 rad(Si)/s = 36 rad(Si)/h. 197:
for satellites, nuclear reactors in power plants for sensors and control circuits, particle accelerators for control electronics particularly
3317: 2719:
Holmes-Siedle, Andrew; van Lint, Victor A. J. (2000). "Radiation Effects in Electronic Materials and Devices". In Meyers, Robert A. (ed.).
2508: 3302: 1592: 937:
transistors, which have an unconventional physical construction, together with an unconventional physical layout, can also be effective.
705: 2898: 2368: 2145:
Wang, B.; Wang, Z.; Hu, C.; Zhao, Y.; Zhang, Y.; Zhao, W. (2018). "Radiation Hardening Techniques for SOT-MRAM Peripheral Circuitry".
1222:, Russian 50 MHz microcontroller designed by Milandr and manufactured by Sitronics-Mikron on 180 nm bulk-silicon technology. 2880: 2895:(also includes a general "backgrounder" section on Sandia's manufacturing processes for radiation-hardening of microelectronics) 264:. The particle flux in the regions farther from the Earth can vary wildly depending on the actual conditions of the Sun and the 3271: 2490: 2389: 2313: 3428: 2870: 2681: 2631: 2162: 1947: 1914: 1611: 1601: 3297: 3266: 3211: 1004: 420: 359: 1416:, through its Satellite Development Center, produces a radiation hardened space computer variant based on the PowerPC 750. 1132: 2930: 728:
structure. A heavy ion or a high-energy proton passing through one of the two inner-transistor junctions can turn on the
137:, this can cause results which are inaccurate or unintelligible. This is a particularly serious problem in the design of 2472: 2264: 300:
Nuclear explosions produce a short and extremely intense surge through a wide spectrum of electromagnetic radiation, an
3413: 3246: 2538: 1274:(TTMR) technology, and single event function interrupts (SEFI) with H-Core technology. The processor is the high speed 1259:
The Proton 100k SBC by Space Micro Inc., introduced in 2003, uses an updated voting scheme called TTMR which mitigates
1114:, facility, or device is expected to degrade in a given nuclear environment, 2) the physical attributes of a system or 1158:
radiation levels, overpressure, peak velocities, energy absorbed, and electrical stress) must be defined or specified.
925:
Bipolar integrated circuits generally have higher radiation tolerance than CMOS circuits. The low-power Schottky (LS)
271:
Secondary particles result from interaction of other kinds of radiation with structures around the electronic devices.
254:
and consist of a large flux of high-energy (several GeV) protons and heavy ions, again accompanied by X-ray radiation.
2847: 2797: 2755: 2728: 2700: 2654: 2604: 2585: 2557: 1466: 785:
cells during write or erase, when the cells are subjected to a comparatively high voltage. Hard error, irreversible.
381: 2067: 3398: 3312: 1143: 1278: 1036:
Redundant elements may be used at the circuit level. A single bit may be replaced with three bits and separate "
2807:
Watts, Stephen J. (1997). "Overview of radiation damage in silicon detectors — Models and defect engineering".
2738:
van Lint, Victor A. J.; Flanagan, Terry M.; Leadon, Roland Eugene; Naber, James Allen; Rogers, Vern C. (1980).
2335: 2247: 1271: 363: 3378: 301: 2230:
Krishnamohan, Srivathsan; Mahapatra, Nihar R. (2005). "Analysis and design of soft-error hardened latches".
485:
transistors leads to worsening of their performance, up to device failure when the dose is high enough (see
465:
and soft errors, but can lead to destruction of the device if they trigger other damage mechanisms (e.g., a
3403: 1584: 955: 307: 311: 206: 3408: 3134: 1845:
Ziegler, J. F.; Lanford, W. A. (June 1981). "The effect of sea level cosmic rays on electronic devices".
959: 922:
rad-hard processes (RHBD, Rad-Hard By Design). As of 2019 110 nm rad-hard processes are available.
511: 2415: 1086:
features many radiation-related tests, but has no specification for single event latchup frequency. The
3423: 3366: 3221: 3194: 1470: 1219: 844: 822: 650: 2179: 3251: 3104: 1539: 1136: 1041: 989: 257: 53: 2777: 3189: 3099: 2963: 2030: 1991: 1281: 1025: 833: 811: 444: 194: 99:
chip, the technology of radiation-hardened chips tends to lag behind the most recent developments.
3129: 2923: 1794:
Ziegler, J. F.; Lanford, W. A. (16 November 1979). "Effect of Cosmic Rays on Computer Memories".
1510: 1428: 1375:
The SP0 and SP0-S are produced by Aitech Defense Systems is a 3U cPCI SBC which utilizes the SOI
1213: 992: 669: 602: 598: 576: 440: 352: 24: 2618:. International Series on Advances in Solid State Electronics and Technology. World Scientific. 1688: 1369: 3370: 3281: 2955: 2863: 2447: 2025: 1606: 1340: 564: 432: 240:
and gamma-ray radiation. Most effects are caused by particles with energies between 0.1 and 20
117:
Environments with high levels of ionizing radiation create special design challenges. A single
2022:
Protection of Instrument Control Computers against Soft and Hard Errors and Cosmic Ray Effects
3374: 3109: 1596: 1477: 1462: 1350: 1225: 1192: 930: 857: 546:. Kinetic energy effects (namely lattice displacement) of charged particles belong here too. 528: 439:, which are dependent on minority carriers in their base regions; increased losses caused by 324: 294: 247: 69: 41: 2360: 2265:"FPGA development devices for radiation-hardened space applications introduced by Microsemi" 1308:
used by NASA is a 32-bit microprocessor for spacecraft onboard computer applications (i. e.
173:
markets employ various methods of radiation hardening. The resulting systems are said to be
3418: 3231: 3119: 3076: 3026: 2818: 2743: 1854: 1803: 1737: 1621: 1543: 1398: 1170: 1115: 945: 941: 868: 535: 495:– which makes thorough testing difficult, time-consuming, and requiring many test samples. 289: 84: 16:
Processes and techniques used for making electronic devices resistant to ionizing radiation
1235:
M5208 used by General Dynamics is a low power (1.5 W) radiation hardened alternative.
879:) are commonly used. While normal commercial-grade chips can withstand between 50 and 100 617:
SGEMP are caused by the radiation flash traveling through the equipment and causing local
8: 3226: 3139: 2891:
Sandia Labs to develop (...) radiation-hardened Pentium (...) for space and defense needs
2714:. International Series of Monographs on Solid State Physics. Vol. 2. Pergamon Press. 1328: 1110:
has the following meanings: 1) an expression of the extent to which the performance of a
1064: 876: 860: 749: 283: 3307: 2822: 2747: 1858: 1807: 1741: 1216:, introduced in 1976, was the first serially-produced radiation-hardened microprocessor. 3343: 3164: 3144: 3124: 3008: 2916: 2765: 2122:
Benigni, Marcello; Liberali, Valentino; Stabile, Alberto; Calligaro, Cristiano (2010).
1827: 1769: 1727: 1616: 1576: 1405:
cores against each other to mitigate radiation effects. Seven of those are used by the
1260: 1232: 1082:
However, not all military-grade components are radiation hardened. For example, the US
985: 981: 680: 543: 524: 436: 158: 49: 45: 2830: 2101: 1376: 3236: 3114: 3051: 3016: 2843: 2793: 2785: 2751: 2724: 2696: 2677: 2650: 2627: 2600: 2581: 2553: 2534: 2243: 2158: 1943: 1910: 1819: 1773: 1761: 1753: 1461:
2, 3, 4 and 5 are radiation hardened processors designed by Gaisler Research and the
1420: 1406: 1287: 1275: 1161:
The physical attributes of a system or component that will allow a defined degree of
1119: 1103: 709: 646: 606: 572: 507: 279: 261: 214: 198: 150: 1715: 3241: 2867: 2826: 2669: 2619: 2235: 2150: 2127: 1935: 1862: 1831: 1811: 1745: 1645: 1493: 1424: 1019: 970: 756:. The transistor then opens and stays opened, a hard error, which is irreversible. 660:
circuits that slow down the circuit's reaction time beyond the duration of an SEE.
630: 622: 532: 424: 260:
contain electrons (up to about 10 MeV) and protons (up to 100s MeV) trapped in the
210: 146: 126: 118: 112: 96: 73: 31: 3353: 3338: 3154: 3066: 3056: 2908: 2874: 2533:. River Publishers Series in Electronic Materials and Devices. River Publishers. 1815: 996: 911: 907: 837: 815: 774: 558:
damage) caused by ionizing radiation over the exposition time. It is measured in
542:, are very sensitive to neutrons. The lattice damage influences the frequency of 477:
and X-ray radiation may belong to this category as well. Gradual accumulation of
416: 275: 134: 77: 65: 61: 2154: 3201: 3159: 3149: 3071: 3061: 3031: 2666:
Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices
1964: 1413: 1383:
based, capable of processing speeds ranging from 833 MHz to 1.18 GHz.
1068: 1045: 1029: 753: 229: 154: 20: 2668:. Selected Topics in Electronics and Systems. Vol. 34. World Scientific. 2491:"NASA JPL Selects Microchip for Game-Changing Spaceflight Computing Processor" 2131: 1939: 1749: 3392: 3276: 3036: 3021: 2068:"The other Atmel: Radiation Hardened Sparc CPU's | the CPU Shack Museum" 1757: 1649: 1439: 1240: 1162: 974: 864: 733: 713: 701: 657: 626: 478: 265: 2788:(1986). "The Lattice Vacancy in Silicon". In Pantelides, Sokrates T. (ed.). 2290:"Rad-hard electronics for space to reach $ 4.76 billion by 2032, study says" 2239: 1513:
are developing HPSC, a Cortex-A53 based processor for future spacecraft use
1270:
SBC by Space Micro Inc, introduced in 2004, mitigates SEU with its patented
157:. In order to ensure the proper operation of such systems, manufacturers of 3256: 3216: 3081: 1823: 1765: 1380: 1309: 1154:
lost, and equipment damage) must be defined or specified. The environment (
1037: 918: 580: 470: 428: 412: 319: 241: 130: 2234:. Proceedings of the 15th ACM Great Lakes symposium on VLSI. p. 328. 1079:
power sources, and high efficiency, low voltage subsystem power supplies.
2998: 2149:. 2018 IEEE International Magnetics Conference (INTERMAG). pp. 1–2. 1887: 1402: 1354: 1251: 1184: 1087: 1083: 1000: 926: 896: 888: 887:), space-grade SOI and SOS chips can survive doses between 1000 and 3000 880: 841: 819: 539: 474: 193:
Typical sources of exposure of electronics to ionizing radiation are the
57: 44:
and circuits resistant to damage or malfunction caused by high levels of
1664:"Quantum computers may be destroyed by high-energy particles from space" 3046: 2993: 2890: 2364: 2232:
Proceedings of the 15th ACM Great Lakes symposium on VLSI - GLSVSLI '05
1530: 1391: 1305: 1267: 1200: 1015: 892: 884: 654: 618: 559: 366: in this section. Unsourced material may be challenged and removed. 221: 142: 2509:"NASA Awards Next-Generation Spaceflight Computing Processor Contract" 1881: 984:
of materials, it is possible to shield the chips themselves by use of
3333: 3206: 3041: 2988: 2978: 2939: 1891: 1866: 1500: 1316: 1298: 951: 778: 777:, causing local overheat and destruction (looking like a microscopic 729: 725: 170: 138: 2881:(I)ntegrated Approach with COTS Creates Rad-Tolerant (SBC) for Space 341: 2983: 2968: 2049: 1732: 1570: 1481: 1207: 903: 872: 737: 310:
were an insidious source of radiation that was found to be causing
233: 166: 122: 2903: 2177: 958:
is often replaced by more rugged (but larger, and more expensive)
427:
and worsening the analog properties of the affected semiconductor
3261: 2904:
Vanderbilt University Institute for Space and Defense Electronics
2673: 2623: 2473:"NASA Makes RISC-V the Go-to Ecosystem for Future Space Missions" 2217:
Protection of LSI Microprocessors using Triple Modular Redundancy
2126:. 27th International Conference on Microelectronics Proceedings. 1716:"Impact of ionizing radiation on superconducting qubit coherence" 1435: 1347: 1336: 828: 568: 519: 466: 431:. Counterintuitively, higher doses over short time cause partial 408: 202: 1558:
Comparison of embedded computer systems on board the Mars rovers
2838:
Ziegler, James F.; Biersack, Jochen P.; Littmark, Uffe (1985).
2742:. Vol. 1. New York: John Wiley & Sons. p. 13073. 2643:
Archive of Radiation Effects Short Course Notebooks (1980–2006)
2121: 1547: 1524: 1465:. They are described in synthesizable VHDL available under the 1387: 1358: 1247: 1196: 1111: 782: 584: 503:
The "end-user" effects can be characterized in several groups,
482: 462: 225: 162: 2416:
High-Performance Spaceflight Computing (HPSC) Project Overview
1712: 995:
protecting the chips, as naturally prevalent boron-10 readily
806: 3086: 2973: 2810:
Nuclear Instruments and Methods in Physics Research Section A
2566: 2050:"Common misconceptions about space-grade integrated circuits" 1454: 1447: 1365: 1320: 1263:(SEU) in a single processor. The processor is Equator BSP-15. 1210: 510:, reducing the lifetime of minority carriers, thus affecting 411:, protons, alpha particles, heavy ions, and very high energy 237: 2348: 1909:. Springer Science & Business Media. pp. xii–xiii. 1480:(SBC), produced by Cobham Semiconductor Solutions (formerly 1284:. The Proton200k operates at 4000 MIPS while mitigating SEU. 2790:
Deep Centers in Semiconductors: A State-of-the-Art Approach
2737: 2723:. Vol. 13 (Third ed.). New York: Academic Press. 2646: 2568: 2219:. International IEEE Symposium on Fault Tolerant Computing. 1536: 1506: 1485: 1458: 1294: 1151: 1076: 1072: 1058: 515: 315: 268:. Due to their position they pose a concern for satellites. 2435: 1431:, PCI, 2x Ethernet, 2x UARTS, DMA controller, L1/L2 cache 977:
is straightforward to reduce exposure of the bare device.
224:
come from all directions and consist of approximately 85%
2024:. International Seminar on Space Scientific Engineering. 1516: 1188: 1118:
that will allow survival in an environment that includes
1097: 1090:
space probe may have failed due to a similar assumption.
1028:
elements can be used at the system level. Three separate
642: 251: 2020:
Leppälä, Kari; Verkasalo, Raimo (17–23 September 1989).
1934:. 2010 IEEE Radiation Effects Data Workshop. p. 8. 692:(MBU) in several adjacent memory cells. SEUs can become 419:, creating lasting damage, and increasing the number of 2837: 2740:
Mechanisms of Radiation Effects in Electronic Materials
2664:
Schrimpf, Ronald D.; Fleetwood, Daniel M. (July 2004).
2147:
2018 IEEE International Magnetics Conference (INTERMAG)
1993:
Rad Hard 16 MegaBit 3.3V SRAM MultiChip Module AT68166H
1438:
processor, is the successor to the RAD750 based on the
217:
for potentially all military and civilian electronics.
2710:
Schulman, James Herbert; Compton, Walter Dale (1962).
2578:
Ionizing Radiation Effects in MOS Devices and Circuits
1368:
is produced by Honeywell Aerospace. Based on hardened
906:
gives it higher tolerance to deep-level defects; e.g.
2718: 2229: 2085:"Avnet: Quality Electronic Components & Services" 1962: 1886:. 3rd International Particle Accelerator Conference. 1131:
Nuclear hardness may be expressed in terms of either
1040:" for each bit to continuously determine its result ( 2599:(Second ed.). New York: Van Nostrand Reinhold. 2262: 1566: 1390:
SBC, also produced by BAE Systems, and based on the
554:
The cumulative damage of the semiconductor lattice (
30:
For hardening of materials caused by radiation, see
2328:"SP0 3U CompactPCI Radiation Tolerant PowerPC® SBC" 1173:
and it is verified by test and analysis techniques.
1165:
in a given environment created by a nuclear weapon.
331: 2938: 2693:Semiconductor Material and Device Characterization 2547: 2124:Design of rad-hard SRAM cells: A comparative study 415:. They change the arrangement of the atoms in the 2663: 1989: 1177: 801: 188: 3390: 2792:(Second ed.). New York: Gordon and Breach. 2390:"VA10820 - Radiation Hardened ARM Cortex-M0 MCU" 2019: 704:, placing the device into an undefined state, a 612: 282:which can affect sensor and control circuits in 2721:Encyclopedia of Physical Science and Technology 2709: 2575: 2569:CERN Technical Inspection and Safety Commission 1689:"Cosmic rays may soon stymie quantum computing" 759: 213:for spacecraft and high-altitude aircraft, and 106: 2597:The Effects of Radiation on Electronic Systems 2529:Calligaro, Christiano; Gatti, Umberto (2018). 2528: 2178:Tiehu Li; Yintang Yang; Junan Zhang; Jia Liu. 2144: 1929: 1844: 1793: 549: 399:Two fundamental damage mechanisms take place: 2924: 2595:Messenger, George C.; Ash, Milton S. (1992). 2576:Ma, Tso-Ping; Dressendorfer, Paul V. (1989). 2043: 2041: 1484:Microelectronics Solutions), enabled for the 988:(consisting only of isotope boron-11) in the 980:To protect against neutron radiation and the 2594: 2552:(Second ed.). Oxford University Press. 2015: 2013: 1904: 1640:Messenger, George C. "Radiation hardening". 1319:is a 32-bit microprocessor, compatible with 768: 700:) when they upset control circuits, such as 2883:– By Chad Thibodeau, Maxwell Technologies; 2180:"A novel SEU hardened SRAM bit-cell design" 1905:Messenger, G.C.; Ash, Milton (2013-11-27). 1593:Institute for Space and Defense Electronics 1419:The BRE440 by Broad Reach Engineering. IBM 1394:processor, is the successor to the RAD6000. 781:) of the gate region. It can occur even in 2931: 2917: 2548:Holmes-Siedle, Andrew; Adams, Len (2002). 2038: 1883:Radiation Damage to Electronics at the LHC 1546:to develop a new HPSC processor, based on 685:transient radiation effects in electronics 2842:. Vol. 1. New York: Pergamon Press. 2640: 2214: 2029: 2010: 1932:2010 IEEE Radiation Effects Data Workshop 1731: 856:Hardened chips are often manufactured on 663: 591: 394: 382:Learn how and when to remove this message 87:are susceptible to radiation damage, and 2840:The Stopping and Range of Ions in Solids 2690: 2616:Ionizing Radiation Effects in MOS Oxides 2079: 2077: 1059:Military and space industry applications 827: 805: 743: 327:to detect and often correct DRAM errors. 2784: 2047: 1879: 719: 402: 3391: 3272:Wireless electronic devices and health 2613: 2413: 2287: 1966:RTSX-SU Radiation-Tolerant FPGAs (UMC) 1098:Nuclear hardness for telecommunication 636: 527:, which is a major source of noise in 487: 449: 2912: 2806: 2074: 1639: 1499:The Vorago VA10820, a 32-bit ARMv6-M 708:, or a halt, which would then need a 675: 456: 3298:List of civilian radiation accidents 3267:Wireless device radiation and health 3262:Biological dose units and quantities 3212:Electromagnetic radiation and health 2899:Radiation effects on quartz crystals 2522: 2423:NASA Technical Reports Server (NTRS) 2361:"Single Board Computer (SBC) Family" 2269:Military & Aerospace Electronics 2048:Shunkov, >V. (9 September 2020). 1963:Microsemi Corporation (March 2012), 1519:DAHLIA, a Cortex-R52 based processor 498: 364:adding citations to reliable sources 335: 2695:. New York: John Wiley & Sons. 2580:. New York: John Wiley & Sons. 2263:Mil & Aero Staff (2016-06-03). 2215:Platteter, Dale G. (October 1980). 2102:"Aerospace & Defense Solutions" 1142:The extent of expected performance 732:-like structure, which then stays " 85:semiconductor electronic components 13: 3247:Radioactivity in the life sciences 2893:– Sandia press release, 8 Dec 1998 1122:and electromagnetic pulses (EMP). 929:can withstand 1000 krad, and many 694:Single-event functional interrupts 407:Lattice displacement is caused by 56:), especially for environments in 14: 3440: 2857: 1467:GNU Lesser General Public License 933:can withstand 10 000 krad. Using 724:SEL can occur in any chip with a 201:devices, residual radiation from 2414:Powell, Wesley A. (2018-11-13). 1569: 340: 332:Radiation effects on electronics 2531:Rad-hard Semiconductor Memories 2501: 2483: 2465: 2440: 2429: 2407: 2396:from the original on 2019-02-14 2382: 2371:from the original on 2019-04-08 2353: 2349:Broad Reach Engineering Website 2342: 2320: 2306: 2281: 2256: 2223: 2208: 2194: 2171: 2138: 2115: 2094: 2060: 1983: 1956: 902:Choosing a substrate with wide 571:and influence the transistors' 351:needs additional citations for 250:come from the direction of the 1923: 1898: 1873: 1838: 1787: 1706: 1681: 1656: 1633: 1272:time triple modular redundancy 1178:Examples of rad-hard computers 1051:Hardened latches may be used. 867:wafers. Silicon on insulator ( 802:Radiation-hardening techniques 788: 625:in the material of the chips, 318:chips in the 1970s. Traces of 189:Major radiation damage sources 153:, nuclear power stations, and 1: 2831:10.1016/S0168-9002(96)01110-2 2550:Handbook of Radiation Effects 1627: 613:Systems-generated EMP effects 443:cause loss of the transistor 3429:Semiconductor device defects 2691:Schroder, Dieter K. (1990). 2334:. 2013-12-15. Archived from 2332:Aitech Rugged COTS Solutions 1816:10.1126/science.206.4420.776 1585:Communications survivability 1016:Error correcting code memory 965: 760:Single-event induced burnout 107:Problems caused by radiation 7: 3135:Cosmic background radiation 2641:Platteter, Dale G. (2006). 2614:Oldham, Timothy R. (2000). 2288:Diagle, Lisa (2022-06-17). 2155:10.1109/INTMAG.2018.8508368 1602:Mars Reconnaissance Orbiter 1562: 851: 550:Total ionizing dose effects 488:total ionizing dose effects 10: 3445: 3364: 3222:Lasers and aviation safety 1990:Atmel Corporation (2008), 1847:Journal of Applied Physics 1555: 1471:GNU General Public License 1199:variant), is based on the 1010: 672:. Soft error, reversible. 110: 29: 18: 3414:Electronics manufacturing 3362: 3326: 3290: 3252:Radioactive contamination 3177: 3105:Electromagnetic radiation 3095: 3007: 2954: 2947: 2294:Military Embedded Systems 2184:IEICE Electronics Express 2132:10.1109/miel.2010.5490481 1940:10.1109/REDW.2010.5619496 1750:10.1038/s41586-020-2619-8 1540:Jet Propulsion Laboratory 1042:triple modular redundancy 990:borophosphosilicate glass 769:Single-event gate rupture 518:ones. Bipolar devices on 274:Nuclear reactors produce 258:Van Allen radiation belts 195:Van Allen radiation belts 54:electromagnetic radiation 40:is the process of making 3365:See also the categories 3303:1996 Costa Rica accident 2964:Acoustic radiation force 2571:. CERN-TIS-CFM-IR-93-03. 1880:Brugger, M. (May 2012). 1650:10.1036/1097-8542.566850 1282:digital signal processor 1125: 750:avalanche multiplication 529:high energy astrophysics 523:radioactivity caused by 308:Chip packaging materials 207:chip packaging materials 19:Not to be confused with 3399:Military communications 3277:Radiation heat-transfer 3130:Gravitational radiation 2712:Color Centers in Solids 2392:. Vorago Technologies. 2240:10.1145/1057661.1057740 1607:MESSENGER Mercury probe 1511:United States Air Force 1377:PowerQUICC-III MPC8548E 670:electrostatic discharge 577:hot carrier degradation 121:can knock thousands of 25:radiation embrittlement 3318:1990 Zaragoza accident 3313:1984 Moroccan accident 3282:Linear energy transfer 2956:Non-ionizing radiation 2864:Federal Standard 1037C 1907:Single Event Phenomena 1357:, includes a rad-hard 1191:and used on board the 848: 825: 736:" (an effect known as 664:Single-event transient 651:high-power transistors 592:Transient dose effects 481:in the oxide layer in 395:Fundamental mechanisms 325:error-correcting codes 181:, or (within context) 3308:1987 Goiânia accident 3110:Synchrotron radiation 3100:Earth's energy budget 3082:Radioactive materials 3077:Particle accelerators 1597:Vanderbilt University 1589:EMC-aware programming 1478:single-board computer 1463:European Space Agency 1351:single-board computer 1171:design specifications 863:instead of the usual 847:process has been used 831: 809: 744:Single-event snapback 421:recombination centers 302:electromagnetic pulse 295:Large Hadron Collider 290:Particle accelerators 248:Solar particle events 70:particle accelerators 42:electronic components 3379:Radiation protection 3232:Radiation protection 3120:Black-body radiation 3027:Background radiation 2942:(physics and health) 1894:. pp. THPPP006. 1622:Juno Radiation Vault 1544:Microchip Technology 1401:, which votes three 1399:Maxwell Technologies 1397:The SCS750 built by 1116:electronic component 1065:switching regulators 973:the package against 895:). At one time many 720:Single-event latchup 556:lattice displacement 403:Lattice displacement 360:improve this article 320:radioactive elements 284:nuclear power plants 175:rad(iation)-hardened 3404:Integrated circuits 3349:Radiation hardening 3291:Radiation incidents 3227:Medical radiography 3186:Radiation syndrome 3140:Cherenkov radiation 2823:1997NIMPA.386..149W 2748:1980STIA...8113073V 1859:1981JAP....52.4305Z 1808:1979Sci...206..776Z 1742:2020Natur.584..551V 1353:(SBC), produced by 1329:Kurchatov Institute 832:Radiation hardened 810:Radiation hardened 681:Single-event upsets 637:Digital damage: SEE 609:induced in quartz. 565:electron–hole pairs 544:crystal oscillators 437:bipolar transistors 159:integrated circuits 60:(especially beyond 38:Radiation hardening 3409:Avionics computers 3344:Radioactive source 3165:Radiation exposure 3145:Askaryan radiation 3125:Particle radiation 3009:Ionizing radiation 2873:2011-03-01 at the 2786:Watkins, George D. 2448:"NOEL-V Processor" 1617:Tempest (codename) 1577:Electronics portal 1327:, manufactured by 1261:single event upset 982:neutron activation 849: 826: 690:multiple-bit upset 676:Single-event upset 649:or, especially in 525:neutron activation 508:deep-level defects 457:Ionization effects 215:nuclear explosions 89:radiation-hardened 50:particle radiation 46:ionizing radiation 3424:Radiation effects 3386: 3385: 3367:Radiation effects 3237:Radiation therapy 3173: 3172: 3115:Thermal radiation 3052:Neutron radiation 3017:Radioactive decay 2683:978-981-238-940-4 2633:978-981-02-3326-6 2523:Books and Reports 2164:978-1-5386-6425-4 1949:978-1-4244-8405-8 1916:978-1-4615-6043-2 1802:(4420): 776–788. 1726:(7822): 551–556. 1550:Intelligence X280 1276:Texas Instruments 1120:nuclear radiation 1104:telecommunication 997:captures neutrons 993:passivation layer 940:Magnetoresistive 917:Use of a special 871:) and silicon on 631:electrical cables 623:electric currents 607:photoconductivity 573:threshold voltage 499:Resultant effects 425:minority carriers 392: 391: 384: 280:neutron radiation 262:geomagnetic field 199:particle detector 165:intended for the 151:military aircraft 147:quantum computers 133:. In the case of 74:nuclear accidents 3436: 3327:Related articles 3242:Radiation damage 3067:Nuclear reactors 2952: 2951: 2933: 2926: 2919: 2910: 2909: 2853: 2834: 2803: 2781: 2775: 2771: 2769: 2761: 2734: 2715: 2706: 2687: 2660: 2637: 2610: 2591: 2572: 2563: 2544: 2517: 2516: 2505: 2499: 2498: 2487: 2481: 2480: 2469: 2463: 2462: 2460: 2458: 2444: 2438: 2433: 2427: 2426: 2420: 2411: 2405: 2404: 2402: 2401: 2386: 2380: 2379: 2377: 2376: 2357: 2351: 2346: 2340: 2339: 2324: 2318: 2317: 2310: 2304: 2303: 2301: 2300: 2285: 2279: 2278: 2276: 2275: 2260: 2254: 2253: 2227: 2221: 2220: 2212: 2206: 2205: 2198: 2192: 2191: 2175: 2169: 2168: 2142: 2136: 2135: 2119: 2113: 2112: 2106: 2098: 2092: 2091: 2089: 2081: 2072: 2071: 2064: 2058: 2057: 2045: 2036: 2035: 2033: 2017: 2008: 2007: 2006: 2004: 1998: 1987: 1981: 1980: 1979: 1977: 1971: 1960: 1954: 1953: 1927: 1921: 1920: 1902: 1896: 1895: 1877: 1871: 1870: 1867:10.1063/1.329243 1853:(6): 4305–4312. 1842: 1836: 1835: 1791: 1785: 1784: 1782: 1780: 1735: 1710: 1704: 1703: 1701: 1699: 1685: 1679: 1678: 1676: 1674: 1660: 1654: 1653: 1637: 1579: 1574: 1573: 1425:system-on-a-chip 1250:manufactured by 1108:nuclear hardness 836:of the 1886VE10 814:of the 1886VE10 423:, depleting the 387: 380: 376: 373: 367: 344: 336: 236:, together with 211:cosmic radiation 135:digital circuits 127:electronic noise 119:charged particle 113:Radiation damage 66:nuclear reactors 52:and high-energy 32:radiation damage 3444: 3443: 3439: 3438: 3437: 3435: 3434: 3433: 3389: 3388: 3387: 3382: 3381: 3358: 3354:Havana syndrome 3339:Nuclear physics 3322: 3286: 3179: 3169: 3155:Unruh radiation 3091: 3072:Nuclear weapons 3057:Nuclear fission 3003: 2943: 2937: 2894: 2875:Wayback Machine 2860: 2850: 2800: 2773: 2772: 2763: 2762: 2758: 2731: 2703: 2684: 2657: 2634: 2607: 2588: 2560: 2541: 2525: 2520: 2507: 2506: 2502: 2489: 2488: 2484: 2471: 2470: 2466: 2456: 2454: 2446: 2445: 2441: 2434: 2430: 2418: 2412: 2408: 2399: 2397: 2388: 2387: 2383: 2374: 2372: 2359: 2358: 2354: 2347: 2343: 2326: 2325: 2321: 2312: 2311: 2307: 2298: 2296: 2286: 2282: 2273: 2271: 2261: 2257: 2250: 2228: 2224: 2213: 2209: 2200: 2199: 2195: 2176: 2172: 2165: 2143: 2139: 2120: 2116: 2104: 2100: 2099: 2095: 2087: 2083: 2082: 2075: 2070:. 27 July 2009. 2066: 2065: 2061: 2046: 2039: 2018: 2011: 2002: 2000: 1996: 1988: 1984: 1975: 1973: 1969: 1961: 1957: 1950: 1928: 1924: 1917: 1903: 1899: 1878: 1874: 1843: 1839: 1792: 1788: 1778: 1776: 1711: 1707: 1697: 1695: 1687: 1686: 1682: 1672: 1670: 1662: 1661: 1657: 1638: 1634: 1630: 1575: 1568: 1565: 1560: 1488:microprocessor. 1407:Gaia spacecraft 1323:, developed by 1297:is produced by 1180: 1128: 1100: 1069:microprocessors 1061: 1013: 968: 912:gallium nitride 908:silicon carbide 854: 838:microcontroller 816:microcontroller 804: 791: 775:silicon dioxide 771: 762: 754:charge carriers 746: 722: 678: 666: 639: 615: 594: 552: 512:bipolar devices 501: 459: 450:neutron effects 417:crystal lattice 405: 397: 388: 377: 371: 368: 357: 345: 334: 276:gamma radiation 230:alpha particles 191: 155:nuclear weapons 125:loose, causing 115: 109: 97:microelectronic 78:nuclear warfare 62:low Earth orbit 35: 28: 17: 12: 11: 5: 3442: 3432: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3384: 3383: 3363: 3360: 3359: 3357: 3356: 3351: 3346: 3341: 3336: 3330: 3328: 3324: 3323: 3321: 3320: 3315: 3310: 3305: 3300: 3294: 3292: 3288: 3287: 3285: 3284: 3279: 3274: 3269: 3264: 3259: 3254: 3249: 3244: 3239: 3234: 3229: 3224: 3219: 3214: 3209: 3204: 3202:Health physics 3199: 3198: 3197: 3192: 3183: 3181: 3175: 3174: 3171: 3170: 3168: 3167: 3162: 3160:Dark radiation 3157: 3152: 3150:Bremsstrahlung 3147: 3142: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3096: 3093: 3092: 3090: 3089: 3084: 3079: 3074: 3069: 3064: 3062:Nuclear fusion 3059: 3054: 3049: 3044: 3039: 3034: 3032:Alpha particle 3029: 3024: 3019: 3013: 3011: 3005: 3004: 3002: 3001: 2996: 2991: 2986: 2981: 2976: 2971: 2966: 2960: 2958: 2949: 2945: 2944: 2936: 2935: 2928: 2921: 2913: 2907: 2906: 2901: 2896: 2888: 2878: 2859: 2858:External links 2856: 2855: 2854: 2848: 2835: 2817:(1): 149–155. 2804: 2798: 2782: 2774:|journal= 2756: 2735: 2729: 2716: 2707: 2701: 2688: 2682: 2661: 2655: 2638: 2632: 2611: 2605: 2592: 2586: 2573: 2564: 2558: 2545: 2540:978-8770220200 2539: 2524: 2521: 2519: 2518: 2500: 2482: 2464: 2452:Cobham Gaisler 2439: 2428: 2406: 2381: 2352: 2341: 2338:on 2014-06-23. 2319: 2305: 2280: 2255: 2248: 2222: 2207: 2204:. 2 June 2018. 2193: 2170: 2163: 2137: 2114: 2093: 2073: 2059: 2037: 2031:10.1.1.48.1291 2009: 1982: 1955: 1948: 1922: 1915: 1897: 1872: 1837: 1786: 1705: 1680: 1655: 1631: 1629: 1626: 1625: 1624: 1619: 1614: 1609: 1604: 1599: 1590: 1587: 1581: 1580: 1564: 1561: 1554: 1553: 1552: 1551: 1534: 1533:NOEL-V 64-bit. 1531:Cobham Gaisler 1522: 1521: 1520: 1514: 1504: 1491: 1490: 1489: 1474: 1445: 1444: 1443: 1432: 1417: 1414:Boeing Company 1410: 1395: 1384: 1373: 1362: 1334: 1333: 1332: 1313: 1302: 1285: 1279:320C6Xx series 1264: 1257: 1256: 1255: 1238: 1237: 1236: 1223: 1217: 1204: 1179: 1176: 1175: 1174: 1166: 1159: 1140: 1133:susceptibility 1127: 1124: 1099: 1096: 1060: 1057: 1046:watchdog timer 1030:microprocessor 1012: 1009: 999:and undergoes 986:depleted boron 967: 964: 891:(100 and 300 k 853: 850: 803: 800: 790: 787: 770: 767: 761: 758: 745: 742: 726:parasitic PNPN 721: 718: 702:state machines 677: 674: 665: 662: 638: 635: 627:circuit boards 614: 611: 593: 590: 551: 548: 500: 497: 458: 455: 404: 401: 396: 393: 390: 389: 348: 346: 339: 333: 330: 329: 328: 305: 298: 287: 272: 269: 255: 245: 190: 187: 108: 105: 21:hard radiation 15: 9: 6: 4: 3: 2: 3441: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3396: 3394: 3380: 3376: 3372: 3371:Radioactivity 3368: 3361: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3331: 3329: 3325: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3295: 3293: 3289: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3245: 3243: 3240: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3196: 3193: 3191: 3188: 3187: 3185: 3184: 3182: 3176: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3097: 3094: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3037:Beta particle 3035: 3033: 3030: 3028: 3025: 3023: 3022:Cluster decay 3020: 3018: 3015: 3014: 3012: 3010: 3006: 3000: 2997: 2995: 2992: 2990: 2987: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2962: 2961: 2959: 2957: 2953: 2950: 2948:Main articles 2946: 2941: 2934: 2929: 2927: 2922: 2920: 2915: 2914: 2911: 2905: 2902: 2900: 2897: 2892: 2889: 2886: 2882: 2879: 2876: 2872: 2869: 2865: 2862: 2861: 2851: 2849:0-08-021603-X 2845: 2841: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2811: 2805: 2801: 2799:2-88124-109-3 2795: 2791: 2787: 2783: 2779: 2767: 2759: 2757:0-471-04106-8 2753: 2749: 2745: 2741: 2736: 2732: 2730:0-12-227423-7 2726: 2722: 2717: 2713: 2708: 2704: 2702:0-471-51104-8 2698: 2694: 2689: 2685: 2679: 2675: 2671: 2667: 2662: 2658: 2656:1-4244-0304-9 2652: 2648: 2644: 2639: 2635: 2629: 2625: 2621: 2617: 2612: 2608: 2606:0-442-23952-1 2602: 2598: 2593: 2589: 2587:0-471-84893-X 2583: 2579: 2574: 2570: 2565: 2561: 2559:0-19-850733-X 2555: 2551: 2546: 2542: 2536: 2532: 2527: 2526: 2515:. 2022-08-15. 2514: 2510: 2504: 2497:. 2022-09-27. 2496: 2492: 2486: 2479:. 2022-09-22. 2478: 2474: 2468: 2453: 2449: 2443: 2437: 2432: 2424: 2417: 2410: 2395: 2391: 2385: 2370: 2366: 2362: 2356: 2350: 2345: 2337: 2333: 2329: 2323: 2315: 2309: 2295: 2291: 2284: 2270: 2266: 2259: 2251: 2245: 2241: 2237: 2233: 2226: 2218: 2211: 2203: 2197: 2189: 2185: 2181: 2174: 2166: 2160: 2156: 2152: 2148: 2141: 2133: 2129: 2125: 2118: 2110: 2103: 2097: 2086: 2080: 2078: 2069: 2063: 2055: 2051: 2044: 2042: 2032: 2027: 2023: 2016: 2014: 1995: 1994: 1986: 1968: 1967: 1959: 1951: 1945: 1941: 1937: 1933: 1926: 1918: 1912: 1908: 1901: 1893: 1889: 1885: 1884: 1876: 1868: 1864: 1860: 1856: 1852: 1848: 1841: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1790: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1734: 1729: 1725: 1721: 1717: 1709: 1694: 1690: 1684: 1669: 1668:New Scientist 1665: 1659: 1651: 1647: 1643: 1642:AccessScience 1636: 1632: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1594: 1591: 1588: 1586: 1583: 1582: 1578: 1572: 1567: 1559: 1549: 1545: 1542:has selected 1541: 1538: 1535: 1532: 1529: 1528: 1526: 1523: 1518: 1515: 1512: 1508: 1505: 1502: 1498: 1497: 1495: 1492: 1487: 1483: 1479: 1475: 1473:respectively. 1472: 1468: 1464: 1460: 1456: 1452: 1451: 1449: 1446: 1441: 1440:PowerPC e5500 1437: 1433: 1430: 1426: 1422: 1418: 1415: 1411: 1408: 1404: 1400: 1396: 1393: 1389: 1385: 1382: 1378: 1374: 1371: 1367: 1363: 1360: 1356: 1352: 1349: 1345: 1344: 1342: 1338: 1335: 1330: 1326: 1322: 1318: 1314: 1311: 1307: 1303: 1300: 1296: 1292: 1291: 1289: 1286: 1283: 1280: 1277: 1273: 1269: 1265: 1262: 1258: 1253: 1249: 1245: 1244: 1242: 1241:MIL-STD-1750A 1239: 1234: 1230: 1229: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1205: 1203:architecture. 1202: 1198: 1194: 1193:Space Shuttle 1190: 1186: 1182: 1181: 1172: 1167: 1164: 1163:survivability 1160: 1157: 1153: 1150:outage time, 1149: 1145: 1141: 1138: 1137:vulnerability 1134: 1130: 1129: 1123: 1121: 1117: 1113: 1109: 1105: 1095: 1091: 1089: 1085: 1080: 1078: 1074: 1070: 1066: 1056: 1052: 1049: 1047: 1043: 1039: 1034: 1031: 1027: 1023: 1021: 1017: 1008: 1006: 1002: 998: 994: 991: 987: 983: 978: 976: 975:radioactivity 972: 963: 961: 957: 953: 949: 947: 943: 938: 936: 935:edgeless CMOS 932: 928: 923: 920: 915: 913: 909: 905: 900: 898: 894: 890: 886: 882: 878: 874: 870: 866: 865:semiconductor 862: 859: 846: 843: 839: 835: 830: 824: 821: 817: 813: 808: 799: 795: 786: 784: 780: 776: 766: 757: 755: 751: 741: 739: 735: 731: 727: 717: 715: 711: 707: 703: 699: 695: 691: 686: 682: 673: 671: 661: 659: 658:time constant 656: 652: 648: 644: 634: 632: 628: 624: 620: 610: 608: 604: 600: 589: 586: 582: 578: 574: 570: 566: 561: 557: 547: 545: 541: 537: 534: 530: 526: 521: 517: 513: 509: 504: 496: 492: 490: 489: 484: 480: 476: 472: 468: 464: 454: 452: 451: 446: 442: 441:recombination 438: 434: 430: 426: 422: 418: 414: 413:gamma photons 410: 400: 386: 383: 375: 372:December 2021 365: 361: 355: 354: 349:This section 347: 343: 338: 337: 326: 321: 317: 313: 309: 306: 303: 299: 296: 291: 288: 285: 281: 277: 273: 270: 267: 266:magnetosphere 263: 259: 256: 253: 249: 246: 243: 239: 235: 231: 227: 223: 220: 219: 218: 216: 212: 208: 204: 200: 196: 186: 184: 180: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 131:signal spikes 128: 124: 120: 114: 104: 100: 98: 94: 90: 86: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 33: 26: 22: 3375:Radiobiology 3348: 3257:Radiobiology 3217:Laser safety 2885:COTS Journal 2884: 2839: 2814: 2808: 2789: 2739: 2720: 2711: 2692: 2674:10.1142/5607 2665: 2642: 2624:10.1142/3655 2615: 2596: 2577: 2549: 2530: 2512: 2503: 2494: 2485: 2476: 2467: 2455:. Retrieved 2451: 2442: 2431: 2422: 2409: 2398:. Retrieved 2384: 2373:. Retrieved 2355: 2344: 2336:the original 2331: 2322: 2308: 2297:. Retrieved 2293: 2283: 2272:. Retrieved 2268: 2258: 2231: 2225: 2216: 2210: 2196: 2187: 2183: 2173: 2146: 2140: 2123: 2117: 2108: 2096: 2062: 2053: 2021: 2001:, retrieved 1992: 1985: 1974:, retrieved 1965: 1958: 1931: 1925: 1906: 1900: 1882: 1875: 1850: 1846: 1840: 1799: 1795: 1789: 1777:. Retrieved 1723: 1719: 1708: 1696:. Retrieved 1692: 1683: 1671:. Retrieved 1667: 1658: 1641: 1635: 1381:PowerPC e500 1370:PowerPC 603e 1310:New Horizons 1155: 1147: 1107: 1101: 1092: 1081: 1062: 1053: 1050: 1038:voting logic 1035: 1024: 1014: 979: 969: 950: 939: 924: 919:process node 916: 901: 855: 842:metalization 820:metalization 796: 792: 772: 763: 747: 723: 716:to recover. 697: 693: 684: 679: 667: 640: 616: 603:memory cells 595: 581:swept quartz 555: 553: 540:optocouplers 538:, common in 505: 502: 493: 486: 471:Photocurrent 460: 448: 406: 398: 378: 369: 358:Please help 353:verification 350: 192: 182: 178: 174: 116: 101: 92: 88: 82: 72:, or during 37: 36: 3419:Spaceflight 2999:Ultraviolet 2994:Radio waves 2202:"StackPath" 1999:(Datasheet) 1972:(Datasheet) 1888:New Orleans 1779:7 September 1698:7 September 1673:7 September 1612:Mars rovers 1423:core based 1403:PowerPC 750 1392:PowerPC 750 1355:BAE Systems 1252:GEC-Plessey 1185:System/4 Pi 1144:degradation 1106:, the term 1088:Fobos-Grunt 1084:MIL-STD-883 1001:alpha decay 931:ECL devices 927:5400 series 897:4000 series 883:(5 and 10 k 789:SEE testing 714:power cycle 633:and cases. 475:ultraviolet 312:soft errors 222:Cosmic rays 58:outer space 3393:Categories 3180:and health 3178:Radiation 3047:Cosmic ray 2887:, Dec 2003 2457:14 January 2436:ESA DAHLIA 2400:2018-11-02 2375:2018-11-02 2299:2022-06-18 2274:2018-11-02 2249:1595930574 2190:(12): 1–8. 1733:2001.09190 1628:References 1556:See also: 1476:The Gen 6 1321:MIPS R3000 1306:Mongoose-V 1301:Aerospace. 1268:Proton200k 1220:PIC 1886VE 1201:System/360 1187:, made by 1005:soft error 861:substrates 858:insulating 619:ionization 599:flip-flops 583:. Natural 514:more than 473:caused by 234:heavy ions 143:spacecraft 139:satellites 111:See also: 64:), around 3334:Half-life 3207:Dosimetry 3042:Gamma ray 2989:Microwave 2979:Starlight 2940:Radiation 2776:ignored ( 2766:cite book 2495:microchip 2425:(Report). 2026:CiteSeerX 1892:Louisiana 1774:210920566 1758:1476-4687 1501:Cortex-M0 1331:, Russia. 1317:KOMDIV-32 1299:Honeywell 1026:Redundant 971:Shielding 966:Shielding 952:Capacitor 818:prior to 779:explosion 730:thyristor 706:test mode 683:(SEU) or 433:annealing 429:junctions 232:, and 1% 171:aerospace 145:, future 123:electrons 2984:Sunlight 2969:Infrared 2871:Archived 2394:Archived 2369:Archived 2054:habr.com 1824:17820742 1766:32848227 1693:phys.org 1563:See also 1509:and the 1482:Aeroflex 1233:Coldfire 1020:scrubber 904:band gap 873:sapphire 852:Physical 840:after a 738:latch-up 647:register 463:glitches 409:neutrons 203:isotopes 183:hardened 179:rad-hard 167:military 93:rad-hard 3195:chronic 2819:Bibcode 2744:Bibcode 2003:May 30, 1976:May 30, 1855:Bibcode 1832:2000982 1804:Bibcode 1796:Science 1738:Bibcode 1527:based: 1496:based: 1450:based: 1436:RAD5500 1348:RAD6000 1343:based: 1337:PowerPC 1290:based: 1243:based: 1228:based: 1208:RCA1802 1011:Logical 954:-based 845:etching 823:etching 752:of the 734:shorted 643:ionized 569:biasing 520:silicon 467:latchup 314:in new 226:protons 163:sensors 3377:, and 2846:  2796:  2754:  2727:  2699:  2680:  2653:  2630:  2603:  2584:  2556:  2537:  2477:sifive 2365:Cobham 2246:  2161:  2109:Onsemi 2028:  1946:  1913:  1830:  1822:  1772:  1764:  1756:  1720:Nature 1548:SiFive 1525:RISC-V 1427:, 266 1421:PPC440 1388:RAD750 1359:POWER1 1248:RH1750 1197:AP-101 1112:system 783:EEPROM 585:quartz 483:MOSFET 228:, 14% 3190:acute 3087:X-ray 2974:Light 2419:(PDF) 2105:(PDF) 2088:(PDF) 1997:(PDF) 1970:(PDF) 1828:S2CID 1770:S2CID 1728:arXiv 1455:ERC32 1448:SPARC 1366:RHPPC 1341:POWER 1325:NIISI 1211:8-bit 1156:e.g., 1148:e.g., 1126:Notes 1073:FPGAs 1003:(see 944:, or 712:or a 710:reset 479:holes 447:(see 238:X-ray 83:Most 2868:link 2844:ISBN 2794:ISBN 2778:help 2752:ISBN 2725:ISBN 2697:ISBN 2678:ISBN 2651:ISBN 2647:IEEE 2628:ISBN 2601:ISBN 2582:ISBN 2554:ISBN 2535:ISBN 2513:nasa 2459:2020 2244:ISBN 2159:ISBN 2005:2021 1978:2021 1944:ISBN 1911:ISBN 1820:PMID 1781:2020 1762:PMID 1754:ISSN 1700:2020 1675:2020 1537:NASA 1507:NASA 1486:LEON 1469:and 1459:LEON 1457:and 1453:The 1434:The 1429:MIPS 1412:The 1386:The 1364:The 1361:CPU. 1346:The 1315:The 1304:The 1295:RH32 1293:The 1288:MIPS 1266:The 1246:The 1231:The 1226:m68k 1206:The 1183:The 1152:data 1077:FPGA 960:SRAM 956:DRAM 946:MRAM 889:gray 881:gray 698:SEFI 621:and 601:and 560:rads 536:LEDs 533:GaAs 516:CMOS 445:gain 316:DRAM 278:and 161:and 129:and 68:and 2827:doi 2815:386 2670:doi 2620:doi 2236:doi 2151:doi 2128:doi 1936:doi 1863:doi 1812:doi 1800:206 1746:doi 1724:584 1646:doi 1517:ESA 1494:ARM 1214:CPU 1189:IBM 1135:or 1102:In 1007:). 942:RAM 910:or 893:rad 885:rad 877:SOS 869:SOI 834:die 812:die 491:). 469:). 362:by 252:sun 242:GeV 205:in 169:or 76:or 23:or 3395:: 3373:, 3369:, 2825:. 2813:. 2770:: 2768:}} 2764:{{ 2750:. 2676:. 2649:. 2645:. 2626:. 2511:. 2493:. 2475:. 2450:. 2421:. 2367:. 2363:. 2330:. 2292:. 2267:. 2242:. 2188:14 2186:. 2182:. 2157:. 2107:. 2076:^ 2052:. 2040:^ 2012:^ 1942:. 1890:, 1861:. 1851:52 1849:. 1826:. 1818:. 1810:. 1798:. 1768:. 1760:. 1752:. 1744:. 1736:. 1722:. 1718:. 1691:. 1666:. 1644:. 1595:, 1379:, 1339:/ 1312:). 1075:, 1071:, 1067:, 914:. 688:a 655:RC 629:, 209:, 185:. 177:, 149:, 141:, 80:. 2932:e 2925:t 2918:v 2877:) 2866:( 2852:. 2833:. 2829:: 2821:: 2802:. 2780:) 2760:. 2746:: 2733:. 2705:. 2686:. 2672:: 2659:. 2636:. 2622:: 2609:. 2590:. 2562:. 2543:. 2461:. 2403:. 2378:. 2316:. 2302:. 2277:. 2252:. 2238:: 2167:. 2153:: 2134:. 2130:: 2111:. 2090:. 2056:. 2034:. 1952:. 1938:: 1919:. 1869:. 1865:: 1857:: 1834:. 1814:: 1806:: 1783:. 1748:: 1740:: 1730:: 1702:. 1677:. 1652:. 1648:: 1503:. 1442:. 1409:. 1372:. 1254:. 1195:( 1146:( 1139:. 875:( 696:( 385:) 379:( 374:) 370:( 356:. 297:. 286:. 91:( 48:( 34:. 27:.

Index

hard radiation
radiation embrittlement
radiation damage
electronic components
ionizing radiation
particle radiation
electromagnetic radiation
outer space
low Earth orbit
nuclear reactors
particle accelerators
nuclear accidents
nuclear warfare
semiconductor electronic components
microelectronic
Radiation damage
charged particle
electrons
electronic noise
signal spikes
digital circuits
satellites
spacecraft
quantum computers
military aircraft
nuclear weapons
integrated circuits
sensors
military
aerospace

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑