Knowledge

Quantum computing

Source 📝

3446: 351: 3544:. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time 2731: 4115:; that is, all problems that can be efficiently solved by a deterministic classical computer can also be efficiently solved by a quantum computer, and all problems that can be efficiently solved by a quantum computer can also be solved by a deterministic classical computer with polynomial space resources. It is further suspected that BQP is a strict superset of P, meaning there are problems that are efficiently solvable by quantum computers that are not efficiently solvable by deterministic classical computers. For instance, 33: 4039: 3437:. However, the immense size and complexity of the structural space of all possible drug-like molecules pose significant obstacles, which could be overcome in the future by quantum computers. Quantum computers are naturally good for solving complex quantum many-body problems and thus may be instrumental in applications involving quantum chemistry. Therefore, one can expect that quantum-enhanced generative models including quantum GANs may eventually be developed into ultimate generative chemistry algorithms. 12234: 11275: 2704:
resulting state encodes the function's output values for all input values in the superposition, allowing for the computation of multiple outputs simultaneously. This property is key to the speedup of many quantum algorithms. However, "parallelism" in this sense is insufficient to speed up a computation, because the measurement at the end of the computation gives only one value. To be useful, a quantum algorithm must also incorporate some other conceptual ingredient.
14343: 13531: 12224: 13541: 12536: 3728:
example in chemistry and materials science. However, the article also concludes that a large range of the potential applications it considered, such as machine learning, "will not achieve quantum advantage with current quantum algorithms in the foreseeable future", and it identified I/O constraints that make speedup unlikely for "big data problems, unstructured linear systems, and database search based on Grover's algorithm".
13551: 626: 2949: 11263: 2940:, adiabatic quantum computation, and topological quantum computation—have been shown to be equivalent to the quantum Turing machine; given a perfect implementation of one such quantum computer, it can simulate all the others with no more than polynomial overhead. This equivalence need not hold for practical quantum computers, since the overhead of simulation may be too large to be practical. 2281: 3680:, generally considered the world's fastest computer. This claim has been subsequently challenged: IBM has stated that Summit can perform samples much faster than claimed, and researchers have since developed better algorithms for the sampling problem used to claim quantum supremacy, giving substantial reductions to the gap between Sycamore and classical supercomputers and even beating it. 199: 2038: 2900:, which are algorithms that run on a realistic model of quantum computation, can be computed equally efficiently with neuromorphic quantum computing. Both, traditional quantum computing and neuromorphic quantum computing are physics-based unconventional computing approaches to computations and don’t follow the 2832:. One common such set includes all single-qubit gates as well as the CNOT gate from above. This means any quantum computation can be performed by executing a sequence of single-qubit gates together with CNOT gates. Though this gate set is infinite, it can be replaced with a finite gate set by appealing to the 4123:
are known to be in BQP and are suspected to be outside of P. On the relationship of BQP to NP, little is known beyond the fact that some NP problems that are believed not to be in P are also in BQP (integer factorization and the discrete logarithm problem are both in NP, for example). It is suspected
3596:
to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often-cited figure for the required error rate in each gate for fault-tolerant computation is
3230:
by brute force requires time equal to roughly 2 invocations of the underlying cryptographic algorithm, compared with roughly 2 in the classical case, meaning that symmetric key lengths are effectively halved: AES-256 would have the same security against an attack using Grover's algorithm that AES-128
3136:
in the agricultural fertilizer industry (even though naturally occurring organisms also produce ammonia). Quantum simulations might be used to understand this process and increase the energy efficiency of production. It is expected that an early use of quantum computing will be modeling that improves
2034:
The mathematics of single qubit gates can be extended to operate on multi-qubit quantum memories in two important ways. One way is simply to select a qubit and apply that gate to the target qubit while leaving the remainder of the memory unaffected. Another way is to apply the gate to its target only
3391:
relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which slowly evolves to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution
3363:
For problems with all these properties, the running time of Grover's algorithm on a quantum computer scales as the square root of the number of inputs (or elements in the database), as opposed to the linear scaling of classical algorithms. A general class of problems to which Grover's algorithm can
2960:
However, quantum computing also poses challenges to traditional cryptographic systems. Shor's algorithm, a quantum algorithm for integer factorization, could potentially break widely used public-key cryptography schemes like RSA, which rely on the difficulty of factoring large numbers. Post-quantum
3341:
queries required for classical algorithms. In this case, the advantage is not only provable but also optimal: it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups. Many examples of provable quantum speedups
2956:
Quantum computing has significant potential applications in the fields of cryptography and cybersecurity. Quantum cryptography, which relies on the principles of quantum mechanics, offers the possibility of secure communication channels that are resistant to eavesdropping. Quantum key distribution
3775:
In particular, building computers with large numbers of qubits may be futile if those qubits are not connected well enough and cannot maintain sufficiently high degree of entanglement for long time. When trying to outperform conventional computers, quantum computing researchers often look for new
3722:
spotlight article summarised current quantum computers as being "For now, absolutely nothing". The article elaborated that quantum computers are yet to be more useful or efficient than conventional computers in any case, though it also argued that in the long term such computers are likely to be
3727:
article found that current quantum computing algorithms are "insufficient for practical quantum advantage without significant improvements across the software/hardware stack". It argues that the most promising candidates for achieving speedup with quantum computers are "small-data problems", for
2703:
is the heuristic that quantum computers can be thought of as evaluating a function for multiple input values simultaneously. This can be achieved by preparing a quantum system in a superposition of input states, and applying a unitary transformation that encodes the function to be evaluated. The
3600:
Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between
2964:
Ongoing research in quantum cryptography and post-quantum cryptography is crucial for ensuring the security of communication and data in the face of evolving quantum computing capabilities. Advances in these fields, such as the development of new QKD protocols, the improvement of QRNGs, and the
2411: 3844:
and prototype general purpose machines with up to 20 qubits have been realized. However the technology behind these devices combines complex vacuum equipment, lasers, microwave and radio frequency equipment making full scale processors difficult to integrate with standard computing equipment.
3752:
provide speedup over conventional algorithms only for some tasks, and matching these tasks with practical applications proved challenging. Some promising tasks and applications require resources far beyond those available today. In particular, processing large amounts of non-quantum data is a
6485:
Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J.; Razavi, M.; Shamsul Shaari, J.; Tomamichel, M.; Usenko, V. C.; Vallone, G.; Villoresi, P.; Wallden, P. (2020). "Advances in quantum cryptography".
2957:(QKD) protocols, such as BB84, enable the secure exchange of cryptographic keys between parties, ensuring the confidentiality and integrity of communication. Moreover, quantum random number generators (QRNGs) can produce high-quality random numbers, which are essential for secure encryption. 3709:
provided direct verification of quantum supremacy experiments by computing exact amplitudes for experimentally generated bitstrings using a new-generation Sunway supercomputer, demonstrating a significant leap in simulation capability built on a multiple-amplitude tensor network contraction
3460:
As of 2023, classical computers outperform quantum computers for all real-world applications. While current quantum computers may speed up solutions to particular mathematical problems, they give no computational advantage for practical tasks. Scientists and engineers are exploring multiple
3630:
million physical qubits would factor 2,048-bit integer in 5 months on a fully error-corrected trapped-ion quantum computer. In terms of the number of physical qubits, to date, this remains the lowest estimate for practically useful integer factorization problem sizing 1,024-bit or larger.
2904:. They both construct a system (a circuit) that represents the physical problem at hand, and then leverage their respective physics properties of the system to seek the “minimum”. Neuromorphic quantum computing and quantum computing share similar physical properties during computation. 3810:"So the number of continuous parameters describing the state of such a useful quantum computer at any given moment must be... about 10... Could we ever learn to control the more than 10 continuously variable parameters defining the quantum state of such a system? My answer is simple. 768:
is used to refer to an abstract mathematical model and to any physical system that is represented by that model. A classical bit, by definition, exists in either of two physical states, which can be denoted 0 and 1. A qubit is also described by a state, and two states often written
3884:
Conversely, any problem solvable by a quantum computer is also solvable by a classical computer. It is possible to simulate both quantum and classical computers manually with just some paper and a pen, if given enough time. More formally, any quantum computer can be simulated by a
5845:
Bluvstein, Dolev; Evered, Simon J.; Geim, Alexandra A.; Li, Sophie H.; Zhou, Hengyun; Manovitz, Tom; Ebadi, Sepehr; Cain, Madelyn; Kalinowski, Marcin; Hangleiter, Dominik; Ataides, J. Pablo Bonilla; Maskara, Nishad; Cong, Iris; Gao, Xun; Rodriguez, Pedro Sales (6 December 2023).
3668:
to describe the engineering feat of demonstrating that a programmable quantum device can solve a problem beyond the capabilities of state-of-the-art classical computers. The problem need not be useful, so some view the quantum supremacy test only as a potential future benchmark.
3852:
devices and have scaled to 2000 qubits. However the error rates for larger machines have been on the order of 5%. Technologically these devices are all cryogenic and scaling to large numbers of qubits requires wafer-scale integration, a serious engineering challenge by itself.
176:
shows that some quantum algorithms are exponentially more efficient than the best known classical algorithms. A large-scale quantum computer could in theory solve computational problems unsolvable by a classical computer in any reasonable amount of time. While claims of such
6726:
Guo, Xueshi; Breum, Casper R.; Borregaard, Johannes; Izumi, Shuro; Larsen, Mikkel V.; Gehring, Tobias; Christandl, Matthias; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L. (23 December 2019). "Distributed quantum sensing in a continuous-variable entangled network".
6531:
Pirandola, S.; Andersen, U. L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; Pereira, J. L.; Razavi, M.; Shamsul Shaari, J.; Tomamichel, M.; Usenko, V. C. (14 December 2020). "Advances in quantum cryptography".
464:
With focus on business management’s point of view, the potential applications of quantum computing into four major categories are cybersecurity, data analytics and artificial intelligence, optimization and simulation, and data management and searching.
2276:{\displaystyle |00\rangle :={\begin{pmatrix}1\\0\\0\\0\end{pmatrix}};\quad |01\rangle :={\begin{pmatrix}0\\1\\0\\0\end{pmatrix}};\quad |10\rangle :={\begin{pmatrix}0\\0\\1\\0\end{pmatrix}};\quad |11\rangle :={\begin{pmatrix}0\\0\\0\\1\end{pmatrix}}.} 3919:
While quantum computers cannot solve any problems that classical computers cannot already solve, it is suspected that they can solve certain problems faster than classical computers. For instance, it is known that quantum computers can efficiently
3699:, to demonstrate quantum supremacy. The authors claim that a classical contemporary supercomputer would require a computational time of 600 million years to generate the number of samples their quantum processor can generate in 20 seconds. 2290: 2753:. A quantum computation can be described as a network of quantum logic gates and measurements. However, any measurement can be deferred to the end of quantum computation, though this deferment may come at a computational cost, so most 472:
University successfully created "quantum circuits" that correct errors more efficiently than alternative methods, which may potentially remove a major obstacle to practical quantum computers. The Harvard research team was supported by
3410:
Since quantum computers can produce outputs that classical computers cannot produce efficiently, and since quantum computation is fundamentally linear algebraic, some express hope in developing quantum algorithms that can speed up
4163:; that is, it is believed that there are efficiently checkable problems that are not efficiently solvable by a quantum computer. As a direct consequence of this belief, it is also suspected that BQP is disjoint from the class of 3780:
demonstrations. Therefore, it is desirable to prove lower bounds on the complexity of best possible non-quantum algorithms (which may be unknown) and show that some quantum algorithms asymptomatically improve upon those bounds.
7582: 9644: 3876:
solvable by a classical computer is also solvable by a quantum computer. Intuitively, this is because it is believed that all physical phenomena, including the operation of classical computers, can be described using
3766:
Complexity analysis of algorithms sometimes makes abstract assumptions that do not hold in applications. For example, input data may not already be available encoded in quantum states, and "oracle functions" used in
615:
A classical computer is a quantum computer ... so we shouldn't be asking about "where do quantum speedups come from?" We should say, "well, all computers are quantum. ... Where do classical slowdowns come
3422:, named after its discoverers Harrow, Hassidim, and Lloyd, is believed to provide speedup over classical counterparts. Some research groups have recently explored the use of quantum annealing hardware for training 3099:, give polynomial speedups over corresponding classical algorithms. Though these algorithms give comparably modest quadratic speedup, they are widely applicable and thus give speedups for a wide range of problems. 3005:
can transmit quantum information over relatively short distances. Ongoing experimental research aims to develop more reliable hardware (such as quantum repeaters), hoping to scale this technology to long-distance
1931: 3199:
algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.
2961:
cryptography, which involves the development of cryptographic algorithms that are resistant to attacks by both classical and quantum computers, is an active area of research aimed at addressing this concern.
692: 136:
into calculations. National governments have invested heavily in experimental research that aims to develop scalable qubits with longer coherence times and lower error rates. Example implementations include
1608: 3625:
MHz, about 10 seconds. However, the encoding and error-correction overheads increase the size of a real fault-tolerant quantum computer by several orders of magnitude. Careful estimates show that at least
4113: 2603: 2555: 2507: 2459: 468:
In December 2023, physicists, for the first time, reported the entanglement of individual molecules, which may have significant applications in quantum computing. Also in December 2023, scientists at
3528:
The control of multi-qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This has led to the development of
3578:
As a result, time-consuming tasks may render some quantum algorithms inoperable, as attempting to maintain the state of qubits for a long enough duration will eventually corrupt the superpositions.
3784:
Some researchers have expressed skepticism that scalable quantum computers could ever be built, typically because of the issue of maintaining coherence at large scales, but also for other reasons.
9563:
Liu, Yong; Chen, Yaojian; Guo, Chu; Song, Jiawei; Shi, Xinmin; Gan, Lin; Wu, Wenzhao; Wu, Wei; Fu, Haohuan; Liu, Xin; Chen, Dexun; Zhao, Zhifeng; Yang, Guangwen; Gao, Jiangang (16 January 2024).
5790: 3117:
may be an important application of quantum computing. Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a
1296: 1066: 493:'s Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program. Research efforts are ongoing to jumpstart quantum computing through topological and photonic approaches as well. 8458:
Amy, Matthew; Matteo, Olivia; Gheorghiu, Vlad; Mosca, Michele; Parent, Alex; Schanck, John (30 November 2016). "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3".
4680: 3829:
A practical quantum computer must use a physical system as a programmable quantum register. Researchers are exploring several technologies as candidates for reliable qubit implementations.
4029: 4161: 3987: 3057:. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, but evidence suggests that this is unlikely. Certain oracle problems like 1536: 3710:
algorithm. This development underscores the evolving landscape of quantum computing, highlighting both the progress and the complexities involved in validating quantum supremacy claims.
1842:-qubit system is 2-dimensional, and this makes it challenging for a classical computer to simulate a quantum one: representing a 100-qubit system requires storing 2 classical values. 8930:
Pednault, Edwin; Gunnels, John A.; Nannicini, Giacomo; Horesh, Lior; Wisnieff, Robert (22 October 2019). "Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits".
6363:
Aharonov, Dorit; van Dam, Wim; Kempe, Julia; Landau, Zeph; Lloyd, Seth; Regev, Oded (1 January 2008). "Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation".
3702:
Claims of quantum supremacy have generated hype around quantum computing, but they are based on contrived benchmark tasks that do not directly imply useful real-world applications.
2028: 1983: 3617:. For a 1000-bit number, this implies a need for about 10 bits without error correction. With error correction, the figure would rise to about 10 bits. Computation time is about 3585:. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time. 2802: 407:. In 1998, a two-qubit quantum computer demonstrated the feasibility of the technology, and subsequent experiments have increased the number of qubits and reduced error rates. 6646:
Xu, Guobin; Mao, Jianzhou; Sakk, Eric; Wang, Shuangbao Paul (22 March 2023). "An Overview of Quantum-Safe Approaches: Quantum Key Distribution and Post-Quantum Cryptography".
5754: 3563:), typically range between nanoseconds and seconds at low temperature. Currently, some quantum computers require their qubits to be cooled to 20 millikelvin (usually using a 5922: 5456:
Arute, Frank; Arya, Kunal; Babbush, Ryan; Bacon, Dave; Bardin, Joseph C.; et al. (23 October 2019). "Quantum supremacy using a programmable superconducting processor".
5188:
Cao, Yudong; Romero, Jonathan; Olson, Jonathan P.; Degroote, Matthias; Johnson, Peter D.; et al. (9 October 2019). "Quantum Chemistry in the Age of Quantum Computing".
3310: 986: 8078: 5782: 1365: 1430: 429:
shows how increasing the number of qubits can mitigate errors, yet fully fault-tolerant quantum computing remains "a rather distant dream". According to some researchers,
3339: 2824:
qubits) can be represented as a network of quantum logic gates from a fairly small family of gates. A choice of gate family that enables this construction is known as a
1664: 1636: 1393: 1328: 1122: 1094: 943: 915: 879: 851: 823: 795: 748: 720: 422:
with a 54-qubit machine, performing a computation that is impossible for any classical computer. However, the validity of this claim is still being actively researched.
2035:
if another part of the memory is in a desired state. These two choices can be illustrated using another example. The possible states of a two-qubit quantum memory are
2679: 2651: 1450: 1197: 1146: 392:
proved that quantum computers could simulate quantum systems without the exponential overhead present in classical simulations, validating Feynman's 1982 conjecture.
1470: 1217: 1166: 3207:. Some public-key algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the 1018: 3581:
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical
2965:
standardization of post-quantum cryptographic algorithms, will play a key role in maintaining the integrity and confidentiality of information in the quantum era.
7080: 8806:
Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; et al. (2018). "Characterizing Quantum Supremacy in Near-Term Devices".
3776:
tasks that can be solved on quantum computers, but this leaves the possibility that efficient non-quantum techniques will be developed in response, as seen for
3273: 2822: 2994:
does not intercept the message, as any unauthorized eavesdropper would disturb the delicate quantum system and introduce a detectable change. With appropriate
10781: 4577:
Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines".
164:
In principle, a classical computer can solve the same computational problems as a quantum computer, given enough time. Quantum advantage comes in the form of
7832:
Ajagekar, Akshay; You, Fengqi (5 December 2020). "Quantum computing assisted deep learning for fault detection and diagnosis in industrial process systems".
5823: 3529: 2623: 8994:
Liu, Yong (Alexander); Liu, Xin (Lucy); Li, Fang (Nancy); Fu, Haohuan; Yang, Yuling; et al. (14 November 2021). "Closing the "quantum supremacy" gap".
6909:"Quantum Computing Advance Begins New Era, IBM Says – A quantum computer came up with better answers to a physics problem than a conventional supercomputer" 11179:
Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T. P.; Gustavsson, S.; Oliver, W. D. (17 June 2019). "A Quantum Engineer's Guide to Superconducting Qubits".
7031: 9390:
Zhong, Han-Sen; Wang, Hui; Deng, Yu-Hao; Chen, Ming-Cheng; Peng, Li-Chao; et al. (3 December 2020). "Quantum computational advantage using photons".
3672:
In October 2019, Google AI Quantum, with the help of NASA, became the first to claim to have achieved quantum supremacy by performing calculations on the
3121:. In June 2023, IBM computer scientists reported that a quantum computer produced better results for a physics problem than a conventional supercomputer. 3113:
Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically,
8714: 5728: 2406:{\displaystyle \operatorname {CNOT} :={\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}}.} 1874: 13587: 4690: 885:, meaning that they can be multiplied by constants and added together, and the result is again a valid quantum state. Such a combination is known as a 7134: 3226:, which would break many lattice based cryptosystems, is a well-studied open problem. It has been proven that applying Grover's algorithm to break a 3077: 9339: 7934:
Gao, Xun; Anschuetz, Eric R.; Wang, Sheng-Tao; Cirac, J. Ignacio; Lukin, Mikhail D. (2022). "Enhancing Generative Models via Quantum Correlations".
3010:
with end-to-end entanglement. Theoretically, this could enable novel technological applications, such as distributed quantum computing and enhanced
9645:"PsiQuantum Sees 700x Reduction in Computational Resource Requirements to Break Elliptic Curve Cryptography With a Fault Tolerant Quantum Computer" 9261: 4370: 14407: 14140: 12270: 11423: 192: 7651:
Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth (September 2017). "Quantum machine learning".
3069:, which is a restricted model where lower bounds are much easier to prove and doesn't necessarily translate to speedups for practical problems. 7783:"Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning" 335:
in 1994. These algorithms did not solve practical problems, but demonstrated mathematically that one could gain more information by querying a
6593:
Xu, Feihu; Ma, Xiongfeng; Zhang, Qiang; Lo, Hoi-Kwong; Pan, Jian-Wei (26 May 2020). "Secure quantum key distribution with realistic devices".
13788: 11385: 6918: 4713: 3684: 573: 3392:
is slow enough the system will stay in its ground state at all times through the process. Adiabatic optimization may be helpful for solving
3072:
Other problems, including the simulation of quantum physical processes from chemistry and solid-state physics, the approximation of certain
10246: 8879: 9723:
Davies, Paul (6 March 2007). "The implications of a holographic universe for quantum information science and the nature of physical law".
9231: 7322:
Bennett, Charles H.; Bernstein, Ethan; Brassard, Gilles; Vazirani, Umesh (October 1997). "Strengths and Weaknesses of Quantum Computing".
12115: 10195: 3735:
Conventional computer hardware and algorithms are not only optimized for practical tasks, but are still improving rapidly, particularly
12574: 12016: 11677: 3613:
is the number of digits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of
635: 14311: 6310:
Raussendorf, Robert; Browne, Daniel E.; Briegel, Hans J. (25 August 2003). "Measurement-based quantum computation on cluster states".
8479:
Dyakonov, M. I. (14 October 2006). S. Luryi; Xu, J.; Zaslavsky, A. (eds.). "Is Fault-Tolerant Quantum Computation Really Possible?".
6424:
Freedman, Michael H.; Larsen, Michael; Wang, Zhenghan (1 June 2002). "A Modular Functor Which is Universal for Quantum Computation".
3935:, for "bounded error, quantum, polynomial time". More formally, BQP is the class of problems that can be solved by a polynomial-time 1541: 5974: 3763:
is used to scale quantum computers to practical applications, its overhead may undermine speedup offered by many quantum algorithms.
297:
to independently suggest that hardware based on quantum phenomena might be more efficient for computer simulation. In a 1984 paper,
14387: 13637: 11578: 11030: 8144: 3203:
Identifying cryptographic systems that may be secure against quantum algorithms is an actively researched topic under the field of
4328:
meaning. Usually, it means that as a function of input size in bits, the best known classical algorithm for a problem requires an
3163:
systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few
14323: 11903: 8189:
Pauka SJ, Das K, Kalra B, Moini A, Yang Y, Trainer M, Bousquet A, Cantaloube C, Dick N, Gardner GC, Manfra MJ, Reilly DJ (2021).
3532:
that enable interfacing with the qubits. Scaling these systems to support a growing number of qubits is an additional challenge.
2892:
Neuromorphic quantum computing (abbreviated as ‘n.quantum computing’) is an unconventional computing type of computing that uses
601: 4061: 3167:(e.g., products of two 300-digit primes). By comparison, a quantum computer could solve this problem exponentially faster using 82:; however, the current state of the art is largely experimental and impractical, with several obstacles to useful applications. 14007: 13580: 13284: 13256: 3940: 9629: 8596:
Gidney, Craig; EkerÄ, Martin (15 April 2021). "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits".
3461:
technologies for quantum computing hardware and hope to develop scalable quantum architectures, but serious obstacles remain.
3066: 3030:
exist. Quantum algorithms can be roughly categorized by the type of speedup achieved over corresponding classical algorithms.
2560: 2512: 2464: 2416: 14397: 13941: 13309: 10978: 10854: 10794: 10754: 10727: 10689: 10662: 10625: 10595: 10560: 10533: 10490: 10458: 10415: 10380: 10345: 10310: 10270: 10212: 10168: 10122: 10087: 9021: 7987:
Li, Junde; Topaloglu, Rasit; Ghosh, Swaroop (9 January 2021). "Quantum Generative Models for Small Molecule Drug Discovery".
7488: 7402: 7214: 6842: 6710: 6667: 6132: 5264:
Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Markdoi (April 1998). "Experimental Implementation of Fast Quantum Searching".
5095: 5004: 4959: 4863: 4470: 3756:
Some promising algorithms have been "dequantized", i.e., their non-quantum analogues with similar complexity have been found.
474: 444:
Investment in quantum computing research has increased in the public and private sectors. As one consulting firm summarized,
7375:
Brassard, Gilles; HĂžyer, Peter; Tapp, Alain (2016). "Quantum Algorithm for the Collision Problem". In Kao, Ming-Yang (ed.).
13864: 13160: 12227: 11413: 8952: 3718:
Despite high hopes for quantum computing, significant progress in hardware, and optimism about future applications, a 2023
456:... While quantum computing promises to help businesses solve problems that are beyond the reach and speed of conventional 9365: 13314: 12593: 12263: 12185: 11285: 7003: 6816: 3346:
for finding collisions in two-to-one functions, and Farhi, Goldstone, and Gutmann's algorithm for evaluating NAND trees.
604:
operations in such a way that the resulting program computes a useful result in theory and is implementable in practice.
281:, which uses quantum theory to describe a simplified computer. When digital computers became faster, physicists faced an 17: 5813: 1253: 1023: 12826: 11761: 11347: 9789:
Rinott, Yosef; Shoham, Tomer; Kalai, Gil (13 July 2021). "Statistical Aspects of the Quantum Supremacy Demonstration".
3824: 3372:
through which the algorithm iterates is that of all possible answers. An example and possible application of this is a
3233: 2845: 482: 70:
cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations
9045:
Bulmer, Jacob F. F.; Bell, Bryn A.; Chadwick, Rachel S.; Jones, Alex E.; Moise, Diana; et al. (28 January 2022).
8860: 3794:
argued that a 400-qubit computer would even come into conflict with the cosmological information bound implied by the
13610: 13573: 13466: 13294: 12831: 12237: 12125: 11378: 9847: 8385:
VepsĂ€lĂ€inen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; et al. (August 2020).
6286: 4507: 3837:
are some of the most developed proposals, but experimentalists are considering other hardware possibilities as well.
3502: 3196: 502: 404: 138: 44: 11296: 2684:
In summary, quantum computation can be described as a network of quantum logic gates and measurements. However, any
13720: 13554: 12655: 12053: 11711: 10808: 7720:
Harrow, Aram; Hassidim, Avinatan; Lloyd, Seth (2009). "Quantum algorithm for solving linear systems of equations".
7480: 7107: 5518: 4803:. IEEE International Conference on Computers, Systems & Signal Processing. Bangalore, India. pp. 175–179. 3992: 3692: 3062: 949: 589: 328: 106: 8167: 4255: â€“ device which can be used to store or transfer information between independent qubits in a quantum computer 4127: 3950: 3939:
with an error probability of at most 1/3. As a class of probabilistic problems, BQP is the quantum counterpart to
3084:-complete. Because these problems are BQP-complete, an equally fast classical algorithm for them would imply that 1475: 14278: 13987: 13982: 13705: 12942: 12048: 11776: 11756: 6212:
Nayak, Chetan; Simon, Steven; Stern, Ady; Das Sarma, Sankar (2008). "Nonabelian Anyons and Quantum Computation".
2881: 203: 6790: 6000: 1219:
is zero, the qubit is effectively a classical bit; when both are nonzero, the qubit is in superposition. Such a
14372: 14290: 13962: 13233: 13195: 12859: 12567: 12256: 12043: 11352: 6025: 4792: 3943:("bounded error, probabilistic, polynomial time"), the class of problems that can be solved by polynomial-time 3445: 3365: 3179:(in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular 2825: 2685: 1868:. One important gate for both classical and quantum computation is the NOT gate, which can be represented by a 608: 600:
model the operations that can be performed on these states. Programming a quantum computer is then a matter of
298: 11555: 9745: 5814:"Physicists 'entangle' individual molecules for the first time, hastening possibilities for quantum computing" 5387: 3219:
are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the
14392: 14377: 14268: 14045: 13967: 13750: 13620: 13375: 13352: 13082: 13072: 12540: 12076: 11898: 11801: 11462: 11306: 9169:
Pan, Feng; Chen, Keyang; Zhang, Pan (2022). "Solving the Sampling Problem of the Sycamore Quantum Circuits".
5676:
Gibney, Elizabeth (2 October 2019). "Quantum gold rush: the private funding pouring into quantum start-ups".
4887:
Deutsch, D. (8 July 1985). "Quantum theory, the Church–Turing principle and the universal quantum computer".
4213: 4193: 4187: 4031:, which intuitively would mean that quantum computers are more powerful than classical computers in terms of 3137:
the efficiency of the Haber–Bosch process by the mid 2020s although some have predicted it will take longer.
3033:
Quantum algorithms that offer more than a polynomial speedup over the best-known classical algorithm include
3027: 2873: 8996:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
5753:
Biondi, Matteo; Heid, Anna; Henke, Nicolaus; Mohr, Niko; Pautasso, Lorenzo; et al. (14 December 2021).
1988: 1943: 121:
involves creating procedures that allow a quantum computer to perform calculations efficiently and quickly.
14002: 13936: 13931: 13902: 13615: 13456: 13044: 12952: 12864: 12640: 12625: 12081: 11949: 11540: 11371: 7165: 4291: 3944: 3635: 2913: 400: 150: 124:
Physically engineering high-quality qubits has proven challenging. If a physical qubit is not sufficiently
7713: 3359:
There exists a boolean function that evaluates each input and determines whether it is the correct answer.
14382: 14070: 13977: 13544: 13279: 12784: 12502: 12105: 11861: 11721: 11495: 11450: 11394: 11301: 6031:
Information Is Quantum: How Physics Helped Explain the Nature of Information and What Can Be Done With It
3696: 2974: 286: 9517: 7600:
Outeiral, Carlos; Strahm, Martin; Morris, Garrett; Benjamin, Simon; Deane, Charlotte; Shi, Jiye (2021).
6908: 14367: 14346: 14108: 13916: 13887: 13516: 13165: 12517: 12317: 11977: 11849: 11746: 11622: 11550: 11457: 4499: 4219: 4120: 3552: 3540:
One of the greatest challenges involved with constructing quantum computers is controlling or removing
3454: 3216: 2861: 2833: 2829: 2767: 457: 10469: 5312: 14130: 13997: 13921: 13882: 13839: 13813: 13770: 13663: 13534: 13461: 13436: 13299: 12947: 12560: 12347: 12332: 11786: 11751: 11647: 11590: 6685:
Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication
6150: 5273: 4523:
MĂ„rtensson-Pendrill, Ann-Marie (1 November 2006). "The Manhattan project—a part of physics history".
3914: 3889:. In other words, quantum computers provide no additional power over classical computers in terms of 3724: 3146: 3054: 515: 438: 247: 231: 173: 133: 75: 11145: 11068: 10041: 8262: 6683:
Kozlowski, Wojciech; Wehner, Stephanie (25 September 2019). "Towards Large-Scale Quantum Networks".
6181: 3282: 2998:, the sender and receiver can thus establish shared private information resistant to eavesdropping. 963: 14197: 14177: 14167: 14157: 14113: 13688: 13385: 13218: 12811: 12680: 12490: 12485: 12414: 12389: 12374: 12369: 12364: 11959: 11932: 11908: 11871: 11662: 11595: 11530: 11515: 11485: 11408: 11267: 11119: 5552: 4462: 4325: 4297: 4225: 3902: 3760: 3593: 3474: 3405: 2991: 2983: 2937: 2901: 2893: 2722:
for quantum computing, distinguished by the basic elements in which the computation is decomposed.
2688:
to the end of quantum computation, though this deferment may come at a computational cost, so most
1670: 1333: 1231:
are not necessarily positive numbers. Negative amplitudes allow for destructive wave interference.
523: 380:
encryption protocols, which drew significant attention to the field of quantum computing. In 1996,
11358: 7781:
Benedetti, Marcello; Realpe-GĂłmez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro (9 August 2016).
6874: 4752: 3349:
Problems that can be efficiently addressed with Grover's algorithm have the following properties:
1398: 183:
have drawn significant attention to the discipline, near-term practical use cases remain limited.
14412: 13892: 13818: 13446: 13380: 13271: 13087: 12754: 12110: 11844: 11736: 11706: 11505: 11181: 7046: 3469:
There are a number of technical challenges in building a large-scale quantum computer. Physicist
3377: 3356:
The number of possible answers to check is the same as the number of inputs to the algorithm, and
3227: 3223: 3160: 3096: 3046: 2995: 74:
faster than any modern "classical" computer. In particular, a large-scale quantum computer could
14306: 13854: 8293:
Zu, H.; Dai, W.; de Waele, A.T.A.M. (2022). "Development of Dilution refrigerators – A review".
3315: 1933:
Mathematically, the application of such a logic gate to a quantum state vector is modelled with
1641: 1613: 1370: 1305: 1099: 1071: 920: 892: 856: 828: 800: 772: 725: 697: 14402: 14217: 13992: 13972: 13897: 13765: 13511: 13342: 13223: 12990: 12980: 12975: 12507: 12429: 12180: 11944: 11937: 11684: 11114: 11063: 10036: 9811: 8257: 8093: 7025: 6176: 4838:
IEEE Information Theory Workshop on Theory and Practice in Information-Theoretic Security, 2005
3936: 3677: 2929: 1828:
is impossible to decompose into the tensor product of two individual qubits—the two qubits are
1299: 825:
serve as the quantum counterparts of the classical states 0 and 1. However, the quantum states
357:(pictured here in 2017) showed in 1994 that a scalable quantum computer would be able to break 324: 278: 158: 13808: 9870:
Tacchino, Francesco; Chiesa, Alessandro; Carretta, Stefano; Gerace, Dario (19 December 2019).
9287:
Ball, Philip (3 December 2020). "Physicists in China challenge Google's 'quantum advantage'".
7887:"Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems" 2849: 105:
of its two "basis" states, which loosely means that it is in both states simultaneously. When
97:
in classical computing. However, unlike a classical bit, which can be in one of two states (a
14242: 13755: 13735: 13481: 13451: 13441: 13337: 13251: 13127: 13067: 13034: 13024: 12914: 12879: 12869: 12806: 12675: 12650: 12645: 12610: 12480: 12454: 12279: 12100: 11726: 11652: 11617: 9871: 9764: 5759: 4116: 3928: 3921: 3873: 3795: 3768: 3564: 3393: 3276: 3246: 3208: 3180: 3156: 3092: 1934: 1674: 1435: 1182: 1170: 1131: 585: 551: 381: 350: 340: 227: 146: 102: 63: 11279: 10906:; et al. (2003). "Dreams versus Reality: Plenary Debate Session on Quantum Computing". 10468:
Hughes, Ciaran; Isaacson, Joshua; Perry, Anastasia; Sun, Ranbel F.; Turner, Jessica (2021).
9565:"Verifying Quantum Advantage Experiments with Multiple Amplitude Tensor Network Contraction" 8515:
Architecture Framework for Trapped-ion Quantum Computer based on Performance Simulation Tool
8113:
DiVincenzo, David P. (13 April 2000). "The Physical Implementation of Quantum Computation".
5577:
Pan, Feng; Zhang, Pan (4 March 2021). "Simulating the Sycamore quantum supremacy circuits".
2836:. Implementation of Boolean functions using the few-qubit quantum gates is presented here. 2656: 2628: 1455: 1202: 1151: 14273: 14202: 14147: 13877: 13700: 13658: 13241: 13213: 13185: 13180: 13009: 12985: 12937: 12922: 12904: 12894: 12889: 12851: 12801: 12796: 12713: 12659: 12419: 12342: 11890: 11639: 11490: 11329: 11200: 11106: 11055: 11018: 10925: 10739:
Principles of Quantum Artificial Intelligence: Quantum Problem Solving and Machine Learning
10250: 9681: 9586: 9409: 9296: 9188: 9133: 9068: 8825: 8778: 8699: 8615: 8494: 8408: 8349: 8249: 8132: 8026: 7953: 7898: 7804: 7739: 7670: 7547: 7341: 7271: 7256: 6955: 6893: 6812: 6612: 6551: 6505: 6443: 6382: 6329: 6231: 6168: 5685: 5640: 5475: 5413: 5346: 5277: 5138: 4896: 4728: 4629: 4586: 4532: 4408: 3867: 3743: 3427: 2979: 2719: 1869: 1830: 1220: 1003: 597: 555: 547: 486: 396: 332: 310: 211: 9564: 8: 14258: 14227: 14172: 14152: 14060: 14017: 13872: 13798: 13725: 13715: 13627: 13506: 13431: 13347: 13332: 13097: 12884: 12841: 12836: 12733: 12723: 12695: 12512: 12470: 12439: 12399: 12384: 12359: 12209: 12162: 11992: 11766: 11520: 11500: 11435: 11430: 10937: 5304: 4055: 3894: 3541: 3470: 3450: 3251:
The most well-known example of a problem that allows for a polynomial quantum speedup is
3168: 3034: 2713: 2284: 1851: 1235: 761: 535: 531: 369: 129: 86: 11204: 11110: 11059: 11022: 10929: 9685: 9590: 9413: 9300: 9192: 9137: 9072: 8829: 8782: 8619: 8498: 8412: 8353: 8253: 8136: 8030: 7957: 7902: 7808: 7743: 7674: 7551: 7345: 7275: 6976: 6959: 6941: 6616: 6555: 6509: 6447: 6386: 6333: 6235: 6172: 6148:
Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation".
5890: 5847: 5689: 5644: 5479: 5417: 5350: 5281: 5142: 4939: 4900: 4732: 4633: 4590: 4536: 4427: 14318: 14187: 14085: 13793: 13740: 13632: 13471: 13370: 13246: 13203: 13112: 13054: 13039: 13029: 12821: 12620: 12404: 12294: 11925: 11771: 11573: 11510: 11237: 11224: 11190: 11167: 11132: 11081: 11034: 11008: 10984: 10949: 10915: 10891: 10868: 10832: 10768: 10504: 10429: 10359: 10226: 10136: 9909: 9883: 9790: 9724: 9705: 9671: 9576: 9545: 9498: 9441: 9399: 9320: 9212: 9178: 9151: 9097: 9058: 9046: 9027: 8999: 8976: 8931: 8841: 8815: 8768: 8735: 8677: 8639: 8605: 8578: 8550: 8484: 8459: 8440: 8398: 8318: 8275: 8222: 8204: 8195: 8148: 8122: 8052: 7988: 7969: 7943: 7867: 7841: 7794: 7763: 7729: 7702: 7660: 7633: 7613: 7563: 7537: 7508: 7457: 7408: 7380: 7357: 7331: 7220: 7157: 7009: 6913: 6820: 6762: 6736: 6688: 6628: 6602: 6575: 6541: 6495: 6467: 6433: 6406: 6372: 6345: 6319: 6292: 6247: 6221: 6194: 6158: 5923:"'Off to the races': DARPA, Harvard breakthrough brings quantum computing years closer" 5903: 5859: 5709: 5658: 5630: 5578: 5499: 5465: 5437: 5403: 5231: 5197: 5170: 5073: 5010: 4965: 4920: 4869: 4841: 4804: 4744: 4661: 4602: 4556: 4439: 4329: 3673: 3568: 3258: 3192: 3184: 3108: 3058: 3042: 3038: 3023: 3002: 2987: 2807: 2739: 1861: 1224: 543: 469: 377: 373: 142: 118: 71: 59: 11338: 9872:"Quantum Computers as Universal Quantum Simulators: State-of-the-Art and Perspectives" 9533: 7855: 6029: 4944:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing – STOC '93
3171:
to find its factors. This ability would allow a quantum computer to break many of the
2730: 14328: 14237: 14207: 14098: 14093: 14075: 14040: 14030: 13745: 13710: 13693: 13596: 13491: 13421: 13400: 13362: 13170: 13137: 13117: 12816: 12728: 12602: 12449: 12307: 12302: 12189: 11834: 11741: 11698: 11629: 11545: 11525: 11480: 11440: 11228: 11216: 11171: 11136: 11085: 10988: 10974: 10872: 10860: 10850: 10800: 10790: 10772: 10760: 10750: 10723: 10695: 10685: 10658: 10631: 10621: 10601: 10591: 10566: 10556: 10539: 10529: 10508: 10496: 10486: 10454: 10433: 10421: 10411: 10386: 10376: 10351: 10341: 10316: 10306: 10266: 10218: 10208: 10174: 10164: 10140: 10128: 10118: 10093: 10083: 9913: 9901: 9843: 9697: 9610: 9602: 9549: 9537: 9502: 9490: 9482: 9445: 9433: 9425: 9324: 9312: 9216: 9204: 9155: 9102: 9084: 9031: 9017: 8980: 8968: 8905: 8665: 8643: 8631: 8570: 8519: 8444: 8432: 8424: 8367: 8322: 8310: 8306: 8279: 8226: 8190: 8056: 8044: 7973: 7916: 7871: 7859: 7755: 7694: 7686: 7637: 7484: 7449: 7398: 7210: 7054: 6981: 6838: 6766: 6754: 6706: 6663: 6632: 6579: 6567: 6459: 6398: 6296: 6282: 6251: 6128: 5907: 5895: 5877: 5729:"Trump budget proposal boosts funding for artificial intelligence, quantum computing" 5713: 5701: 5526: 5503: 5491: 5441: 5429: 5364: 5235: 5223: 5215: 5162: 5154: 5091: 5000: 4955: 4912: 4859: 4748: 4653: 4645: 4606: 4560: 4548: 4544: 4503: 4476: 4466: 4443: 4431: 4279: 4273: 4261: 4246: 4237: 3878: 3777: 3749: 3731:
This state of affairs can be traced to several current and long-term considerations.
3664: 3589: 3423: 3388: 3373: 3125: 3114: 2897: 2877: 569: 507: 452:
investment dollars are pouring in, and quantum-computing start-ups are proliferating.
426: 419: 385: 316: 255: 235: 219: 179: 114: 113:
of a classical bit. If a quantum computer manipulates the qubit in a particular way,
79: 67: 11038: 10953: 10363: 10230: 9709: 8386: 8152: 8079:"Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage" 7706: 7567: 7361: 7224: 6659: 6198: 5662: 5174: 4873: 4665: 14055: 14050: 13907: 13803: 13324: 13208: 13175: 12970: 12899: 12788: 12774: 12769: 12718: 12705: 12630: 12583: 12354: 11856: 11806: 11583: 11208: 11157: 11124: 11073: 11026: 10996: 10966: 10941: 10933: 10895: 10842: 10742: 10707: 10677: 10650: 10579: 10521: 10478: 10446: 10403: 10333: 10298: 10258: 10200: 10156: 10110: 10075: 10046: 9893: 9689: 9598: 9594: 9529: 9472: 9417: 9304: 9243: 9200: 9196: 9141: 9092: 9076: 9009: 8960: 8845: 8833: 8786: 8734:
Preskill, John (26 March 2012). "Quantum computing and the entanglement frontier".
8687: 8657: 8623: 8582: 8560: 8539:"Designing a Million-Qubit Quantum Computer Using a Resource Performance Simulator" 8416: 8357: 8302: 8267: 8214: 8140: 8034: 7961: 7911: 7906: 7886: 7851: 7812: 7767: 7751: 7747: 7678: 7623: 7555: 7461: 7439: 7412: 7390: 7349: 7302: 7202: 7161: 7149: 6971: 6963: 6946: 6830: 6746: 6698: 6655: 6620: 6559: 6513: 6471: 6451: 6410: 6390: 6349: 6337: 6274: 6239: 6186: 5885: 5869: 5693: 5648: 5483: 5421: 5354: 5285: 5207: 5146: 5083: 5014: 4992: 4947: 4924: 4904: 4851: 4814: 4736: 4637: 4594: 4540: 4423: 3803: 3719: 3412: 3073: 3007: 2608: 559: 282: 273:, the fields of quantum mechanics and computer science began to converge. In 1980, 223: 36: 11289: 9262:"Google's 'quantum supremacy' usurped by researchers using ordinary supercomputer" 8998:. SC '21. New York, New York: Association for Computing Machinery. pp. 1–12. 8691: 7394: 5150: 4969: 4332:
number of steps, while a quantum algorithm uses only a polynomial number of steps.
3931:
that can be efficiently solved by a quantum computer with bounded error is called
14285: 14212: 14192: 14162: 14125: 14120: 14025: 13849: 13395: 13289: 13261: 13155: 13107: 13092: 13077: 12932: 12927: 12874: 12764: 12738: 12690: 12635: 12424: 12409: 12379: 12327: 12322: 11982: 11920: 11610: 11605: 11333: 11317: 11094: 11077: 10190: 10186: 10148: 9837: 8695: 8271: 6807:; Arkhipov, Alex (6 June 2011). "The computational complexity of linear optics". 6624: 4889:
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
4796: 4371:"IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans" 4051: 4032: 3898: 3830: 3522: 3518: 3188: 3176: 3011: 2990:. When a sender and receiver exchange quantum states, they can guarantee that an 2754: 2746: 2689: 1176: 565: 527: 511: 478: 302: 294: 251: 239: 198: 165: 125: 11246: 11162: 8168:"We'd have more quantum computers if it weren't so hard to find the damn cables" 7206: 5289: 5211: 4855: 2625:
from before) to the second qubit if and only if the first qubit is in the state
265:
applied quantum mechanical models to computational problems and swapped digital
14263: 14232: 14222: 13844: 13834: 13668: 13501: 13405: 13304: 13150: 13122: 12444: 12434: 12091: 12068: 12035: 11839: 11716: 10970: 10644: 10067: 9308: 8218: 8039: 8014: 7965: 7817: 7782: 7583:"NSA seeks to build quantum computer that could crack most types of encryption" 6999: 6967: 6804: 6341: 6243: 6190: 5947: 5873: 5697: 5359: 5334: 4833: 4342: 4267: 4181: 4047: 4038: 3886: 3849: 3845:
Moreover the trapped ion system itself has engineering challenges to overcome.
3688: 3643: 3434: 3220: 2933: 2761: 1857: 1718: 1239: 957: 953: 581: 577: 519: 358: 320: 11363: 10864: 10846: 10804: 10764: 10654: 10646:
Concise Guide to Quantum Computing: Algorithms, Exercises, and Implementations
10570: 10525: 10500: 10482: 10425: 10407: 10390: 10355: 10302: 10132: 10050: 9366:"The new light-based quantum computer Jiuzhang has achieved quantum supremacy" 8837: 8627: 8420: 7444: 7427: 7353: 7153: 6750: 6266: 6125:
Concise guide to quantum computing: algorithms, exercises, and implementations
5487: 5425: 4984: 4818: 32: 14361: 14182: 14035: 13926: 13760: 13730: 13683: 13390: 12685: 12495: 12394: 11913: 11731: 11657: 11353:
Online lecture on An Introduction to Quantum Computing, Edward Gerjuoy (2008)
11342: 11220: 11146:"The Quantum Imperative: Addressing the Legal Dimension of Quantum Computers" 10903: 10715: 10699: 10635: 10613: 10583: 10543: 10328:
Benenti, Giuliano; Casati, Giulio; Rossini, Davide; Strini, Giuliano (2019).
10320: 10295:
Elements of Quantum Computing: History, Theories and Engineering Applications
10262: 10222: 10204: 10178: 10160: 10097: 10079: 10024: 9905: 9606: 9541: 9486: 9477: 9460: 9429: 9088: 8972: 8791: 8756: 8719: 8661: 8635: 8574: 8523: 8428: 8314: 8098: 7920: 7863: 7690: 7453: 7058: 6758: 6571: 6463: 6402: 6278: 5881: 5653: 5618: 5530: 5219: 5158: 4996: 4916: 4649: 4552: 4480: 4435: 4303: 4285: 4231: 3890: 3659: 3582: 3419: 3343: 3212: 3187:
problem, both of which can be solved by Shor's algorithm. In particular, the
3152: 3133: 3050: 2880:, decomposes computation into a slow continuous transformation of an initial 2857: 2757:
depict a network consisting only of quantum logic gates and no measurements.
2692:
depict a network consisting only of quantum logic gates and no measurements.
593: 242:
for tedious calculations. Both disciplines had practical applications during
169: 98: 10605: 9693: 9421: 9247: 9013: 8964: 6834: 6702: 4641: 3790:
doubted the practicality of quantum computers in a paper published in 1994.
3080:
have quantum algorithms appearing to give super-polynomial speedups and are
3026:
typically focuses on this quantum circuit model, though exceptions like the
66:, and quantum computing leverages this behavior using specialized hardware. 14065: 13678: 13673: 13486: 13145: 12475: 12133: 12058: 11249:. Institute of Electrical and Electronics Engineers Computer Society Press. 10899: 10887: 10330:
Principles of Quantum Computation and Information: A Comprehensive Textbook
9897: 9614: 9494: 9437: 9316: 9208: 9106: 9080: 8436: 8371: 8048: 7759: 7698: 6985: 5899: 5705: 5495: 5433: 5368: 5227: 5069: 4908: 4657: 4167:
problems (if an NP-complete problem were in BQP, then it would follow from
3647: 3172: 3164: 2853: 2750: 2735: 1766: 1250:
correspondence between amplitudes and probabilities—when measuring a qubit
1247: 882: 629: 306: 274: 243: 11359:
Four Lectures on Quantum Computing given at Oxford University in July 2006
10681: 10450: 9701: 9146: 9121: 8191:"A cryogenic CMOS chip for generating control signals for multiple qubits" 8076: 7559: 7507:(29 May 1996). "A fast quantum mechanical algorithm for database search". 7197:
Bernstein, Daniel J. (2009). "Introduction to post-quantum cryptography".
6809:
Proceedings of the forty-third annual ACM symposium on Theory of computing
6455: 5166: 5087: 4951: 3771:
often have internal structure that can be exploited for faster algorithms.
754:
Just as the bit is the basic concept of classical information theory, the
460:, use cases are largely experimental and hypothetical at this early stage. 14103: 13476: 13102: 13014: 12312: 12143: 11997: 11535: 11013: 10945: 10920: 10719: 9729: 9518:"The security implications of quantum cryptography and quantum computing" 8682: 8489: 8127: 7542: 7513: 7385: 7336: 7307: 7290: 7242: 6438: 6377: 6324: 5078: 4846: 4252: 4164: 4042:
The suspected relationship of BQP to several classical complexity classes
3841: 3834: 3791: 3592:, if the error rate is small enough, it is thought to be possible to use 3572: 3488: 993: 539: 12248: 11274: 11031:
10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
8145:
10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
7780: 7682: 5335:"Hello quantum world! Google publishes landmark quantum supremacy claim" 4991:. Santa Fe, New Mexico, USA: IEEE Comput. Soc. Press. pp. 116–123. 4264: â€“ Application of quantum theory mathematics to cognitive phenomena 3575:
can nevertheless cause certain systems to decohere within milliseconds.
3567:) in order to prevent significant decoherence. A 2020 study argues that 1020:. Because a qubit is a two-state system, any qubit state takes the form 13496: 13426: 13019: 12759: 12615: 12204: 12138: 12002: 11128: 10238: 9676: 9340:"Light-based Quantum Computer Exceeds Fastest Classical Supercomputers" 7602:"The prospects of quantum computing in computational molecular biology" 7504: 6563: 6517: 5247: 5245: 4740: 4598: 3787: 3353:
There is no searchable structure in the collection of possible answers,
1865: 1835: 1786: 389: 365: 354: 309:
protocols and demonstrated that quantum key distribution could enhance
290: 262: 11212: 8537:
Ahsan, Muhammad; Meter, Rodney Van; Kim, Jungsang (28 December 2016).
7628: 7601: 7045:
Ruane, Jonathan; McAfee, Andrew; Oliver, William D. (1 January 2022).
6942:"Evidence for the utility of quantum computing before fault tolerance" 6648:
2023 57th Annual Conference on Information Sciences and Systems (CISS)
6394: 3742:
Current quantum computing hardware generates only a limited amount of
3433:
Deep generative chemistry models emerge as powerful tools to expedite
13957: 13653: 13001: 12962: 11987: 10243:
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
8513: 5399: 3924:, while this is not believed to be the case for classical computers. 3799: 3634:
Another approach to the stability-decoherence problem is to create a
1243: 411: 336: 110: 13565: 10553:
Programming Quantum Computers: Essential Algorithms and Code Samples
8565: 8538: 8362: 8337: 7426:
Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam (23 December 2008).
6786: 6271:
Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science
5755:"Quantum computing use cases are getting real—what you need to know" 5242: 4989:
Proceedings 35th Annual Symposium on Foundations of Computer Science
4620:
Buluta, Iulia; Nori, Franco (2 October 2009). "Quantum Simulators".
4240: â€“ terminology introduced to encompass three classes of methods 3088:
gives a super-polynomial speedup, which is believed to be unlikely.
2884:
into a final Hamiltonian, whose ground states contain the solution.
694:
is a point on the surface of the sphere, partway between the poles,
611:
describes the relationship between quantum and classical computers,
13062: 12552: 12172: 12148: 12007: 11972: 11195: 10837: 10551:
Johnston, Eric R.; Harrigan, Nic; Gimeno-Segovia, Mercedes (2019).
10114: 9888: 9795: 9581: 9404: 9183: 9063: 9004: 8936: 8820: 8773: 8610: 8555: 8464: 8403: 8209: 7993: 7948: 7846: 7799: 7665: 7618: 6741: 6693: 6607: 6546: 6500: 5864: 5818: 5635: 5583: 5470: 5408: 5202: 4946:. San Diego, California, United States: ACM Press. pp. 11–20. 4809: 4572: 4570: 3514: 3118: 117:
effects can amplify the desired measurement results. The design of
62:
phenomena. On small scales, physical matter exhibits properties of
55: 10746: 10337: 9662:
Unruh, Bill (1995). "Maintaining coherence in Quantum Computers".
8740: 7734: 6825: 6226: 6163: 5388:"Quantum Supremacy Using a Programmable Superconducting Processor" 1926:{\displaystyle X:={\begin{pmatrix}0&1\\1&0\end{pmatrix}}.} 952:
mathematically represents a qubit state. Physicists typically use
12199: 11816: 9956: 9944: 9932: 9920: 9232:"Ordinary computers can beat Google's quantum computer after all" 8880:"Google researchers have reportedly achieved 'quantum supremacy'" 8387:"Impact of ionizing radiation on superconducting qubit coherence" 4168: 3129: 687:{\displaystyle |\psi \rangle =\alpha |0\rangle +\beta |1\rangle } 207: 11090:
Table 1 lists switching and dephasing times for various systems.
9516:
Cavaliere, Fabio; Mattsson, John; Smeets, Ben (September 2020).
7650: 7321: 4689:] (in Russian). Soviet Radio. pp. 13–15. Archived from 4567: 2948: 12176: 11672: 11313: 11262: 11238:"Computing Power into the 21st Century: Moore's Law and Beyond" 9047:"The boundary for quantum advantage in Gaussian boson sampling" 5948:"DARPA-Funded Research Leads to Quantum Computing Breakthrough" 5848:"Logical quantum processor based on reconfigurable atom arrays" 5045: 4834:"Brief history of quantum cryptography: A personal perspective" 3901:, and the existence of quantum computers does not disprove the 3506: 3053:
finite groups. These algorithms depend on the primitive of the
3037:
for factoring and the related quantum algorithms for computing
2760:
Any quantum computation (which is, in the above formalism, any
1603:{\displaystyle 1/{\sqrt {2}}|0\rangle +1/{\sqrt {2}}|1\rangle } 625: 518:. Within these "classical" computers, some components (such as 270: 10999:(2000). "The Physical Implementation of Quantum Computation". 10550: 10443:
Quantum Computation and Information: From Theory to Experiment
8929: 8384: 6856: 6854: 6092: 5129:
Lloyd, Seth (23 August 1996). "Universal Quantum Simulators".
5021: 4801:
Quantum cryptography: Public key distribution and coin tossing
4324:
As used in this article, "exponentially faster" has a precise
3802:
doubt that quantum supremacy will ever be achieved. Physicist
3342:
for query problems are based on Grover's algorithm, including
11445: 10004: 9980: 8805: 7528:
Ambainis, Ambainis (June 2004). "Quantum search algorithms".
5783:"What Business Managers Should Know About Quantum Computing?" 5109: 5107: 4198: 3639: 3501:
Sourcing parts for quantum computers is also very difficult.
2917: 1227:, with one key difference: unlike probabilities, probability 756: 526:) may rely on quantum behavior, but these components are not 490: 437:) machines may have specialized uses in the near future, but 90: 10961:
Berthiaume, Andre (1 December 1998). "Quantum Computation".
10827:
Zeng, Bei; Chen, Xie; Zhou, Duan-Lu; Wen, Xiao-Gang (2019).
9992: 9968: 9869: 8668:; Wang, Zhenghan (2003). "Topological quantum computation". 7599: 7257:"A Public-Key Cryptosystem Based On Algebraic Coding Theory" 7245:
on cryptography not known to be broken by quantum computing.
7175: 6530: 6484: 5975:"Top 7 innovation stories of 2023 – Interesting Engineering" 5591: 5519:"Opinion | Why Google's Quantum Supremacy Milestone Matters" 4770: 3676:
more than 3,000,000 times faster than they could be done on
1864:, analogous to how classical memory can be manipulated with 12194: 11667: 11600: 11348:
Lectures at the Institut Henri Poincaré (slides and videos)
10674:
Quantum Computing: A Short Course from Theory to Experiment
10254: 8077:
Torsten Hoefler; Thomas HĂ€ner; Matthias Troyer (May 2023).
6851: 6651: 6038: 4207: 3380:
with this algorithm is of interest to government agencies.
434: 415: 154: 11178: 10327: 6362: 6034:(Videotape). Event occurs at 1:08:22 – via YouTube. 5104: 4108:{\displaystyle {\mathsf {P\subseteq BQP\subseteq PSPACE}}} 3806:
has expressed skepticism of quantum computing as follows:
11811: 11796: 8953:"IBM casts doubt on Google's claims of quantum supremacy" 8543:
ACM Journal on Emerging Technologies in Computing Systems
3932: 3736: 3556: 3510: 3183:
are based on the difficulty of factoring integers or the
3175:
systems in use today, in the sense that there would be a
3081: 2982:
enables new ways to transmit data securely; for example,
2943: 2598:{\textstyle \operatorname {CNOT} |11\rangle =|10\rangle } 2550:{\textstyle \operatorname {CNOT} |10\rangle =|11\rangle } 2502:{\textstyle \operatorname {CNOT} |01\rangle =|01\rangle } 2454:{\textstyle \operatorname {CNOT} |00\rangle =|00\rangle } 2287:
gate can then be represented using the following matrix:
266: 94: 40: 8656: 7081:"Quantum computing and the chemical industry | McKinsey" 6309: 6211: 5263: 3255:, which involves finding a marked item out of a list of 3124:
About 2% of the annual global energy output is used for
384:
established a quantum speedup for the widely applicable
9515: 9122:"Race Not Over Between Classical and Quantum Computers" 9044: 8457: 7241:, a bibliography maintained by Daniel J. Bernstein and 7238: 6725: 6104: 6080: 6070: 6068: 6055: 6053: 5066:
A fast quantum mechanical algorithm for database search
4203:
Pages displaying short descriptions of redirect targets
2936:. All of these models of computation—quantum circuits, 10886: 10467: 5187: 4388: 3881:, which underlies the operation of quantum computers. 3312:
queries to the database, quadratically fewer than the
2839: 2659: 2631: 2611: 2563: 2515: 2467: 2419: 2305: 2235: 2177: 2119: 2061: 1889: 7933: 7425: 5844: 5455: 4130: 4064: 3995: 3953: 3318: 3285: 3261: 2896:
to perform quantum operations. It was suggested that
2810: 2770: 2293: 2041: 1991: 1946: 1877: 1644: 1616: 1544: 1478: 1458: 1438: 1401: 1373: 1336: 1308: 1256: 1205: 1185: 1154: 1134: 1102: 1074: 1026: 1006: 966: 923: 895: 859: 831: 803: 775: 728: 700: 638: 399:
have constructed small-scale quantum computers using
11046:
DiVincenzo, David P. (1995). "Quantum Computation".
9461:"{{subst:title case|Can hype be a force for good?}}" 8481:
Future Trends in Microelectronics. Up the Nano Creek
8240:
DiVincenzo, David P. (1995). "Quantum Computation".
7379:. New York, New York: Springer. pp. 1662–1664. 6065: 6050: 4672: 4294: â€“ Subfield of computer science and mathematics 4270: â€“ Metric for a quantum computer's capabilities 4257:
Pages displaying wikidata descriptions as a fallback
4242:
Pages displaying wikidata descriptions as a fallback
3840:
The first quantum logic gates were implemented with
3481:
Physically scalable to increase the number of qubits
3155:
on cryptographic systems that are currently in use.
3151:
A notable application of quantum computation is for
2749:
decomposes computation into a sequence of few-qubit
93:(or "quantum bit"), serves the same function as the 11638: 8715:"Anyons: The breakthrough quantum computing needs?" 8008: 8006: 8004: 7719: 7428:"A Quantum Algorithm for the Hamiltonian NAND Tree" 6001:"Microsoft Quantum Computing Getting DARPA Funding" 5752: 4522: 2828:, since a computer that can run such circuits is a 8188: 7192: 7190: 6423: 6141: 4155: 4107: 4023: 3981: 3525:cables made only by the Japanese company Coax Co. 3484:Qubits that can be initialized to arbitrary values 3333: 3304: 3267: 2986:uses entangled quantum states to establish secure 2816: 2796: 2673: 2645: 2617: 2597: 2549: 2501: 2453: 2413:As a mathematical consequence of this definition, 2405: 2275: 2022: 1977: 1925: 1658: 1630: 1602: 1530: 1464: 1444: 1424: 1387: 1359: 1322: 1291:{\displaystyle \alpha |0\rangle +\beta |1\rangle } 1290: 1211: 1191: 1160: 1140: 1116: 1088: 1061:{\displaystyle \alpha |0\rangle +\beta |1\rangle } 1060: 1012: 980: 937: 909: 873: 845: 817: 789: 742: 714: 686: 10616:; Shen, Alexander H.; Vyalyi, Mikhail N. (2002). 10577: 10104: 10022: 9962: 9950: 9938: 9926: 9788: 9389: 7885:Ajagekar, Akshay; You, Fengqi (1 December 2021). 7581:Rich, Steven; Gellman, Barton (1 February 2014). 7374: 7044: 5386:Martinis, John; Boixo, Sergio (23 October 2019). 5251: 5051: 4937: 4249: â€“ Computer that uses photons or light waves 3893:. This means that quantum computers cannot solve 3078:quantum algorithm for linear systems of equations 3065:do give provable speedups, though this is in the 2887: 496: 14359: 10706: 10642: 10612: 10109:. Washington, DC: The National Academies Press. 8233: 8001: 7986: 7030:: CS1 maint: bot: original URL status unknown ( 7012:. Archived from the original on 15 February 2021 6803: 6122: 5124: 5122: 5033: 4276: â€“ Unintuitive aspects of quantum mechanics 4216: â€“ New technologies actively in development 3102: 2907: 11393: 10826: 10783:Introduction to Classical and Quantum Computing 10441:Hiroshi, Imai; Masahito, Hayashi, eds. (2006). 10440: 10105:Grumbling, Emily; Horowitz, Mark, eds. (2019). 7201:. Berlin, Heidelberg: Springer. pp. 1–14. 7187: 6682: 5612: 5610: 5608: 5606: 4791: 2856:applied to a highly entangled initial state (a 2605:. In other words, the CNOT applies a NOT gate ( 193:Timeline of quantum computing and communication 9562: 8757:"Quantum Computing in the NISQ era and beyond" 6939: 6147: 5619:"Quantum Computing in the NISQ era and beyond" 4234: â€“ Computing for the purpose of computing 3231:has against classical brute-force search (see 2867: 13581: 12592:Note: This template roughly follows the 2012 12568: 12264: 11379: 11097:(1982). "Simulating physics with computers". 10185: 10010: 9998: 9986: 9974: 8670:Bulletin of the American Mathematical Society 8536: 8292: 7288: 7181: 7108:"Chemistry is quantum computing's killer app" 7079:Budde, Florian; Volz, Daniel (12 July 2019). 6860: 6645: 6205: 6127:. Texts in computer science. Cham: Springer. 6098: 6044: 5920: 5805: 5597: 5385: 5380: 5378: 5119: 5113: 5027: 4840:. Awaji Island, Japan: IEEE. pp. 19–23. 4776: 4024:{\displaystyle {\mathsf {BQP\subsetneq BPP}}} 11099:International Journal of Theoretical Physics 10445:. Topics in Applied Physics. Vol. 102. 10247:Symposium on Foundations of Computer Science 9168: 8015:"Quantum computers: what are they good for?" 7315: 7291:"Dihedral Hidden Subgroup Problem: A Survey" 6940:Kim, Youngseok; et al. (14 June 2023). 6933: 6900: 6264: 5921:Freedberg Jr., Sydney J. (7 December 2023). 5603: 4721:International Journal of Theoretical Physics 4156:{\displaystyle {\mathsf {NP\nsubseteq BQP}}} 3982:{\displaystyle {\mathsf {BPP\subseteq BQP}}} 3848:The largest commercial systems are based on 3376:that attempts to guess a password. Breaking 3140: 2916:decomposes computation into the braiding of 2668: 2640: 2592: 2578: 2544: 2530: 2496: 2482: 2448: 2434: 2224: 2166: 2108: 2050: 2017: 2003: 1972: 1958: 1653: 1625: 1597: 1568: 1531:{\displaystyle |\alpha |^{2}+|\beta |^{2}=1} 1382: 1317: 1285: 1268: 1111: 1083: 1055: 1038: 975: 932: 904: 868: 840: 812: 784: 737: 709: 681: 664: 647: 250:, and quantum physics was essential for the 238:emerged in the following decades to replace 10671: 10643:Kurgalin, Sergei; Borzunov, Sergei (2021). 10196:Quantum Computation and Quantum Information 8906:"Google and NASA Achieve Quantum Supremacy" 8861:"Quantum Computers Compete for "Supremacy"" 8595: 7884: 7831: 7580: 6592: 6123:Kurgalin, Sergei; Borzunov, Sergei (2021). 5781:Leong, Kelvin; Sung, Anna (November 2022). 4306: â€“ Experimental area in semiconductors 4300: â€“ Computing by new or unusual methods 4288: â€“ Type of extremely powerful computer 4222: â€“ List of quantum computer components 3275:items in a database. This can be solved by 441:in quantum gates limits their reliability. 13588: 13574: 12575: 12561: 12535: 12271: 12257: 11386: 11372: 11045: 10995: 10960: 10712:Quantum Mechanics: The Theoretical Minimum 10023:Bernstein, Ethan; Vazirani, Umesh (1997). 8993: 8239: 8112: 5375: 4938:Bernstein, Ethan; Vazirani, Umesh (1993). 4619: 4282: â€“ American quantum computing company 4184: â€“ Canadian quantum computing company 2848:decomposes computation into a sequence of 1765:. This vector inhabits a four-dimensional 568:, in contrast, rely on precise control of 12278: 11194: 11161: 11118: 11067: 11012: 10919: 10836: 10471:Quantum Computing for the Quantum Curious 10370: 10153:Quantum Computer Science: An Introduction 10107:Quantum Computing: Progress and Prospects 10040: 10016: 9887: 9794: 9728: 9675: 9580: 9476: 9403: 9182: 9145: 9119: 9096: 9062: 9003: 8935: 8819: 8790: 8772: 8739: 8681: 8609: 8564: 8554: 8488: 8463: 8402: 8361: 8261: 8208: 8126: 8038: 7992: 7947: 7910: 7845: 7816: 7798: 7733: 7664: 7627: 7617: 7541: 7512: 7443: 7384: 7335: 7306: 7196: 7078: 6975: 6894:"What Can We Do with a Quantum Computer?" 6824: 6740: 6692: 6606: 6545: 6499: 6437: 6376: 6323: 6225: 6180: 6162: 5972: 5889: 5863: 5780: 5727:Rodrigo, Chris Mills (12 February 2020). 5652: 5634: 5582: 5469: 5407: 5358: 5201: 5077: 4845: 4808: 4210: â€“ US information technology company 2923: 2734:A quantum circuit diagram implementing a 1834:because their probability amplitudes are 1432:. Any valid qubit state has coefficients 11235: 10829:Quantum Information Meets Quantum Matter 10066: 9835: 9809: 9458: 8754: 8733: 8478: 8091: 7527: 7474: 7254: 7047:"Quantum Computing for Business Leaders" 6891: 6086: 5616: 5576: 5550: 5516: 5068:. ACM symposium on Theory of computing. 4831: 4825: 4394: 4058:is not known. However, it is known that 4037: 3818: 3597:10, assuming the noise is depolarizing. 3444: 2952:Example of a quantum cryptosystem layout 2947: 2729: 624: 349: 197: 31: 11904:Continuous-variable quantum information 11292:" by Amit Hagar and Michael E. Cuffaro. 11143: 11093: 10736: 10672:Stolze, Joachim; Suter, Dieter (2004). 9363: 8903: 8072: 8070: 8068: 8066: 7132: 7105: 6998: 6024: 5726: 4886: 4787: 4785: 4711: 4576: 4456: 4368: 14: 14408:Computer-related introductions in 1980 14360: 13285:Knowledge representation and reasoning 11314:Quantum computing for the very curious 10515: 10400:Quantum Computing: An Applied Approach 10397: 10147: 9810:Dyakonov, Mikhail (15 November 2018). 9722: 9642: 9627: 8858: 8712: 8092:Dyakonov, Mikhail (15 November 2018). 8012: 7503: 7106:Bourzac, Katherine (30 October 2017). 6872: 6784: 6780: 6778: 6776: 6426:Communications in Mathematical Physics 6110: 6074: 6059: 5998: 5973:Choudhury, Rizwan (30 December 2023). 5675: 5332: 5063: 4493: 4406: 4190: â€“ Information storage technology 4148: 4145: 4142: 4136: 4133: 4100: 4097: 4094: 4091: 4088: 4085: 4079: 4076: 4073: 4067: 4016: 4013: 4010: 4004: 4001: 3998: 3974: 3971: 3968: 3962: 3959: 3956: 3705:In January 2024, a study published in 2944:Quantum cryptography and cybersecurity 2707: 2695: 2023:{\displaystyle X|1\rangle =|0\rangle } 1978:{\displaystyle X|0\rangle =|1\rangle } 1838:. In general, the vector space for an 620: 230:developed in the 1920s to explain the 226:formed distinct academic communities. 128:from its environment, it suffers from 27:Technology that uses quantum mechanics 13595: 13569: 13310:Philosophy of artificial intelligence 12556: 12252: 11367: 11247:"On the Power of Quantum Computation" 11244: 10963:Solution Manual for Quantum Mechanics 10292: 9839:Will We Ever Have a Quantum Computer? 9762: 9743: 9661: 9120:McCormick, Katie (10 February 2022). 8877: 8511: 8335: 8165: 7606:WIREs Computational Molecular Science 6906: 6417: 5811: 5791:Journal of Interdisciplinary Sciences 5333:Gibney, Elizabeth (23 October 2019). 5128: 4985:"On the power of quantum computation" 4982: 4678: 4171:that all problems in NP are in BQP). 3947:with bounded error. It is known that 3344:Brassard, HĂžyer, and Tapp's algorithm 1538:. As an example, measuring the qubit 1242:, the result is a classical bit. The 632:representation of a qubit. The state 574:describe these systems mathematically 12636:Energy consumption (Green computing) 12582: 11330:Quantum computing for the determined 10779: 10588:An Introduction to Quantum Computing 10237: 9812:"The Case Against Quantum Computing" 9630:"Quantum Computers and the Universe" 9286: 8094:"The Case Against Quantum Computing" 8063: 7834:Computers & Chemical Engineering 7005:Lunch & Learn: Quantum Computing 6785:Jordan, Stephen (14 October 2022) . 5826:from the original on 8 December 2023 5039: 4782: 4409:"Plurality of Wave–Particle Duality" 3746:before getting overwhelmed by noise. 3653: 3383: 1845: 76:break widely used encryption schemes 13315:Distributed artificial intelligence 12594:ACM Computing Classification System 11286:Stanford Encyclopedia of Philosophy 9836:Dyakonov, Mikhail (24 March 2020). 9383: 9337: 9229: 8950: 8878:Giles, Martin (20 September 2019). 8530: 8505: 7289:Kobayashi, H.; Gall, F. L. (2006). 6817:Association for Computing Machinery 6793:from the original on 29 April 2018. 6773: 5551:Pednault, Edwin (22 October 2019). 5517:Aaronson, Scott (30 October 2019). 5454: • Journal article: 4714:"Simulating Physics with Computers" 4228: â€“ Quantum computing algorithm 3487:Quantum gates that are faster than 3399: 2840:Measurement-based quantum computing 2681:, nothing is done to either qubit. 246:; computers played a major role in 24: 12827:Integrated development environment 10938:10.1023/B:QINP.0000042203.24782.9a 10880: 10280: 10072:Quantum Computing Since Democritus 9746:"Quantum Supremacy and Complexity" 9364:Conover, Emily (3 December 2020). 8904:Tavares, Frank (23 October 2019). 7295:Information and Media Technologies 6873:Norton, Quinn (15 February 2007). 5302: 4201: â€“ American government agency 3825:List of proposed quantum registers 3477:for a practical quantum computer: 3319: 3240: 3159:, which underpins the security of 2846:measurement-based quantum computer 1669:Each additional qubit doubles the 550:, quantum mechanical notions like 25: 14424: 13295:Automated planning and scheduling 12832:Software configuration management 11255: 10618:Classical and Quantum Computation 9459:Roberson, Tara M. (21 May 2020). 8166:Giles, Martin (17 January 2019). 7856:10.1016/j.compchemeng.2020.107119 7477:Explorations in Quantum Computing 6921:from the original on 14 June 2023 6875:"The Father of Quantum Computing" 4369:Russell, John (10 January 2019). 4046:The exact relationship of BQP to 3503:Superconducting quantum computers 3045:, and more generally solving the 2797:{\displaystyle 2^{n}\times 2^{n}} 503:Introduction to quantum mechanics 418:announced that they had achieved 78:and aid physicists in performing 14342: 14341: 13549: 13539: 13530: 13529: 12534: 12233: 12232: 12223: 12222: 11297:"Quantum computation, theory of" 11273: 11261: 10555:. O'Reilly Media, Incorporated. 10518:Quantum Information: An Overview 9863: 9829: 9803: 9782: 9756: 9737: 9716: 9655: 9636: 9621: 9556: 9509: 9452: 9357: 9331: 9280: 9254: 9223: 9162: 9113: 9038: 8987: 8944: 8923: 8897: 8871: 8852: 8799: 8755:Preskill, John (6 August 2018). 8748: 8727: 8706: 8650: 8589: 8472: 8451: 8378: 8338:"Computing: The quantum company" 8329: 8307:10.1016/j.cryogenics.2021.103390 8286: 8182: 8159: 8106: 8085: 7255:McEliece, R. J. (January 1978). 6892:Ambainis, Andris (Spring 2014). 6534:Advances in Optics and Photonics 6488:Advances in Optics and Photonics 5999:Mackie, Kurt (8 February 2024). 5617:Preskill, John (6 August 2018). 4407:Bhatta, Varun S. (10 May 2020). 3861: 3753:challenge for quantum computers. 3646:used as threads, and relying on 3521:research byproduct, and special 3228:symmetric (secret key) algorithm 2968: 1717:represents a two-qubit state, a 1223:acts similarly to a (classical) 431:noisy intermediate-scale quantum 14388:Computational complexity theory 13540: 12943:Computational complexity theory 9465:Public Understanding of Science 8951:Cho, Adrian (23 October 2019). 8013:Brooks, Michael (24 May 2023). 7980: 7927: 7878: 7825: 7774: 7644: 7593: 7574: 7521: 7497: 7468: 7419: 7368: 7282: 7248: 7231: 7142:Designs, Codes and Cryptography 7126: 7099: 7072: 7038: 6992: 6907:Chang, Kenneth (14 June 2023). 6896:. Institute for Advanced Study. 6885: 6866: 6797: 6719: 6676: 6660:10.1109/CISS56502.2023.10089619 6639: 6586: 6524: 6478: 6356: 6303: 6258: 6116: 6018: 5992: 5966: 5940: 5914: 5838: 5774: 5746: 5720: 5669: 5570: 5544: 5510: 5326: 5296: 5257: 5181: 5072:: ACM Press. pp. 212–219. 5057: 4976: 4931: 4880: 4705: 4335: 3497:Qubits that can be read easily. 2215: 2157: 2099: 1860:can be manipulated by applying 530:from their environment, so any 388:search problem. The same year, 234:observed at atomic scales, and 191:For a chronological guide, see 14291:Relativistic quantum mechanics 12734:Network performance evaluation 11278:Learning materials related to 10908:Quantum Information Processing 10373:Quantum Computing for Everyone 10074:. Cambridge University Press. 9744:Regan, K. W. (23 April 2016). 9599:10.1103/PhysRevLett.132.030601 9201:10.1103/PhysRevLett.129.090502 8713:Monroe, Don (1 October 2008). 8336:Jones, Nicola (19 June 2013). 7912:10.1016/j.apenergy.2021.117628 7752:10.1103/PhysRevLett.103.150502 4712:Feynman, Richard (June 1982). 4613: 4579:Journal of Statistical Physics 4516: 4487: 4450: 4400: 4362: 4318: 3535: 3440: 3366:Boolean satisfiability problem 3328: 3322: 3305:{\displaystyle O({\sqrt {n}})} 3299: 3289: 3091:Some quantum algorithms, like 2888:Neuromorphic quantum computing 2661: 2633: 2585: 2571: 2537: 2523: 2489: 2475: 2441: 2427: 2217: 2159: 2101: 2043: 2010: 1996: 1965: 1951: 1646: 1618: 1590: 1561: 1512: 1503: 1489: 1480: 1412: 1403: 1375: 1347: 1338: 1310: 1278: 1261: 1104: 1076: 1048: 1031: 981:{\displaystyle |\psi \rangle } 968: 925: 897: 861: 833: 805: 777: 730: 702: 674: 657: 640: 497:Quantum information processing 218:For many years, the fields of 13: 1: 14269:Quantum statistical mechanics 14046:Quantum differential calculus 13968:Delayed-choice quantum eraser 13751:Symmetry in quantum mechanics 13098:Multimedia information system 13083:Geographic information system 13073:Enterprise information system 12669:Computer systems organization 11899:Adiabatic quantum computation 10991:– via Semantic Scholar. 10620:. American Mathematical Soc. 10199:(10th anniversary ed.). 9963:Grumbling & Horowitz 2019 9951:Grumbling & Horowitz 2019 9939:Grumbling & Horowitz 2019 9927:Grumbling & Horowitz 2019 9876:Advanced Quantum Technologies 9765:"The Quantum Computer Puzzle" 9643:Swayne, Matt (20 June 2023). 9628:Monroe, Don (December 2022). 9534:10.1016/S1353-4858(20)30105-7 9230:Cho, Adrian (2 August 2022). 8692:10.1090/S0273-0979-02-00964-3 7395:10.1007/978-1-4939-2864-4_304 5252:Grumbling & Horowitz 2019 5151:10.1126/science.273.5278.1073 5052:Grumbling & Horowitz 2019 4465:: MIT Press. pp. 3, 46. 4428:10.18520/cs/v118/i9/1365-1374 4356: 4214:List of emerging technologies 4194:Glossary of quantum computing 4188:Electronic quantum holography 3989:and is widely suspected that 3945:probabilistic Turing machines 3908: 3713: 3683:In December 2020, a group at 3464: 3197:elliptic curve Diffie–Hellman 3103:Simulation of quantum systems 3017: 2908:Topological quantum computing 2725: 1769:spanned by the basis vectors 1360:{\displaystyle |\alpha |^{2}} 372:for breaking the widely used 14398:Theoretical computer science 13457:Computational social science 13045:Theoretical computer science 12865:Software development process 12641:Electronic design automation 12626:Very Large Scale Integration 11950:Topological quantum computer 11078:10.1126/science.270.5234.255 10286: 9750:Gödel's Lost Letter and P=NP 9632:. Communications of the ACM. 8859:Savage, Neil (5 July 2017). 8272:10.1126/science.270.5234.255 8081:. Communications of the ACM. 6625:10.1103/RevModPhys.92.025002 6267:"Quantum circuit complexity" 4687:Computable and Noncomputable 4459:Computing: A Concise History 4292:Theoretical computer science 3650:to form stable logic gates. 3636:topological quantum computer 3559:technology, also called the 3505:, like those constructed by 2914:topological quantum computer 2860:), using a technique called 1856:The state of this one-qubit 1677:. As an example, the vector 1425:{\displaystyle |\beta |^{2}} 572:quantum systems. Physicists 368:built on these results with 329:Bernstein–Vazirani algorithm 7: 14071:Quantum stochastic calculus 14061:Quantum measurement problem 13983:Mach–Zehnder interferometer 13280:Natural language processing 13068:Information storage systems 12228:Quantum information science 11395:Quantum information science 11302:Encyclopedia of Mathematics 11163:10.5771/2747-5174-2021-1-52 10025:"Quantum Complexity Theory" 7475:Williams, Colin P. (2011). 7207:10.1007/978-3-540-88702-7_1 7114:. American Chemical Society 5290:10.1103/PhysRevLett.80.3408 5212:10.1021/acs.chemrev.8b00803 4940:"Quantum complexity theory" 4856:10.1109/ITWTPI.2005.1543949 4682:Vychislimoe i nevychislimoe 4174: 3455:adiabatic quantum computers 3217:Lattice-based cryptosystems 3028:quantum adiabatic algorithm 2975:Quantum information science 2938:one-way quantum computation 2932:is the quantum analog of a 2868:Adiabatic quantum computing 2686:measurement can be deferred 760:is the fundamental unit of 558:are largely irrelevant for 343:, sometimes referred to as 287:simulating quantum dynamics 204:Mach–Zehnder interferometer 10: 14429: 13196:Human–computer interaction 13166:Intrusion detection system 13078:Social information systems 13063:Database management system 12518:Thermoacoustic heat engine 11623:quantum gate teleportation 11144:Jeutner, Valentin (2021). 10971:10.1142/9789814541893_0016 10060: 9309:10.1038/d41586-020-03434-7 8219:10.1038/s41928-020-00528-y 8040:10.1038/d41586-023-01692-9 7966:10.1103/PhysRevX.12.021037 7818:10.1103/PhysRevA.94.022308 7377:Encyclopedia of Algorithms 7133:Lenstra, Arjen K. (2000). 6968:10.1038/s41586-023-06096-3 6342:10.1103/PhysRevA.68.022312 6244:10.1103/RevModPhys.80.1083 6191:10.1103/RevModPhys.80.1061 5979:interestingengineering.com 5874:10.1038/s41586-023-06927-3 5698:10.1038/d41586-019-02935-4 5360:10.1038/d41586-019-03213-z 4545:10.1088/0031-9120/41/6/001 4500:Princeton University Press 4220:List of quantum processors 4121:discrete logarithm problem 3912: 3865: 3822: 3621:or about 10 steps and at 1 3403: 3334:{\displaystyle \Omega (n)} 3244: 3144: 3106: 3063:Bernstein–Vazirani problem 2972: 2874:adiabatic quantum computer 2862:quantum gate teleportation 2830:universal quantum computer 2711: 1849: 1659:{\displaystyle |1\rangle } 1631:{\displaystyle |0\rangle } 1388:{\displaystyle |1\rangle } 1323:{\displaystyle |0\rangle } 1117:{\displaystyle |1\rangle } 1089:{\displaystyle |0\rangle } 938:{\displaystyle |1\rangle } 910:{\displaystyle |0\rangle } 874:{\displaystyle |1\rangle } 846:{\displaystyle |0\rangle } 818:{\displaystyle |1\rangle } 790:{\displaystyle |0\rangle } 743:{\displaystyle |1\rangle } 715:{\displaystyle |0\rangle } 500: 458:high-performance computers 305:applied quantum theory to 285:increase in overhead when 190: 186: 101:), a qubit can exist in a 89:in quantum computing, the 14337: 14299: 14251: 14131:Quantum complexity theory 14109:Quantum cellular automata 14084: 14016: 13950: 13863: 13827: 13814:Path integral formulation 13781: 13646: 13603: 13525: 13462:Computational engineering 13437:Computational mathematics 13414: 13361: 13323: 13270: 13232: 13194: 13136: 13053: 12999: 12961: 12913: 12850: 12783: 12747: 12704: 12668: 12601: 12590: 12530: 12503:Immersive virtual reality 12463: 12293: 12286: 12218: 12161: 12124: 12090: 12067: 12034: 12025: 11958: 11887: 11825: 11785: 11752:Quantum Fourier transform 11697: 11648:Post-quantum cryptography 11591:Entanglement distillation 11564: 11473: 11401: 11245:Simon, Daniel R. (1994). 10847:10.1007/978-1-4939-9084-9 10737:Wichert, Andreas (2020). 10655:10.1007/978-3-030-65052-0 10526:10.1007/978-0-387-36944-0 10483:10.1007/978-3-030-61601-4 10408:10.1007/978-3-030-83274-2 10371:Bernhardt, Chris (2019). 10303:10.1007/978-3-319-08284-4 10051:10.1137/S0097539796300921 10029:SIAM Journal on Computing 10011:Nielsen & Chuang 2010 9999:Nielsen & Chuang 2010 9987:Nielsen & Chuang 2010 9975:Nielsen & Chuang 2010 8838:10.1038/s41567-018-0124-x 8628:10.22331/q-2021-04-15-433 8421:10.1038/s41586-020-2619-8 7445:10.4086/toc.2008.v004a008 7354:10.1137/s0097539796300933 7324:SIAM Journal on Computing 7199:Post-Quantum Cryptography 7182:Nielsen & Chuang 2010 6861:Nielsen & Chuang 2010 6751:10.1038/s41567-019-0743-x 6595:Reviews of Modern Physics 6265:Chi-Chih Yao, A. (1993). 6214:Reviews of Modern Physics 6099:Nielsen & Chuang 2010 6045:Nielsen & Chuang 2010 5812:Staff (7 December 2023). 5598:Nielsen & Chuang 2010 5488:10.1038/s41586-019-1666-5 5426:10.1038/s41586-019-1666-5 5303:Holton, William Coffeen. 5274:American Physical Society 5114:Nielsen & Chuang 2010 5028:Nielsen & Chuang 2010 4819:10.1016/j.tcs.2014.05.025 4777:Nielsen & Chuang 2010 4498:. Princeton, New Jersey: 4457:Ceruzzi, Paul E. (2012). 3915:Quantum complexity theory 3856: 3725:Communications of the ACM 3693:photonic quantum computer 3674:Sycamore quantum computer 3205:post-quantum cryptography 3147:Post-quantum cryptography 3141:Post-quantum cryptography 3055:quantum Fourier transform 516:classical electrodynamics 514:'s operation in terms of 489:University and funded by 319:then emerged for solving 174:quantum complexity theory 109:a qubit, the result is a 14198:Quantum machine learning 14178:Quantum key distribution 14168:Quantum image processing 14158:Quantum error correction 14008:Wheeler's delayed choice 13472:Computational healthcare 13467:Differentiable computing 13386:Graphics processing unit 12812:Domain-specific language 12681:Computational complexity 12486:Digital scent technology 12238:Quantum mechanics topics 11933:Quantum machine learning 11909:One-way quantum computer 11762:Quantum phase estimation 11663:Quantum key distribution 11596:Monogamy of entanglement 10710:; Friedman, Art (2014). 10398:Hidary, Jack D. (2021). 10263:10.1109/SFCS.1994.365700 10205:10.1017/CBO9780511976667 10161:10.1017/CBO9780511813870 10080:10.1017/CBO9780511979309 9478:10.1177/0963662520923109 8792:10.22331/q-2018-08-06-79 8512:Ahsan, Muhammad (2015). 6279:10.1109/SFCS.1993.366852 5654:10.22331/q-2018-08-06-79 5553:"On 'Quantum Supremacy'" 4997:10.1109/SFCS.1994.365701 4463:Cambridge, Massachusetts 4311: 4298:Unconventional computing 4226:Magic state distillation 3761:quantum error correction 3594:quantum error correction 3406:Quantum machine learning 3161:public key cryptographic 2984:quantum key distribution 2902:von Neumann architecture 2653:. If the first qubit is 1666:with equal probability. 524:random number generators 339:with a quantum state in 153:(which confine a single 64:both particles and waves 39:, a quantum computer by 14114:Quantum finite automata 13447:Computational chemistry 13381:Photograph manipulation 13272:Artificial intelligence 13088:Decision support system 11845:Randomized benchmarking 11707:Amplitude amplification 11332:– 22 video lectures by 11182:Applied Physics Reviews 11001:Fortschritte der Physik 9763:Kalai, Gil (May 2016). 9694:10.1103/PhysRevA.51.992 9569:Physical Review Letters 9422:10.1126/science.abe8770 9248:10.1126/science.ade2364 9171:Physical Review Letters 9014:10.1145/3458817.3487399 8965:10.1126/science.aaz6080 8170:. MIT Technology Review 8115:Fortschritte der Physik 7722:Physical Review Letters 7154:10.1023/A:1008397921377 7051:Harvard Business Review 6835:10.1145/1993636.1993682 6787:"Quantum Algorithm Zoo" 6703:10.1145/3345312.3345497 5313:EncyclopĂŠdia Britannica 5309:Encyclopedia Britannica 5266:Physical Review Letters 5064:Grover, Lov K. (1996). 4642:10.1126/science.1177838 4496:Alan Turing: The Enigma 4494:Hodges, Andrew (2014). 3707:Physical Review Letters 3224:hidden subgroup problem 3097:amplitude amplification 3047:hidden subgroup problem 2996:cryptographic protocols 2850:Bell state measurements 2674:{\textstyle |0\rangle } 2646:{\textstyle |1\rangle } 1445:{\displaystyle \alpha } 1192:{\displaystyle \alpha } 1141:{\displaystyle \alpha } 956:for quantum mechanical 14218:Quantum neural network 13512:Educational technology 13343:Reinforcement learning 13093:Process control system 12991:Computational geometry 12981:Algorithmic efficiency 12976:Analysis of algorithms 12631:Systems on Chip (SoCs) 12508:Magnetic refrigeration 11945:Quantum Turing machine 11938:quantum neural network 11685:Quantum secret sharing 11316:by Andy Matuschak and 11236:Mitchell, Ian (1998). 10516:Jaeger, Gregg (2007). 9898:10.1002/qute.201900052 9081:10.1126/sciadv.abl9236 7087:. McKinsey and Company 5760:McKinsey & Company 4909:10.1098/rspa.1985.0070 4679:Manin, Yu. I. (1980). 4326:complexity theoretical 4157: 4109: 4043: 4025: 3983: 3937:quantum Turing machine 3687:implemented a type of 3457: 3335: 3306: 3269: 3211:based on a problem in 2953: 2930:quantum Turing machine 2924:Quantum Turing machine 2894:neuromorphic computing 2834:Solovay-Kitaev theorem 2818: 2798: 2742: 2718:There are a number of 2675: 2647: 2619: 2599: 2551: 2503: 2455: 2407: 2277: 2024: 1979: 1927: 1660: 1632: 1604: 1532: 1466: 1465:{\displaystyle \beta } 1446: 1426: 1389: 1361: 1324: 1292: 1213: 1212:{\displaystyle \beta } 1193: 1171:probability amplitudes 1162: 1161:{\displaystyle \beta } 1142: 1118: 1090: 1062: 1014: 982: 939: 911: 875: 847: 819: 791: 751: 744: 716: 688: 618: 586:probability amplitudes 462: 362: 279:quantum Turing machine 215: 212:wave-like interference 159:electromagnetic fields 47: 45:superconducting qubits 14373:Models of computation 14243:Quantum teleportation 13771:Wave–particle duality 13482:Electronic publishing 13452:Computational biology 13442:Computational physics 13338:Unsupervised learning 13252:Distributed computing 13128:Information retrieval 13035:Mathematical analysis 13025:Mathematical software 12915:Theory of computation 12880:Software construction 12870:Requirements analysis 12748:Software organization 12676:Computer architecture 12646:Hardware acceleration 12611:Printed circuit board 12481:Cloak of invisibility 12280:Emerging technologies 12017:Entanglement-assisted 11978:quantum convolutional 11653:Quantum coin flipping 11618:Quantum teleportation 11579:entanglement-assisted 11409:DiVincenzo's criteria 11150:Morals & Machines 10780:Wong, Thomas (2022). 10682:10.1002/9783527617760 10451:10.1007/3-540-33133-6 10293:Akama, Seiki (2014). 9147:10.1103/Physics.15.19 8884:MIT Technology Review 7560:10.1145/992287.992296 6687:. ACM. pp. 1–7. 6456:10.1007/s002200200645 5088:10.1145/237814.237866 4983:Simon, D. R. (1994). 4952:10.1145/167088.167097 4832:Brassard, G. (2005). 4330:exponentially growing 4158: 4117:integer factorization 4110: 4041: 4026: 3984: 3874:computational problem 3866:Further information: 3823:Further information: 3819:Physical realizations 3796:holographic principle 3691:on 76 photons with a 3565:dilution refrigerator 3448: 3394:computational biology 3336: 3307: 3270: 3209:McEliece cryptosystem 3157:Integer factorization 2973:Further information: 2951: 2819: 2799: 2733: 2720:models of computation 2712:Further information: 2676: 2648: 2620: 2600: 2552: 2504: 2456: 2408: 2285:controlled NOT (CNOT) 2278: 2025: 1980: 1935:matrix multiplication 1928: 1866:classical logic gates 1661: 1633: 1610:would produce either 1605: 1533: 1467: 1447: 1427: 1390: 1362: 1325: 1293: 1214: 1194: 1175:which are in general 1163: 1143: 1119: 1091: 1063: 1015: 1013:{\displaystyle \psi } 1000:for a vector labeled 983: 940: 912: 876: 848: 820: 792: 745: 717: 689: 628: 613: 510:typically describe a 446: 353: 232:wave–particle duality 228:Modern quantum theory 201: 147:electrical resistance 35: 14393:Classes of computers 14378:Quantum cryptography 14274:Quantum field theory 14203:Quantum metamaterial 14148:Quantum cryptography 13878:Consistent histories 13242:Concurrent computing 13214:Ubiquitous computing 13186:Application security 13181:Information security 13010:Discrete mathematics 12986:Randomized algorithm 12938:Computability theory 12923:Model of computation 12895:Software maintenance 12890:Software engineering 12852:Software development 12802:Programming language 12797:Programming paradigm 12714:Network architecture 11828:processor benchmarks 11757:Quantum optimization 11640:Quantum cryptography 11451:physical vs. logical 11270:at Wikimedia Commons 10997:DiVincenzo, David P. 10965:. pp. 233–234. 10257:. pp. 124–134. 10251:Santa Fe, New Mexico 8658:Freedman, Michael H. 7483:. pp. 242–244. 7308:10.2197/ipsjdc.1.470 7020:– via YouTube. 7002:(21 November 2018). 6819:. pp. 333–342. 6813:San Jose, California 6273:. pp. 352–361. 4128: 4062: 3993: 3951: 3903:Church–Turing thesis 3895:undecidable problems 3868:Computability theory 3588:As described by the 3428:deep neural networks 3316: 3283: 3259: 3086:no quantum algorithm 3022:Progress in finding 2980:Quantum cryptography 2808: 2768: 2740:more primitive gates 2657: 2629: 2609: 2561: 2513: 2465: 2417: 2291: 2039: 1989: 1944: 1875: 1642: 1614: 1542: 1476: 1456: 1436: 1399: 1371: 1334: 1306: 1254: 1221:quantum state vector 1203: 1183: 1152: 1132: 1100: 1072: 1024: 1004: 964: 921: 893: 857: 829: 801: 773: 726: 698: 636: 548:randomized algorithm 311:information security 248:wartime cryptography 111:probabilistic output 80:physical simulations 14259:Quantum fluctuation 14228:Quantum programming 14188:Quantum logic gates 14173:Quantum information 14153:Quantum electronics 13628:Classical mechanics 13517:Document management 13507:Operations research 13432:Enterprise software 13348:Multi-task learning 13333:Supervised learning 13055:Information systems 12885:Software deployment 12842:Software repository 12696:Real-time computing 12513:Phased-array optics 12471:Acoustic levitation 11541:Quantum speed limit 11436:Quantum programming 11431:Quantum information 11205:2019ApPRv...6b1318K 11111:1982IJTP...21..467F 11060:1995Sci...270..255D 11023:2000ForPh..48..771D 10930:2003QuIP....2..449A 10892:Doering, Charles R. 9686:1995PhRvA..51..992U 9649:The Quanrum Insider 9591:2024PhRvL.132c0601L 9414:2020Sci...370.1460Z 9398:(6523): 1460–1463. 9344:Scientific American 9301:2020Natur.588..380B 9193:2022PhRvL.129i0502P 9138:2022PhyOJ..15...19M 9073:2022SciA....8.9236B 8865:Scientific American 8830:2018NatPh..14..595B 8783:2018Quant...2...79P 8620:2021Quant...5..433G 8499:2006quant.ph.10117D 8413:2020Natur.584..551V 8354:2013Natur.498..286J 8254:1995Sci...270..255D 8137:2000ForPh..48..771D 8031:2023Natur.617S...1B 7958:2022PhRvX..12b1037G 7903:2021ApEn..30317628A 7809:2016PhRvA..94b2308B 7744:2009PhRvL.103o0502H 7683:10.1038/nature23474 7675:2017Natur.549..195B 7587:The Washington Post 7552:2005quant.ph..4012A 7432:Theory of Computing 7346:1997quant.ph..1001B 7276:1978DSNPR..44..114M 7135:"Integer Factoring" 6960:2023Natur.618..500K 6617:2020RvMP...92b5002X 6601:(2): 025002-3. 6556:2020AdOP...12.1012P 6510:2020AdOP...12.1012P 6448:2002CMaPh.227..605F 6387:2008SIAMR..50..755A 6334:2003PhRvA..68b2312R 6236:2008RvMP...80.1083N 6173:2008RvMP...80.1061D 5690:2019Natur.574...22G 5645:2018Quant...2...79P 5480:2019Natur.574..505A 5418:2019Natur.574..505A 5351:2019Natur.574..461G 5282:1998PhRvL..80.3408C 5254:, pp. 164–169. 5196:(19): 10856–10915. 5143:1996Sci...273.1073L 5137:(5278): 1073–1078. 4901:1985RSPSA.400...97D 4793:Bennett, Charles H. 4733:1982IJTP...21..467F 4634:2009Sci...326..108B 4591:1980JSP....22..563B 4537:2006PhyEd..41..493M 4347:computational basis 3542:quantum decoherence 3530:quantum controllers 3253:unstructured search 3067:quantum query model 3039:discrete logarithms 2714:Quantum programming 2708:Quantum programming 2701:Quantum parallelism 2696:Quantum parallelism 1862:quantum logic gates 1852:Unitarity (physics) 762:quantum information 621:Quantum information 532:quantum information 345:quantum parallelism 325:Deutsch's algorithm 130:quantum decoherence 87:unit of information 18:Quantum computation 14383:Information theory 14312:in popular culture 14094:Quantum algorithms 13942:Von Neumann–Wigner 13922:Objective collapse 13633:Old quantum theory 13300:Search methodology 13247:Parallel computing 13204:Interaction design 13113:Computing platform 13040:Numerical analysis 13030:Information theory 12822:Software framework 12785:Software notations 12724:Network components 12621:Integrated circuit 12190:Forest/Rigetti QCS 11926:quantum logic gate 11712:Bernstein–Vazirani 11699:Quantum algorithms 11574:Classical capacity 11458:Quantum processors 11441:Quantum simulation 11129:10.1007/BF02650179 10814:on 29 January 2022 10614:Kitaev, Alexei Yu. 9772:Notices of the AMS 8666:Larsen, Michael J. 8196:Nature Electronics 6914:The New York Times 6564:10.1364/AOP.361502 6518:10.1364/AOP.361502 5523:The New York Times 5305:"quantum computer" 4741:10.1007/BF02650179 4599:10.1007/bf01011339 4153: 4105: 4044: 4021: 3979: 3769:Grover's algorithm 3750:Quantum algorithms 3569:ionizing radiation 3494:Universal gate set 3475:these requirements 3458: 3424:Boltzmann machines 3331: 3302: 3277:Grover's algorithm 3265: 3247:Grover's algorithm 3185:discrete logarithm 3181:public key ciphers 3115:quantum simulation 3109:Quantum simulation 3093:Grover's algorithm 3024:quantum algorithms 3003:fiber-optic cables 2988:cryptographic keys 2954: 2898:quantum algorithms 2826:universal gate set 2814: 2794: 2747:quantum gate array 2743: 2671: 2643: 2615: 2595: 2547: 2499: 2451: 2403: 2394: 2273: 2264: 2206: 2148: 2090: 2020: 1975: 1923: 1914: 1656: 1628: 1600: 1528: 1462: 1442: 1422: 1385: 1357: 1320: 1288: 1225:probability vector 1209: 1189: 1158: 1138: 1114: 1086: 1058: 1010: 978: 948:A two-dimensional 935: 907: 871: 843: 815: 787: 752: 740: 712: 684: 544:probability theory 508:Computer engineers 382:Grover's algorithm 370:his 1994 algorithm 363: 317:Quantum algorithms 216: 143:electrical current 141:(which isolate an 119:quantum algorithms 60:quantum mechanical 48: 43:from 2019 with 20 37:Quantum System One 14368:Quantum computing 14355: 14354: 14329:Quantum mysticism 14307:Schrödinger's cat 14238:Quantum simulator 14208:Quantum metrology 14136:Quantum computing 14099:Quantum amplifier 14076:Quantum spacetime 14041:Quantum cosmology 14031:Quantum chemistry 13746:Scattering theory 13694:Zero-point energy 13689:Degenerate levels 13597:Quantum mechanics 13563: 13562: 13492:Electronic voting 13422:Quantum Computing 13415:Applied computing 13401:Image compression 13171:Hardware security 13161:Security services 13118:Digital marketing 12905:Open-source model 12817:Modeling language 12729:Network scheduler 12550: 12549: 12526: 12525: 12333:complexity theory 12318:cellular automata 12246: 12245: 12157: 12156: 12054:Linear optical QC 11835:Quantum supremacy 11789:complexity theory 11742:Quantum annealing 11693: 11692: 11630:Superdense coding 11419:Quantum computing 11290:Quantum Computing 11280:Quantum computing 11266:Media related to 11213:10.1063/1.5089550 11054:(5234): 255–261. 11007:(9–11): 771–783. 10980:978-981-4541-88-6 10904:Brandt, Howard E. 10896:Caves, Carlton M. 10856:978-1-4939-9084-9 10796:979-8-9855931-0-5 10756:978-981-12-2431-7 10729:978-0-465-08061-8 10708:Susskind, Leonard 10691:978-3-527-61776-0 10664:978-3-030-65052-0 10627:978-0-8218-3229-5 10597:978-0-19-857000-4 10580:Laflamme, Raymond 10562:978-1-4920-3968-6 10535:978-0-387-36944-0 10492:978-3-03-061601-4 10460:978-3-540-33133-9 10417:978-3-03-083274-2 10382:978-0-262-35091-4 10347:978-981-3237-23-0 10312:978-3-319-08284-4 10272:978-0-8186-6580-6 10214:978-0-511-99277-3 10170:978-0-511-34258-5 10124:978-0-309-47970-7 10089:978-0-521-19956-8 9664:Physical Review A 9338:Garisto, Daniel. 9023:978-1-4503-8442-1 8549:(4): 39:1–39:25. 8397:(7822): 551–556. 8348:(7454): 286–288. 8248:(5234): 255–261. 8121:(9–11): 771–783. 7936:Physical Review X 7787:Physical Review A 7659:(7671): 195–202. 7629:10.1002/wcms.1481 7490:978-1-84628-887-6 7404:978-1-4939-2864-4 7216:978-3-540-88701-0 7171:on 10 April 2015. 6954:(7965): 500–505. 6844:978-1-4503-0691-1 6712:978-1-4503-6897-1 6669:978-1-6654-5181-9 6395:10.1137/080734479 6312:Physical Review A 6134:978-3-030-65054-4 6113:, pp. 38–39. 5954:. 6 December 2023 5557:IBM Research Blog 5464:(7779): 505–510. 5345:(7779): 461–462. 5097:978-0-89791-785-8 5006:978-0-8186-6580-6 4961:978-0-89791-591-5 4865:978-0-7803-9491-9 4799:(December 1984). 4758:on 8 January 2019 4628:(5949): 108–111. 4525:Physics Education 4502:. p. xviii. 4472:978-0-262-31038-3 4280:Rigetti Computing 4274:Quantum weirdness 4262:Quantum cognition 4247:Optical computing 4238:Natural computing 3879:quantum mechanics 3778:Quantum supremacy 3665:quantum supremacy 3654:Quantum supremacy 3590:threshold theorem 3418:For example, the 3389:Quantum annealing 3384:Quantum annealing 3378:symmetric ciphers 3297: 3268:{\displaystyle n} 3126:nitrogen fixation 3074:Jones polynomials 2920:in a 2D lattice. 2878:quantum annealing 2852:and single-qubit 2817:{\displaystyle n} 1846:Unitary operators 1587: 1558: 1395:with probability 1330:with probability 1124:are the standard 546:when designing a 427:threshold theorem 420:quantum supremacy 333:Simon's algorithm 256:Manhattan Project 236:digital computers 220:quantum mechanics 180:quantum supremacy 115:wave interference 68:Classical physics 16:(Redirected from 14420: 14345: 14344: 14056:Quantum geometry 14051:Quantum dynamics 13908:Superdeterminism 13804:Matrix mechanics 13659:Bra–ket notation 13590: 13583: 13576: 13567: 13566: 13553: 13552: 13543: 13542: 13533: 13532: 13353:Cross-validation 13325:Machine learning 13209:Social computing 13176:Network security 12971:Algorithm design 12900:Programming team 12860:Control variable 12837:Software library 12775:Software quality 12770:Operating system 12719:Network protocol 12584:Computer science 12577: 12570: 12563: 12554: 12553: 12538: 12537: 12415:machine learning 12390:key distribution 12375:image processing 12365:error correction 12291: 12290: 12273: 12266: 12259: 12250: 12249: 12236: 12235: 12226: 12225: 12032: 12031: 11962:error correction 11891:computing models 11857:Relaxation times 11747:Quantum counting 11636: 11635: 11584:quantum capacity 11531:No-teleportation 11516:No-communication 11388: 11381: 11374: 11365: 11364: 11310: 11277: 11268:Quantum computer 11265: 11250: 11241: 11232: 11198: 11175: 11165: 11140: 11122: 11105:(6–7): 467–488. 11095:Feynman, Richard 11089: 11071: 11042: 11016: 11014:quant-ph/0002077 10992: 10957: 10923: 10921:quant-ph/0310130 10900:Lidar, Daniel M. 10876: 10840: 10823: 10821: 10819: 10813: 10807:. Archived from 10789:. Rooted Grove. 10788: 10776: 10741:(2nd ed.). 10733: 10703: 10668: 10639: 10609: 10574: 10547: 10512: 10476: 10464: 10437: 10402:(2nd ed.). 10394: 10367: 10332:(2nd ed.). 10324: 10276: 10234: 10187:Nielsen, Michael 10182: 10149:Mermin, N. David 10144: 10101: 10055: 10054: 10044: 10035:(5): 1411–1473. 10020: 10014: 10008: 10002: 9996: 9990: 9984: 9978: 9972: 9966: 9960: 9954: 9948: 9942: 9936: 9930: 9924: 9918: 9917: 9891: 9867: 9861: 9860: 9858: 9856: 9833: 9827: 9826: 9824: 9822: 9807: 9801: 9800: 9798: 9786: 9780: 9779: 9769: 9760: 9754: 9753: 9741: 9735: 9734: 9732: 9730:quant-ph/0703041 9720: 9714: 9713: 9679: 9659: 9653: 9652: 9640: 9634: 9633: 9625: 9619: 9618: 9584: 9560: 9554: 9553: 9522:Network Security 9513: 9507: 9506: 9480: 9456: 9450: 9449: 9407: 9387: 9381: 9380: 9378: 9376: 9361: 9355: 9354: 9352: 9350: 9335: 9329: 9328: 9284: 9278: 9277: 9275: 9273: 9258: 9252: 9251: 9227: 9221: 9220: 9186: 9166: 9160: 9159: 9149: 9117: 9111: 9110: 9100: 9066: 9051:Science Advances 9042: 9036: 9035: 9007: 8991: 8985: 8984: 8948: 8942: 8941: 8939: 8927: 8921: 8920: 8918: 8916: 8901: 8895: 8894: 8892: 8890: 8875: 8869: 8868: 8856: 8850: 8849: 8823: 8803: 8797: 8796: 8794: 8776: 8752: 8746: 8745: 8743: 8731: 8725: 8724: 8710: 8704: 8703: 8685: 8683:quant-ph/0101025 8654: 8648: 8647: 8613: 8593: 8587: 8586: 8568: 8558: 8534: 8528: 8527: 8509: 8503: 8502: 8492: 8490:quant-ph/0610117 8476: 8470: 8469: 8467: 8455: 8449: 8448: 8406: 8382: 8376: 8375: 8365: 8333: 8327: 8326: 8290: 8284: 8283: 8265: 8237: 8231: 8230: 8212: 8186: 8180: 8179: 8177: 8175: 8163: 8157: 8156: 8130: 8128:quant-ph/0002077 8110: 8104: 8103: 8089: 8083: 8082: 8074: 8061: 8060: 8042: 8010: 7999: 7998: 7996: 7984: 7978: 7977: 7951: 7931: 7925: 7924: 7914: 7882: 7876: 7875: 7849: 7829: 7823: 7822: 7820: 7802: 7778: 7772: 7771: 7737: 7717: 7711: 7710: 7668: 7648: 7642: 7641: 7631: 7621: 7597: 7591: 7590: 7578: 7572: 7571: 7545: 7543:quant-ph/0504012 7525: 7519: 7518: 7516: 7514:quant-ph/9605043 7501: 7495: 7494: 7472: 7466: 7465: 7447: 7423: 7417: 7416: 7388: 7386:quant-ph/9705002 7372: 7366: 7365: 7339: 7337:quant-ph/9701001 7330:(5): 1510–1523. 7319: 7313: 7312: 7310: 7286: 7280: 7279: 7261: 7252: 7246: 7235: 7229: 7228: 7194: 7185: 7179: 7173: 7172: 7170: 7164:. Archived from 7148:(2/3): 101–128. 7139: 7130: 7124: 7123: 7121: 7119: 7103: 7097: 7096: 7094: 7092: 7085:www.mckinsey.com 7076: 7070: 7069: 7067: 7065: 7042: 7036: 7035: 7029: 7021: 7019: 7017: 6996: 6990: 6989: 6979: 6937: 6931: 6930: 6928: 6926: 6904: 6898: 6897: 6889: 6883: 6882: 6870: 6864: 6858: 6849: 6848: 6828: 6801: 6795: 6794: 6782: 6771: 6770: 6744: 6723: 6717: 6716: 6696: 6680: 6674: 6673: 6643: 6637: 6636: 6610: 6590: 6584: 6583: 6549: 6528: 6522: 6521: 6503: 6494:(4): 1012–1236. 6482: 6476: 6475: 6441: 6439:quant-ph/0001108 6421: 6415: 6414: 6380: 6378:quant-ph/0405098 6360: 6354: 6353: 6327: 6325:quant-ph/0301052 6307: 6301: 6300: 6262: 6256: 6255: 6229: 6220:(3): 1083–1159. 6209: 6203: 6202: 6184: 6166: 6157:(3): 1061–1081. 6145: 6139: 6138: 6120: 6114: 6108: 6102: 6101:, p. 30–32. 6096: 6090: 6084: 6078: 6072: 6063: 6057: 6048: 6042: 6036: 6035: 6028:(31 July 2020). 6026:Bennett, Charlie 6022: 6016: 6015: 6013: 6011: 5996: 5990: 5989: 5987: 5985: 5970: 5964: 5963: 5961: 5959: 5944: 5938: 5937: 5935: 5933: 5927:Breaking Defense 5918: 5912: 5911: 5893: 5867: 5842: 5836: 5835: 5833: 5831: 5809: 5803: 5802: 5800: 5798: 5787: 5778: 5772: 5771: 5769: 5767: 5750: 5744: 5743: 5741: 5739: 5724: 5718: 5717: 5673: 5667: 5666: 5656: 5638: 5614: 5601: 5595: 5589: 5588: 5586: 5574: 5568: 5567: 5565: 5563: 5548: 5542: 5541: 5539: 5537: 5514: 5508: 5507: 5473: 5452: 5450: 5448: 5411: 5382: 5373: 5372: 5362: 5330: 5324: 5323: 5321: 5319: 5300: 5294: 5293: 5261: 5255: 5249: 5240: 5239: 5205: 5190:Chemical Reviews 5185: 5179: 5178: 5126: 5117: 5111: 5102: 5101: 5081: 5079:quant-ph/9605043 5061: 5055: 5049: 5043: 5037: 5031: 5030:, p. 30-32. 5025: 5019: 5018: 4980: 4974: 4973: 4935: 4929: 4928: 4895:(1818): 97–117. 4884: 4878: 4877: 4849: 4847:quant-ph/0604072 4829: 4823: 4822: 4812: 4797:Brassard, Gilles 4789: 4780: 4774: 4768: 4767: 4765: 4763: 4757: 4751:. Archived from 4727:(6/7): 467–488. 4718: 4709: 4703: 4702: 4700: 4698: 4676: 4670: 4669: 4617: 4611: 4610: 4574: 4565: 4564: 4520: 4514: 4513: 4491: 4485: 4484: 4454: 4448: 4447: 4413: 4404: 4398: 4392: 4386: 4385: 4383: 4381: 4366: 4350: 4339: 4333: 4322: 4258: 4243: 4204: 4162: 4160: 4159: 4154: 4152: 4151: 4114: 4112: 4111: 4106: 4104: 4103: 4030: 4028: 4027: 4022: 4020: 4019: 3988: 3986: 3985: 3980: 3978: 3977: 3804:Mikhail Dyakonov 3798:. Skeptics like 3662:coined the term 3629: 3624: 3471:David DiVincenzo 3413:machine learning 3400:Machine learning 3374:password cracker 3364:be applied is a 3340: 3338: 3337: 3332: 3311: 3309: 3308: 3303: 3298: 3293: 3274: 3272: 3271: 3266: 3169:Shor's algorithm 3035:Shor's algorithm 3008:quantum networks 2823: 2821: 2820: 2815: 2803: 2801: 2800: 2795: 2793: 2792: 2780: 2779: 2755:quantum circuits 2690:quantum circuits 2680: 2678: 2677: 2672: 2664: 2652: 2650: 2649: 2644: 2636: 2624: 2622: 2621: 2616: 2604: 2602: 2601: 2596: 2588: 2574: 2556: 2554: 2553: 2548: 2540: 2526: 2508: 2506: 2505: 2500: 2492: 2478: 2460: 2458: 2457: 2452: 2444: 2430: 2412: 2410: 2409: 2404: 2399: 2398: 2282: 2280: 2279: 2274: 2269: 2268: 2220: 2211: 2210: 2162: 2153: 2152: 2104: 2095: 2094: 2046: 2029: 2027: 2026: 2021: 2013: 1999: 1984: 1982: 1981: 1976: 1968: 1954: 1932: 1930: 1929: 1924: 1919: 1918: 1827: 1826: 1825:|11⟩ 1823: 1821: 1820: 1817: 1814: 1807: 1806:|00⟩ 1804: 1802: 1801: 1798: 1795: 1784: 1783:|11⟩ 1780: 1779:|10⟩ 1776: 1775:|01⟩ 1772: 1771:|00⟩ 1764: 1763: 1760: 1758: 1757: 1754: 1751: 1744: 1741: 1739: 1738: 1735: 1732: 1724: 1716: 1715: 1714:|01⟩ 1712: 1710: 1709: 1706: 1703: 1696: 1695:|00⟩ 1693: 1691: 1690: 1687: 1684: 1665: 1663: 1662: 1657: 1649: 1637: 1635: 1634: 1629: 1621: 1609: 1607: 1606: 1601: 1593: 1588: 1583: 1581: 1564: 1559: 1554: 1552: 1537: 1535: 1534: 1529: 1521: 1520: 1515: 1506: 1498: 1497: 1492: 1483: 1471: 1469: 1468: 1463: 1451: 1449: 1448: 1443: 1431: 1429: 1428: 1423: 1421: 1420: 1415: 1406: 1394: 1392: 1391: 1386: 1378: 1366: 1364: 1363: 1358: 1356: 1355: 1350: 1341: 1329: 1327: 1326: 1321: 1313: 1297: 1295: 1294: 1289: 1281: 1264: 1234:When a qubit is 1218: 1216: 1215: 1210: 1198: 1196: 1195: 1190: 1167: 1165: 1164: 1159: 1147: 1145: 1144: 1139: 1123: 1121: 1120: 1115: 1107: 1095: 1093: 1092: 1087: 1079: 1067: 1065: 1064: 1059: 1051: 1034: 1019: 1017: 1016: 1011: 999: 996: 990: 987: 985: 984: 979: 971: 944: 942: 941: 936: 928: 916: 914: 913: 908: 900: 880: 878: 877: 872: 864: 852: 850: 849: 844: 836: 824: 822: 821: 816: 808: 796: 794: 793: 788: 780: 764:. The same term 749: 747: 746: 741: 733: 721: 719: 718: 713: 705: 693: 691: 690: 685: 677: 660: 643: 566:Quantum programs 560:program analysis 455: 451: 397:experimentalists 395:Over the years, 224:computer science 52:quantum computer 21: 14428: 14427: 14423: 14422: 14421: 14419: 14418: 14417: 14358: 14357: 14356: 14351: 14333: 14319:Wigner's friend 14295: 14286:Quantum gravity 14247: 14233:Quantum sensing 14213:Quantum network 14193:Quantum machine 14163:Quantum imaging 14126:Quantum circuit 14121:Quantum channel 14080: 14026:Quantum biology 14012: 13988:Elitzur–Vaidman 13963:Davisson–Germer 13946: 13898:Hidden-variable 13888:de Broglie–Bohm 13865:Interpretations 13859: 13823: 13777: 13664:Complementarity 13642: 13599: 13594: 13564: 13559: 13550: 13521: 13502:Word processing 13410: 13396:Virtual reality 13357: 13319: 13290:Computer vision 13266: 13262:Multiprocessing 13228: 13190: 13156:Security hacker 13132: 13108:Digital library 13049: 13000:Mathematics of 12995: 12957: 12933:Automata theory 12928:Formal language 12909: 12875:Software design 12846: 12779: 12765:Virtual machine 12743: 12739:Network service 12700: 12691:Embedded system 12664: 12597: 12586: 12581: 12551: 12546: 12522: 12459: 12370:finite automata 12282: 12277: 12247: 12242: 12214: 12164: 12153: 12126:Superconducting 12120: 12086: 12077:Neutral atom QC 12069:Ultracold atoms 12063: 12028:implementations 12027: 12021: 11961: 11954: 11921:Quantum circuit 11889: 11883: 11877: 11867: 11827: 11821: 11788: 11781: 11737:Hidden subgroup 11689: 11678:other protocols 11634: 11611:quantum network 11606:Quantum channel 11566: 11560: 11506:No-broadcasting 11496:Gottesman–Knill 11469: 11397: 11392: 11357:Lomonaco, Sam. 11334:Michael Nielsen 11318:Michael Nielsen 11295: 11258: 11253: 11069:10.1.1.242.2165 10981: 10883: 10881:Academic papers 10857: 10817: 10815: 10811: 10797: 10786: 10757: 10730: 10692: 10665: 10628: 10598: 10578:Kaye, Phillip; 10563: 10536: 10493: 10474: 10461: 10418: 10383: 10348: 10313: 10289: 10283: 10281:Further reading 10273: 10215: 10171: 10125: 10090: 10068:Aaronson, Scott 10063: 10058: 10042:10.1.1.144.7852 10021: 10017: 10009: 10005: 9997: 9993: 9985: 9981: 9973: 9969: 9961: 9957: 9949: 9945: 9937: 9933: 9925: 9921: 9868: 9864: 9854: 9852: 9850: 9834: 9830: 9820: 9818: 9808: 9804: 9787: 9783: 9767: 9761: 9757: 9742: 9738: 9721: 9717: 9660: 9656: 9641: 9637: 9626: 9622: 9561: 9557: 9514: 9510: 9457: 9453: 9388: 9384: 9374: 9372: 9362: 9358: 9348: 9346: 9336: 9332: 9285: 9281: 9271: 9269: 9268:. 5 August 2022 9260: 9259: 9255: 9228: 9224: 9167: 9163: 9118: 9114: 9057:(4): eabl9236. 9043: 9039: 9024: 8992: 8988: 8949: 8945: 8928: 8924: 8914: 8912: 8902: 8898: 8888: 8886: 8876: 8872: 8857: 8853: 8804: 8800: 8753: 8749: 8732: 8728: 8711: 8707: 8655: 8651: 8594: 8590: 8566:10.1145/2830570 8535: 8531: 8510: 8506: 8477: 8473: 8456: 8452: 8383: 8379: 8363:10.1038/498286a 8334: 8330: 8291: 8287: 8263:10.1.1.242.2165 8238: 8234: 8187: 8183: 8173: 8171: 8164: 8160: 8111: 8107: 8090: 8086: 8075: 8064: 8025:(7962): S1–S3. 8011: 8002: 7985: 7981: 7932: 7928: 7883: 7879: 7830: 7826: 7779: 7775: 7718: 7714: 7649: 7645: 7598: 7594: 7579: 7575: 7530:ACM SIGACT News 7526: 7522: 7502: 7498: 7491: 7473: 7469: 7424: 7420: 7405: 7373: 7369: 7320: 7316: 7287: 7283: 7259: 7253: 7249: 7236: 7232: 7217: 7195: 7188: 7180: 7176: 7168: 7137: 7131: 7127: 7117: 7115: 7104: 7100: 7090: 7088: 7077: 7073: 7063: 7061: 7043: 7039: 7023: 7022: 7015: 7013: 7000:Morello, Andrea 6997: 6993: 6938: 6934: 6924: 6922: 6905: 6901: 6890: 6886: 6871: 6867: 6859: 6852: 6845: 6805:Aaronson, Scott 6802: 6798: 6783: 6774: 6724: 6720: 6713: 6681: 6677: 6670: 6644: 6640: 6591: 6587: 6529: 6525: 6483: 6479: 6422: 6418: 6361: 6357: 6308: 6304: 6289: 6263: 6259: 6210: 6206: 6182:10.1.1.563.9990 6151:Rev. Mod. Phys. 6146: 6142: 6135: 6121: 6117: 6109: 6105: 6097: 6093: 6085: 6081: 6073: 6066: 6058: 6051: 6043: 6039: 6023: 6019: 6009: 6007: 5997: 5993: 5983: 5981: 5971: 5967: 5957: 5955: 5946: 5945: 5941: 5931: 5929: 5919: 5915: 5858:(7997): 58–65. 5843: 5839: 5829: 5827: 5810: 5806: 5796: 5794: 5785: 5779: 5775: 5765: 5763: 5751: 5747: 5737: 5735: 5725: 5721: 5684:(7776): 22–24. 5674: 5670: 5615: 5604: 5596: 5592: 5575: 5571: 5561: 5559: 5549: 5545: 5535: 5533: 5515: 5511: 5453: 5446: 5444: 5383: 5376: 5331: 5327: 5317: 5315: 5301: 5297: 5262: 5258: 5250: 5243: 5186: 5182: 5127: 5120: 5112: 5105: 5098: 5062: 5058: 5050: 5046: 5038: 5034: 5026: 5022: 5007: 4981: 4977: 4962: 4936: 4932: 4885: 4881: 4866: 4830: 4826: 4790: 4783: 4775: 4771: 4761: 4759: 4755: 4716: 4710: 4706: 4696: 4694: 4677: 4673: 4618: 4614: 4575: 4568: 4521: 4517: 4510: 4492: 4488: 4473: 4455: 4451: 4416:Current Science 4411: 4405: 4401: 4393: 4389: 4379: 4377: 4367: 4363: 4359: 4354: 4353: 4340: 4336: 4323: 4319: 4314: 4309: 4256: 4241: 4202: 4177: 4132: 4131: 4129: 4126: 4125: 4066: 4065: 4063: 4060: 4059: 4033:time complexity 3997: 3996: 3994: 3991: 3990: 3955: 3954: 3952: 3949: 3948: 3922:factor integers 3917: 3911: 3899:halting problem 3870: 3864: 3859: 3831:Superconductors 3827: 3821: 3723:useful. A 2023 3716: 3656: 3644:quasi-particles 3627: 3622: 3550: 3538: 3523:superconducting 3467: 3443: 3408: 3402: 3386: 3317: 3314: 3313: 3292: 3284: 3281: 3280: 3260: 3257: 3256: 3249: 3243: 3241:Search problems 3177:polynomial time 3149: 3143: 3111: 3105: 3059:Simon's problem 3043:Pell's equation 3020: 3012:quantum sensing 2977: 2971: 2946: 2926: 2910: 2890: 2870: 2842: 2809: 2806: 2805: 2788: 2784: 2775: 2771: 2769: 2766: 2765: 2728: 2716: 2710: 2698: 2660: 2658: 2655: 2654: 2632: 2630: 2627: 2626: 2610: 2607: 2606: 2584: 2570: 2562: 2559: 2558: 2536: 2522: 2514: 2511: 2510: 2488: 2474: 2466: 2463: 2462: 2440: 2426: 2418: 2415: 2414: 2393: 2392: 2387: 2382: 2377: 2371: 2370: 2365: 2360: 2355: 2349: 2348: 2343: 2338: 2333: 2327: 2326: 2321: 2316: 2311: 2301: 2300: 2292: 2289: 2288: 2263: 2262: 2256: 2255: 2249: 2248: 2242: 2241: 2231: 2230: 2216: 2205: 2204: 2198: 2197: 2191: 2190: 2184: 2183: 2173: 2172: 2158: 2147: 2146: 2140: 2139: 2133: 2132: 2126: 2125: 2115: 2114: 2100: 2089: 2088: 2082: 2081: 2075: 2074: 2068: 2067: 2057: 2056: 2042: 2040: 2037: 2036: 2009: 1995: 1990: 1987: 1986: 1964: 1950: 1945: 1942: 1941: 1913: 1912: 1907: 1901: 1900: 1895: 1885: 1884: 1876: 1873: 1872: 1854: 1848: 1824: 1818: 1815: 1812: 1811: 1809: 1805: 1799: 1796: 1793: 1792: 1790: 1789: 1782: 1778: 1774: 1770: 1762:|1⟩ 1761: 1755: 1752: 1749: 1748: 1746: 1743:|0⟩ 1742: 1736: 1733: 1730: 1729: 1727: 1726: 1725:with the qubit 1723:|0⟩ 1722: 1713: 1707: 1704: 1701: 1700: 1698: 1694: 1688: 1685: 1682: 1681: 1679: 1678: 1645: 1643: 1640: 1639: 1617: 1615: 1612: 1611: 1589: 1582: 1577: 1560: 1553: 1548: 1543: 1540: 1539: 1516: 1511: 1510: 1502: 1493: 1488: 1487: 1479: 1477: 1474: 1473: 1457: 1454: 1453: 1437: 1434: 1433: 1416: 1411: 1410: 1402: 1400: 1397: 1396: 1374: 1372: 1369: 1368: 1351: 1346: 1345: 1337: 1335: 1332: 1331: 1309: 1307: 1304: 1303: 1277: 1260: 1255: 1252: 1251: 1204: 1201: 1200: 1184: 1181: 1180: 1177:complex numbers 1153: 1150: 1149: 1133: 1130: 1129: 1103: 1101: 1098: 1097: 1075: 1073: 1070: 1069: 1047: 1030: 1025: 1022: 1021: 1005: 1002: 1001: 997: 991: 988: 967: 965: 962: 961: 924: 922: 919: 918: 896: 894: 891: 890: 860: 858: 855: 854: 832: 830: 827: 826: 804: 802: 799: 798: 776: 774: 771: 770: 729: 727: 724: 723: 701: 699: 696: 695: 673: 656: 639: 637: 634: 633: 623: 609:Charlie Bennett 582:Complex numbers 512:modern computer 505: 499: 479:QuEra Computing 453: 449: 405:superconductors 321:oracle problems 303:Gilles Brassard 299:Charles Bennett 295:Richard Feynman 277:introduced the 252:nuclear physics 240:human computers 196: 189: 166:time complexity 155:atomic particle 145:by eliminating 139:superconductors 28: 23: 22: 15: 12: 11: 5: 14426: 14416: 14415: 14413:Supercomputers 14410: 14405: 14400: 14395: 14390: 14385: 14380: 14375: 14370: 14353: 14352: 14350: 14349: 14338: 14335: 14334: 14332: 14331: 14326: 14321: 14316: 14315: 14314: 14303: 14301: 14297: 14296: 14294: 14293: 14288: 14283: 14282: 14281: 14271: 14266: 14264:Casimir effect 14261: 14255: 14253: 14249: 14248: 14246: 14245: 14240: 14235: 14230: 14225: 14223:Quantum optics 14220: 14215: 14210: 14205: 14200: 14195: 14190: 14185: 14180: 14175: 14170: 14165: 14160: 14155: 14150: 14145: 14144: 14143: 14133: 14128: 14123: 14118: 14117: 14116: 14106: 14101: 14096: 14090: 14088: 14082: 14081: 14079: 14078: 14073: 14068: 14063: 14058: 14053: 14048: 14043: 14038: 14033: 14028: 14022: 14020: 14014: 14013: 14011: 14010: 14005: 14000: 13998:Quantum eraser 13995: 13990: 13985: 13980: 13975: 13970: 13965: 13960: 13954: 13952: 13948: 13947: 13945: 13944: 13939: 13934: 13929: 13924: 13919: 13914: 13913: 13912: 13911: 13910: 13895: 13890: 13885: 13880: 13875: 13869: 13867: 13861: 13860: 13858: 13857: 13852: 13847: 13842: 13837: 13831: 13829: 13825: 13824: 13822: 13821: 13816: 13811: 13806: 13801: 13796: 13791: 13785: 13783: 13779: 13778: 13776: 13775: 13774: 13773: 13768: 13758: 13753: 13748: 13743: 13738: 13733: 13728: 13723: 13718: 13713: 13708: 13703: 13698: 13697: 13696: 13691: 13686: 13681: 13671: 13669:Density matrix 13666: 13661: 13656: 13650: 13648: 13644: 13643: 13641: 13640: 13635: 13630: 13625: 13624: 13623: 13613: 13607: 13605: 13601: 13600: 13593: 13592: 13585: 13578: 13570: 13561: 13560: 13558: 13557: 13547: 13537: 13526: 13523: 13522: 13520: 13519: 13514: 13509: 13504: 13499: 13494: 13489: 13484: 13479: 13474: 13469: 13464: 13459: 13454: 13449: 13444: 13439: 13434: 13429: 13424: 13418: 13416: 13412: 13411: 13409: 13408: 13406:Solid modeling 13403: 13398: 13393: 13388: 13383: 13378: 13373: 13367: 13365: 13359: 13358: 13356: 13355: 13350: 13345: 13340: 13335: 13329: 13327: 13321: 13320: 13318: 13317: 13312: 13307: 13305:Control method 13302: 13297: 13292: 13287: 13282: 13276: 13274: 13268: 13267: 13265: 13264: 13259: 13257:Multithreading 13254: 13249: 13244: 13238: 13236: 13230: 13229: 13227: 13226: 13221: 13216: 13211: 13206: 13200: 13198: 13192: 13191: 13189: 13188: 13183: 13178: 13173: 13168: 13163: 13158: 13153: 13151:Formal methods 13148: 13142: 13140: 13134: 13133: 13131: 13130: 13125: 13123:World Wide Web 13120: 13115: 13110: 13105: 13100: 13095: 13090: 13085: 13080: 13075: 13070: 13065: 13059: 13057: 13051: 13050: 13048: 13047: 13042: 13037: 13032: 13027: 13022: 13017: 13012: 13006: 13004: 12997: 12996: 12994: 12993: 12988: 12983: 12978: 12973: 12967: 12965: 12959: 12958: 12956: 12955: 12950: 12945: 12940: 12935: 12930: 12925: 12919: 12917: 12911: 12910: 12908: 12907: 12902: 12897: 12892: 12887: 12882: 12877: 12872: 12867: 12862: 12856: 12854: 12848: 12847: 12845: 12844: 12839: 12834: 12829: 12824: 12819: 12814: 12809: 12804: 12799: 12793: 12791: 12781: 12780: 12778: 12777: 12772: 12767: 12762: 12757: 12751: 12749: 12745: 12744: 12742: 12741: 12736: 12731: 12726: 12721: 12716: 12710: 12708: 12702: 12701: 12699: 12698: 12693: 12688: 12683: 12678: 12672: 12670: 12666: 12665: 12663: 12662: 12653: 12648: 12643: 12638: 12633: 12628: 12623: 12618: 12613: 12607: 12605: 12599: 12598: 12591: 12588: 12587: 12580: 12579: 12572: 12565: 12557: 12548: 12547: 12545: 12544: 12531: 12528: 12527: 12524: 12523: 12521: 12520: 12515: 12510: 12505: 12500: 12499: 12498: 12488: 12483: 12478: 12473: 12467: 12465: 12461: 12460: 12458: 12457: 12452: 12447: 12442: 12437: 12432: 12430:neural network 12427: 12422: 12417: 12412: 12407: 12402: 12397: 12392: 12387: 12382: 12377: 12372: 12367: 12362: 12357: 12352: 12351: 12350: 12340: 12335: 12330: 12325: 12320: 12315: 12310: 12305: 12299: 12297: 12288: 12284: 12283: 12276: 12275: 12268: 12261: 12253: 12244: 12243: 12241: 12240: 12230: 12219: 12216: 12215: 12213: 12212: 12210:many others... 12207: 12202: 12197: 12192: 12183: 12169: 12167: 12159: 12158: 12155: 12154: 12152: 12151: 12146: 12141: 12136: 12130: 12128: 12122: 12121: 12119: 12118: 12113: 12108: 12103: 12097: 12095: 12088: 12087: 12085: 12084: 12082:Trapped-ion QC 12079: 12073: 12071: 12065: 12064: 12062: 12061: 12056: 12051: 12046: 12040: 12038: 12036:Quantum optics 12029: 12023: 12022: 12020: 12019: 12014: 12013: 12012: 12005: 12000: 11995: 11990: 11985: 11980: 11975: 11966: 11964: 11956: 11955: 11953: 11952: 11947: 11942: 11941: 11940: 11930: 11929: 11928: 11918: 11917: 11916: 11906: 11901: 11895: 11893: 11885: 11884: 11882: 11881: 11880: 11879: 11875: 11869: 11865: 11854: 11853: 11852: 11842: 11840:Quantum volume 11837: 11831: 11829: 11823: 11822: 11820: 11819: 11814: 11809: 11804: 11799: 11793: 11791: 11783: 11782: 11780: 11779: 11774: 11769: 11764: 11759: 11754: 11749: 11744: 11739: 11734: 11729: 11724: 11719: 11717:Boson sampling 11714: 11709: 11703: 11701: 11695: 11694: 11691: 11690: 11688: 11687: 11682: 11681: 11680: 11675: 11670: 11660: 11655: 11650: 11644: 11642: 11633: 11632: 11627: 11626: 11625: 11615: 11614: 11613: 11603: 11598: 11593: 11588: 11587: 11586: 11581: 11570: 11568: 11562: 11561: 11559: 11558: 11553: 11551:Solovay–Kitaev 11548: 11543: 11538: 11533: 11528: 11523: 11518: 11513: 11508: 11503: 11498: 11493: 11488: 11483: 11477: 11475: 11471: 11470: 11468: 11467: 11466: 11465: 11455: 11454: 11453: 11443: 11438: 11433: 11428: 11427: 11426: 11416: 11411: 11405: 11403: 11399: 11398: 11391: 11390: 11383: 11376: 11368: 11362: 11361: 11355: 11350: 11345: 11339:Video Lectures 11336: 11326: 11325: 11321: 11320: 11311: 11293: 11283: 11282:at Wikiversity 11271: 11257: 11256:External links 11254: 11252: 11251: 11242: 11233: 11176: 11141: 11120:10.1.1.45.9310 11091: 11043: 10993: 10979: 10958: 10914:(6): 449–472. 10882: 10879: 10878: 10877: 10855: 10824: 10795: 10777: 10755: 10734: 10728: 10704: 10690: 10669: 10663: 10640: 10626: 10610: 10596: 10590:. OUP Oxford. 10584:Mosca, Michele 10575: 10561: 10548: 10534: 10513: 10491: 10465: 10459: 10438: 10416: 10395: 10381: 10368: 10346: 10325: 10311: 10288: 10285: 10284: 10282: 10279: 10278: 10277: 10271: 10239:Shor, Peter W. 10235: 10213: 10183: 10169: 10145: 10123: 10115:10.17226/25196 10102: 10088: 10062: 10059: 10057: 10056: 10015: 10013:, p. 201. 10003: 9991: 9989:, p. 126. 9979: 9967: 9965:, p. 126. 9955: 9953:, p. 119. 9943: 9941:, p. 114. 9931: 9929:, p. 127. 9919: 9882:(3): 1900052. 9862: 9848: 9828: 9802: 9781: 9755: 9736: 9715: 9677:hep-th/9406058 9670:(2): 992–997. 9654: 9635: 9620: 9555: 9508: 9471:(5): 544–552. 9451: 9382: 9356: 9330: 9279: 9253: 9222: 9161: 9112: 9037: 9022: 8986: 8943: 8922: 8896: 8870: 8851: 8814:(6): 595–600. 8808:Nature Physics 8798: 8747: 8726: 8705: 8662:Kitaev, Alexei 8649: 8588: 8529: 8504: 8471: 8450: 8377: 8328: 8285: 8232: 8181: 8158: 8105: 8084: 8062: 8000: 7979: 7926: 7891:Applied Energy 7877: 7824: 7773: 7728:(15): 150502. 7712: 7643: 7592: 7573: 7520: 7496: 7489: 7467: 7438:(1): 169–190. 7418: 7403: 7367: 7314: 7301:(1): 178–185. 7281: 7247: 7230: 7215: 7186: 7184:, p. 216. 7174: 7125: 7098: 7071: 7037: 6991: 6932: 6899: 6884: 6865: 6850: 6843: 6796: 6772: 6735:(3): 281–284. 6729:Nature Physics 6718: 6711: 6675: 6668: 6638: 6585: 6523: 6477: 6432:(3): 605–622. 6416: 6371:(4): 755–787. 6355: 6302: 6287: 6257: 6204: 6140: 6133: 6115: 6103: 6091: 6089:, p. 110. 6079: 6064: 6049: 6037: 6017: 5991: 5965: 5939: 5913: 5837: 5804: 5773: 5745: 5719: 5668: 5602: 5600:, p. 481. 5590: 5569: 5543: 5509: 5374: 5325: 5295: 5256: 5241: 5180: 5118: 5103: 5096: 5056: 5044: 5032: 5020: 5005: 4975: 4960: 4930: 4879: 4864: 4824: 4781: 4779:, p. 214. 4769: 4704: 4693:on 10 May 2013 4671: 4612: 4585:(5): 563–591. 4566: 4531:(6): 493–501. 4515: 4508: 4486: 4471: 4449: 4399: 4397:, p. 132. 4387: 4360: 4358: 4355: 4352: 4351: 4343:standard basis 4334: 4316: 4315: 4313: 4310: 4308: 4307: 4301: 4295: 4289: 4283: 4277: 4271: 4268:Quantum volume 4265: 4259: 4250: 4244: 4235: 4229: 4223: 4217: 4211: 4205: 4196: 4191: 4185: 4182:D-Wave Systems 4178: 4176: 4173: 4150: 4147: 4144: 4141: 4138: 4135: 4102: 4099: 4096: 4093: 4090: 4087: 4084: 4081: 4078: 4075: 4072: 4069: 4018: 4015: 4012: 4009: 4006: 4003: 4000: 3976: 3973: 3970: 3967: 3964: 3961: 3958: 3913:Main article: 3910: 3907: 3887:Turing machine 3863: 3860: 3858: 3855: 3850:superconductor 3820: 3817: 3816: 3815: 3773: 3772: 3764: 3757: 3754: 3747: 3740: 3715: 3712: 3689:Boson sampling 3655: 3652: 3561:dephasing time 3548: 3537: 3534: 3499: 3498: 3495: 3492: 3485: 3482: 3466: 3463: 3442: 3439: 3435:drug discovery 3404:Main article: 3401: 3398: 3385: 3382: 3361: 3360: 3357: 3354: 3330: 3327: 3324: 3321: 3301: 3296: 3291: 3288: 3264: 3245:Main article: 3242: 3239: 3193:Diffie–Hellman 3145:Main article: 3142: 3139: 3107:Main article: 3104: 3101: 3019: 3016: 2970: 2967: 2945: 2942: 2934:Turing machine 2925: 2922: 2909: 2906: 2889: 2886: 2869: 2866: 2841: 2838: 2813: 2791: 2787: 2783: 2778: 2774: 2762:unitary matrix 2727: 2724: 2709: 2706: 2697: 2694: 2670: 2667: 2663: 2642: 2639: 2635: 2618:{\textstyle X} 2614: 2594: 2591: 2587: 2583: 2580: 2577: 2573: 2569: 2566: 2546: 2543: 2539: 2535: 2532: 2529: 2525: 2521: 2518: 2498: 2495: 2491: 2487: 2484: 2481: 2477: 2473: 2470: 2450: 2447: 2443: 2439: 2436: 2433: 2429: 2425: 2422: 2402: 2397: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2372: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2350: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2328: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2306: 2304: 2299: 2296: 2272: 2267: 2261: 2258: 2257: 2254: 2251: 2250: 2247: 2244: 2243: 2240: 2237: 2236: 2234: 2229: 2226: 2223: 2219: 2214: 2209: 2203: 2200: 2199: 2196: 2193: 2192: 2189: 2186: 2185: 2182: 2179: 2178: 2176: 2171: 2168: 2165: 2161: 2156: 2151: 2145: 2142: 2141: 2138: 2135: 2134: 2131: 2128: 2127: 2124: 2121: 2120: 2118: 2113: 2110: 2107: 2103: 2098: 2093: 2087: 2084: 2083: 2080: 2077: 2076: 2073: 2070: 2069: 2066: 2063: 2062: 2060: 2055: 2052: 2049: 2045: 2032: 2031: 2019: 2016: 2012: 2008: 2005: 2002: 1998: 1994: 1974: 1971: 1967: 1963: 1960: 1957: 1953: 1949: 1922: 1917: 1911: 1908: 1906: 1903: 1902: 1899: 1896: 1894: 1891: 1890: 1888: 1883: 1880: 1858:quantum memory 1847: 1844: 1719:tensor product 1655: 1652: 1648: 1627: 1624: 1620: 1599: 1596: 1592: 1586: 1580: 1576: 1573: 1570: 1567: 1563: 1557: 1551: 1547: 1527: 1524: 1519: 1514: 1509: 1505: 1501: 1496: 1491: 1486: 1482: 1461: 1441: 1419: 1414: 1409: 1405: 1384: 1381: 1377: 1354: 1349: 1344: 1340: 1319: 1316: 1312: 1287: 1284: 1280: 1276: 1273: 1270: 1267: 1263: 1259: 1246:describes the 1240:standard basis 1230: 1208: 1188: 1157: 1137: 1113: 1110: 1106: 1085: 1082: 1078: 1057: 1054: 1050: 1046: 1043: 1040: 1037: 1033: 1029: 1009: 977: 974: 970: 958:linear algebra 954:Dirac notation 934: 931: 927: 906: 903: 899: 870: 867: 863: 842: 839: 835: 814: 811: 807: 786: 783: 779: 739: 736: 732: 711: 708: 704: 683: 680: 676: 672: 669: 666: 663: 659: 655: 652: 649: 646: 642: 622: 619: 594:quantum states 578:linear algebra 542:may depend on 520:semiconductors 498: 495: 378:Diffie–Hellman 359:RSA encryption 188: 185: 132:, introducing 58:that exploits 26: 9: 6: 4: 3: 2: 14425: 14414: 14411: 14409: 14406: 14404: 14403:Open problems 14401: 14399: 14396: 14394: 14391: 14389: 14386: 14384: 14381: 14379: 14376: 14374: 14371: 14369: 14366: 14365: 14363: 14348: 14340: 14339: 14336: 14330: 14327: 14325: 14322: 14320: 14317: 14313: 14310: 14309: 14308: 14305: 14304: 14302: 14298: 14292: 14289: 14287: 14284: 14280: 14277: 14276: 14275: 14272: 14270: 14267: 14265: 14262: 14260: 14257: 14256: 14254: 14250: 14244: 14241: 14239: 14236: 14234: 14231: 14229: 14226: 14224: 14221: 14219: 14216: 14214: 14211: 14209: 14206: 14204: 14201: 14199: 14196: 14194: 14191: 14189: 14186: 14184: 14183:Quantum logic 14181: 14179: 14176: 14174: 14171: 14169: 14166: 14164: 14161: 14159: 14156: 14154: 14151: 14149: 14146: 14142: 14139: 14138: 14137: 14134: 14132: 14129: 14127: 14124: 14122: 14119: 14115: 14112: 14111: 14110: 14107: 14105: 14102: 14100: 14097: 14095: 14092: 14091: 14089: 14087: 14083: 14077: 14074: 14072: 14069: 14067: 14064: 14062: 14059: 14057: 14054: 14052: 14049: 14047: 14044: 14042: 14039: 14037: 14036:Quantum chaos 14034: 14032: 14029: 14027: 14024: 14023: 14021: 14019: 14015: 14009: 14006: 14004: 14003:Stern–Gerlach 14001: 13999: 13996: 13994: 13991: 13989: 13986: 13984: 13981: 13979: 13976: 13974: 13971: 13969: 13966: 13964: 13961: 13959: 13956: 13955: 13953: 13949: 13943: 13940: 13938: 13937:Transactional 13935: 13933: 13930: 13928: 13927:Quantum logic 13925: 13923: 13920: 13918: 13915: 13909: 13906: 13905: 13904: 13901: 13900: 13899: 13896: 13894: 13891: 13889: 13886: 13884: 13881: 13879: 13876: 13874: 13871: 13870: 13868: 13866: 13862: 13856: 13853: 13851: 13848: 13846: 13843: 13841: 13838: 13836: 13833: 13832: 13830: 13826: 13820: 13817: 13815: 13812: 13810: 13807: 13805: 13802: 13800: 13797: 13795: 13792: 13790: 13787: 13786: 13784: 13780: 13772: 13769: 13767: 13764: 13763: 13762: 13761:Wave function 13759: 13757: 13754: 13752: 13749: 13747: 13744: 13742: 13739: 13737: 13736:Superposition 13734: 13732: 13731:Quantum state 13729: 13727: 13724: 13722: 13719: 13717: 13714: 13712: 13709: 13707: 13704: 13702: 13699: 13695: 13692: 13690: 13687: 13685: 13684:Excited state 13682: 13680: 13677: 13676: 13675: 13672: 13670: 13667: 13665: 13662: 13660: 13657: 13655: 13652: 13651: 13649: 13645: 13639: 13636: 13634: 13631: 13629: 13626: 13622: 13619: 13618: 13617: 13614: 13612: 13609: 13608: 13606: 13602: 13598: 13591: 13586: 13584: 13579: 13577: 13572: 13571: 13568: 13556: 13548: 13546: 13538: 13536: 13528: 13527: 13524: 13518: 13515: 13513: 13510: 13508: 13505: 13503: 13500: 13498: 13495: 13493: 13490: 13488: 13485: 13483: 13480: 13478: 13475: 13473: 13470: 13468: 13465: 13463: 13460: 13458: 13455: 13453: 13450: 13448: 13445: 13443: 13440: 13438: 13435: 13433: 13430: 13428: 13425: 13423: 13420: 13419: 13417: 13413: 13407: 13404: 13402: 13399: 13397: 13394: 13392: 13391:Mixed reality 13389: 13387: 13384: 13382: 13379: 13377: 13374: 13372: 13369: 13368: 13366: 13364: 13360: 13354: 13351: 13349: 13346: 13344: 13341: 13339: 13336: 13334: 13331: 13330: 13328: 13326: 13322: 13316: 13313: 13311: 13308: 13306: 13303: 13301: 13298: 13296: 13293: 13291: 13288: 13286: 13283: 13281: 13278: 13277: 13275: 13273: 13269: 13263: 13260: 13258: 13255: 13253: 13250: 13248: 13245: 13243: 13240: 13239: 13237: 13235: 13231: 13225: 13224:Accessibility 13222: 13220: 13219:Visualization 13217: 13215: 13212: 13210: 13207: 13205: 13202: 13201: 13199: 13197: 13193: 13187: 13184: 13182: 13179: 13177: 13174: 13172: 13169: 13167: 13164: 13162: 13159: 13157: 13154: 13152: 13149: 13147: 13144: 13143: 13141: 13139: 13135: 13129: 13126: 13124: 13121: 13119: 13116: 13114: 13111: 13109: 13106: 13104: 13101: 13099: 13096: 13094: 13091: 13089: 13086: 13084: 13081: 13079: 13076: 13074: 13071: 13069: 13066: 13064: 13061: 13060: 13058: 13056: 13052: 13046: 13043: 13041: 13038: 13036: 13033: 13031: 13028: 13026: 13023: 13021: 13018: 13016: 13013: 13011: 13008: 13007: 13005: 13003: 12998: 12992: 12989: 12987: 12984: 12982: 12979: 12977: 12974: 12972: 12969: 12968: 12966: 12964: 12960: 12954: 12951: 12949: 12946: 12944: 12941: 12939: 12936: 12934: 12931: 12929: 12926: 12924: 12921: 12920: 12918: 12916: 12912: 12906: 12903: 12901: 12898: 12896: 12893: 12891: 12888: 12886: 12883: 12881: 12878: 12876: 12873: 12871: 12868: 12866: 12863: 12861: 12858: 12857: 12855: 12853: 12849: 12843: 12840: 12838: 12835: 12833: 12830: 12828: 12825: 12823: 12820: 12818: 12815: 12813: 12810: 12808: 12805: 12803: 12800: 12798: 12795: 12794: 12792: 12790: 12786: 12782: 12776: 12773: 12771: 12768: 12766: 12763: 12761: 12758: 12756: 12753: 12752: 12750: 12746: 12740: 12737: 12735: 12732: 12730: 12727: 12725: 12722: 12720: 12717: 12715: 12712: 12711: 12709: 12707: 12703: 12697: 12694: 12692: 12689: 12687: 12686:Dependability 12684: 12682: 12679: 12677: 12674: 12673: 12671: 12667: 12661: 12657: 12654: 12652: 12649: 12647: 12644: 12642: 12639: 12637: 12634: 12632: 12629: 12627: 12624: 12622: 12619: 12617: 12614: 12612: 12609: 12608: 12606: 12604: 12600: 12595: 12589: 12585: 12578: 12573: 12571: 12566: 12564: 12559: 12558: 12555: 12543: 12542: 12533: 12532: 12529: 12519: 12516: 12514: 12511: 12509: 12506: 12504: 12501: 12497: 12496:Plasma window 12494: 12493: 12492: 12489: 12487: 12484: 12482: 12479: 12477: 12474: 12472: 12469: 12468: 12466: 12462: 12456: 12455:teleportation 12453: 12451: 12448: 12446: 12443: 12441: 12438: 12436: 12433: 12431: 12428: 12426: 12423: 12421: 12418: 12416: 12413: 12411: 12408: 12406: 12403: 12401: 12398: 12396: 12393: 12391: 12388: 12386: 12383: 12381: 12378: 12376: 12373: 12371: 12368: 12366: 12363: 12361: 12358: 12356: 12353: 12349: 12346: 12345: 12344: 12341: 12339: 12336: 12334: 12331: 12329: 12326: 12324: 12321: 12319: 12316: 12314: 12311: 12309: 12306: 12304: 12301: 12300: 12298: 12296: 12292: 12289: 12285: 12281: 12274: 12269: 12267: 12262: 12260: 12255: 12254: 12251: 12239: 12231: 12229: 12221: 12220: 12217: 12211: 12208: 12206: 12203: 12201: 12198: 12196: 12193: 12191: 12187: 12184: 12182: 12178: 12174: 12171: 12170: 12168: 12166: 12160: 12150: 12147: 12145: 12142: 12140: 12137: 12135: 12132: 12131: 12129: 12127: 12123: 12117: 12114: 12112: 12109: 12107: 12106:Spin qubit QC 12104: 12102: 12099: 12098: 12096: 12093: 12089: 12083: 12080: 12078: 12075: 12074: 12072: 12070: 12066: 12060: 12057: 12055: 12052: 12050: 12047: 12045: 12042: 12041: 12039: 12037: 12033: 12030: 12024: 12018: 12015: 12011: 12010: 12006: 12004: 12001: 11999: 11996: 11994: 11991: 11989: 11986: 11984: 11981: 11979: 11976: 11974: 11971: 11970: 11968: 11967: 11965: 11963: 11957: 11951: 11948: 11946: 11943: 11939: 11936: 11935: 11934: 11931: 11927: 11924: 11923: 11922: 11919: 11915: 11914:cluster state 11912: 11911: 11910: 11907: 11905: 11902: 11900: 11897: 11896: 11894: 11892: 11886: 11878: 11874: 11870: 11868: 11864: 11860: 11859: 11858: 11855: 11851: 11848: 11847: 11846: 11843: 11841: 11838: 11836: 11833: 11832: 11830: 11824: 11818: 11815: 11813: 11810: 11808: 11805: 11803: 11800: 11798: 11795: 11794: 11792: 11790: 11784: 11778: 11775: 11773: 11770: 11768: 11765: 11763: 11760: 11758: 11755: 11753: 11750: 11748: 11745: 11743: 11740: 11738: 11735: 11733: 11730: 11728: 11725: 11723: 11722:Deutsch–Jozsa 11720: 11718: 11715: 11713: 11710: 11708: 11705: 11704: 11702: 11700: 11696: 11686: 11683: 11679: 11676: 11674: 11671: 11669: 11666: 11665: 11664: 11661: 11659: 11658:Quantum money 11656: 11654: 11651: 11649: 11646: 11645: 11643: 11641: 11637: 11631: 11628: 11624: 11621: 11620: 11619: 11616: 11612: 11609: 11608: 11607: 11604: 11602: 11599: 11597: 11594: 11592: 11589: 11585: 11582: 11580: 11577: 11576: 11575: 11572: 11571: 11569: 11567:communication 11563: 11557: 11554: 11552: 11549: 11547: 11544: 11542: 11539: 11537: 11534: 11532: 11529: 11527: 11524: 11522: 11519: 11517: 11514: 11512: 11509: 11507: 11504: 11502: 11499: 11497: 11494: 11492: 11489: 11487: 11484: 11482: 11479: 11478: 11476: 11472: 11464: 11461: 11460: 11459: 11456: 11452: 11449: 11448: 11447: 11444: 11442: 11439: 11437: 11434: 11432: 11429: 11425: 11422: 11421: 11420: 11417: 11415: 11412: 11410: 11407: 11406: 11404: 11400: 11396: 11389: 11384: 11382: 11377: 11375: 11370: 11369: 11366: 11360: 11356: 11354: 11351: 11349: 11346: 11344: 11343:David Deutsch 11340: 11337: 11335: 11331: 11328: 11327: 11323: 11322: 11319: 11315: 11312: 11308: 11304: 11303: 11298: 11294: 11291: 11287: 11284: 11281: 11276: 11272: 11269: 11264: 11260: 11259: 11248: 11243: 11239: 11234: 11230: 11226: 11222: 11218: 11214: 11210: 11206: 11202: 11197: 11192: 11189:(2): 021318. 11188: 11184: 11183: 11177: 11173: 11169: 11164: 11159: 11155: 11151: 11147: 11142: 11138: 11134: 11130: 11126: 11121: 11116: 11112: 11108: 11104: 11100: 11096: 11092: 11087: 11083: 11079: 11075: 11070: 11065: 11061: 11057: 11053: 11049: 11044: 11040: 11036: 11032: 11028: 11024: 11020: 11015: 11010: 11006: 11002: 10998: 10994: 10990: 10986: 10982: 10976: 10972: 10968: 10964: 10959: 10955: 10951: 10947: 10946:2027.42/45526 10943: 10939: 10935: 10931: 10927: 10922: 10917: 10913: 10909: 10905: 10901: 10897: 10893: 10889: 10885: 10884: 10874: 10870: 10866: 10862: 10858: 10852: 10848: 10844: 10839: 10834: 10830: 10825: 10810: 10806: 10802: 10798: 10792: 10785: 10784: 10778: 10774: 10770: 10766: 10762: 10758: 10752: 10748: 10747:10.1142/11938 10744: 10740: 10735: 10731: 10725: 10721: 10717: 10713: 10709: 10705: 10701: 10697: 10693: 10687: 10683: 10679: 10675: 10670: 10666: 10660: 10656: 10652: 10648: 10647: 10641: 10637: 10633: 10629: 10623: 10619: 10615: 10611: 10607: 10603: 10599: 10593: 10589: 10585: 10581: 10576: 10572: 10568: 10564: 10558: 10554: 10549: 10545: 10541: 10537: 10531: 10527: 10523: 10519: 10514: 10510: 10506: 10502: 10498: 10494: 10488: 10484: 10480: 10473: 10472: 10466: 10462: 10456: 10452: 10448: 10444: 10439: 10435: 10431: 10427: 10423: 10419: 10413: 10409: 10405: 10401: 10396: 10392: 10388: 10384: 10378: 10375:. MIT Press. 10374: 10369: 10365: 10361: 10357: 10353: 10349: 10343: 10339: 10338:10.1142/10909 10335: 10331: 10326: 10322: 10318: 10314: 10308: 10304: 10300: 10296: 10291: 10290: 10274: 10268: 10264: 10260: 10256: 10252: 10248: 10244: 10240: 10236: 10232: 10228: 10224: 10220: 10216: 10210: 10206: 10202: 10198: 10197: 10192: 10191:Chuang, Isaac 10188: 10184: 10180: 10176: 10172: 10166: 10162: 10158: 10154: 10150: 10146: 10142: 10138: 10134: 10130: 10126: 10120: 10116: 10112: 10108: 10103: 10099: 10095: 10091: 10085: 10081: 10077: 10073: 10069: 10065: 10064: 10052: 10048: 10043: 10038: 10034: 10030: 10026: 10019: 10012: 10007: 10001:, p. 41. 10000: 9995: 9988: 9983: 9977:, p. 29. 9976: 9971: 9964: 9959: 9952: 9947: 9940: 9935: 9928: 9923: 9915: 9911: 9907: 9903: 9899: 9895: 9890: 9885: 9881: 9877: 9873: 9866: 9851: 9849:9783030420185 9845: 9841: 9840: 9832: 9817: 9816:IEEE Spectrum 9813: 9806: 9797: 9792: 9785: 9778:(5): 508–516. 9777: 9773: 9766: 9759: 9751: 9747: 9740: 9731: 9726: 9719: 9711: 9707: 9703: 9699: 9695: 9691: 9687: 9683: 9678: 9673: 9669: 9665: 9658: 9650: 9646: 9639: 9631: 9624: 9616: 9612: 9608: 9604: 9600: 9596: 9592: 9588: 9583: 9578: 9575:(3): 030601. 9574: 9570: 9566: 9559: 9551: 9547: 9543: 9539: 9535: 9531: 9527: 9523: 9519: 9512: 9504: 9500: 9496: 9492: 9488: 9484: 9479: 9474: 9470: 9466: 9462: 9455: 9447: 9443: 9439: 9435: 9431: 9427: 9423: 9419: 9415: 9411: 9406: 9401: 9397: 9393: 9386: 9371: 9367: 9360: 9345: 9341: 9334: 9326: 9322: 9318: 9314: 9310: 9306: 9302: 9298: 9295:(7838): 380. 9294: 9290: 9283: 9267: 9263: 9257: 9249: 9245: 9241: 9237: 9233: 9226: 9218: 9214: 9210: 9206: 9202: 9198: 9194: 9190: 9185: 9180: 9177:(9): 090502. 9176: 9172: 9165: 9157: 9153: 9148: 9143: 9139: 9135: 9131: 9127: 9123: 9116: 9108: 9104: 9099: 9094: 9090: 9086: 9082: 9078: 9074: 9070: 9065: 9060: 9056: 9052: 9048: 9041: 9033: 9029: 9025: 9019: 9015: 9011: 9006: 9001: 8997: 8990: 8982: 8978: 8974: 8970: 8966: 8962: 8958: 8954: 8947: 8938: 8933: 8926: 8911: 8907: 8900: 8885: 8881: 8874: 8866: 8862: 8855: 8847: 8843: 8839: 8835: 8831: 8827: 8822: 8817: 8813: 8809: 8802: 8793: 8788: 8784: 8780: 8775: 8770: 8766: 8762: 8758: 8751: 8742: 8737: 8730: 8722: 8721: 8720:New Scientist 8716: 8709: 8701: 8697: 8693: 8689: 8684: 8679: 8675: 8671: 8667: 8663: 8659: 8653: 8645: 8641: 8637: 8633: 8629: 8625: 8621: 8617: 8612: 8607: 8603: 8599: 8592: 8584: 8580: 8576: 8572: 8567: 8562: 8557: 8552: 8548: 8544: 8540: 8533: 8525: 8521: 8517: 8516: 8508: 8500: 8496: 8491: 8486: 8482: 8475: 8466: 8461: 8454: 8446: 8442: 8438: 8434: 8430: 8426: 8422: 8418: 8414: 8410: 8405: 8400: 8396: 8392: 8388: 8381: 8373: 8369: 8364: 8359: 8355: 8351: 8347: 8343: 8339: 8332: 8324: 8320: 8316: 8312: 8308: 8304: 8300: 8296: 8289: 8281: 8277: 8273: 8269: 8264: 8259: 8255: 8251: 8247: 8243: 8236: 8228: 8224: 8220: 8216: 8211: 8206: 8202: 8198: 8197: 8192: 8185: 8169: 8162: 8154: 8150: 8146: 8142: 8138: 8134: 8129: 8124: 8120: 8116: 8109: 8101: 8100: 8099:IEEE Spectrum 8095: 8088: 8080: 8073: 8071: 8069: 8067: 8058: 8054: 8050: 8046: 8041: 8036: 8032: 8028: 8024: 8020: 8016: 8009: 8007: 8005: 7995: 7990: 7983: 7975: 7971: 7967: 7963: 7959: 7955: 7950: 7945: 7942:(2): 021037. 7941: 7937: 7930: 7922: 7918: 7913: 7908: 7904: 7900: 7896: 7892: 7888: 7881: 7873: 7869: 7865: 7861: 7857: 7853: 7848: 7843: 7839: 7835: 7828: 7819: 7814: 7810: 7806: 7801: 7796: 7793:(2): 022308. 7792: 7788: 7784: 7777: 7769: 7765: 7761: 7757: 7753: 7749: 7745: 7741: 7736: 7731: 7727: 7723: 7716: 7708: 7704: 7700: 7696: 7692: 7688: 7684: 7680: 7676: 7672: 7667: 7662: 7658: 7654: 7647: 7639: 7635: 7630: 7625: 7620: 7615: 7611: 7607: 7603: 7596: 7588: 7584: 7577: 7569: 7565: 7561: 7557: 7553: 7549: 7544: 7539: 7535: 7531: 7524: 7515: 7510: 7506: 7500: 7492: 7486: 7482: 7478: 7471: 7463: 7459: 7455: 7451: 7446: 7441: 7437: 7433: 7429: 7422: 7414: 7410: 7406: 7400: 7396: 7392: 7387: 7382: 7378: 7371: 7363: 7359: 7355: 7351: 7347: 7343: 7338: 7333: 7329: 7325: 7318: 7309: 7304: 7300: 7296: 7292: 7285: 7277: 7273: 7269: 7265: 7258: 7251: 7244: 7240: 7234: 7226: 7222: 7218: 7212: 7208: 7204: 7200: 7193: 7191: 7183: 7178: 7167: 7163: 7159: 7155: 7151: 7147: 7143: 7136: 7129: 7113: 7109: 7102: 7086: 7082: 7075: 7060: 7056: 7052: 7048: 7041: 7033: 7027: 7026:cite AV media 7011: 7007: 7006: 7001: 6995: 6987: 6983: 6978: 6973: 6969: 6965: 6961: 6957: 6953: 6949: 6948: 6943: 6936: 6920: 6916: 6915: 6910: 6903: 6895: 6888: 6880: 6876: 6869: 6863:, p. 42. 6862: 6857: 6855: 6846: 6840: 6836: 6832: 6827: 6822: 6818: 6814: 6810: 6806: 6800: 6792: 6788: 6781: 6779: 6777: 6768: 6764: 6760: 6756: 6752: 6748: 6743: 6738: 6734: 6730: 6722: 6714: 6708: 6704: 6700: 6695: 6690: 6686: 6679: 6671: 6665: 6661: 6657: 6654:. p. 3. 6653: 6649: 6642: 6634: 6630: 6626: 6622: 6618: 6614: 6609: 6604: 6600: 6596: 6589: 6581: 6577: 6573: 6569: 6565: 6561: 6557: 6553: 6548: 6543: 6539: 6535: 6527: 6519: 6515: 6511: 6507: 6502: 6497: 6493: 6489: 6481: 6473: 6469: 6465: 6461: 6457: 6453: 6449: 6445: 6440: 6435: 6431: 6427: 6420: 6412: 6408: 6404: 6400: 6396: 6392: 6388: 6384: 6379: 6374: 6370: 6366: 6359: 6351: 6347: 6343: 6339: 6335: 6331: 6326: 6321: 6318:(2): 022312. 6317: 6313: 6306: 6298: 6294: 6290: 6288:0-8186-4370-6 6284: 6280: 6276: 6272: 6268: 6261: 6253: 6249: 6245: 6241: 6237: 6233: 6228: 6223: 6219: 6215: 6208: 6200: 6196: 6192: 6188: 6183: 6178: 6174: 6170: 6165: 6160: 6156: 6153: 6152: 6144: 6136: 6130: 6126: 6119: 6112: 6107: 6100: 6095: 6088: 6087:Aaronson 2013 6083: 6077:, p. 18. 6076: 6071: 6069: 6062:, p. 17. 6061: 6056: 6054: 6047:, p. 13. 6046: 6041: 6033: 6032: 6027: 6021: 6006: 6002: 5995: 5980: 5976: 5969: 5953: 5949: 5943: 5928: 5924: 5917: 5909: 5905: 5901: 5897: 5892: 5887: 5883: 5879: 5875: 5871: 5866: 5861: 5857: 5853: 5849: 5841: 5825: 5821: 5820: 5815: 5808: 5793: 5792: 5784: 5777: 5762: 5761: 5756: 5749: 5734: 5730: 5723: 5715: 5711: 5707: 5703: 5699: 5695: 5691: 5687: 5683: 5679: 5672: 5664: 5660: 5655: 5650: 5646: 5642: 5637: 5632: 5628: 5624: 5620: 5613: 5611: 5609: 5607: 5599: 5594: 5585: 5580: 5573: 5558: 5554: 5547: 5532: 5528: 5524: 5520: 5513: 5505: 5501: 5497: 5493: 5489: 5485: 5481: 5477: 5472: 5467: 5463: 5459: 5443: 5439: 5435: 5431: 5427: 5423: 5419: 5415: 5410: 5405: 5401: 5397: 5393: 5389: 5384:Lay summary: 5381: 5379: 5370: 5366: 5361: 5356: 5352: 5348: 5344: 5340: 5336: 5329: 5314: 5310: 5306: 5299: 5291: 5287: 5283: 5279: 5276:: 3408–3411. 5275: 5271: 5267: 5260: 5253: 5248: 5246: 5237: 5233: 5229: 5225: 5221: 5217: 5213: 5209: 5204: 5199: 5195: 5191: 5184: 5176: 5172: 5168: 5164: 5160: 5156: 5152: 5148: 5144: 5140: 5136: 5132: 5125: 5123: 5115: 5110: 5108: 5099: 5093: 5089: 5085: 5080: 5075: 5071: 5067: 5060: 5054:, p. 15. 5053: 5048: 5041: 5036: 5029: 5024: 5016: 5012: 5008: 5002: 4998: 4994: 4990: 4986: 4979: 4971: 4967: 4963: 4957: 4953: 4949: 4945: 4941: 4934: 4926: 4922: 4918: 4914: 4910: 4906: 4902: 4898: 4894: 4890: 4883: 4875: 4871: 4867: 4861: 4857: 4853: 4848: 4843: 4839: 4835: 4828: 4820: 4816: 4811: 4806: 4802: 4798: 4794: 4788: 4786: 4778: 4773: 4754: 4750: 4746: 4742: 4738: 4734: 4730: 4726: 4722: 4715: 4708: 4692: 4688: 4684: 4683: 4675: 4667: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4635: 4631: 4627: 4623: 4616: 4608: 4604: 4600: 4596: 4592: 4588: 4584: 4580: 4573: 4571: 4562: 4558: 4554: 4550: 4546: 4542: 4538: 4534: 4530: 4526: 4519: 4511: 4509:9780691164724 4505: 4501: 4497: 4490: 4482: 4478: 4474: 4468: 4464: 4460: 4453: 4445: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4410: 4403: 4396: 4395:Aaronson 2013 4391: 4376: 4372: 4365: 4361: 4348: 4344: 4338: 4331: 4327: 4321: 4317: 4305: 4304:Valleytronics 4302: 4299: 4296: 4293: 4290: 4287: 4286:Supercomputer 4284: 4281: 4278: 4275: 4272: 4269: 4266: 4263: 4260: 4254: 4251: 4248: 4245: 4239: 4236: 4233: 4232:Metacomputing 4230: 4227: 4224: 4221: 4218: 4215: 4212: 4209: 4206: 4200: 4197: 4195: 4192: 4189: 4186: 4183: 4180: 4179: 4172: 4170: 4166: 4139: 4122: 4118: 4082: 4070: 4057: 4053: 4049: 4040: 4036: 4034: 4007: 3965: 3946: 3942: 3938: 3934: 3930: 3927:The class of 3925: 3923: 3916: 3906: 3904: 3900: 3896: 3892: 3891:computability 3888: 3882: 3880: 3875: 3869: 3862:Computability 3854: 3851: 3846: 3843: 3838: 3836: 3832: 3826: 3813: 3809: 3808: 3807: 3805: 3801: 3797: 3793: 3789: 3785: 3782: 3779: 3770: 3765: 3762: 3758: 3755: 3751: 3748: 3745: 3741: 3739:accelerators. 3738: 3734: 3733: 3732: 3729: 3726: 3721: 3711: 3708: 3703: 3700: 3698: 3694: 3690: 3686: 3681: 3679: 3675: 3670: 3667: 3666: 3661: 3660:John Preskill 3651: 3649: 3645: 3641: 3637: 3632: 3620: 3616: 3612: 3608: 3604: 3598: 3595: 3591: 3586: 3584: 3583:pulse shaping 3579: 3576: 3574: 3570: 3566: 3562: 3558: 3554: 3547: 3543: 3533: 3531: 3526: 3524: 3520: 3516: 3512: 3508: 3504: 3496: 3493: 3490: 3486: 3483: 3480: 3479: 3478: 3476: 3472: 3462: 3456: 3452: 3447: 3438: 3436: 3431: 3429: 3425: 3421: 3420:HHL Algorithm 3416: 3414: 3407: 3397: 3395: 3390: 3381: 3379: 3375: 3371: 3367: 3358: 3355: 3352: 3351: 3350: 3347: 3345: 3325: 3294: 3286: 3278: 3262: 3254: 3248: 3238: 3236: 3235: 3229: 3225: 3222: 3218: 3214: 3213:coding theory 3210: 3206: 3201: 3198: 3194: 3190: 3186: 3182: 3178: 3174: 3173:cryptographic 3170: 3166: 3165:prime numbers 3162: 3158: 3154: 3148: 3138: 3135: 3134:Haber process 3131: 3127: 3122: 3120: 3116: 3110: 3100: 3098: 3094: 3089: 3087: 3083: 3079: 3075: 3070: 3068: 3064: 3060: 3056: 3052: 3048: 3044: 3040: 3036: 3031: 3029: 3025: 3015: 3013: 3009: 3004: 2999: 2997: 2993: 2989: 2985: 2981: 2976: 2969:Communication 2966: 2962: 2958: 2950: 2941: 2939: 2935: 2931: 2921: 2919: 2915: 2905: 2903: 2899: 2895: 2885: 2883: 2879: 2875: 2865: 2863: 2859: 2858:cluster state 2855: 2854:quantum gates 2851: 2847: 2837: 2835: 2831: 2827: 2811: 2789: 2785: 2781: 2776: 2772: 2763: 2758: 2756: 2752: 2751:quantum gates 2748: 2741: 2737: 2732: 2723: 2721: 2715: 2705: 2702: 2693: 2691: 2687: 2682: 2665: 2637: 2612: 2589: 2581: 2575: 2567: 2564: 2541: 2533: 2527: 2519: 2516: 2493: 2485: 2479: 2471: 2468: 2445: 2437: 2431: 2423: 2420: 2400: 2395: 2389: 2384: 2379: 2374: 2367: 2362: 2357: 2352: 2345: 2340: 2335: 2330: 2323: 2318: 2313: 2308: 2302: 2297: 2294: 2286: 2270: 2265: 2259: 2252: 2245: 2238: 2232: 2227: 2221: 2212: 2207: 2201: 2194: 2187: 2180: 2174: 2169: 2163: 2154: 2149: 2143: 2136: 2129: 2122: 2116: 2111: 2105: 2096: 2091: 2085: 2078: 2071: 2064: 2058: 2053: 2047: 2014: 2006: 2000: 1992: 1969: 1961: 1955: 1947: 1940: 1939: 1938: 1936: 1920: 1915: 1909: 1904: 1897: 1892: 1886: 1881: 1878: 1871: 1867: 1863: 1859: 1853: 1843: 1841: 1837: 1833: 1832: 1788: 1768: 1721:of the qubit 1720: 1676: 1672: 1667: 1650: 1622: 1594: 1584: 1578: 1574: 1571: 1565: 1555: 1549: 1545: 1525: 1522: 1517: 1507: 1499: 1494: 1484: 1459: 1439: 1417: 1407: 1379: 1352: 1342: 1314: 1301: 1282: 1274: 1271: 1265: 1257: 1249: 1245: 1241: 1237: 1232: 1228: 1226: 1222: 1206: 1186: 1178: 1174: 1172: 1155: 1135: 1127: 1108: 1080: 1052: 1044: 1041: 1035: 1027: 1007: 995: 972: 959: 955: 951: 946: 929: 901: 888: 887:superposition 884: 865: 837: 809: 781: 767: 763: 759: 758: 734: 706: 678: 670: 667: 661: 653: 650: 644: 631: 627: 617: 612: 610: 607:As physicist 605: 603: 599: 595: 591: 587: 583: 579: 575: 571: 567: 563: 561: 557: 553: 552:superposition 549: 545: 541: 537: 533: 529: 525: 521: 517: 513: 509: 504: 494: 492: 488: 484: 480: 476: 471: 466: 461: 459: 445: 442: 440: 436: 432: 428: 423: 421: 417: 413: 408: 406: 402: 398: 393: 391: 387: 383: 379: 375: 371: 367: 360: 356: 352: 348: 346: 342: 341:superposition 338: 334: 331:in 1993, and 330: 327:in 1985, the 326: 322: 318: 314: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 259: 257: 253: 249: 245: 241: 237: 233: 229: 225: 221: 213: 209: 205: 200: 194: 184: 182: 181: 175: 171: 170:computability 167: 162: 160: 156: 152: 148: 144: 140: 135: 131: 127: 122: 120: 116: 112: 108: 104: 103:superposition 100: 96: 92: 88: 83: 81: 77: 73: 72:exponentially 69: 65: 61: 57: 53: 46: 42: 38: 34: 30: 19: 14135: 14066:Quantum mind 13978:Franck–Hertz 13840:Klein–Gordon 13789:Formulations 13782:Formulations 13711:Interference 13701:Entanglement 13679:Ground state 13674:Energy level 13647:Fundamentals 13611:Introduction 13487:Cyberwarfare 13146:Cryptography 12539: 12476:Anti-gravity 12420:metamaterial 12348:post-quantum 12343:cryptography 12337: 12134:Charge qubit 12059:KLM protocol 12008: 11872: 11862: 11556:Purification 11486:Eastin–Knill 11418: 11300: 11186: 11180: 11156:(1): 52–59. 11153: 11149: 11102: 11098: 11051: 11047: 11004: 11000: 10962: 10911: 10907: 10888:Abbot, Derek 10828: 10816:. Retrieved 10809:the original 10782: 10738: 10711: 10673: 10649:. Springer. 10645: 10617: 10587: 10552: 10517: 10470: 10442: 10399: 10372: 10329: 10297:. Springer. 10294: 10242: 10194: 10152: 10106: 10071: 10032: 10028: 10018: 10006: 9994: 9982: 9970: 9958: 9946: 9934: 9922: 9879: 9875: 9865: 9853:. Retrieved 9842:. Springer. 9838: 9831: 9819:. Retrieved 9815: 9805: 9784: 9775: 9771: 9758: 9749: 9739: 9718: 9667: 9663: 9657: 9648: 9638: 9623: 9572: 9568: 9558: 9525: 9521: 9511: 9468: 9464: 9454: 9395: 9391: 9385: 9373:. Retrieved 9370:Science News 9369: 9359: 9347:. Retrieved 9343: 9333: 9292: 9288: 9282: 9270:. Retrieved 9265: 9256: 9239: 9235: 9225: 9174: 9170: 9164: 9129: 9125: 9115: 9054: 9050: 9040: 8995: 8989: 8956: 8946: 8925: 8913:. Retrieved 8909: 8899: 8887:. Retrieved 8883: 8873: 8864: 8854: 8811: 8807: 8801: 8764: 8760: 8750: 8729: 8718: 8708: 8676:(1): 31–38. 8673: 8669: 8652: 8601: 8597: 8591: 8546: 8542: 8532: 8514: 8507: 8480: 8474: 8453: 8394: 8390: 8380: 8345: 8341: 8331: 8298: 8294: 8288: 8245: 8241: 8235: 8203:(4): 64–70. 8200: 8194: 8184: 8172:. Retrieved 8161: 8118: 8114: 8108: 8097: 8087: 8022: 8018: 7982: 7939: 7935: 7929: 7894: 7890: 7880: 7837: 7833: 7827: 7790: 7786: 7776: 7725: 7721: 7715: 7656: 7652: 7646: 7609: 7605: 7595: 7586: 7576: 7536:(2): 22–35. 7533: 7529: 7523: 7499: 7476: 7470: 7435: 7431: 7421: 7376: 7370: 7327: 7323: 7317: 7298: 7294: 7284: 7267: 7263: 7250: 7239:pqcrypto.org 7233: 7198: 7177: 7166:the original 7145: 7141: 7128: 7116:. Retrieved 7111: 7101: 7089:. Retrieved 7084: 7074: 7062:. Retrieved 7050: 7040: 7014:. Retrieved 7004: 6994: 6951: 6945: 6935: 6923:. Retrieved 6912: 6902: 6887: 6878: 6868: 6808: 6799: 6732: 6728: 6721: 6684: 6678: 6647: 6641: 6598: 6594: 6588: 6537: 6533: 6526: 6491: 6487: 6480: 6429: 6425: 6419: 6368: 6364: 6358: 6315: 6311: 6305: 6270: 6260: 6217: 6213: 6207: 6154: 6149: 6143: 6124: 6118: 6106: 6094: 6082: 6040: 6030: 6020: 6008:. Retrieved 6004: 5994: 5982:. Retrieved 5978: 5968: 5956:. Retrieved 5951: 5942: 5930:. Retrieved 5926: 5916: 5855: 5851: 5840: 5828:. Retrieved 5817: 5807: 5795:. Retrieved 5789: 5776: 5764:. Retrieved 5758: 5748: 5736:. Retrieved 5732: 5722: 5681: 5677: 5671: 5626: 5622: 5593: 5572: 5560:. Retrieved 5556: 5546: 5536:25 September 5534:. Retrieved 5522: 5512: 5461: 5457: 5445:. Retrieved 5395: 5391: 5342: 5338: 5328: 5316:. Retrieved 5308: 5298: 5269: 5265: 5259: 5193: 5189: 5183: 5134: 5130: 5116:, p. 7. 5070:Philadelphia 5065: 5059: 5047: 5035: 5023: 4988: 4978: 4943: 4933: 4892: 4888: 4882: 4837: 4827: 4800: 4772: 4760:. Retrieved 4753:the original 4724: 4720: 4707: 4695:. Retrieved 4691:the original 4686: 4681: 4674: 4625: 4621: 4615: 4582: 4578: 4528: 4524: 4518: 4495: 4489: 4458: 4452: 4419: 4415: 4402: 4390: 4378:. Retrieved 4374: 4364: 4346: 4345:is also the 4337: 4320: 4045: 3926: 3918: 3883: 3871: 3847: 3842:trapped ions 3839: 3835:trapped ions 3828: 3811: 3786: 3783: 3774: 3744:entanglement 3730: 3717: 3706: 3704: 3701: 3682: 3671: 3663: 3657: 3648:braid theory 3633: 3618: 3614: 3610: 3606: 3602: 3599: 3587: 3580: 3577: 3560: 3545: 3539: 3527: 3500: 3468: 3459: 3432: 3417: 3409: 3387: 3369: 3368:, where the 3362: 3348: 3252: 3250: 3232: 3204: 3202: 3150: 3123: 3112: 3090: 3085: 3071: 3032: 3021: 3000: 2978: 2963: 2959: 2955: 2927: 2911: 2891: 2871: 2843: 2759: 2744: 2736:Toffoli gate 2717: 2700: 2699: 2683: 2033: 1855: 1839: 1829: 1767:vector space 1668: 1298:, the state 1248:norm-squared 1233: 1179:. If either 1169: 1126:basis states 1125: 947: 886: 883:vector space 881:belong to a 765: 755: 753: 630:Bloch sphere 614: 606: 564: 556:interference 506: 467: 463: 447: 443: 430: 424: 409: 401:trapped ions 394: 386:unstructured 364: 344: 315: 307:cryptography 289:, prompting 275:Paul Benioff 260: 254:used in the 244:World War II 217: 210:can exhibit 178: 168:rather than 163: 123: 84: 51: 49: 29: 14324:EPR paradox 14104:Quantum bus 13973:Double-slit 13951:Experiments 13917:Many-worlds 13855:Schrödinger 13819:Phase space 13809:Schrödinger 13799:Interaction 13756:Uncertainty 13726:Nonlocality 13721:Measurement 13716:Decoherence 13706:Hamiltonian 13497:Video games 13477:Digital art 13234:Concurrency 13103:Data mining 13015:Probability 12755:Interpreter 12491:Force field 12440:programming 12400:logic clock 12385:information 12360:electronics 12165:programming 12144:Phase qubit 12049:Circuit QED 11521:No-deleting 11463:cloud-based 10720:Basic Books 9528:(9): 9–15. 8915:16 November 7505:Grover, Lov 7270:: 114–116. 7243:Tanja Lange 7112:cen.acs.org 6540:(4): 1017. 6365:SIAM Review 6111:Mermin 2007 6075:Mermin 2007 6060:Mermin 2007 5402:: 505–510. 4762:28 February 4422:(9): 1365. 4253:Quantum bus 4169:NP-hardness 4165:NP-complete 3792:Paul Davies 3573:cosmic rays 3536:Decoherence 3489:decoherence 3473:has listed 3441:Engineering 3128:to produce 2882:Hamiltonian 2876:, based on 2726:Gate array 1675:state space 540:programmers 283:exponential 206:shows that 14362:Categories 14252:Extensions 14086:Technology 13932:Relational 13883:Copenhagen 13794:Heisenberg 13741:Tunnelling 13604:Background 13555:Glossaries 13427:E-commerce 13020:Statistics 12963:Algorithms 12760:Middleware 12616:Peripheral 12405:logic gate 12303:algorithms 12205:libquantum 12139:Flux qubit 12044:Cavity QED 11993:Bacon–Shor 11983:stabilizer 11511:No-cloning 11196:1904.06560 10865:1091358969 10838:1508.02595 10818:6 February 10805:1308951401 10765:1178715016 10571:1111634190 10501:1244536372 10426:1272953643 10391:1082867954 10356:1084428655 10133:1091904777 9889:1907.03505 9821:3 December 9796:2008.05177 9582:2212.04749 9405:2012.01625 9375:7 December 9349:7 December 9266:TechCrunch 9184:2111.03011 9064:2108.01622 9005:2110.14502 8937:1910.09534 8821:1608.00263 8774:1801.00862 8611:1905.09749 8556:1512.00796 8465:1603.09383 8404:2001.09190 8295:Cryogenics 8210:1912.01299 7994:2101.03438 7949:2101.08354 7897:: 117628. 7847:2003.00264 7840:: 107119. 7800:1510.07611 7666:1611.09347 7619:2005.12792 7016:4 February 6742:1905.09408 6694:1909.08396 6608:1903.09051 6547:1906.01645 6501:1906.01645 6010:9 February 6005:rcpmag.com 5932:9 December 5865:2312.03982 5830:8 December 5636:1801.00862 5584:2103.03074 5562:9 February 5471:1910.11333 5409:1910.11333 5318:4 December 5203:1812.09976 4810:2003.06557 4357:References 3909:Complexity 3812:No, never. 3788:Bill Unruh 3714:Skepticism 3658:Physicist 3465:Challenges 3396:problems. 3076:, and the 3041:, solving 3018:Algorithms 1850:See also: 1836:correlated 1787:Bell state 1472:such that 1229:amplitudes 960:, writing 501:See also: 390:Seth Lloyd 366:Peter Shor 355:Peter Shor 323:, such as 291:Yuri Manin 263:physicists 85:The basic 13958:Bell test 13828:Equations 13654:Born rule 13376:Rendering 13371:Animation 13002:computing 12953:Semantics 12651:Processor 12450:simulator 12338:computing 12308:amplifier 12111:NV center 11546:Threshold 11526:No-hiding 11491:Gleason's 11307:EMS Press 11229:119104251 11221:1931-9401 11172:236664155 11137:124545445 11115:CiteSeerX 11086:220110562 11064:CiteSeerX 10989:128255429 10873:118528258 10773:225498497 10700:212140089 10636:907358694 10544:186509710 10509:242566636 10434:238223274 10321:884786739 10287:Textbooks 10223:700706156 10179:422727925 10141:125635007 10098:829706638 10037:CiteSeerX 9914:195833616 9906:2511-9044 9607:0031-9007 9550:222349414 9542:1353-4858 9503:218831653 9487:0963-6625 9446:227254333 9430:0036-8075 9325:227282052 9217:251755796 9156:246910085 9089:2375-2548 9032:239036985 8981:211982610 8973:0036-8075 8741:1203.5813 8644:162183806 8636:2521-327X 8575:1550-4832 8524:923881411 8445:210920566 8429:1476-4687 8323:244005391 8315:0011-2275 8280:220110562 8258:CiteSeerX 8227:231715555 8057:258847001 7974:231662294 7921:0306-2619 7872:211678230 7864:0098-1354 7735:0811.3171 7691:0028-0836 7638:218889377 7454:1557-2862 7237:See also 7059:0017-8012 6826:1011.3245 6767:256703226 6759:1745-2473 6633:210942877 6580:174799187 6572:1943-8206 6464:0010-3616 6403:0036-1445 6297:195866146 6252:119628297 6227:0707.1889 6177:CiteSeerX 6164:0801.2193 5984:6 January 5958:5 January 5952:darpa.mil 5908:266052773 5882:1476-4687 5797:13 August 5714:203626236 5531:0362-4331 5504:204836822 5442:204836822 5400:Google AI 5236:119417908 5220:0009-2665 5159:0036-8075 5040:Shor 1994 4917:0080-4630 4749:124545445 4650:0036-8075 4607:122949592 4561:120294023 4553:0031-9120 4481:796812982 4444:216143449 4436:0011-3891 4380:9 January 4140:⊈ 4083:⊆ 4071:⊆ 4008:⊊ 3966:⊆ 3897:like the 3800:Gil Kalai 3320:Ω 2992:adversary 2782:× 2669:⟩ 2641:⟩ 2593:⟩ 2579:⟩ 2568:⁡ 2545:⟩ 2531:⟩ 2520:⁡ 2497:⟩ 2483:⟩ 2472:⁡ 2449:⟩ 2435:⟩ 2424:⁡ 2225:⟩ 2167:⟩ 2109:⟩ 2051:⟩ 2018:⟩ 2004:⟩ 1973:⟩ 1959:⟩ 1831:entangled 1671:dimension 1654:⟩ 1626:⟩ 1598:⟩ 1569:⟩ 1508:β 1485:α 1460:β 1440:α 1408:β 1383:⟩ 1343:α 1318:⟩ 1300:collapses 1286:⟩ 1275:β 1269:⟩ 1258:α 1244:Born rule 1207:β 1187:α 1156:β 1136:α 1112:⟩ 1084:⟩ 1056:⟩ 1045:β 1039:⟩ 1028:α 1008:ψ 976:⟩ 973:ψ 933:⟩ 905:⟩ 869:⟩ 841:⟩ 813:⟩ 785:⟩ 738:⟩ 710:⟩ 682:⟩ 671:β 665:⟩ 654:α 648:⟩ 645:ψ 602:composing 536:decoheres 487:Princeton 412:Google AI 410:In 2019, 337:black box 151:ion traps 107:measuring 14347:Category 14141:Timeline 13893:Ensemble 13873:Bayesian 13766:Collapse 13638:Glossary 13621:Timeline 13535:Category 13363:Graphics 13138:Security 12807:Compiler 12706:Networks 12603:Hardware 12355:dynamics 12173:OpenQASM 12149:Transmon 12026:Physical 11826:Quantum 11727:Grover's 11501:Holevo's 11474:Theorems 11424:timeline 11414:NISQ era 11324:Lectures 11039:15439711 10954:34885835 10716:New York 10606:85896383 10586:(2007). 10364:62280636 10241:(1994). 10231:59717455 10193:(2010). 10151:(2007). 10070:(2013). 9710:13980886 9615:38307065 9495:32438851 9438:33273064 9317:33273711 9272:7 August 9209:36083655 9107:35080972 8483:: 4–18. 8437:32848227 8372:23783610 8153:15439711 8049:37225885 7760:19905613 7707:64536201 7699:28905917 7568:11326499 7481:Springer 7362:13403194 7225:61401925 7118:12 April 7091:12 April 7064:12 April 7010:Sibos TV 6986:37316724 6977:10266970 6919:Archived 6791:Archived 6199:14255125 5900:38056497 5891:10830422 5824:Archived 5819:Phys.org 5733:The Hill 5706:31578480 5663:44098998 5496:31645734 5447:27 April 5434:31645734 5398:(7779). 5369:31645740 5228:31469277 5175:43496899 4874:16118245 4666:17187000 4658:19797653 4175:See also 4119:and the 3929:problems 3697:Jiuzhang 3609:, where 3571:such as 3515:helium-3 3370:database 3234:Key size 3221:dihedral 3132:for the 3119:collider 3061:and the 2764:of size 1367:, or to 1236:measured 1168:are the 1068:, where 598:matrices 570:coherent 538:. While 534:quickly 528:isolated 126:isolated 56:computer 14300:Related 14279:History 14018:Science 13850:Rydberg 13616:History 13545:Outline 12445:sensing 12425:network 12410:machine 12380:imaging 12328:circuit 12323:channel 12295:Quantum 12163:Quantum 12101:Kane QC 11960:Quantum 11888:Quantum 11817:PostBQP 11787:Quantum 11772:Simon's 11565:Quantum 11402:General 11309:, 2001 11201:Bibcode 11107:Bibcode 11056:Bibcode 11048:Science 11019:Bibcode 10926:Bibcode 10061:Sources 9702:9911677 9682:Bibcode 9587:Bibcode 9410:Bibcode 9392:Science 9297:Bibcode 9236:Science 9189:Bibcode 9134:Bibcode 9126:Physics 9098:8791606 9069:Bibcode 8957:Science 8846:4167494 8826:Bibcode 8779:Bibcode 8761:Quantum 8700:1943131 8616:Bibcode 8604:: 433. 8598:Quantum 8583:1258374 8495:Bibcode 8409:Bibcode 8350:Bibcode 8250:Bibcode 8242:Science 8133:Bibcode 8027:Bibcode 7954:Bibcode 7899:Bibcode 7805:Bibcode 7768:5187993 7740:Bibcode 7671:Bibcode 7548:Bibcode 7462:8258191 7413:3116149 7342:Bibcode 7272:Bibcode 7162:9816153 6956:Bibcode 6925:15 June 6613:Bibcode 6552:Bibcode 6506:Bibcode 6472:8990600 6444:Bibcode 6411:1503123 6383:Bibcode 6350:6197709 6330:Bibcode 6232:Bibcode 6169:Bibcode 5766:1 April 5738:11 July 5686:Bibcode 5641:Bibcode 5623:Quantum 5476:Bibcode 5414:Bibcode 5347:Bibcode 5278:Bibcode 5167:8688088 5139:Bibcode 5131:Science 5015:7457814 4925:1438116 4897:Bibcode 4729:Bibcode 4697:4 March 4630:Bibcode 4622:Science 4587:Bibcode 4533:Bibcode 4375:HPCwire 3519:nuclear 3513:, need 3415:tasks. 3153:attacks 3130:ammonia 3051:abelian 3001:Modern 1937:. Thus 1822:⁠ 1810:⁠ 1803:⁠ 1791:⁠ 1759:⁠ 1747:⁠ 1740:⁠ 1728:⁠ 1711:⁠ 1699:⁠ 1692:⁠ 1680:⁠ 1673:of the 1238:in the 590:vectors 483:Caltech 470:Harvard 208:photons 187:History 13993:Popper 12435:optics 12287:Fields 12181:IBM QX 12177:Qiskit 12116:NMR QC 12094:-based 11998:Steane 11969:Codes 11767:Shor's 11673:SARG04 11481:Bell's 11227:  11219:  11170:  11135:  11117:  11084:  11066:  11037:  10987:  10977:  10952:  10871:  10863:  10853:  10803:  10793:  10771:  10763:  10753:  10726:  10698:  10688:  10661:  10634:  10624:  10604:  10594:  10569:  10559:  10542:  10532:  10507:  10499:  10489:  10457:  10432:  10424:  10414:  10389:  10379:  10362:  10354:  10344:  10319:  10309:  10269:  10229:  10221:  10211:  10177:  10167:  10139:  10131:  10121:  10096:  10086:  10039:  9912:  9904:  9855:22 May 9846:  9708:  9700:  9613:  9605:  9548:  9540:  9501:  9493:  9485:  9444:  9436:  9428:  9323:  9315:  9289:Nature 9215:  9207:  9154:  9132:: 19. 9105:  9095:  9087:  9030:  9020:  8979:  8971:  8889:15 May 8844:  8767:: 79. 8698:  8642:  8634:  8581:  8573:  8522:  8443:  8435:  8427:  8391:Nature 8370:  8342:Nature 8321:  8313:  8278:  8260:  8225:  8174:17 May 8151:  8055:  8047:  8019:Nature 7972:  7919:  7870:  7862:  7766:  7758:  7705:  7697:  7689:  7653:Nature 7636:  7566:  7487:  7460:  7452:  7411:  7401:  7360:  7223:  7213:  7160:  7057:  6984:  6974:  6947:Nature 6841:  6765:  6757:  6709:  6666:  6631:  6578:  6570:  6470:  6462:  6409:  6401:  6348:  6295:  6285:  6250:  6197:  6179:  6131:  5906:  5898:  5888:  5880:  5852:Nature 5712:  5704:  5678:Nature 5661:  5629:: 79. 5529:  5502:  5494:  5458:Nature 5440:  5432:  5392:Nature 5367:  5339:Nature 5272:(15). 5234:  5226:  5218:  5173:  5165:  5157:  5094:  5013:  5003:  4970:676378 4968:  4958:  4923:  4915:  4872:  4862:  4747:  4664:  4656:  4648:  4605:  4559:  4551:  4506:  4479:  4469:  4442:  4434:  4056:PSPACE 4054:, and 3857:Theory 3720:Nature 3678:Summit 3640:anyons 3628:  3623:  3507:Google 3279:using 3195:, and 2918:anyons 2557:, and 1870:matrix 1785:. The 1781:, and 1128:, and 950:vector 616:from?" 596:, and 592:model 584:model 576:using 485:, and 454:  450:  271:qubits 172:, and 157:using 149:) and 99:binary 13903:Local 13845:Pauli 13835:Dirac 12948:Logic 12789:tools 12464:Other 12395:logic 12003:Toric 11446:Qubit 11225:S2CID 11191:arXiv 11168:S2CID 11133:S2CID 11082:S2CID 11035:S2CID 11009:arXiv 10985:S2CID 10950:S2CID 10916:arXiv 10869:S2CID 10833:arXiv 10812:(PDF) 10787:(PDF) 10769:S2CID 10505:S2CID 10475:(PDF) 10430:S2CID 10360:S2CID 10227:S2CID 10137:S2CID 9910:S2CID 9884:arXiv 9791:arXiv 9768:(PDF) 9725:arXiv 9706:S2CID 9672:arXiv 9577:arXiv 9546:S2CID 9499:S2CID 9442:S2CID 9400:arXiv 9321:S2CID 9213:S2CID 9179:arXiv 9152:S2CID 9059:arXiv 9028:S2CID 9000:arXiv 8977:S2CID 8932:arXiv 8842:S2CID 8816:arXiv 8769:arXiv 8736:arXiv 8678:arXiv 8640:S2CID 8606:arXiv 8579:S2CID 8551:arXiv 8485:arXiv 8460:arXiv 8441:S2CID 8399:arXiv 8319:S2CID 8276:S2CID 8223:S2CID 8205:arXiv 8149:S2CID 8123:arXiv 8053:S2CID 7989:arXiv 7970:S2CID 7944:arXiv 7868:S2CID 7842:arXiv 7795:arXiv 7764:S2CID 7730:arXiv 7703:S2CID 7661:arXiv 7634:S2CID 7614:arXiv 7564:S2CID 7538:arXiv 7509:arXiv 7458:S2CID 7409:S2CID 7381:arXiv 7358:S2CID 7332:arXiv 7264:DSNPR 7260:(PDF) 7221:S2CID 7169:(PDF) 7158:S2CID 7138:(PDF) 6879:Wired 6821:arXiv 6763:S2CID 6737:arXiv 6689:arXiv 6629:S2CID 6603:arXiv 6576:S2CID 6542:arXiv 6496:arXiv 6468:S2CID 6434:arXiv 6407:S2CID 6373:arXiv 6346:S2CID 6320:arXiv 6293:S2CID 6248:S2CID 6222:arXiv 6195:S2CID 6159:arXiv 5904:S2CID 5860:arXiv 5786:(PDF) 5710:S2CID 5659:S2CID 5631:arXiv 5579:arXiv 5500:S2CID 5466:arXiv 5438:S2CID 5404:arXiv 5232:S2CID 5198:arXiv 5171:S2CID 5074:arXiv 5011:S2CID 4966:S2CID 4921:S2CID 4870:S2CID 4842:arXiv 4805:arXiv 4756:(PDF) 4745:S2CID 4717:(PDF) 4685:[ 4662:S2CID 4603:S2CID 4557:S2CID 4440:S2CID 4412:(PDF) 4312:Notes 4199:IARPA 4124:that 3638:with 3551:(for 3451:wafer 2804:over 2738:from 766:qubit 757:qubit 491:DARPA 439:noise 134:noise 91:qubit 54:is a 12787:and 12660:Form 12656:Size 12541:List 12195:Cirq 12186:Quil 12092:Spin 11988:Shor 11668:BB84 11601:LOCC 11217:ISSN 10975:ISBN 10861:OCLC 10851:ISBN 10820:2022 10801:OCLC 10791:ISBN 10761:OCLC 10751:ISBN 10724:ISBN 10696:OCLC 10686:ISBN 10659:ISBN 10632:OCLC 10622:ISBN 10602:OCLC 10592:ISBN 10567:OCLC 10557:ISBN 10540:OCLC 10530:ISBN 10497:OCLC 10487:ISBN 10455:ISBN 10422:OCLC 10412:ISBN 10387:OCLC 10377:ISBN 10352:OCLC 10342:ISBN 10317:OCLC 10307:ISBN 10267:ISBN 10255:IEEE 10219:OCLC 10209:ISBN 10175:OCLC 10165:ISBN 10129:OCLC 10119:ISBN 10094:OCLC 10084:ISBN 9902:ISSN 9857:2020 9844:ISBN 9823:2019 9698:PMID 9611:PMID 9603:ISSN 9538:ISSN 9526:2020 9491:PMID 9483:ISSN 9434:PMID 9426:ISSN 9377:2020 9351:2020 9313:PMID 9274:2022 9205:PMID 9103:PMID 9085:ISSN 9018:ISBN 8969:ISSN 8917:2021 8910:NASA 8891:2020 8632:ISSN 8571:ISSN 8520:OCLC 8433:PMID 8425:ISSN 8368:PMID 8311:ISSN 8176:2021 8045:PMID 7917:ISSN 7860:ISSN 7756:PMID 7695:PMID 7687:ISSN 7485:ISBN 7450:ISSN 7399:ISBN 7211:ISBN 7120:2023 7093:2023 7066:2023 7055:ISSN 7032:link 7018:2021 6982:PMID 6927:2023 6839:ISBN 6755:ISSN 6707:ISBN 6664:ISBN 6652:IEEE 6568:ISSN 6460:ISSN 6399:ISSN 6283:ISBN 6129:ISBN 6012:2024 5986:2024 5960:2024 5934:2023 5896:PMID 5878:ISSN 5832:2023 5799:2023 5768:2022 5740:2021 5702:PMID 5564:2021 5538:2021 5527:ISSN 5492:PMID 5449:2022 5430:PMID 5365:PMID 5320:2021 5224:PMID 5216:ISSN 5163:PMID 5155:ISSN 5092:ISBN 5001:ISBN 4956:ISBN 4913:ISSN 4860:ISBN 4764:2019 4699:2013 4654:PMID 4646:ISSN 4549:ISSN 4504:ISBN 4477:OCLC 4467:ISBN 4432:ISSN 4382:2023 4341:The 4208:IonQ 3872:Any 3833:and 3685:USTC 3605:and 3555:and 3517:, a 3509:and 3491:time 3426:and 3095:and 3049:for 2565:CNOT 2517:CNOT 2469:CNOT 2421:CNOT 2295:CNOT 2283:The 1985:and 1452:and 1148:and 1096:and 992:ket 917:and 853:and 797:and 722:and 554:and 522:and 435:NISQ 425:The 416:NASA 414:and 403:and 376:and 301:and 293:and 269:for 267:bits 222:and 202:The 12313:bus 12009:gnu 11973:CSS 11850:XEB 11812:QMA 11807:QIP 11802:EQP 11797:BQP 11777:VQE 11732:HHL 11536:PBR 11341:by 11288:: " 11209:doi 11158:doi 11125:doi 11074:doi 11052:270 11027:doi 10967:doi 10942:hdl 10934:doi 10843:doi 10743:doi 10678:doi 10651:doi 10522:doi 10479:doi 10447:doi 10404:doi 10334:doi 10299:doi 10259:doi 10201:doi 10157:doi 10111:doi 10076:doi 10047:doi 9894:doi 9690:doi 9595:doi 9573:132 9530:doi 9473:doi 9418:doi 9396:370 9305:doi 9293:588 9244:doi 9240:377 9197:doi 9175:129 9142:doi 9093:PMC 9077:doi 9010:doi 8961:doi 8834:doi 8787:doi 8688:doi 8624:doi 8561:doi 8417:doi 8395:584 8358:doi 8346:498 8303:doi 8299:121 8268:doi 8246:270 8215:doi 8141:doi 8035:doi 8023:617 7962:doi 7907:doi 7895:303 7852:doi 7838:143 7813:doi 7748:doi 7726:103 7679:doi 7657:549 7624:doi 7556:doi 7440:doi 7391:doi 7350:doi 7303:doi 7203:doi 7150:doi 6972:PMC 6964:doi 6952:618 6831:doi 6747:doi 6699:doi 6656:doi 6621:doi 6560:doi 6514:doi 6452:doi 6430:227 6391:doi 6338:doi 6275:doi 6240:doi 6187:doi 5886:PMC 5870:doi 5856:626 5694:doi 5682:574 5649:doi 5484:doi 5462:574 5422:doi 5396:574 5355:doi 5343:574 5286:doi 5208:doi 5194:119 5147:doi 5135:273 5084:doi 4993:doi 4948:doi 4905:doi 4893:400 4852:doi 4815:doi 4737:doi 4638:doi 4626:326 4595:doi 4541:doi 4424:doi 4420:118 3941:BPP 3933:BQP 3759:If 3737:GPU 3557:MRI 3553:NMR 3511:IBM 3453:of 3237:). 3189:RSA 3082:BQP 2872:An 1638:or 1302:to 1199:or 994:psi 889:of 475:MIT 448:... 374:RSA 261:As 161:). 95:bit 41:IBM 14364:: 12658:/ 12200:Q# 11305:, 11299:, 11223:. 11215:. 11207:. 11199:. 11185:. 11166:. 11152:. 11148:. 11131:. 11123:. 11113:. 11103:21 11101:. 11080:. 11072:. 11062:. 11050:. 11033:. 11025:. 11017:. 11005:48 11003:. 10983:. 10973:. 10948:. 10940:. 10932:. 10924:. 10910:. 10902:; 10898:; 10894:; 10890:; 10867:. 10859:. 10849:. 10841:. 10831:. 10799:. 10767:. 10759:. 10749:. 10722:. 10718:: 10714:. 10694:. 10684:. 10676:. 10657:. 10630:. 10600:. 10582:; 10565:. 10538:. 10528:. 10520:. 10503:. 10495:. 10485:. 10477:. 10453:. 10428:. 10420:. 10410:. 10385:. 10358:. 10350:. 10340:. 10315:. 10305:. 10265:. 10253:: 10249:. 10245:. 10225:. 10217:. 10207:. 10189:; 10173:. 10163:. 10155:. 10135:. 10127:. 10117:. 10092:. 10082:. 10045:. 10033:26 10031:. 10027:. 9908:. 9900:. 9892:. 9878:. 9874:. 9814:. 9776:63 9774:. 9770:. 9748:. 9704:. 9696:. 9688:. 9680:. 9668:51 9666:. 9647:. 9609:. 9601:. 9593:. 9585:. 9571:. 9567:. 9544:. 9536:. 9524:. 9520:. 9497:. 9489:. 9481:. 9469:29 9467:. 9463:. 9440:. 9432:. 9424:. 9416:. 9408:. 9394:. 9368:. 9342:. 9319:. 9311:. 9303:. 9291:. 9264:. 9242:. 9238:. 9234:. 9211:. 9203:. 9195:. 9187:. 9173:. 9150:. 9140:. 9130:15 9128:. 9124:. 9101:. 9091:. 9083:. 9075:. 9067:. 9053:. 9049:. 9026:. 9016:. 9008:. 8975:. 8967:. 8959:. 8955:. 8908:. 8882:. 8863:. 8840:. 8832:. 8824:. 8812:14 8810:. 8785:. 8777:. 8763:. 8759:. 8717:. 8696:MR 8694:. 8686:. 8674:40 8672:. 8664:; 8660:; 8638:. 8630:. 8622:. 8614:. 8600:. 8577:. 8569:. 8559:. 8547:12 8545:. 8541:. 8518:. 8493:. 8439:. 8431:. 8423:. 8415:. 8407:. 8393:. 8389:. 8366:. 8356:. 8344:. 8340:. 8317:. 8309:. 8301:. 8297:. 8274:. 8266:. 8256:. 8244:. 8221:. 8213:. 8199:. 8193:. 8147:. 8139:. 8131:. 8119:48 8117:. 8096:. 8065:^ 8051:. 8043:. 8033:. 8021:. 8017:. 8003:^ 7968:. 7960:. 7952:. 7940:12 7938:. 7915:. 7905:. 7893:. 7889:. 7866:. 7858:. 7850:. 7836:. 7811:. 7803:. 7791:94 7789:. 7785:. 7762:. 7754:. 7746:. 7738:. 7724:. 7701:. 7693:. 7685:. 7677:. 7669:. 7655:. 7632:. 7622:. 7612:. 7610:11 7608:. 7604:. 7585:. 7562:. 7554:. 7546:. 7534:35 7532:. 7479:. 7456:. 7448:. 7434:. 7430:. 7407:. 7397:. 7389:. 7356:. 7348:. 7340:. 7328:26 7326:. 7297:. 7293:. 7268:44 7266:. 7262:. 7219:. 7209:. 7189:^ 7156:. 7146:19 7144:. 7140:. 7110:. 7083:. 7053:. 7049:. 7028:}} 7024:{{ 7008:. 6980:. 6970:. 6962:. 6950:. 6944:. 6917:. 6911:. 6877:. 6853:^ 6837:. 6829:. 6815:: 6811:. 6789:. 6775:^ 6761:. 6753:. 6745:. 6733:16 6731:. 6705:. 6697:. 6662:. 6650:. 6627:. 6619:. 6611:. 6599:92 6597:. 6574:. 6566:. 6558:. 6550:. 6538:12 6536:. 6512:. 6504:. 6492:12 6490:. 6466:. 6458:. 6450:. 6442:. 6428:. 6405:. 6397:. 6389:. 6381:. 6369:50 6367:. 6344:. 6336:. 6328:. 6316:68 6314:. 6291:. 6281:. 6269:. 6246:. 6238:. 6230:. 6218:80 6216:. 6193:. 6185:. 6175:. 6167:. 6155:80 6067:^ 6052:^ 6003:. 5977:. 5950:. 5925:. 5902:. 5894:. 5884:. 5876:. 5868:. 5854:. 5850:. 5822:. 5816:. 5788:. 5757:. 5731:. 5708:. 5700:. 5692:. 5680:. 5657:. 5647:. 5639:. 5625:. 5621:. 5605:^ 5555:. 5525:. 5521:. 5498:. 5490:. 5482:. 5474:. 5460:. 5436:. 5428:. 5420:. 5412:. 5394:. 5390:. 5377:^ 5363:. 5353:. 5341:. 5337:. 5311:. 5307:. 5284:. 5270:80 5268:. 5244:^ 5230:. 5222:. 5214:. 5206:. 5192:. 5169:. 5161:. 5153:. 5145:. 5133:. 5121:^ 5106:^ 5090:. 5082:. 5009:. 4999:. 4987:. 4964:. 4954:. 4942:. 4919:. 4911:. 4903:. 4891:. 4868:. 4858:. 4850:. 4836:. 4813:. 4795:; 4784:^ 4743:. 4735:. 4725:21 4723:. 4719:. 4660:. 4652:. 4644:. 4636:. 4624:. 4601:. 4593:. 4583:22 4581:. 4569:^ 4555:. 4547:. 4539:. 4529:41 4527:. 4475:. 4461:. 4438:. 4430:. 4418:. 4414:. 4373:. 4052:NP 4050:, 4035:. 3905:. 3695:, 3642:, 3449:A 3430:. 3215:. 3191:, 3014:. 2928:A 2912:A 2864:. 2844:A 2745:A 2590:10 2576:11 2542:11 2528:10 2509:, 2494:01 2480:01 2461:, 2446:00 2432:00 2298::= 2228::= 2222:11 2170::= 2164:10 2112::= 2106:01 2054::= 2048:00 1882::= 1819:√2 1808:+ 1800:√2 1777:, 1773:, 1756:√2 1745:+ 1737:√2 1708:√2 1697:+ 1689:√2 945:. 588:, 580:. 562:. 481:, 477:, 347:. 313:. 258:. 50:A 13589:e 13582:t 13575:v 12596:. 12576:e 12569:t 12562:v 12272:e 12265:t 12258:v 12188:– 12179:– 12175:– 11876:2 11873:T 11866:1 11863:T 11387:e 11380:t 11373:v 11240:. 11231:. 11211:: 11203:: 11193:: 11187:6 11174:. 11160:: 11154:1 11139:. 11127:: 11109:: 11088:. 11076:: 11058:: 11041:. 11029:: 11021:: 11011:: 10969:: 10956:. 10944:: 10936:: 10928:: 10918:: 10912:2 10875:. 10845:: 10835:: 10822:. 10775:. 10745:: 10732:. 10702:. 10680:: 10667:. 10653:: 10638:. 10608:. 10573:. 10546:. 10524:: 10511:. 10481:: 10463:. 10449:: 10436:. 10406:: 10393:. 10366:. 10336:: 10323:. 10301:: 10275:. 10261:: 10233:. 10203:: 10181:. 10159:: 10143:. 10113:: 10100:. 10078:: 10053:. 10049:: 9916:. 9896:: 9886:: 9880:3 9859:. 9825:. 9799:. 9793:: 9752:. 9733:. 9727:: 9712:. 9692:: 9684:: 9674:: 9651:. 9617:. 9597:: 9589:: 9579:: 9552:. 9532:: 9505:. 9475:: 9448:. 9420:: 9412:: 9402:: 9379:. 9353:. 9327:. 9307:: 9299:: 9276:. 9250:. 9246:: 9219:. 9199:: 9191:: 9181:: 9158:. 9144:: 9136:: 9109:. 9079:: 9071:: 9061:: 9055:8 9034:. 9012:: 9002:: 8983:. 8963:: 8940:. 8934:: 8919:. 8893:. 8867:. 8848:. 8836:: 8828:: 8818:: 8795:. 8789:: 8781:: 8771:: 8765:2 8744:. 8738:: 8723:. 8702:. 8690:: 8680:: 8646:. 8626:: 8618:: 8608:: 8602:5 8585:. 8563:: 8553:: 8526:. 8501:. 8497:: 8487:: 8468:. 8462:: 8447:. 8419:: 8411:: 8401:: 8374:. 8360:: 8352:: 8325:. 8305:: 8282:. 8270:: 8252:: 8229:. 8217:: 8207:: 8201:4 8178:. 8155:. 8143:: 8135:: 8125:: 8102:. 8059:. 8037:: 8029:: 7997:. 7991:: 7976:. 7964:: 7956:: 7946:: 7923:. 7909:: 7901:: 7874:. 7854:: 7844:: 7821:. 7815:: 7807:: 7797:: 7770:. 7750:: 7742:: 7732:: 7709:. 7681:: 7673:: 7663:: 7640:. 7626:: 7616:: 7589:. 7570:. 7558:: 7550:: 7540:: 7517:. 7511:: 7493:. 7464:. 7442:: 7436:4 7415:. 7393:: 7383:: 7364:. 7352:: 7344:: 7334:: 7311:. 7305:: 7299:1 7278:. 7274:: 7227:. 7205:: 7152:: 7122:. 7095:. 7068:. 7034:) 6988:. 6966:: 6958:: 6929:. 6881:. 6847:. 6833:: 6823:: 6769:. 6749:: 6739:: 6715:. 6701:: 6691:: 6672:. 6658:: 6635:. 6623:: 6615:: 6605:: 6582:. 6562:: 6554:: 6544:: 6520:. 6516:: 6508:: 6498:: 6474:. 6454:: 6446:: 6436:: 6413:. 6393:: 6385:: 6375:: 6352:. 6340:: 6332:: 6322:: 6299:. 6277:: 6254:. 6242:: 6234:: 6224:: 6201:. 6189:: 6171:: 6161:: 6137:. 6014:. 5988:. 5962:. 5936:. 5910:. 5872:: 5862:: 5834:. 5801:. 5770:. 5742:. 5716:. 5696:: 5688:: 5665:. 5651:: 5643:: 5633:: 5627:2 5587:. 5581:: 5566:. 5540:. 5506:. 5486:: 5478:: 5468:: 5451:. 5424:: 5416:: 5406:: 5371:. 5357:: 5349:: 5322:. 5292:. 5288:: 5280:: 5238:. 5210:: 5200:: 5177:. 5149:: 5141:: 5100:. 5086:: 5076:: 5042:. 5017:. 4995:: 4972:. 4950:: 4927:. 4907:: 4899:: 4876:. 4854:: 4844:: 4821:. 4817:: 4807:: 4766:. 4739:: 4731:: 4701:. 4668:. 4640:: 4632:: 4609:. 4597:: 4589:: 4563:. 4543:: 4535:: 4512:. 4483:. 4446:. 4426:: 4384:. 4349:. 4149:P 4146:Q 4143:B 4137:P 4134:N 4101:E 4098:C 4095:A 4092:P 4089:S 4086:P 4080:P 4077:Q 4074:B 4068:P 4048:P 4017:P 4014:P 4011:B 4005:P 4002:Q 3999:B 3975:P 3972:Q 3969:B 3963:P 3960:P 3957:B 3814:" 3626:3 3619:L 3615:L 3611:L 3607:L 3603:L 3549:2 3546:T 3329:) 3326:n 3323:( 3300:) 3295:n 3290:( 3287:O 3263:n 2812:n 2790:n 2786:2 2777:n 2773:2 2666:0 2662:| 2638:1 2634:| 2613:X 2586:| 2582:= 2572:| 2538:| 2534:= 2524:| 2490:| 2486:= 2476:| 2442:| 2438:= 2428:| 2401:. 2396:) 2390:0 2385:1 2380:0 2375:0 2368:1 2363:0 2358:0 2353:0 2346:0 2341:0 2336:1 2331:0 2324:0 2319:0 2314:0 2309:1 2303:( 2271:. 2266:) 2260:1 2253:0 2246:0 2239:0 2233:( 2218:| 2213:; 2208:) 2202:0 2195:1 2188:0 2181:0 2175:( 2160:| 2155:; 2150:) 2144:0 2137:0 2130:1 2123:0 2117:( 2102:| 2097:; 2092:) 2086:0 2079:0 2072:0 2065:1 2059:( 2044:| 2030:. 2015:0 2011:| 2007:= 2001:1 1997:| 1993:X 1970:1 1966:| 1962:= 1956:0 1952:| 1948:X 1921:. 1916:) 1910:0 1905:1 1898:1 1893:0 1887:( 1879:X 1840:n 1816:/ 1813:1 1797:/ 1794:1 1753:/ 1750:1 1734:/ 1731:1 1705:/ 1702:1 1686:/ 1683:1 1651:1 1647:| 1623:0 1619:| 1595:1 1591:| 1585:2 1579:/ 1575:1 1572:+ 1566:0 1562:| 1556:2 1550:/ 1546:1 1526:1 1523:= 1518:2 1513:| 1504:| 1500:+ 1495:2 1490:| 1481:| 1418:2 1413:| 1404:| 1380:1 1376:| 1353:2 1348:| 1339:| 1315:0 1311:| 1283:1 1279:| 1272:+ 1266:0 1262:| 1173:, 1109:1 1105:| 1081:0 1077:| 1053:1 1049:| 1042:+ 1036:0 1032:| 998:' 989:' 969:| 930:1 926:| 902:0 898:| 866:1 862:| 838:0 834:| 810:1 806:| 782:0 778:| 750:. 735:1 731:| 707:0 703:| 679:1 675:| 668:+ 662:0 658:| 651:= 641:| 433:( 361:. 214:. 195:. 20:)

Index

Quantum computation

Quantum System One
IBM
superconducting qubits
computer
quantum mechanical
both particles and waves
Classical physics
exponentially
break widely used encryption schemes
physical simulations
unit of information
qubit
bit
binary
superposition
measuring
probabilistic output
wave interference
quantum algorithms
isolated
quantum decoherence
noise
superconductors
electrical current
electrical resistance
ion traps
atomic particle
electromagnetic fields

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑