Knowledge

Electromagnetic field

Source 📝

954: 1520: 908:. Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lorentz force law states that a charge subject to an electric field feels a force along the direction of the field, and a charge moving through a magnetic field feels a force that is perpendicular both to the magnetic field and to its direction of motion. 61: 1799: 1739:
moves against a background of positively charged ions, and the densities of positive and negative charges cancel each other out. A test charge near the wire would feel no electrical force from the wire. However, if the test charge is in motion parallel to the current, the situation changes. In the rest frame of the test charge, the positive and negative charges in the wire are moving at different speeds, and so the positive and negative charge distributions are
3006: 1743:
by different amounts. Consequently, the wire has a nonzero net charge density, and the test charge must experience a nonzero electric field and thus a nonzero force. In the rest frame of the laboratory, there is no electric field to explain the test charge being pulled towards or pushed away from the
1759:
Thus, electrostatics and magnetostatics are now seen as studies of the static EM field when a particular frame has been selected to suppress the other type of field, and since an EM field with both electric and magnetic will appear in any other frame, these "simpler" effects are merely a consequence
1485:
is the current density vector, also a function of time and position. Inside a linear material, Maxwell's equations change by switching the permeability and permittivity of free space with the permeability and permittivity of the linear material in question. Inside other materials which possess more
2271:
The potential effects of electromagnetic fields on human health vary widely depending on the frequency, intensity of the fields, and the length of the exposure. Low frequency, low intensity, and short duration exposure to electromagnetic radiation is generally considered safe. On the other hand,
1738:
makes mathematically precise. For example, suppose that a laboratory contains a long straight wire that carries an electrical current. In the frame of reference where the laboratory is at rest, the wire is motionless and electrically neutral: the current, composed of negatively charged electrons,
1778:
The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the
1751:
In general, a situation that one observer describes using only an electric field will be described by an observer in a different inertial frame using a combination of electric and magnetic fields. Analogously, a phenomenon that one observer describes using only a magnetic field will be, in a
981:
as well as an electric field are produced when the charge moves, creating an electric current with respect to this observer. Over time, it was realized that the electric and magnetic fields are better thought of as two parts of a greater whole—the electromagnetic field. In 1820,
1392: 1535:
The Maxwell equations simplify when the charge density at each point in space does not change over time and all electric currents likewise remain constant. All of the time derivatives vanish from the equations, leaving two expressions that involve the electric field,
986:
showed that an electric current can deflect a nearby compass needle, establishing that electricity and magnetism are closely related phenomena. Faraday then made the seminal observation that time-varying magnetic fields could induce electric currents in 1831.
2111: 1999: 1021:
Practical applications of the new understanding of electromagnetic fields emerged in the late 1800s. The electrical generator and motor were invented using only the empirical findings like Faraday's and Ampere's laws combined with practical experience.
1760:
of different frames of measurement. The fact that the two field variations can be reproduced just by changing the motion of the observer is further evidence that there is only a single actual field involved which is simply being observed differently.
891:. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an 969:, that two objects carrying charge of the same sign repel each other, that two objects carrying charges of opposite sign attract one another, and that the strength of this force falls off as the square of the distance between them. 1295: 965:, who around 600 BCE described his experiments rubbing fur of animals on various materials such as amber creating static electricity. By the 18th century, it was understood that objects can carry positive or negative 1193: 1582: 1702: 1306: 2891: 1040:. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as 1619: 2005: 1893: 1653: 1233: 2876: 1786:
Ampere's Law roughly states that "an electrical current around a loop creates a magnetic field through the loop". Thus, this law can be applied to generate a magnetic field and run an
1442: 1010:. The Lorentz theory works for free charges in electromagnetic fields, but fails to predict the energy spectrum for bound charges in atoms and molecules. For that problem, 1473: 2955: 1875: 1415: 998:
is an electromagnetic wave. Maxwell's continuous field theory was very successful until evidence supporting the atomic model of matter emerged. Beginning in 1877,
1299: 2127:. This unified the physical understanding of electricity, magnetism, and light: visible light is but one portion of the full range of electromagnetic waves, the 1117:. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using 1031: 618: 2234:. Otherwise, they appear parasitically around conductors which absorb EMR, and around antennas which have the purpose of generating EMR at greater distances. 1539: 1244: 1036:
There are different mathematical ways of representing the electromagnetic field. The first one views the electric and magnetic fields as three-dimensional
1752:
relatively moving reference frame, described by a combination of fields. The rules for relating the fields required in different reference frames are the
2811: 591: 2902: 1658: 1753: 1721: 603: 2684: 1150: 2165:(EMR) since it radiates from the charges and currents in the source. Such radiation can occur across a wide range of frequencies called the 2200:
A notable application of visible light is that this type of energy from the Sun powers all life on Earth that either makes or uses oxygen.
1132:. Maxwell's equations can be written in tensor form, generally viewed by physicists as a more elegant means of expressing physical laws. 994:
synthesized all the work to date on electrical and magnetic phenomena into a single mathematical theory, from which he then deduced that
977:. An electric field is produced when the charge is stationary with respect to an observer measuring the properties of the charge, and a 854: 623: 1237: 2349: 932: 1734:
Whether a physical effect is attributable to an electric field or to a magnetic field is dependent upon the observer, in a way that
2294: 1587: 1387:{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\mathbf {J} +\mu _{0}\varepsilon _{0}{\frac {\partial \mathbf {E} }{\partial t}}} 633: 1624: 961:
The empirical investigation of electromagnetism is at least as old as the ancient Greek philosopher, mathematician and scientist
3010: 458: 17: 2823: 2794: 2698: 2645: 473: 468: 95: 1496:
When a field travels across to different media, the behavior of the field changes according to the properties of the media.
953: 2373: 2266: 483: 2546: 2519: 2673: 2492: 900:
The way in which charges and currents (i.e. streams of charges) interact with the electromagnetic field is described by
2940: 2805: 2708:
Stauffer, Robert C. (1957). "Speculation and experiment in the background of Oersted's discovery of electromagnetism".
2756: 948: 85: 2106:{\displaystyle \left(\nabla ^{2}-{1 \over {c}^{2}}{\partial ^{2} \over \partial t^{2}}\right)\mathbf {B} \ \ =\ \ 0} 1994:{\displaystyle \left(\nabla ^{2}-{1 \over {c}^{2}}{\partial ^{2} \over \partial t^{2}}\right)\mathbf {E} \ \ =\ \ 0} 353: 2659: 38: 2631: 1204: 268: 2775: 1725: 1486:
complex responses to electromagnetic fields, these terms are often represented by complex numbers, or tensors.
924: 847: 613: 90: 919:. This theory describes many macroscopic physical phenomena accurately. However, it was unable to explain the 1884: 1811: 1769: 628: 333: 1197: 493: 233: 100: 2119:
was the first to obtain this relationship by his completion of Maxwell's equations with the addition of a
1773: 223: 2309: 786: 661: 558: 533: 453: 1139:(electromagnetic fields), is governed by Maxwell's equations. In the vector field formalism, these are: 2665: 2595: 2197:. The many commercial applications of these radiations are discussed in the named and linked articles. 286: 1420: 3026: 2314: 2242: 2162: 2156: 2124: 1135:
The behavior of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or
912: 840: 801: 328: 318: 258: 253: 193: 2834: 2319: 2273: 2166: 2128: 338: 2245:
devices. These include motors and electrical transformers at low frequencies, and devices such as
983: 771: 273: 2354: 1015: 936: 651: 178: 168: 163: 776: 746: 2637: 2334: 1842: 1729: 1118: 916: 901: 598: 368: 143: 2853: 1451: 696: 383: 373: 323: 2981:(This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society.) 2655: 2339: 2120: 1860: 1850: 1400: 920: 893: 821: 721: 686: 438: 303: 203: 188: 123: 60: 8: 2950: 2116: 1803: 1740: 1476: 1445: 1114: 1104: 991: 879:, mathematical functions of position and time, representing the influences on and due to 781: 761: 756: 563: 548: 433: 403: 298: 228: 31: 2383: 2203:
A changing electromagnetic field which is physically close to currents and charges (see
2972: 2930: 2898: 2735: 2727: 2688: 2623: 2231: 2204: 2152: 2140: 1780: 1735: 1290:{\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}} 1125: 656: 396: 198: 158: 478: 2976: 2936: 2819: 2790: 2771: 2752: 2739: 2694: 2669: 2641: 2556: 2529: 2502: 2186: 2144: 1519: 1490: 1011: 962: 928: 905: 716: 2480: 2964: 2807:
The 2007 recommendations of the International Commission on Radiological Protection
2719: 2324: 2304: 2241:
dipole fields (i.e., magnetic near-fields) are used commercially for many types of
2230:
dipole fields, as such, are used commercially as near-fields mainly as a source of
2148: 816: 731: 691: 681: 568: 523: 506: 423: 358: 128: 52: 1527:
suspended over an infinite sheet of conducting material. The field is depicted by
883:. The field at any point in space and time can be regarded as a combination of an 2619: 2216: 2212: 1524: 1136: 999: 970: 966: 880: 751: 676: 671: 538: 413: 378: 238: 138: 2161:
An electromagnetic field very far from currents and charges (sources) is called
791: 2710: 2468: 2329: 2299: 2250: 1829: 1819: 1793: 1787: 1709: 1705: 1514: 1510: 1143: 1091: 1064: 978: 974: 888: 884: 876: 711: 706: 528: 418: 343: 293: 243: 216: 173: 148: 118: 111: 3020: 2992:. New York: Random House. Ch. 3, §§ "Force", "Matter", and "The Higgs Field". 2627: 2182: 1846: 1003: 826: 811: 796: 736: 448: 363: 348: 263: 248: 153: 2561: 2985: 2968: 1188:{\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}} 1037: 806: 701: 666: 608: 543: 463: 428: 308: 183: 1493:
governs the interaction of the electromagnetic field with charged matter.
2872: 2277: 1798: 726: 578: 408: 70: 1708:, which focuses on situations where electrical charges do not move, and 1577:{\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\epsilon _{0}}}} 2584: 2170: 1854: 1815: 1807: 1528: 443: 2731: 2219:. This type of dipole field near sources is called an electromagnetic 1763: 2953:(1 January 1865). "A Dynamical Theory of the Electromagnetic Field". 2281: 2194: 2174: 766: 741: 553: 75: 1744:
wire. So, an observer in the laboratory rest frame concludes that a
2877:
United States National Institute for Occupational Safety and Health
2815: 2723: 2178: 1838:, are perpendicular to each other and the direction of propagation. 1103:) is non-zero, and is constant in time, the field is said to be an 1007: 518: 513: 133: 1810:
propagating parallel to the z-axis is a possible solution for the
1531:, lines which follow the direction of the electric field in space. 1417:
is the charge density, which is a function of time and position,
1113:) is non-zero and is constant in time, the field is said to be a 488: 2604:, pp. 61–79, §4. Quantities used in radiological protection 2134: 1697:{\displaystyle \nabla \times \mathbf {B} =\mu _{0}\mathbf {J} .} 3005: 2935:(3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. 2507: 2344: 2208: 2190: 1129: 573: 80: 27:
Electric and magnetic fields produced by moving charged objects
2422: 2410: 2284:, are known to cause significant harm in some circumstances. 995: 1853:. In a volume of space not containing charges or currents ( 1794:
Behavior of the fields in the absence of charges or currents
1715: 973:
visualized this in terms of the charges interacting via the
927:, experiments at the atomic scale. That required the use of 2890: 2590: 2534: 2246: 2897:(Report). Norfolk, Virginia: Environmental Health Center, 1002:
developed an atomic model of electromagnetism and in 1897
2956:
Philosophical Transactions of the Royal Society of London
2388: 2254: 1883:
are zero, the electric and magnetic fields satisfy these
1621:
along with two formulae that involve the magnetic field:
2434: 1849:. The solutions of these equations take the form of an 2211:
characteristic that is dominated by either a changing
1032:
Mathematical descriptions of the electromagnetic field
2683:
Ling, Samuel J.; Moebs, William; Sanny, Jeff (2023).
2008: 1896: 1863: 1661: 1627: 1590: 1542: 1454: 1423: 1403: 1309: 1247: 1207: 1153: 957:
Results of Michael Faraday's iron filings experiment.
2685:"16.1 Maxwell's Equations and Electromagnetic Waves" 2618: 2552: 2525: 2498: 2446: 2379: 1504: 1128:, physical laws became amenable to the formalism of 2457: 1764:
Reciprocal behavior of electric and magnetic fields
2105: 1993: 1869: 1696: 1647: 1613: 1576: 1467: 1436: 1409: 1386: 1289: 1227: 1187: 2573: 2399: 1722:Classical electromagnetism and special relativity 3018: 1712:, the corresponding area of magnetic phenomena. 1014:is needed, ultimately leading to the theory of 2682: 2394: 2135:Time-varying EM fields in Maxwell's equations 1704:These expressions are the basic equations of 1614:{\displaystyle \nabla \times \mathbf {E} =0,} 848: 2654: 2540: 2513: 2440: 2428: 2416: 1648:{\displaystyle \nabla \cdot \mathbf {B} =0} 1228:{\displaystyle \nabla \cdot \mathbf {B} =0} 1025: 2854:"A Timeline of Events in Electromagnetism" 2765: 2486: 1499: 911:The electromagnetic field is described by 855: 841: 59: 2928: 2873:"NIOSH Fact Sheet: EMFs in the Workplace" 2852: 2746: 2474: 2452: 2350:Quantization of the electromagnetic field 2207:for a definition of "close") will have a 1716:Transformations of electromagnetic fields 1107:. Similarly, if only the magnetic field ( 933:quantization of the electromagnetic field 2803: 2707: 2601: 2463: 2295:Classification of electromagnetic fields 1797: 1518: 952: 2949: 1006:completed experiments that defined the 604:Electromagnetism and special relativity 37:For the British hacker convention, see 14: 3019: 2832: 2405: 2871: 2784: 2579: 2567: 2257:scanner coils at higher frequencies. 1754:Lorentz transformations of the fields 624:Maxwell equations in curved spacetime 2768:Schaum's Outline of Electromagnetics 2553:Feynman, Leighton & Sands (1970) 2526:Feynman, Leighton & Sands (1970) 2499:Feynman, Leighton & Sands (1970) 2380:Feynman, Leighton & Sands (1970) 2267:Electromagnetic radiation and health 2260: 1523:Electric field of a positive point 24: 2984: 2921: 2591:Ultraviolet Radiation Guide (1992) 2325:Electromagnetic field measurements 2272:radiation from other parts of the 2059: 2049: 2015: 1947: 1937: 1903: 1662: 1628: 1591: 1543: 1375: 1365: 1310: 1278: 1268: 1248: 1208: 1154: 25: 3038: 2998: 1505:Electrostatics and magnetostatics 949:History of electromagnetic theory 3004: 2489:, Examples and practice problems 2081: 1969: 1687: 1669: 1635: 1598: 1550: 1437:{\displaystyle \varepsilon _{0}} 1369: 1335: 1317: 1272: 1255: 1215: 1161: 39:Electromagnetic Field (festival) 2932:Introduction to Electrodynamics 2789:(2nd ed.). Prentice Hall. 2787:Field and Wave Electromagnetics 2633:The Feynman Lectures on Physics 2766:Edminister, Joseph A. (1995). 2395:Ling, Moebs & Sanny (2023) 1885:electromagnetic wave equations 1812:electromagnetic wave equations 1726:Electromagnetic four-potential 925:atomic absorption spectroscopy 13: 1: 2835:"Electricity & Magnetism" 2770:(2nd ed.). McGraw-Hill. 2570:, Intermediate-level textbook 2477:, Intermediate-level textbook 2361: 629:Relativistic electromagnetism 2929:Griffiths, David J. (1999). 2901:. April 1992. Archived from 2747:Wangsness, Roald K. (1986). 2366: 1097:If only the electric field ( 7: 2892:Ultraviolet Radiation Guide 2310:Electromagnetic propagation 2287: 10: 3043: 2804:Valentin, J., ed. (2007). 2666:Cambridge University Press 2658:; Morin, David J. (2012). 2611: 2541:Purcell & Morin (2012) 2514:Purcell & Morin (2012) 2441:Purcell & Morin (2012) 2429:Purcell & Morin (2012) 2417:Purcell & Morin (2012) 2264: 2138: 1845:can be combined to derive 1770:Faraday's law of induction 1767: 1719: 1508: 1029: 946: 942: 354:Liénard–Wiechert potential 36: 29: 2841:. Northwestern University 2814:publication 103. Oxford: 2693:. Vol. 2. OpenStax. 2661:Electricity and Magnetism 2315:Electromagnetic radiation 2163:electromagnetic radiation 2157:Electromagnetic induction 1198:Gauss's law for magnetism 913:classical electrodynamics 619:Mathematical descriptions 329:Electromagnetic radiation 319:Electromagnetic induction 259:Magnetic vector potential 254:Magnetic scalar potential 2990:The Fabric of the Cosmos 2785:Cheng, David K. (1989). 2320:Electromagnetic spectrum 2274:electromagnetic spectrum 2167:electromagnetic spectrum 2129:electromagnetic spectrum 1468:{\displaystyle \mu _{0}} 1026:Mathematical description 30:Not to be confused with 2751:(2nd ed.). Wiley. 2355:Quantum electrodynamics 1748:field must be present. 1500:Properties of the field 1016:quantum electrodynamics 937:quantum electrodynamics 935:and the development of 169:Electrostatic induction 164:Electrostatic discharge 2969:10.1098/rstl.1865.0008 2833:Taylor, David (2012). 2749:Electromagnetic Fields 2638:Addison Wesley Longman 2125:Ampere's circuital law 2107: 1995: 1871: 1839: 1774:Ampère's circuital law 1730:Electromagnetic tensor 1698: 1649: 1615: 1578: 1532: 1469: 1438: 1411: 1388: 1291: 1229: 1189: 958: 917:classical field theory 599:Electromagnetic tensor 18:Electromagnetic fields 3011:Electromagnetic field 2108: 1996: 1872: 1870:{\displaystyle \rho } 1801: 1720:Further information: 1699: 1650: 1616: 1579: 1522: 1470: 1439: 1412: 1410:{\displaystyle \rho } 1389: 1292: 1230: 1190: 984:Hans Christian Ørsted 956: 869:electromagnetic field 592:Covariant formulation 384:Synchrotron radiation 324:Electromagnetic pulse 314:Electromagnetic field 3013:at Wikimedia Commons 2340:Photoelectric effect 2121:displacement current 2006: 1894: 1861: 1851:electromagnetic wave 1659: 1625: 1588: 1540: 1529:electric field lines 1452: 1421: 1401: 1307: 1245: 1205: 1151: 921:photoelectric effect 894:electromagnetic wave 634:Stress–energy tensor 559:Reluctance (complex) 304:Displacement current 2624:Leighton, Robert B. 2335:Maxwell's equations 2117:James Clerk Maxwell 1857:) – that is, where 1843:Maxwell's equations 1477:vacuum permeability 1446:vacuum permittivity 1124:With the advent of 1119:Maxwell's equations 1115:magnetostatic field 1105:electrostatic field 992:James Clerk Maxwell 931:, specifically the 902:Maxwell's equations 549:Magnetomotive force 434:Electromotive force 404:Alternating current 339:Jefimenko equations 299:Cyclotron radiation 32:Electromotive force 2899:United States Navy 2690:University Physics 2656:Purcell, Edward M. 2516:, pp. 259–263 2431:, pp. 277–296 2419:, pp. 436–437 2243:magnetic induction 2232:dielectric heating 2205:near and far field 2153:dielectric heating 2141:near and far field 2103: 1991: 1867: 1840: 1804:linearly polarized 1781:electric generator 1741:Lorentz-contracted 1736:special relativity 1694: 1645: 1611: 1574: 1533: 1465: 1434: 1407: 1384: 1300:Ampère–Maxwell law 1287: 1225: 1185: 1126:special relativity 959: 915:, an example of a 397:Electrical network 234:Gauss magnetic law 199:Static electricity 159:Electric potential 3009:Media related to 2825:978-0-7020-3048-2 2796:978-0-201-12819-2 2700:978-1-947172-27-2 2647:978-0-201-02115-8 2487:Edminister (1995) 2261:Health and safety 2187:ultraviolet light 2145:near field optics 2099: 2096: 2090: 2087: 2073: 2044: 1987: 1984: 1978: 1975: 1961: 1932: 1572: 1491:Lorentz force law 1382: 1285: 1183: 1012:quantum mechanics 963:Thales of Miletus 929:quantum mechanics 906:Lorentz force law 865: 864: 564:Reluctance (real) 534:Gyrator–capacitor 479:Resonant cavities 369:Maxwell equations 16:(Redirected from 3034: 3027:Electromagnetism 3008: 2993: 2980: 2946: 2916: 2914: 2913: 2907: 2896: 2887: 2885: 2884: 2868: 2866: 2865: 2849: 2847: 2846: 2839:Ideas of Physics 2829: 2800: 2781: 2762: 2743: 2704: 2679: 2664:(3rd ed.). 2651: 2636:. Vol. II. 2620:Feynman, Richard 2605: 2599: 2593: 2588: 2582: 2577: 2571: 2565: 2559: 2550: 2544: 2538: 2532: 2523: 2517: 2511: 2505: 2496: 2490: 2484: 2478: 2475:Wangsness (1986) 2472: 2466: 2461: 2455: 2453:ThoughtCo (2018) 2450: 2444: 2438: 2432: 2426: 2420: 2414: 2408: 2403: 2397: 2392: 2386: 2377: 2305:Electromagnetism 2215:, or a changing 2149:virtual particle 2112: 2110: 2109: 2104: 2097: 2094: 2088: 2085: 2084: 2079: 2075: 2074: 2072: 2071: 2070: 2057: 2056: 2047: 2045: 2043: 2042: 2037: 2028: 2023: 2022: 2000: 1998: 1997: 1992: 1985: 1982: 1976: 1973: 1972: 1967: 1963: 1962: 1960: 1959: 1958: 1945: 1944: 1935: 1933: 1931: 1930: 1925: 1916: 1911: 1910: 1882: 1876: 1874: 1873: 1868: 1837: 1827: 1806:electromagnetic 1703: 1701: 1700: 1695: 1690: 1685: 1684: 1672: 1654: 1652: 1651: 1646: 1638: 1620: 1618: 1617: 1612: 1601: 1583: 1581: 1580: 1575: 1573: 1571: 1570: 1558: 1553: 1484: 1474: 1472: 1471: 1466: 1464: 1463: 1443: 1441: 1440: 1435: 1433: 1432: 1416: 1414: 1413: 1408: 1393: 1391: 1390: 1385: 1383: 1381: 1373: 1372: 1363: 1361: 1360: 1351: 1350: 1338: 1333: 1332: 1320: 1296: 1294: 1293: 1288: 1286: 1284: 1276: 1275: 1266: 1258: 1234: 1232: 1231: 1226: 1218: 1194: 1192: 1191: 1186: 1184: 1182: 1181: 1169: 1164: 1112: 1102: 1089: 1062: 881:electric charges 857: 850: 843: 524:Electric machine 507:Magnetic circuit 469:Parallel circuit 459:Network analysis 424:Electric current 359:London equations 204:Triboelectricity 194:Potential energy 63: 53:Electromagnetism 44: 43: 21: 3042: 3041: 3037: 3036: 3035: 3033: 3032: 3031: 3017: 3016: 3001: 2996: 2943: 2924: 2922:Further reading 2919: 2911: 2909: 2905: 2894: 2882: 2880: 2863: 2861: 2844: 2842: 2826: 2797: 2778: 2759: 2701: 2676: 2675:9781-10701-4022 2648: 2614: 2609: 2608: 2602:Valentin (2007) 2600: 2596: 2589: 2585: 2578: 2574: 2566: 2562: 2551: 2547: 2539: 2535: 2524: 2520: 2512: 2508: 2497: 2493: 2485: 2481: 2473: 2469: 2464:Stauffer (1957) 2462: 2458: 2451: 2447: 2439: 2435: 2427: 2423: 2415: 2411: 2404: 2400: 2393: 2389: 2378: 2374: 2369: 2364: 2359: 2290: 2269: 2263: 2251:metal detectors 2217:magnetic dipole 2213:electric dipole 2159: 2139:Main articles: 2137: 2080: 2066: 2062: 2058: 2052: 2048: 2046: 2038: 2033: 2032: 2027: 2018: 2014: 2013: 2009: 2007: 2004: 2003: 1968: 1954: 1950: 1946: 1940: 1936: 1934: 1926: 1921: 1920: 1915: 1906: 1902: 1901: 1897: 1895: 1892: 1891: 1878: 1862: 1859: 1858: 1833: 1823: 1796: 1776: 1768:Main articles: 1766: 1732: 1718: 1686: 1680: 1676: 1668: 1660: 1657: 1656: 1634: 1626: 1623: 1622: 1597: 1589: 1586: 1585: 1566: 1562: 1557: 1549: 1541: 1538: 1537: 1525:electric charge 1517: 1509:Main articles: 1507: 1502: 1480: 1459: 1455: 1453: 1450: 1449: 1428: 1424: 1422: 1419: 1418: 1402: 1399: 1398: 1374: 1368: 1364: 1362: 1356: 1352: 1346: 1342: 1334: 1328: 1324: 1316: 1308: 1305: 1304: 1277: 1271: 1267: 1265: 1254: 1246: 1243: 1242: 1214: 1206: 1203: 1202: 1177: 1173: 1168: 1160: 1152: 1149: 1148: 1137:electrodynamics 1108: 1098: 1068: 1041: 1034: 1028: 1000:Hendrik Lorentz 971:Michael Faraday 967:electric charge 951: 945: 861: 832: 831: 647: 639: 638: 594: 584: 583: 539:Induction motor 509: 499: 498: 414:Current density 399: 389: 388: 379:Poynting vector 289: 287:Electrodynamics 279: 278: 274:Right-hand rule 239:Magnetic dipole 229:Biot–Savart law 219: 209: 208: 144:Electric dipole 139:Electric charge 114: 42: 35: 28: 23: 22: 15: 12: 11: 5: 3040: 3030: 3029: 3015: 3014: 3000: 2999:External links 2997: 2995: 2994: 2982: 2951:Maxwell, J. C. 2947: 2942:978-0138053260 2941: 2925: 2923: 2920: 2918: 2917: 2888: 2869: 2850: 2830: 2824: 2801: 2795: 2782: 2776: 2763: 2757: 2744: 2724:10.1086/348537 2705: 2699: 2680: 2674: 2652: 2646: 2628:Sands, Matthew 2615: 2613: 2610: 2607: 2606: 2594: 2583: 2572: 2560: 2545: 2533: 2518: 2506: 2491: 2479: 2467: 2456: 2445: 2433: 2421: 2409: 2398: 2387: 2371: 2370: 2368: 2365: 2363: 2360: 2358: 2357: 2352: 2347: 2342: 2337: 2332: 2330:Magnetic field 2327: 2322: 2317: 2312: 2307: 2302: 2300:Electric field 2297: 2291: 2289: 2286: 2265:Main article: 2262: 2259: 2240: 2229: 2136: 2133: 2114: 2113: 2102: 2093: 2083: 2078: 2069: 2065: 2061: 2055: 2051: 2041: 2036: 2031: 2026: 2021: 2017: 2012: 2001: 1990: 1981: 1971: 1966: 1957: 1953: 1949: 1943: 1939: 1929: 1924: 1919: 1914: 1909: 1905: 1900: 1866: 1847:wave equations 1830:magnetic field 1820:electric field 1795: 1792: 1788:electric motor 1765: 1762: 1747: 1717: 1714: 1710:magnetostatics 1706:electrostatics 1693: 1689: 1683: 1679: 1675: 1671: 1667: 1664: 1644: 1641: 1637: 1633: 1630: 1610: 1607: 1604: 1600: 1596: 1593: 1569: 1565: 1561: 1556: 1552: 1548: 1545: 1515:Magnetostatics 1511:Electrostatics 1506: 1503: 1501: 1498: 1462: 1458: 1431: 1427: 1406: 1395: 1394: 1380: 1377: 1371: 1367: 1359: 1355: 1349: 1345: 1341: 1337: 1331: 1327: 1323: 1319: 1315: 1312: 1302: 1297: 1283: 1280: 1274: 1270: 1264: 1261: 1257: 1253: 1250: 1240: 1235: 1224: 1221: 1217: 1213: 1210: 1200: 1195: 1180: 1176: 1172: 1167: 1163: 1159: 1156: 1146: 1092:magnetic field 1065:electric field 1030:Main article: 1027: 1024: 979:magnetic field 975:electric field 947:Main article: 944: 941: 889:magnetic field 885:electric field 877:physical field 863: 862: 860: 859: 852: 845: 837: 834: 833: 830: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 648: 645: 644: 641: 640: 637: 636: 631: 626: 621: 616: 614:Four-potential 611: 606: 601: 595: 590: 589: 586: 585: 582: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 531: 529:Electric motor 526: 521: 516: 510: 505: 504: 501: 500: 497: 496: 491: 486: 484:Series circuit 481: 476: 471: 466: 461: 456: 454:Kirchhoff laws 451: 446: 441: 436: 431: 426: 421: 419:Direct current 416: 411: 406: 400: 395: 394: 391: 390: 387: 386: 381: 376: 374:Maxwell tensor 371: 366: 361: 356: 351: 346: 344:Larmor formula 341: 336: 331: 326: 321: 316: 311: 306: 301: 296: 294:Bremsstrahlung 290: 285: 284: 281: 280: 277: 276: 271: 266: 261: 256: 251: 246: 244:Magnetic field 241: 236: 231: 226: 220: 217:Magnetostatics 215: 214: 211: 210: 207: 206: 201: 196: 191: 186: 181: 176: 171: 166: 161: 156: 151: 149:Electric field 146: 141: 136: 131: 126: 121: 119:Charge density 115: 112:Electrostatics 110: 109: 106: 105: 104: 103: 98: 93: 88: 83: 78: 73: 65: 64: 56: 55: 49: 48: 47:Articles about 26: 9: 6: 4: 3: 2: 3039: 3028: 3025: 3024: 3022: 3012: 3007: 3003: 3002: 2991: 2987: 2986:Greene, Brian 2983: 2978: 2974: 2970: 2966: 2962: 2958: 2957: 2952: 2948: 2944: 2938: 2934: 2933: 2927: 2926: 2908:on 2019-12-21 2904: 2900: 2893: 2889: 2878: 2874: 2870: 2859: 2855: 2851: 2840: 2836: 2831: 2827: 2821: 2817: 2813: 2809: 2808: 2802: 2798: 2792: 2788: 2783: 2779: 2773: 2769: 2764: 2760: 2758:0-471-81186-6 2754: 2750: 2745: 2741: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2712: 2706: 2702: 2696: 2692: 2691: 2686: 2681: 2677: 2671: 2667: 2663: 2662: 2657: 2653: 2649: 2643: 2639: 2635: 2634: 2629: 2625: 2621: 2617: 2616: 2603: 2598: 2592: 2587: 2581: 2576: 2569: 2564: 2558: 2554: 2549: 2543:, p. 309 2542: 2537: 2531: 2527: 2522: 2515: 2510: 2504: 2500: 2495: 2488: 2483: 2476: 2471: 2465: 2460: 2454: 2449: 2442: 2437: 2430: 2425: 2418: 2413: 2407: 2406:Taylor (2012) 2402: 2396: 2391: 2385: 2381: 2376: 2372: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2292: 2285: 2283: 2279: 2275: 2268: 2258: 2256: 2252: 2248: 2244: 2238: 2235: 2233: 2227: 2224: 2222: 2218: 2214: 2210: 2206: 2201: 2198: 2196: 2192: 2188: 2184: 2183:visible light 2180: 2176: 2172: 2168: 2164: 2158: 2154: 2150: 2146: 2142: 2132: 2130: 2126: 2122: 2118: 2100: 2091: 2076: 2067: 2063: 2053: 2039: 2034: 2029: 2024: 2019: 2010: 2002: 1988: 1979: 1964: 1955: 1951: 1941: 1927: 1922: 1917: 1912: 1907: 1898: 1890: 1889: 1888: 1886: 1881: 1864: 1856: 1852: 1848: 1844: 1836: 1831: 1826: 1821: 1817: 1813: 1809: 1805: 1800: 1791: 1789: 1784: 1782: 1775: 1771: 1761: 1757: 1755: 1749: 1745: 1742: 1737: 1731: 1727: 1723: 1713: 1711: 1707: 1691: 1681: 1677: 1673: 1665: 1642: 1639: 1631: 1608: 1605: 1602: 1594: 1567: 1563: 1559: 1554: 1546: 1530: 1526: 1521: 1516: 1512: 1497: 1494: 1492: 1487: 1483: 1478: 1460: 1456: 1447: 1429: 1425: 1404: 1378: 1357: 1353: 1347: 1343: 1339: 1329: 1325: 1321: 1313: 1303: 1301: 1298: 1281: 1262: 1259: 1251: 1241: 1239: 1238:Faraday's law 1236: 1222: 1219: 1211: 1201: 1199: 1196: 1178: 1174: 1170: 1165: 1157: 1147: 1145: 1142: 1141: 1140: 1138: 1133: 1131: 1127: 1122: 1120: 1116: 1111: 1106: 1101: 1095: 1093: 1087: 1083: 1079: 1075: 1071: 1066: 1060: 1056: 1052: 1048: 1044: 1039: 1038:vector fields 1033: 1023: 1019: 1017: 1013: 1009: 1005: 1004:J. J. Thomson 1001: 997: 993: 988: 985: 980: 976: 972: 968: 964: 955: 950: 940: 938: 934: 930: 926: 922: 918: 914: 909: 907: 903: 898: 896: 895: 890: 886: 882: 878: 874: 870: 858: 853: 851: 846: 844: 839: 838: 836: 835: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 649: 643: 642: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 596: 593: 588: 587: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 511: 508: 503: 502: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 449:Joule heating 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 401: 398: 393: 392: 385: 382: 380: 377: 375: 372: 370: 367: 365: 364:Lorentz force 362: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 291: 288: 283: 282: 275: 272: 270: 267: 265: 264:Magnetization 262: 260: 257: 255: 252: 250: 249:Magnetic flux 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 221: 218: 213: 212: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 154:Electric flux 152: 150: 147: 145: 142: 140: 137: 135: 132: 130: 127: 125: 122: 120: 117: 116: 113: 108: 107: 102: 99: 97: 94: 92: 91:Computational 89: 87: 84: 82: 79: 77: 74: 72: 69: 68: 67: 66: 62: 58: 57: 54: 51: 50: 46: 45: 40: 33: 19: 2989: 2960: 2954: 2931: 2910:. Retrieved 2903:the original 2881:. Retrieved 2862:. Retrieved 2857: 2843:. Retrieved 2838: 2806: 2786: 2767: 2748: 2718:(1): 33–50. 2715: 2709: 2689: 2660: 2632: 2597: 2586: 2580:NIOSH (1996) 2575: 2568:Cheng (1989) 2563: 2548: 2536: 2521: 2509: 2494: 2482: 2470: 2459: 2448: 2436: 2424: 2412: 2401: 2390: 2375: 2270: 2236: 2225: 2220: 2202: 2199: 2169:, including 2160: 2115: 1879: 1841: 1834: 1824: 1785: 1777: 1758: 1750: 1733: 1534: 1495: 1488: 1481: 1396: 1134: 1123: 1109: 1099: 1096: 1085: 1081: 1077: 1073: 1069: 1058: 1054: 1050: 1046: 1042: 1035: 1020: 989: 960: 910: 899: 892: 872: 868: 866: 609:Four-current 544:Linear motor 429:Electrolysis 313: 309:Eddy current 269:Permeability 189:Polarization 184:Permittivity 2963:: 459–512. 2443:, p. 2 2278:ultraviolet 2171:radio waves 1144:Gauss's law 579:Transformer 409:Capacitance 334:Faraday law 129:Coulomb law 71:Electricity 2912:2019-12-21 2883:2015-08-31 2864:2023-10-28 2845:2023-01-08 2777:0070212341 2362:References 2282:gamma rays 2280:light and 2276:, such as 2221:near-field 2195:gamma rays 1855:free space 1828:, and the 1816:free space 1808:plane wave 646:Scientists 494:Waveguides 474:Resistance 444:Inductance 224:Ampère law 2977:186207827 2858:ThoughtCo 2740:120063434 2367:Citations 2237:Changing 2226:Changing 2175:microwave 2060:∂ 2050:∂ 2025:− 2016:∇ 1948:∂ 1938:∂ 1913:− 1904:∇ 1865:ρ 1678:μ 1666:× 1663:∇ 1632:⋅ 1629:∇ 1595:× 1592:∇ 1564:ϵ 1560:ρ 1547:⋅ 1544:∇ 1457:μ 1426:ε 1405:ρ 1376:∂ 1366:∂ 1354:ε 1344:μ 1326:μ 1314:× 1311:∇ 1279:∂ 1269:∂ 1263:− 1252:× 1249:∇ 1212:⋅ 1209:∇ 1175:ε 1171:ρ 1158:⋅ 1155:∇ 990:In 1861, 802:Steinmetz 732:Kirchhoff 717:Jefimenko 712:Hopkinson 697:Helmholtz 692:Heaviside 554:Permeance 439:Impedance 179:Insulator 174:Gauss law 124:Conductor 101:Phenomena 96:Textbooks 76:Magnetism 3021:Category 2816:Elsevier 2630:(1970). 2288:See also 2239:magnetic 2228:electric 2179:infrared 2123:term to 1746:magnetic 1008:electron 904:and the 873:EM field 827:Wiechert 782:Poynting 672:Einstein 519:DC motor 514:AC motor 349:Lenz law 134:Electret 2612:Sources 1475:is the 1444:is the 1130:tensors 943:History 875:) is a 812:Thomson 787:Ritchie 777:Poisson 762:Neumann 757:Maxwell 752:Lorentz 747:Liénard 677:Faraday 662:Coulomb 489:Voltage 464:Ohm law 86:History 2975:  2939:  2879:. 1996 2860:. 2018 2822:  2793:  2774:  2755:  2738:  2732:226900 2730:  2697:  2672:  2644:  2345:Photon 2253:, and 2249:tags, 2209:dipole 2193:, and 2191:X-rays 2155:, and 2098:  2095:  2089:  2086:  1986:  1983:  1977:  1974:  1818:. The 1728:, and 1479:, and 1397:where 1067:) and 887:and a 871:(also 797:Singer 792:Savart 772:Ørsted 737:Larmor 727:Kelvin 682:Fizeau 652:Ampère 574:Stator 81:Optics 2973:S2CID 2906:(PDF) 2895:(PDF) 2736:S2CID 2728:JSTOR 2557:§20.1 2530:§13.6 996:light 822:Weber 817:Volta 807:Tesla 722:Joule 707:Hertz 702:Henry 687:Gauss 569:Rotor 2937:ISBN 2820:ISBN 2812:ICRP 2791:ISBN 2772:ISBN 2753:ISBN 2711:Isis 2695:ISBN 2670:ISBN 2642:ISBN 2503:§4.1 2384:§1.2 2247:RFID 1877:and 1772:and 1655:and 1584:and 1513:and 1489:The 923:and 742:Lenz 667:Davy 657:Biot 2965:doi 2961:155 2720:doi 2255:MRI 1814:in 1094:). 867:An 767:Ohm 3023:: 2988:. 2971:. 2959:. 2875:. 2856:. 2837:. 2818:. 2810:. 2734:. 2726:. 2716:48 2714:. 2687:. 2668:. 2640:. 2626:; 2622:; 2555:, 2528:, 2501:, 2382:, 2223:. 2189:, 2185:, 2181:, 2177:, 2173:, 2151:, 2147:, 2143:, 2131:. 1887:: 1832:, 1822:, 1802:A 1790:. 1783:. 1756:. 1724:, 1448:, 1121:. 1084:, 1080:, 1076:, 1057:, 1053:, 1049:, 1018:. 939:. 897:. 2979:. 2967:: 2945:. 2915:. 2886:. 2867:. 2848:. 2828:. 2799:. 2780:. 2761:. 2742:. 2722:: 2703:. 2678:. 2650:. 2101:0 2092:= 2082:B 2077:) 2068:2 2064:t 2054:2 2040:2 2035:c 2030:1 2020:2 2011:( 1989:0 1980:= 1970:E 1965:) 1956:2 1952:t 1942:2 1928:2 1923:c 1918:1 1908:2 1899:( 1880:J 1835:B 1825:E 1692:. 1688:J 1682:0 1674:= 1670:B 1643:0 1640:= 1636:B 1609:, 1606:0 1603:= 1599:E 1568:0 1555:= 1551:E 1482:J 1461:0 1430:0 1379:t 1370:E 1358:0 1348:0 1340:+ 1336:J 1330:0 1322:= 1318:B 1282:t 1273:B 1260:= 1256:E 1223:0 1220:= 1216:B 1179:0 1166:= 1162:E 1110:B 1100:E 1090:( 1088:) 1086:t 1082:z 1078:y 1074:x 1072:( 1070:B 1063:( 1061:) 1059:t 1055:z 1051:y 1047:x 1045:( 1043:E 856:e 849:t 842:v 41:. 34:. 20:)

Index

Electromagnetic fields
Electromotive force
Electromagnetic Field (festival)
Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.