Knowledge

Quantum simulator

Source đź“ť

39: 3170: 261:
antiferromagnetic interaction range. Britton, et al. from NIST has experimentally benchmarked Ising interactions in a system of hundreds of qubits for studies of quantum magnetism. Pagano, et al., reported a new cryogenic ion trapping system designed for long time storage of large ion chains demonstrating coherent one and two-qubit operations for chains of up to 44 ions. Joshi, et al., probed the quantum dynamics of 51 individually controlled ions, realizing a long-range interacting spin chain.
3160: 3472: 427: 20: 218:(qubits). Previous endeavors were unable to go beyond 30 quantum bits. The capability of this simulator is 10 times more than previous devices. It has passed a series of important benchmarking tests that indicate a capability to solve problems in material science that are impossible to model on conventional computers. 242:
then caused the qubits to interact, mimicking the quantum behavior of materials otherwise very difficult to study in the laboratory. Although the two systems may outwardly appear dissimilar, their behavior is engineered to be mathematically identical. In this way, simulators allow researchers to vary
161:
is vastly complex. Conventional computers, including supercomputers, are inadequate for simulating quantum systems with as few as 30 particles because the dimension of the Hilbert space grows exponentially with particle number. Better computational tools are needed to understand and rationally design
301:
Hamiltonian. Major aims of these experiments include identifying low-temperature phases or tracking out-of-equilibrium dynamics for various models, problems which are theoretically and numerically intractable. Other experiments have realized condensed matter models in regimes which are difficult or
166:
of hundreds of particles. Quantum simulators provide an alternative route to understanding the properties of these systems. These simulators create clean realizations of specific systems of interest, which allows precise realizations of their properties. Precise control over and broad tunability of
42:
Trapped ion quantum simulator illustration: The heart of the simulator is a two-dimensional crystal of beryllium ions (blue spheres in the graphic); the outermost electron of each ion is a quantum bit (qubit, red arrows). The ions are confined by a large magnetic field in a device called a Penning
250:
Friedenauer et al., adiabatically manipulated 2 spins, showing their separation into ferromagnetic and antiferromagnetic states. Kim et al., extended the trapped ion quantum simulator to 3 spins, with global antiferromagnetic Ising interactions featuring frustration and showing the link between
260:
demonstrated digital quantum simulation with up to 6 ions. Islam, et al., demonstrated adiabatic quantum simulation of the transverse Ising model with variable (long) range interactions with up to 18 trapped ion spins, showing control of the level of spin frustration by adjusting the
1236:
Britton, Joseph W.; Sawyer, Brian C.; Keith, Adam C.; Wang, C.-C. Joseph; Freericks, James K.; Uys, Hermann; Biercuk, Michael J.; Bollinger, John J. (25 April 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins".
1521:
Lanyon, B. P.; Hempel, C.; Nigg, D.; Muller, M.; Gerritsma, R.; Zahringer, F.; Schindler, P.; Barreiro, J. T.; Rambach, M.; Kirchmair, G.; Hennrich, M.; Zoller, P.; Blatt, R.; Roos, C. F. (1 September 2011). "Universal Digital Quantum Simulation with Trapped Ions".
1459:
Barreiro, Julio T.; MĂĽller, Markus; Schindler, Philipp; Nigg, Daniel; Monz, Thomas; Chwalla, Michael; Hennrich, Markus; Roos, Christian F.; Zoller, Peter; Blatt, Rainer (23 February 2011). "An open-system quantum simulator with trapped ions".
255:
between paramagnetic and ferromagnetic ordering as the number of spins increased from 2 to 9. Barreiro et al. created a digital quantum simulator of interacting spins with up to 5 trapped ions by coupling to an open reservoir and Lanyon
1648:
Pagano, G; Hess, P W; Kaplan, H B; Tan, W L; Richerme, P; Becker, P; Kyprianidis, A; Zhang, J; Birckelbaw, E; Hernandez, M R; Wu, Y; Monroe, C (9 October 2018). "Cryogenic trapped-ion system for large scale quantum simulation".
170:
Quantum simulators can solve problems which are difficult to simulate on classical computers because they directly exploit quantum properties of real particles. In particular, they exploit a property of quantum mechanics called
1858:
Jotzu, Gregor; Messer, Michael; Desbuquois, RĂ©mi; Lebrat, Martin; Uehlinger, Thomas; Greif, Daniel; Esslinger, Tilman (13 November 2014). "Experimental realization of the topological Haldane model with ultracold fermions".
237:
and is used as a qubit, the quantum equivalent of a “1” or a “0” in a conventional computer. In the benchmarking experiment, physicists used laser beams to cool the ions to near absolute zero. Carefully timed microwave and
1398:; Kim, K.; Korenblit, S.; Noh, C.; Carmichael, H.; Lin, G.-D.; Duan, L.-M.; Joseph Wang, C.-C.; Freericks, J.K.; Monroe, C. (5 July 2011). "Onset of a quantum phase transition with a trapped ion quantum simulator". 179:
is made to be in two distinct states at the same time, for example, aligned and anti-aligned with an external magnetic field. Crucially, simulators also take advantage of a second quantum property called
2239:
Fitzpatrick, Mattias; Sundaresan, Neereja M.; Li, Andy C. Y.; Koch, Jens; Houck, Andrew A. (10 February 2017). "Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice".
431: 538: 2178:
Ma, Ruichao; Saxberg, Brendan; Owens, Clai; Leung, Nelson; Lu, Yao; Simon, Jonathan; Schuster, David I. (6 February 2019). "A dissipatively stabilized Mott insulator of photons".
27:, indicating the qubits are all in the same state (either "1" or "0"). Under the right experimental conditions, the ion crystal spontaneously forms this nearly perfect triangular 111:
over classical computers in terms of computability, but it is suspected that they can solve certain problems faster than classical computers, meaning they may be in different
1082:
Semeghini, G.; Levine, H.; Keesling, A.; Ebadi, S.; Wang, T. T.; Bluvstein, D.; Verresen, R.; Pichler, H.; Kalinowski, M.; Samajdar, R.; Omran, A. (2021-12-03).
1587:; Wang, C.- C. J.; Freericks, J. K.; Monroe, C. (2 May 2013). "Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator". 468:
Britton, Joseph W.; Sawyer, Brian C.; Keith, Adam C.; Wang, C.-C. Joseph; Freericks, James K.; Uys, Hermann; Biercuk, Michael J.; Bollinger, John J. (2012).
984:
Kyprianidis, A.; Machado, F.; Morong, W.; Becker, P.; Collins, K. S.; Else, D. V.; Feng, L.; Hess, P. W.; Nayak, C.; Pagano, G.; Yao, N. Y. (2021-06-11).
107:. The simulation of a quantum physics by a classical computer has been shown to be inefficient. In other words, quantum computers provide no additional 548: 234: 3206: 2359: 2006:
Alberti, Andrea; Robens, Carsten; Alt, Wolfgang; Brakhane, Stefan; Karski, Michał; Reimann, René; Widera, Artur; Meschede, Dieter (2016-05-06).
443: 704:
Berry, Dominic W.; Graeme Ahokas; Richard Cleve; Sanders, Barry C. (2007). "Efficient quantum algorithms for simulating sparse Hamiltonians".
2321: 2294: 3051: 2952: 2613: 1343:; Freericks, J. K.; Lin, G.-D.; Duan, L.-M.; Monroe, C. (June 2010). "Quantum simulation of frustrated Ising spins with trapped ions". 1961:
Zhang, Dan-Wei; Zhu, Yan-Qing; Zhao, Y. X.; Yan, Hui; Zhu, Shi-Liang (29 March 2019). "Topological quantum matter with cold atoms".
810:
Kliesch, M.; Barthel, T.; Gogolin, C.; Kastoryano, M.; Eisert, J. (12 September 2011). "Dissipative Quantum Church-Turing Theorem".
527:
Note: This manuscript is a contribution of the US National Institute of Standards and Technology and is not subject to US copyright.
2514: 1148: 2839: 57:
in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific
2096: 1058: 134:
similar to the number of particles in the original system. This has been extended to much larger classes of quantum systems.
3163: 2349: 3199: 3121: 2697: 3173: 3061: 2314: 251:
frustration and entanglement and Islam et al., used adiabatic quantum simulation to demonstrate the sharpening of a
2989: 2647: 2984: 2712: 2692: 1766:
Bloch, Immanuel; Dalibard, Jean; Nascimbene, Sylvain (2012). "Quantum simulations with ultracold quantum gases".
3192: 2979: 2491: 870: 3476: 3012: 2834: 2737: 2398: 1694:
Joshi, M.K.; Kranzl, F.; Schuckert, A.; Lovas, I.; Maier, C.; Blatt, R.; Knap, M.; Roos, C.F. (13 May 2022).
3017: 2885: 2476: 2307: 683:
Dorit Aharonov; Amnon Ta-Shma (2003). "Adiabatic Quantum State Generation and Statistical Zero Knowledge".
322:
determine ground states of certain Hamiltonians after an adiabatic ramp. This approach is sometimes called
3438: 3041: 2797: 2657: 2431: 2386: 2330: 935: 470:"Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins" 323: 293:. A common thread for these experiments is the capability of realizing generic Hamiltonians, such as the 192: 2125:
Paraoanu, G. S. (4 April 2014). "Recent Progress in Quantum Simulation Using Superconducting Circuits".
3498: 3453: 3253: 2913: 2785: 2682: 2558: 2486: 2393: 100: 3283: 3268: 2722: 2687: 2583: 2526: 2066: 103:(and therefore any simpler quantum simulator), meaning they are equivalent from the point of view of 757:
Childs, Andrew M. (2010). "On the relationship between continuous- and discrete-time quantum walk".
3426: 3421: 3350: 3325: 3310: 3305: 3300: 2895: 2868: 2844: 2807: 2598: 2531: 2466: 2451: 2421: 2344: 597: 327: 303: 115:, which is why quantum Turing machines are useful for simulating quantum systems. This is known as 137:
Quantum simulators have been realized on a number of experimental platforms, including systems of
3046: 2780: 2672: 2642: 2441: 1172:
Monroe, C; et, al (2021). "Programmable quantum simulations of spin systems with trapped ions".
437: 318:
Quantum simulators using superconducting qubits fall into two main categories. First, so called
167:
parameters of the system allows the influence of various parameters to be cleanly disentangled.
3443: 3365: 3116: 2880: 2873: 2620: 592: 352: 347: 141:, polar molecules, trapped ions, photonic systems, quantum dots, and superconducting circuits. 92: 338:
and studies of phase transitions in lattices of superconducting resonators coupled to qubits.
326:. Second, many systems emulate specific Hamiltonians and study their ground state properties, 3416: 3390: 3215: 3036: 2662: 2588: 2553: 172: 376:
Johnson, Tomi H.; Clark, Stephen R.; Jaksch, Dieter (2014). "What is a quantum simulator?".
3355: 3278: 2826: 2575: 2426: 2258: 2197: 2144: 2029: 1878: 1822: 1775: 1717: 1606: 1541: 1479: 1417: 1352: 1311: 1256: 1191: 1105: 1007: 950: 892: 829: 776: 723: 641: 584: 494: 181: 104: 38: 206:
based system forms an ideal setting for simulating interactions in quantum spin models. A
8: 3448: 3406: 3375: 3335: 3320: 3295: 3145: 3098: 2928: 2702: 2456: 2436: 2371: 2366: 2067:"Quantum Walks with Neutral Atoms: Quantum Interference Effects of One and Two Particles" 307: 278: 2262: 2201: 2148: 2042: 2033: 2007: 1882: 1826: 1779: 1721: 1610: 1545: 1483: 1421: 1356: 1315: 1298:
Friedenauer, A.; Schmitz, H.; Glueckert, J. T.; Porras, D.; Schaetz, T. (27 July 2008).
1260: 1195: 1109: 1011: 954: 896: 833: 780: 727: 645: 588: 498: 3340: 3230: 2861: 2707: 2509: 2446: 2274: 2248: 2221: 2187: 2160: 2134: 2102: 2074: 2019: 1988: 1970: 1902: 1868: 1791: 1741: 1707: 1676: 1658: 1630: 1596: 1565: 1531: 1503: 1469: 1441: 1407: 1376: 1280: 1246: 1215: 1181: 1129: 1095: 1039: 997: 966: 916: 853: 819: 792: 766: 739: 713: 684: 665: 610: 518: 484: 403: 385: 335: 274: 188: 1695: 1083: 985: 184:, allowing the behavior of even physically well separated particles to be correlated. 3273: 3243: 3238: 3125: 2770: 2677: 2634: 2565: 2481: 2461: 2416: 2354: 2213: 2164: 2106: 2092: 2047: 1943: 1906: 1894: 1840: 1745: 1733: 1622: 1569: 1557: 1495: 1433: 1368: 1272: 1219: 1207: 1133: 1121: 1043: 1031: 1023: 970: 908: 845: 669: 657: 614: 510: 407: 357: 319: 163: 158: 116: 62: 61:
problems. Quantum simulators may be contrasted with generally programmable "digital"
28: 2225: 1992: 1795: 1680: 1634: 920: 857: 796: 743: 3290: 2792: 2742: 2519: 2278: 2266: 2205: 2152: 2084: 2037: 1980: 1933: 1886: 1830: 1783: 1725: 1668: 1614: 1584: 1549: 1507: 1487: 1425: 1395: 1380: 1360: 1340: 1319: 1284: 1264: 1199: 1113: 1015: 958: 900: 841: 837: 784: 731: 649: 602: 522: 502: 395: 290: 273:
experiments are examples of quantum simulators. These include experiments studying
252: 176: 154: 112: 73: 1984: 904: 469: 330:, or time dynamics. Several important recent results include the realization of a 221:
The trapped-ion simulator consists of a tiny, single-plane crystal of hundreds of
3360: 3345: 3315: 3263: 3258: 2918: 2856: 2546: 2541: 1445: 1203: 572: 282: 244: 119:, the idea that there are problems only quantum Turing machines can solve in any 81: 3380: 3370: 3027: 3004: 2971: 2775: 2652: 2088: 2065:
Robens, Carsten; Brakhane, Stefan; Meschede, Dieter; Alberti, A. (2016-09-18),
1672: 331: 270: 150: 138: 127: 96: 88: 54: 2299: 2270: 2209: 2156: 788: 735: 3492: 3431: 3330: 2849: 2667: 2593: 2051: 1211: 1027: 661: 294: 130:
of many particles could be simulated by a quantum computer using a number of
1835: 1810: 1729: 1618: 1553: 1117: 1019: 19: 3411: 3069: 2994: 2217: 1947: 1898: 1844: 1737: 1626: 1561: 1499: 1437: 1372: 1276: 1125: 1035: 849: 514: 286: 226: 24: 1583:
Islam, R.; Senko, C.; Campbell, W. C.; Korenblit, S.; Smith, J.; Lee, A.;
912: 3248: 3079: 2933: 2471: 718: 689: 298: 239: 215: 3184: 1890: 1491: 1364: 1268: 506: 225:, less than 1 millimeter in diameter, hovering inside a device called a 3140: 3074: 2938: 1429: 653: 606: 77: 65:, which would be capable of solving a wider class of quantum problems. 1787: 1324: 1299: 1084:"Probing topological spin liquids on a programmable quantum simulator" 962: 703: 243:
parameters that couldn’t be changed in natural solids, such as atomic
2923: 629: 222: 1938: 1921: 399: 162:
materials whose properties are believed to depend on the collective
3108: 3084: 2943: 2908: 2253: 2192: 2079: 2024: 1975: 1712: 1663: 1186: 1100: 1002: 439:
NIST Physicists Benchmark Quantum Simulator with Hundreds of Qubits
230: 207: 203: 2139: 1873: 1601: 1536: 1474: 1412: 1251: 1059:"Creating Time Crystals Using New Quantum Computing Architectures" 824: 771: 489: 390: 3135: 2752: 2008:"Super-resolution microscopy of single atoms in optical lattices" 1696:"Observing emergent hydrodynamics in a long-range quantum magnet" 1297: 58: 43:
trap (not shown). Inside the trap the crystal rotates clockwise.
3112: 2608: 809: 302:
impossible to realize with conventional materials, such as the
1811:"Quantum simulations with ultracold atoms in optical lattices" 983: 2381: 2064: 547:] (in Russian). Sov.Radio. pp. 13–15. Archived from 131: 1081: 3130: 2603: 2536: 2238: 1857: 1582: 1458: 682: 211: 23:
In this photograph of a quantum simulator crystal the ions
2747: 2732: 1693: 1149:"Quantum Simulators Create a Totally New Phase of Matter" 2005: 1393: 214:
can engineer and control interactions among hundreds of
1809:
Gross, Christian; Bloch, Immanuel (September 8, 2017).
1765: 1520: 1338: 1235: 467: 187:
Recently quantum simulators have been used to obtain
2574: 2177: 1647: 986:"Observation of a prethermal discrete time crystal" 530: 883:Lloyd, S. (1996). "Universal quantum simulators". 375: 157:, remain poorly understood because the underlying 1339:Kim, K.; Chang, M.-S.; Korenblit, S.; Islam, R.; 3490: 864: 2329: 1960: 1300:"Simulating a quantum magnet with trapped ions" 936:"Goals and opportunities in quantum simulation" 149:Many important problems in physics, especially 1057:S, Robert; ers; Berkeley, U. C. (2021-11-10). 444:National Institute of Standards and Technology 87:A quantum system may be simulated by either a 3200: 2315: 1231: 1229: 575:(1982). "Simulating Physics with Computers". 536: 435: 210:simulator, built by a team that included the 1056: 634:International Journal of Theoretical Physics 577:International Journal of Theoretical Physics 264: 933: 871:Nature Physics Insight – Quantum Simulation 144: 3471: 3207: 3193: 2322: 2308: 1808: 1226: 369: 3214: 2252: 2191: 2138: 2078: 2041: 2023: 1974: 1937: 1922:"Magnetic fields without magnetic fields" 1872: 1834: 1711: 1662: 1600: 1535: 1473: 1411: 1323: 1250: 1185: 1165: 1099: 1001: 934:Cirac, J. Ignacio; Zoller, Peter (2012). 882: 876: 823: 770: 717: 688: 596: 488: 463: 461: 459: 421: 419: 417: 389: 313: 198: 2124: 1171: 37: 18: 16:Simulators of quantum mechanical systems 2840:Continuous-variable quantum information 627: 571: 3491: 759:Communications in Mathematical Physics 756: 706:Communications in Mathematical Physics 456: 414: 3188: 2303: 1919: 927: 567: 565: 1920:Simon, Jonathan (13 November 2014). 1146: 2073:, WORLD SCIENTIFIC, pp. 1–15, 630:"Simulating physics with computers" 13: 2127:Journal of Low Temperature Physics 628:Feynman, Richard P. (1982-06-01). 621: 562: 14: 3510: 2288: 3470: 3169: 3168: 3159: 3158: 430: This article incorporates 425: 2232: 2171: 2118: 2058: 1999: 1954: 1913: 1851: 1802: 1759: 1687: 1641: 1576: 1514: 1452: 1387: 1332: 1291: 1140: 1075: 1050: 977: 803: 1651:Quantum Science and Technology 842:10.1103/PhysRevLett.107.120501 750: 697: 676: 1: 2835:Adiabatic quantum computation 2043:10.1088/1367-2630/18/5/053010 1985:10.1080/00018732.2019.1594094 905:10.1126/science.273.5278.1073 363: 2886:Topological quantum computer 1204:10.1103/RevModPhys.93.025001 1147:Wood, Charlie (2021-12-02). 545:Computable and Noncomputable 7: 3164:Quantum information science 2331:Quantum information science 540:Vychislimoe i nevychislimoe 341: 324:adiabatic quantum computing 233:of each ion acts as a tiny 70:universal quantum simulator 10: 3517: 3454:Thermoacoustic heat engine 2559:quantum gate teleportation 2089:10.1142/9789813200616_0001 101:universal quantum computer 3466: 3439:Immersive virtual reality 3399: 3229: 3222: 3154: 3097: 3060: 3026: 3003: 2970: 2961: 2894: 2823: 2761: 2721: 2688:Quantum Fourier transform 2633: 2584:Post-quantum cryptography 2527:Entanglement distillation 2500: 2409: 2337: 2271:10.1103/PhysRevX.7.011016 2210:10.1038/s41586-019-0897-9 2157:10.1007/s10909-014-1175-8 873:. Nature.com. April 2012. 789:10.1007/s00220-009-0930-1 736:10.1007/s00220-006-0150-x 328:quantum phase transitions 285:, the unitary Fermi gas, 265:Ultracold atom simulators 3422:Digital scent technology 3174:Quantum mechanics topics 2869:Quantum machine learning 2845:One-way quantum computer 2698:Quantum phase estimation 2599:Quantum key distribution 2532:Monogamy of entanglement 1673:10.1088/2058-9565/aae0fe 334:in a driven-dissipative 145:Solving physics problems 2781:Randomized benchmarking 2643:Amplitude amplification 1836:10.1126/science.aal3837 1730:10.1126/science.abk2400 1619:10.1126/science.1232296 1554:10.1126/science.1208001 1118:10.1126/science.abi8794 1020:10.1126/science.abg8102 812:Physical Review Letters 308:Harper-Hofstadter model 151:low-temperature physics 139:ultracold quantum gases 3444:Magnetic refrigeration 2881:Quantum Turing machine 2874:quantum neural network 2621:Quantum secret sharing 2012:New Journal of Physics 537:Manin, Yu. I. (1980). 432:public domain material 378:EPJ Quantum Technology 353:Quantum Turing machine 348:Hamiltonian simulation 314:Superconducting qubits 299:transverse-field Ising 199:Trapped-ion simulators 99:is able to simulate a 93:quantum Turing machine 53:permit the study of a 47: 35: 3417:Cloak of invisibility 3216:Emerging technologies 2953:Entanglement-assisted 2914:quantum convolutional 2589:Quantum coin flipping 2554:Quantum teleportation 2515:entanglement-assisted 2345:DiVincenzo's criteria 1400:Nature Communications 41: 22: 2764:processor benchmarks 2693:Quantum optimization 2576:Quantum cryptography 2387:physical vs. logical 2295:Deutsch's 1985 paper 193:quantum spin liquids 105:computability theory 45:Credit: Britton/NIST 33:Credit: Britton/NIST 3449:Phased-array optics 3407:Acoustic levitation 2477:Quantum speed limit 2372:Quantum programming 2367:Quantum information 2263:2017PhRvX...7a1016F 2202:2019Natur.566...51M 2149:2014JLTP..175..633P 2034:2016NJPh...18e3010A 1963:Advances in Physics 1891:10.1038/nature13915 1883:2014Natur.515..237J 1827:2017Sci...357..995G 1780:2012NatPh...8..267B 1722:2022Sci...376..720J 1611:2013Sci...340..583I 1546:2011Sci...334...57L 1492:10.1038/nature09801 1484:2011Natur.470..486B 1422:2011NatCo...2..377I 1365:10.1038/nature09071 1357:2010Natur.465..590K 1316:2008NatPh...4..757F 1269:10.1038/nature10981 1261:2012Natur.484..489B 1196:2021RvMP...93b5001M 1110:2021Sci...374.1242S 1094:(6572): 1242–1247. 1012:2021Sci...372.1192K 996:(6547): 1192–1196. 955:2012NatPh...8..264C 897:1996Sci...273.1073L 834:2011PhRvL.107l0501K 781:2010CMaPh.294..581C 728:2007CMaPh.270..359B 646:1982IJTP...21..467F 589:1982IJTP...21..467F 507:10.1038/nature10981 499:2012Natur.484..489B 436:Michael E. Newman. 336:Bose-Hubbard system 3126:Forest/Rigetti QCS 2862:quantum logic gate 2648:Bernstein–Vazirani 2635:Quantum algorithms 2510:Classical capacity 2394:Quantum processors 2377:Quantum simulation 2071:Laser Spectroscopy 1821:(6355): 995–1001. 1430:10.1038/ncomms1374 654:10.1007/BF02650179 607:10.1007/BF02650179 113:complexity classes 51:Quantum simulators 48: 36: 3499:Quantum computing 3486: 3485: 3462: 3461: 3269:complexity theory 3254:cellular automata 3182: 3181: 3093: 3092: 2990:Linear optical QC 2771:Quantum supremacy 2725:complexity theory 2678:Quantum annealing 2629: 2628: 2566:Superdense coding 2355:Quantum computing 2241:Physical Review X 2098:978-981-320-060-9 1932:(7526): 202–203. 1867:(7526): 237–240. 1788:10.1038/nphys2259 1595:(6132): 583–587. 1468:(7335): 486–491. 1351:(7298): 590–593. 1325:10.1038/nphys1032 1245:(7395): 489–492. 963:10.1038/nphys2275 358:Quantum computing 320:quantum annealers 159:quantum mechanics 155:many-body physics 117:quantum supremacy 95:, as a classical 63:quantum computers 3506: 3474: 3473: 3351:machine learning 3326:key distribution 3311:image processing 3301:error correction 3227: 3226: 3209: 3202: 3195: 3186: 3185: 3172: 3171: 3162: 3161: 2968: 2967: 2898:error correction 2827:computing models 2793:Relaxation times 2683:Quantum counting 2572: 2571: 2520:quantum capacity 2467:No-teleportation 2452:No-communication 2324: 2317: 2310: 2301: 2300: 2283: 2282: 2256: 2236: 2230: 2229: 2195: 2175: 2169: 2168: 2142: 2133:(5–6): 633–654. 2122: 2116: 2115: 2114: 2113: 2082: 2062: 2056: 2055: 2045: 2027: 2003: 1997: 1996: 1978: 1958: 1952: 1951: 1941: 1917: 1911: 1910: 1876: 1855: 1849: 1848: 1838: 1806: 1800: 1799: 1763: 1757: 1756: 1754: 1752: 1715: 1706:(376): 720–724. 1691: 1685: 1684: 1666: 1645: 1639: 1638: 1604: 1580: 1574: 1573: 1539: 1518: 1512: 1511: 1477: 1456: 1450: 1449: 1415: 1391: 1385: 1384: 1336: 1330: 1329: 1327: 1295: 1289: 1288: 1254: 1233: 1224: 1223: 1189: 1169: 1163: 1162: 1160: 1159: 1144: 1138: 1137: 1103: 1079: 1073: 1072: 1070: 1069: 1054: 1048: 1047: 1005: 981: 975: 974: 940: 931: 925: 924: 891:(5278): 1073–8. 880: 874: 868: 862: 861: 827: 807: 801: 800: 774: 754: 748: 747: 721: 719:quant-ph/0508139 701: 695: 694: 692: 690:quant-ph/0301023 680: 674: 673: 625: 619: 618: 600: 583:(6–7): 467–488. 573:Feynman, Richard 569: 560: 559: 557: 556: 534: 528: 526: 492: 483:(7395): 489–92. 474: 465: 454: 453: 451: 450: 429: 428: 423: 412: 411: 393: 373: 291:optical tweezers 283:optical lattices 253:phase transition 229:. The outermost 177:quantum particle 164:quantum behavior 123:amount of time. 74:quantum computer 3516: 3515: 3509: 3508: 3507: 3505: 3504: 3503: 3489: 3488: 3487: 3482: 3458: 3395: 3306:finite automata 3218: 3213: 3183: 3178: 3150: 3100: 3089: 3062:Superconducting 3056: 3022: 3013:Neutral atom QC 3005:Ultracold atoms 2999: 2964:implementations 2963: 2957: 2897: 2890: 2857:Quantum circuit 2825: 2819: 2813: 2803: 2763: 2757: 2724: 2717: 2673:Hidden subgroup 2625: 2614:other protocols 2570: 2547:quantum network 2542:Quantum channel 2502: 2496: 2442:No-broadcasting 2432:Gottesman–Knill 2405: 2333: 2328: 2291: 2286: 2237: 2233: 2186:(7742): 51–57. 2176: 2172: 2123: 2119: 2111: 2109: 2099: 2063: 2059: 2004: 2000: 1959: 1955: 1939:10.1038/515202a 1918: 1914: 1856: 1852: 1807: 1803: 1764: 1760: 1750: 1748: 1692: 1688: 1646: 1642: 1581: 1577: 1530:(6052): 57–61. 1519: 1515: 1457: 1453: 1392: 1388: 1337: 1333: 1310:(10): 757–761. 1296: 1292: 1234: 1227: 1170: 1166: 1157: 1155: 1153:Quanta Magazine 1145: 1141: 1080: 1076: 1067: 1065: 1055: 1051: 982: 978: 938: 932: 928: 881: 877: 869: 865: 808: 804: 755: 751: 702: 698: 681: 677: 626: 622: 570: 563: 554: 552: 535: 531: 472: 466: 457: 448: 446: 426: 424: 415: 400:10.1140/epjqt10 374: 370: 366: 344: 316: 267: 245:lattice spacing 201: 147: 82:Richard Feynman 25:are fluorescing 17: 12: 11: 5: 3514: 3513: 3502: 3501: 3484: 3483: 3481: 3480: 3467: 3464: 3463: 3460: 3459: 3457: 3456: 3451: 3446: 3441: 3436: 3435: 3434: 3424: 3419: 3414: 3409: 3403: 3401: 3397: 3396: 3394: 3393: 3388: 3383: 3378: 3373: 3368: 3366:neural network 3363: 3358: 3353: 3348: 3343: 3338: 3333: 3328: 3323: 3318: 3313: 3308: 3303: 3298: 3293: 3288: 3287: 3286: 3276: 3271: 3266: 3261: 3256: 3251: 3246: 3241: 3235: 3233: 3224: 3220: 3219: 3212: 3211: 3204: 3197: 3189: 3180: 3179: 3177: 3176: 3166: 3155: 3152: 3151: 3149: 3148: 3146:many others... 3143: 3138: 3133: 3128: 3119: 3105: 3103: 3095: 3094: 3091: 3090: 3088: 3087: 3082: 3077: 3072: 3066: 3064: 3058: 3057: 3055: 3054: 3049: 3044: 3039: 3033: 3031: 3024: 3023: 3021: 3020: 3018:Trapped-ion QC 3015: 3009: 3007: 3001: 3000: 2998: 2997: 2992: 2987: 2982: 2976: 2974: 2972:Quantum optics 2965: 2959: 2958: 2956: 2955: 2950: 2949: 2948: 2941: 2936: 2931: 2926: 2921: 2916: 2911: 2902: 2900: 2892: 2891: 2889: 2888: 2883: 2878: 2877: 2876: 2866: 2865: 2864: 2854: 2853: 2852: 2842: 2837: 2831: 2829: 2821: 2820: 2818: 2817: 2816: 2815: 2811: 2805: 2801: 2790: 2789: 2788: 2778: 2776:Quantum volume 2773: 2767: 2765: 2759: 2758: 2756: 2755: 2750: 2745: 2740: 2735: 2729: 2727: 2719: 2718: 2716: 2715: 2710: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2665: 2660: 2655: 2653:Boson sampling 2650: 2645: 2639: 2637: 2631: 2630: 2627: 2626: 2624: 2623: 2618: 2617: 2616: 2611: 2606: 2596: 2591: 2586: 2580: 2578: 2569: 2568: 2563: 2562: 2561: 2551: 2550: 2549: 2539: 2534: 2529: 2524: 2523: 2522: 2517: 2506: 2504: 2498: 2497: 2495: 2494: 2489: 2487:Solovay–Kitaev 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2413: 2411: 2407: 2406: 2404: 2403: 2402: 2401: 2391: 2390: 2389: 2379: 2374: 2369: 2364: 2363: 2362: 2352: 2347: 2341: 2339: 2335: 2334: 2327: 2326: 2319: 2312: 2304: 2298: 2297: 2290: 2289:External links 2287: 2285: 2284: 2231: 2170: 2117: 2097: 2057: 1998: 1969:(4): 253–402. 1953: 1912: 1850: 1801: 1774:(4): 267–276. 1768:Nature Physics 1758: 1686: 1640: 1585:Edwards, E. E. 1575: 1513: 1451: 1386: 1341:Edwards, E. E. 1331: 1304:Nature Physics 1290: 1225: 1174:Rev. Mod. Phys 1164: 1139: 1074: 1049: 976: 949:(4): 264–266. 943:Nature Physics 926: 875: 863: 818:(12): 120501. 802: 765:(2): 581–603. 749: 712:(2): 359–371. 696: 675: 640:(6): 467–488. 620: 598:10.1.1.45.9310 561: 529: 455: 413: 367: 365: 362: 361: 360: 355: 350: 343: 340: 332:Mott insulator 315: 312: 271:ultracold atom 266: 263: 247:and geometry. 235:quantum magnet 223:beryllium ions 200: 197: 146: 143: 128:quantum system 97:Turing machine 89:Turing machine 55:quantum system 15: 9: 6: 4: 3: 2: 3512: 3511: 3500: 3497: 3496: 3494: 3479: 3478: 3469: 3468: 3465: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3433: 3432:Plasma window 3430: 3429: 3428: 3425: 3423: 3420: 3418: 3415: 3413: 3410: 3408: 3405: 3404: 3402: 3398: 3392: 3391:teleportation 3389: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3347: 3344: 3342: 3339: 3337: 3334: 3332: 3329: 3327: 3324: 3322: 3319: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3285: 3282: 3281: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3236: 3234: 3232: 3228: 3225: 3221: 3217: 3210: 3205: 3203: 3198: 3196: 3191: 3190: 3187: 3175: 3167: 3165: 3157: 3156: 3153: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3123: 3120: 3118: 3114: 3110: 3107: 3106: 3104: 3102: 3096: 3086: 3083: 3081: 3078: 3076: 3073: 3071: 3068: 3067: 3065: 3063: 3059: 3053: 3050: 3048: 3045: 3043: 3042:Spin qubit QC 3040: 3038: 3035: 3034: 3032: 3029: 3025: 3019: 3016: 3014: 3011: 3010: 3008: 3006: 3002: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2977: 2975: 2973: 2969: 2966: 2960: 2954: 2951: 2947: 2946: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2906: 2904: 2903: 2901: 2899: 2893: 2887: 2884: 2882: 2879: 2875: 2872: 2871: 2870: 2867: 2863: 2860: 2859: 2858: 2855: 2851: 2850:cluster state 2848: 2847: 2846: 2843: 2841: 2838: 2836: 2833: 2832: 2830: 2828: 2822: 2814: 2810: 2806: 2804: 2800: 2796: 2795: 2794: 2791: 2787: 2784: 2783: 2782: 2779: 2777: 2774: 2772: 2769: 2768: 2766: 2760: 2754: 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2730: 2728: 2726: 2720: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2658:Deutsch–Jozsa 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2640: 2638: 2636: 2632: 2622: 2619: 2615: 2612: 2610: 2607: 2605: 2602: 2601: 2600: 2597: 2595: 2594:Quantum money 2592: 2590: 2587: 2585: 2582: 2581: 2579: 2577: 2573: 2567: 2564: 2560: 2557: 2556: 2555: 2552: 2548: 2545: 2544: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2521: 2518: 2516: 2513: 2512: 2511: 2508: 2507: 2505: 2503:communication 2499: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2414: 2412: 2408: 2400: 2397: 2396: 2395: 2392: 2388: 2385: 2384: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2361: 2358: 2357: 2356: 2353: 2351: 2348: 2346: 2343: 2342: 2340: 2336: 2332: 2325: 2320: 2318: 2313: 2311: 2306: 2305: 2302: 2296: 2293: 2292: 2280: 2276: 2272: 2268: 2264: 2260: 2255: 2250: 2247:(1): 011016. 2246: 2242: 2235: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2194: 2189: 2185: 2181: 2174: 2166: 2162: 2158: 2154: 2150: 2146: 2141: 2136: 2132: 2128: 2121: 2108: 2104: 2100: 2094: 2090: 2086: 2081: 2076: 2072: 2068: 2061: 2053: 2049: 2044: 2039: 2035: 2031: 2026: 2021: 2018:(5): 053010. 2017: 2013: 2009: 2002: 1994: 1990: 1986: 1982: 1977: 1972: 1968: 1964: 1957: 1949: 1945: 1940: 1935: 1931: 1927: 1923: 1916: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1875: 1870: 1866: 1862: 1854: 1846: 1842: 1837: 1832: 1828: 1824: 1820: 1816: 1812: 1805: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1762: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1714: 1709: 1705: 1701: 1697: 1690: 1682: 1678: 1674: 1670: 1665: 1660: 1657:(1): 014004. 1656: 1652: 1644: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1603: 1598: 1594: 1590: 1586: 1579: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1538: 1533: 1529: 1525: 1517: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1476: 1471: 1467: 1463: 1455: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1396:Edwards, E.E. 1390: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1335: 1326: 1321: 1317: 1313: 1309: 1305: 1301: 1294: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1253: 1248: 1244: 1240: 1232: 1230: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1193: 1188: 1183: 1180:(4): 025001. 1179: 1175: 1168: 1154: 1150: 1143: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1102: 1097: 1093: 1089: 1085: 1078: 1064: 1060: 1053: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1004: 999: 995: 991: 987: 980: 972: 968: 964: 960: 956: 952: 948: 944: 937: 930: 922: 918: 914: 910: 906: 902: 898: 894: 890: 886: 879: 872: 867: 859: 855: 851: 847: 843: 839: 835: 831: 826: 821: 817: 813: 806: 798: 794: 790: 786: 782: 778: 773: 768: 764: 760: 753: 745: 741: 737: 733: 729: 725: 720: 715: 711: 707: 700: 691: 686: 679: 671: 667: 663: 659: 655: 651: 647: 643: 639: 635: 631: 624: 616: 612: 608: 604: 599: 594: 590: 586: 582: 578: 574: 568: 566: 551:on 2013-05-10 550: 546: 542: 541: 533: 524: 520: 516: 512: 508: 504: 500: 496: 491: 486: 482: 478: 471: 464: 462: 460: 445: 441: 440: 433: 422: 420: 418: 409: 405: 401: 397: 392: 387: 383: 379: 372: 368: 359: 356: 354: 351: 349: 346: 345: 339: 337: 333: 329: 325: 321: 311: 309: 305: 304:Haldane model 300: 296: 292: 288: 284: 280: 276: 272: 262: 259: 254: 248: 246: 241: 236: 232: 228: 224: 219: 217: 213: 209: 205: 196: 194: 190: 189:time crystals 185: 183: 178: 174: 173:superposition 168: 165: 160: 156: 152: 142: 140: 135: 133: 129: 124: 122: 118: 114: 110: 106: 102: 98: 94: 90: 85: 83: 79: 75: 71: 66: 64: 60: 56: 52: 46: 40: 34: 30: 26: 21: 3475: 3412:Anti-gravity 3385: 3356:metamaterial 3284:post-quantum 3279:cryptography 3070:Charge qubit 2995:KLM protocol 2944: 2808: 2798: 2492:Purification 2422:Eastin–Knill 2376: 2244: 2240: 2234: 2183: 2179: 2173: 2130: 2126: 2120: 2110:, retrieved 2070: 2060: 2015: 2011: 2001: 1966: 1962: 1956: 1929: 1925: 1915: 1864: 1860: 1853: 1818: 1814: 1804: 1771: 1767: 1761: 1749:. Retrieved 1703: 1699: 1689: 1654: 1650: 1643: 1592: 1588: 1578: 1527: 1523: 1516: 1465: 1461: 1454: 1403: 1399: 1389: 1348: 1344: 1334: 1307: 1303: 1293: 1242: 1238: 1177: 1173: 1167: 1156:. Retrieved 1152: 1142: 1091: 1087: 1077: 1066:. Retrieved 1063:SciTechDaily 1062: 1052: 993: 989: 979: 946: 942: 929: 888: 884: 878: 866: 815: 811: 805: 762: 758: 752: 709: 705: 699: 678: 637: 633: 623: 580: 576: 553:. Retrieved 549:the original 544: 539: 532: 480: 476: 447:. Retrieved 438: 381: 377: 371: 317: 287:Rydberg atom 268: 257: 249: 240:laser pulses 227:Penning trap 220: 216:quantum bits 202: 186: 182:entanglement 175:, wherein a 169: 148: 136: 132:quantum bits 125: 120: 108: 86: 80:in 1980 and 76:proposed by 69: 67: 50: 49: 44: 32: 3427:Force field 3376:programming 3336:logic clock 3321:information 3296:electronics 3101:programming 3080:Phase qubit 2985:Circuit QED 2457:No-deleting 2399:cloud-based 1394:Islam, R.; 208:trapped-ion 31:structure. 3341:logic gate 3239:algorithms 3141:libquantum 3075:Flux qubit 2980:Cavity QED 2929:Bacon–Shor 2919:stabilizer 2447:No-cloning 2254:1607.06895 2193:1807.11342 2112:2020-05-25 2080:1511.03569 2025:1512.07329 1976:1810.09228 1713:2107.00033 1664:1802.03118 1406:(1): 377. 1187:1912.07845 1158:2022-03-11 1101:2104.04119 1068:2021-12-27 1003:2102.01695 555:2013-03-04 449:2013-02-22 364:References 289:arrays in 78:Yuri Manin 3386:simulator 3274:computing 3244:amplifier 3047:NV center 2482:Threshold 2462:No-hiding 2427:Gleason's 2165:119276238 2140:1402.1388 2107:118452312 2052:1367-2630 1907:204898338 1874:1406.7874 1746:235694285 1602:1210.0142 1570:206535076 1537:1109.1512 1475:1104.1146 1413:1103.2400 1252:1204.5789 1220:209386771 1212:0034-6861 1134:233204440 1044:231786633 1028:0036-8075 971:109930964 825:1105.3986 772:0810.0312 670:124545445 662:1572-9575 615:124545445 593:CiteSeerX 490:1204.5789 408:120250321 391:1405.2831 84:in 1982. 3493:Category 3291:dynamics 3109:OpenQASM 3085:Transmon 2962:Physical 2762:Quantum 2663:Grover's 2437:Holevo's 2410:Theorems 2360:timeline 2350:NISQ era 2226:59606678 2218:30728523 1993:91184189 1948:25391956 1899:25391960 1845:28883070 1796:17023076 1738:35549407 1681:54518534 1635:14692151 1627:23641112 1562:21885735 1500:21350481 1438:21730958 1373:20520708 1277:22538611 1126:34855494 1036:34112691 921:43496899 858:11322270 850:22026760 797:14801066 744:37923044 515:22538611 342:See also 306:and the 279:fermions 231:electron 204:Ion trap 121:feasible 3381:sensing 3361:network 3346:machine 3316:imaging 3264:circuit 3259:channel 3231:Quantum 3099:Quantum 3037:Kane QC 2896:Quantum 2824:Quantum 2753:PostBQP 2723:Quantum 2708:Simon's 2501:Quantum 2338:General 2279:3550701 2259:Bibcode 2198:Bibcode 2145:Bibcode 2030:Bibcode 1879:Bibcode 1823:Bibcode 1776:Bibcode 1718:Bibcode 1700:Science 1607:Bibcode 1589:Science 1542:Bibcode 1524:Science 1508:4359894 1480:Bibcode 1418:Bibcode 1381:2479652 1353:Bibcode 1312:Bibcode 1285:4370334 1257:Bibcode 1192:Bibcode 1106:Bibcode 1088:Science 1008:Bibcode 990:Science 951:Bibcode 913:8688088 893:Bibcode 885:Science 830:Bibcode 777:Bibcode 724:Bibcode 642:Bibcode 585:Bibcode 523:4370334 495:Bibcode 295:Hubbard 59:physics 29:lattice 3371:optics 3223:Fields 3117:IBM QX 3113:Qiskit 3052:NMR QC 3030:-based 2934:Steane 2905:Codes 2703:Shor's 2609:SARG04 2417:Bell's 2277:  2224:  2216:  2180:Nature 2163:  2105:  2095:  2050:  1991:  1946:  1926:Nature 1905:  1897:  1861:Nature 1843:  1815:Nature 1794:  1751:13 May 1744:  1736:  1679:  1633:  1625:  1568:  1560:  1506:  1498:  1462:Nature 1444:  1436:  1379:  1371:  1345:Nature 1283:  1275:  1239:Nature 1218:  1210:  1132:  1124:  1042:  1034:  1026:  969:  919:  911:  856:  848:  795:  742:  668:  660:  613:  595:  521:  513:  477:Nature 406:  384:(10). 275:bosons 258:et al. 3400:Other 3331:logic 2939:Toric 2382:Qubit 2275:S2CID 2249:arXiv 2222:S2CID 2188:arXiv 2161:S2CID 2135:arXiv 2103:S2CID 2075:arXiv 2020:arXiv 1989:S2CID 1971:arXiv 1903:S2CID 1869:arXiv 1792:S2CID 1742:S2CID 1708:arXiv 1677:S2CID 1659:arXiv 1631:S2CID 1597:arXiv 1566:S2CID 1532:arXiv 1504:S2CID 1470:arXiv 1446:33407 1442:S2CID 1408:arXiv 1377:S2CID 1281:S2CID 1247:arXiv 1216:S2CID 1182:arXiv 1130:S2CID 1096:arXiv 1040:S2CID 998:arXiv 967:S2CID 939:(PDF) 917:S2CID 854:S2CID 820:arXiv 793:S2CID 767:arXiv 740:S2CID 714:arXiv 685:arXiv 666:S2CID 611:S2CID 543:[ 519:S2CID 485:arXiv 473:(PDF) 434:from 404:S2CID 386:arXiv 269:Many 109:power 91:or a 72:is a 3477:List 3131:Cirq 3122:Quil 3028:Spin 2924:Shor 2604:BB84 2537:LOCC 2214:PMID 2093:ISBN 2048:ISSN 1944:PMID 1895:PMID 1841:PMID 1753:2022 1734:PMID 1704:6594 1623:PMID 1558:PMID 1496:PMID 1434:PMID 1369:PMID 1273:PMID 1208:ISSN 1122:PMID 1032:PMID 1024:ISSN 909:PMID 846:PMID 658:ISSN 511:PMID 212:NIST 191:and 153:and 3249:bus 2945:gnu 2909:CSS 2786:XEB 2748:QMA 2743:QIP 2738:EQP 2733:BQP 2713:VQE 2668:HHL 2472:PBR 2267:doi 2206:doi 2184:566 2153:doi 2131:175 2085:doi 2038:doi 1981:doi 1934:doi 1930:515 1887:doi 1865:515 1831:doi 1819:357 1784:doi 1726:doi 1669:doi 1615:doi 1593:340 1550:doi 1528:334 1488:doi 1466:470 1426:doi 1361:doi 1349:465 1320:doi 1265:doi 1243:484 1200:doi 1114:doi 1092:374 1016:doi 994:372 959:doi 901:doi 889:273 838:doi 816:107 785:doi 763:294 732:doi 710:270 650:doi 603:doi 503:doi 481:484 396:doi 297:or 281:in 277:or 3495:: 3136:Q# 2273:. 2265:. 2257:. 2243:. 2220:. 2212:. 2204:. 2196:. 2182:. 2159:. 2151:. 2143:. 2129:. 2101:, 2091:, 2083:, 2069:, 2046:. 2036:. 2028:. 2016:18 2014:. 2010:. 1987:. 1979:. 1967:67 1965:. 1942:. 1928:. 1924:. 1901:. 1893:. 1885:. 1877:. 1863:. 1839:. 1829:. 1817:. 1813:. 1790:. 1782:. 1770:. 1740:. 1732:. 1724:. 1716:. 1702:. 1698:. 1675:. 1667:. 1653:. 1629:. 1621:. 1613:. 1605:. 1591:. 1564:. 1556:. 1548:. 1540:. 1526:. 1502:. 1494:. 1486:. 1478:. 1464:. 1440:. 1432:. 1424:. 1416:. 1402:. 1375:. 1367:. 1359:. 1347:. 1318:. 1306:. 1302:. 1279:. 1271:. 1263:. 1255:. 1241:. 1228:^ 1214:. 1206:. 1198:. 1190:. 1178:93 1176:. 1151:. 1128:. 1120:. 1112:. 1104:. 1090:. 1086:. 1061:. 1038:. 1030:. 1022:. 1014:. 1006:. 992:. 988:. 965:. 957:. 945:. 941:. 915:. 907:. 899:. 887:. 852:. 844:. 836:. 828:. 814:. 791:. 783:. 775:. 761:. 738:. 730:. 722:. 708:. 664:. 656:. 648:. 638:21 636:. 632:. 609:. 601:. 591:. 581:21 579:. 564:^ 517:. 509:. 501:. 493:. 479:. 475:. 458:^ 442:. 416:^ 402:. 394:. 380:. 310:. 195:. 126:A 68:A 3208:e 3201:t 3194:v 3124:– 3115:– 3111:– 2812:2 2809:T 2802:1 2799:T 2323:e 2316:t 2309:v 2281:. 2269:: 2261:: 2251:: 2245:7 2228:. 2208:: 2200:: 2190:: 2167:. 2155:: 2147:: 2137:: 2087:: 2077:: 2054:. 2040:: 2032:: 2022:: 1995:. 1983:: 1973:: 1950:. 1936:: 1909:. 1889:: 1881:: 1871:: 1847:. 1833:: 1825:: 1798:. 1786:: 1778:: 1772:8 1755:. 1728:: 1720:: 1710:: 1683:. 1671:: 1661:: 1655:4 1637:. 1617:: 1609:: 1599:: 1572:. 1552:: 1544:: 1534:: 1510:. 1490:: 1482:: 1472:: 1448:. 1428:: 1420:: 1410:: 1404:2 1383:. 1363:: 1355:: 1328:. 1322:: 1314:: 1308:4 1287:. 1267:: 1259:: 1249:: 1222:. 1202:: 1194:: 1184:: 1161:. 1136:. 1116:: 1108:: 1098:: 1071:. 1046:. 1018:: 1010:: 1000:: 973:. 961:: 953:: 947:8 923:. 903:: 895:: 860:. 840:: 832:: 822:: 799:. 787:: 779:: 769:: 746:. 734:: 726:: 716:: 693:. 687:: 672:. 652:: 644:: 617:. 605:: 587:: 558:. 525:. 505:: 497:: 487:: 452:. 410:. 398:: 388:: 382:1

Index


are fluorescing
lattice

quantum system
physics
quantum computers
quantum computer
Yuri Manin
Richard Feynman
Turing machine
quantum Turing machine
Turing machine
universal quantum computer
computability theory
complexity classes
quantum supremacy
quantum system
quantum bits
ultracold quantum gases
low-temperature physics
many-body physics
quantum mechanics
quantum behavior
superposition
quantum particle
entanglement
time crystals
quantum spin liquids
Ion trap

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑