Knowledge

Quantum spin liquid

Source 📝

1339: 279: 291: 1071: 244: 307: 225:(meaning that the only possible orientation of the spins are either "up" or "down"), which interact antiferromagnetically, is a simple example for frustration. In the ground state, two of the spins can be antiparallel but the third one cannot. This leads to an increase of possible orientations (six in this case) of the spins in the ground state, enhancing fluctuations and thus suppressing magnetic ordering. 404:. Both chiral spin state and Z2 spin liquid state have long RVB bonds that connect the same sub-lattice. In chiral spin state, different bond configurations can have complex amplitudes, while in Z2 spin liquid state, different bond configurations only have real amplitudes. The RVB state on triangle lattice also realizes the Z2 spin liquid, where different bond configurations only have real amplitudes. The 25: 264:
fluctuations of the valence bonds must be allowed, leading to a ground state consisting of a superposition of many different partitionings of spins into valence bonds. If the partitionings are equally distributed (with the same quantum amplitude), there is no preference for any specific partitioning ("valence bond liquid"). This kind of ground state wavefunction was proposed by
133: 1284: 1099:, a spin-1/2 antiferromagnet on a triangular lattice, displayed diffuse scattering. This was attributed to spinons arising from a 2D RVB state. Later theoretical work challenged this picture, arguing that all experimental results were instead consequences of 1D spinons confined to individual chains. 314:
The valence bonds do not have to be formed by nearest neighbors only and their distributions may vary in different materials. Ground states with large contributions of long range valence bonds have more low-energy spin excitations, as those valence bonds are easier to break up. On breaking, they form
228:
A recent research work used this concept in analyzing brain networks and surprisingly indicated frustrated interactions in the brain corresponding to flexible neural interactions. This observation highlights the generalization of the frustration phenomenon and proposes its investigation in biological
4188:
Banerjee, A.; Bridges, C. A.; Yan, J.-Q.; Aczel, A. A.; Li, L.; Stone, M. B.; Granroth, G. E.; Lumsden, M. D.; Yiu, Y.; Knolle, J.; Bhattacharjee, S.; Kovrizhin, D. L.; Moessner, R.; Tennant, D. A.; Mandrus, D. G.; Nagler, S. E. (2016). "Proximate Kitaev quantum spin liquid behaviour in a honeycomb
1245:
Large (millimeter size) single crystals of herbertsmithite were grown and characterized in 2011. These enabled more precise measurements of possible spin liquid properties. In particular, momentum-resolved inelastic neutron scattering experiments showed a broad continuum of excitations. This was
395:
gauge field which may confine the spinons etc. So the equal-amplitude nearest-neighbour RVB state on square lattice is unstable and does not corresponds to a quantum spin phase. It may describe a critical phase transition point between two stable phases. A version of RVB state which is stable and
251:
To build a ground state without magnetic moment, valence bond states can be used, where two electron spins form a spin 0 singlet due to the antiferromagnetic interaction. If every spin in the system is bound like this, the state of the system as a whole has spin 0 too and is non-magnetic. The two
365:
The first discussion of the RVB state on square lattice using the RVB picture only consider nearest neighbour bonds that connect different sub-lattices. The constructed RVB state is an equal amplitude superposition of all the nearest-neighbour bond configurations. Such a RVB state is believed to
263:
There are two things that still distinguish a VBS from a spin liquid: First, by ordering the bonds in a certain way, the lattice symmetry is usually broken, which is not the case for a spin liquid. Second, this ground state lacks long-range entanglement. To achieve this, quantum mechanical
180:
spin state, much in the way liquid water is in a disordered state compared to crystalline ice. However, unlike other disordered states, a quantum spin liquid state preserves its disorder to very low temperatures. A more modern characterization of quantum spin liquids involves their
136: 135: 140: 139: 134: 1187:
copper spins within a single layer, whereas coupling between layers is negligible. Therefore, it is a good realization of the antiferromagnetic spin-1/2 Heisenberg model on the kagome lattice, which is a prototypical theoretical example of a quantum spin liquid.
141: 1191:
Synthetic, polycrystalline herbertsmithite powder was first reported in 2005, and initial magnetic susceptibility studies showed no signs of magnetic order down to 2K. In a subsequent study, the absence of magnetic order was verified down to 50 mK,
1690:, etc. The data collected for very different strongly correlated Fermi systems demonstrate universal scaling behavior; in other words distinct materials with strongly correlated fermions unexpectedly turn out to be uniform, thus forming a new 1114:) by Kanoda's group in 2003. It may correspond to a gapless spin liquid with spinon Fermi surface (the so-called uniform RVB state). The peculiar phase diagram of this organic quantum spin liquid compound was first thoroughly mapped using 138: 1414:, collaborating with physicists from the University of Cambridge, and the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, measured the first signatures of these fractional particles, known as 3514:
Han, Tian-Heng; Helton, Joel S; Chu, Shaoyan; Nocera, Daniel G; Rodriguez-Rivera, Jose A; Broholm, Collin; Lee, Young S (2012). "Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet".
3637:
Han, Tian-Heng; Norman, MR; Wen, J-J; Rodriguez-Rivera, Jose A; Helton, Joel S; Broholm, Collin; Lee, Young S (2016). "Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite".
1657:
etc. Therefore, to agree/explain with the numerous experimental facts, extended quasiparticles paradigm based on FCQPT has to be introduced. The main point here is that the well-defined quasiparticles determine the
420:
Since there is no single experimental feature which identifies a material as a spin liquid, several experiments have to be conducted to gain information on different properties which characterize a spin liquid.
3309:
de Vries, M. A.; Stewart, J. R.; Deen, P. P.; Piatek, J. O.; Nilsen, G. J.; Ronnow, H. M.; Harrison, A. (2009). "Scale-free antiferromagnetic fluctuations in the S=1/2 kagome antiferromagnet herbertsmithite".
1196:
measurements revealed a broad spectrum of low energy spin excitations, and low-temperature specific heat measurements had power law scaling. This gave compelling evidence for a spin liquid state with gapless
120:
with their nearest neighbors, i.e. neighboring spins seek to be aligned in opposite directions. Quantum spin liquids generated further interest when in 1987 Anderson proposed a theory that described
489: 1545:
In December 2021, the first direct measurement of a quantum spin liquid of the toric code type was reported, it was achieved by two teams: one exploring ground state and anyonic excitations on a
646: 315:
two free spins. Other excitations rearrange the valence bonds, leading to low-energy excitations even for short-range bonds. Something very special about spin liquids is that they support
210: 1239: 137: 396:
contains deconfined spinons is the chiral spin state. Later, another version of stable RVB state with deconfined spinons, the Z2 spin liquid, is proposed, which realizes the simplest
821: 739: 521: 2622:
Matan, K.; Ono, T.; Fukumoto, Y.; Sato, T. J.; et al. (2010). "Pinwheel valence-bond solid and triplet excitations in the two-dimensional deformed kagome lattice".
221:
if there exist competing exchange interactions that can not all be satisfied at the same time, leading to a large degeneracy of the system's ground state. A triangle of
713: 765: 581: 2771: 169:, stripes, or checkerboards. These long-range patterns are referred to as "magnetic order," and are analogous to the regular crystal structure formed by many solids. 157:. This highly disordered phase is the generic state of magnets at high temperatures, where thermal fluctuations dominate. Upon cooling, the spins will often enter a 1645:
paradigm based on the assumption that the effective mass is approximately constant, in the FCQPT theory the effective mass of new quasiparticles strongly depends on
1229: 1185: 548: 355: 1423: 393: 674: 4526:
Semeghini, G.; Levine, H.; Keesling, A.; Ebadi, S.; Wang, T. T.; Bluvstein, D.; Verresen, R.; Pichler, H.; Kalinowski, M.; Samajdar, R.; Omran, A. (2021-12-03).
1261:
and the low energy dynamic susceptibility, with the low temperature heat capacity strongly depending on magnetic field. This scaling is seen in certain quantum
1250:
and high-resolution, low-energy neutron scattering) refined this picture and determined there was actually a small spinon excitation gap of 0.07–0.09 meV.
409: 401: 2140:
Kivelson, Steven A.; Rokhsar, Daniel S.; Sethna, James P. (1987). "Topology of the resonating valence-bond state: Solitons and high-Tc superconductivity".
2587:
Nytko, Emily A.; Helton, Joel S.; Müller, Peter; Nocera, Daniel G. (2008). "A Structurally Perfect S = 1/2 Metal−Organic Hybrid Kagome Antiferromagnet".
1242:, reinforced the identification of herbertsmithite as a gapless spin liquid material, although the exact characterization remained unclear as of 2010. 357:. In spin liquids, a spinon is created if one spin is not paired in a valence bond. It can move by rearranging nearby valence bonds at low energy cost. 4154:
Ying Ran, Michael Hermele, Patrick A. Lee, Xiao-Gang Wen, (2006), "Projected wavefunction study of Spin-1/2 Heisenberg model on the Kagome lattice",
43: 4404:
Satzinger, K. J.; Liu, Y.-J; Smith, A.; Knapp, C.; Newman, M.; Jones, C.; Chen, Z.; Quintana, C.; Mi, X.; Dunsworth, A.; Gidney, C. (2021-12-03).
3236:
Olariu, A; et al. (2008). "O NMR Study of the Intrinsic Magnetic Susceptibility and Spin Dynamics of the Quantum Kagome Antiferromagnet ZnCu
2678:
Y. Shimizu; K. Miyagawa; K. Kanoda; M. Maesato; et al. (2003). "Spin Liquid State in an Organic Mott Insulator with a Triangular Lattice".
272:(RVB) state. These states are of great theoretical interest as they are proposed to play a key role in high-temperature superconductor physics. 1993: 2971:
Pratt, F. L.; Baker, P. J.; Blundell, S. J.; Lancaster, T.; et al. (2011). "Magnetic and non-magnetic phases of a quantum spin liquid".
895: 278: 3797:
Helton, J. S.; et al. (2010). "Dynamic Scaling in the Susceptibility of the Spin-1/2 Kagome Lattice Antiferromagnet Herbertsmithite".
3576:
Fu, Mingxuan; Imai, Takashi; Lee, Young S (2015). "Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet".
2856:
Coldea, R.; Tennant, D.A.; Tsvelik, A.M.; Tylczynski, Z. (12 Feb 2001). "Experimental realization of a 2D fractional quantum spin liquid".
1725:
Materials supporting quantum spin liquid states may have applications in data storage and memory. In particular, it is possible to realize
1338: 443: 2108: 3993:
Pozo, Guillermo; de la Presa, Patricia; Prato, Rafael; Morales, Irene; Marin, Pilar; Fransaer, Jan; Dominguez-Benetton, Xochitl (2020).
172:
Quantum spin liquids offer a dramatic alternative to this typical behavior. One intuitive description of this state is as a "liquid" of
767:
is therefore a good indication of a possible spin liquid phase. Some frustrated materials with different lattice structures and their
589: 3126:
Shores, Matthew P; Nytko, Emily A; Bartlett, Bart M; Nocera, Daniel G (2005). "A Structurally Perfect S=1/2 Kagome Antigerromagnet".
2918:
Kohno, Masanori; Starkh, Oleg A; Balents, Leon (2007). "Spinons and triplons in spatially anisotropic frustrated antiferromagnets".
2051: 4380: 4309: 256:, while not being entangled with the other spins. If all spins are distributed to certain localized static bonds, this is called a 1422:. Their experimental results successfully matched with one of the main theoretical models for a quantum spin liquid, known as a 3065:
Yan, Simeng; Huse, David A; White, Steven R (2011). "Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet".
1442:) is a specific realization of a possible quantum spin liquid (QSL) representing a new type of strongly correlated electrical 4618: 3713: 1013:
experiments. If there is a local magnetic field present, the nuclear or muon spin would be affected which can be measured. H-
1607: 1580: 1277: 2081: 1370:(B) shifts to higher T reaching 15 K at B=14 Tesla. Observing that χ~C/T~M*, one concludes that the specific heat of YbRh 1730: 1714: 1066:, which couple via emergent gauge fields to the electromagnetic field, giving rise to a power-law optical conductivity. 121: 4696: 3444:
Han, TH; Helton, JS; Chu, S; Prodi, Andrea; Singh, DK; Mazzoli, Claudio; Müller, P; Nocera, DG; Lee, Young S (2011).
1946: 61: 1410:
Another evidence of quantum spin liquid was observed in a 2-dimensional material in August 2015. The researchers of
3928:
Shaginyan, V. R.; Amusia, M. Ya.; Msezane, A. Z.; Popov, K. G. (2010). "Scaling Behavior of Heavy Fermion Metals".
3860:
de Vries, M. A.; et al. (2008). "The magnetic ground state of an experimental S=1/2 kagomé antiferromagnet".
1726: 290: 1288: 1029:
have shown no sign of magnetic ordering down to 32 mK, which is four orders of magnitude smaller than the
238: 4253:
Shaginyan, V. R.; et al. (2012). "Identification of Strongly Correlated Spin Liquid in Herbertsmithite".
1129:
is one of the most extensively studied QSL candidate materials. It is a mineral with chemical composition ZnCu
165:) phase. In this phase, interactions between the spins cause them to align into large-scale patterns, such as 4681: 1963: 1537:, which does not develop long-range order even below 1 K, and has a diffuse spectrum of gapless excitations. 1411: 1729:
by means of spin-liquid states. Developments in quantum spin liquids may also help in the understanding of
1493:, contrary to conventional insulators. There are a few candidates of SCI; the most promising among them is 1193: 173: 90:
in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range
1314:
shifts to higher T reaching 14 K at B=18 Tesla. Observing that C/T~χ~M*, one concludes that SCQSL in ZnCu
1145:
crystal structure. Notably, the copper ions within this structure form stacked two-dimensional layers of
2369:
Moessner, R.; Sondhi, S. L. (2002). "Resonating Valence Bond Liquid Physics on the Triangular Lattice".
1030: 201:
Several physical models have a disordered ground state that can be described as a quantum spin liquid.
2783:
T. Ng & P. A. Lee (2007). "Power-Law Conductivity inside the Mott Gap: Application to κ-(BEDT-TTF)
4691: 3446:"Synthesis and characterization of single crystals of the spin-1/2 kagome-lattice antiferromagnets Zn 3161:
Helton, J. S.; et al. (2007). "Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu
1040:
give information about the low-energy density of states, which can be compared to theoretical models.
253: 4088:
Shaginyan, V. R.; Msezane, A.; Popov, K. (2011). "Thermodynamic Properties of Kagome Lattice in ZnCu
3962: 4167: 2252: 1846: 1667: 1591: 75: 4651: 785: 718: 496: 493:
Fitting experimental data to this equation determines a phenomenological Curie–Weiss temperature,
4701: 3862: 3799: 3175: 1560: 1443: 1258: 434: 218: 319:, meaning excitations with fractional quantum numbers. A prominent example is the excitation of 4048: 3957: 3445: 2247: 1566: 1266: 1254: 1115: 679: 2283:
Read, N.; Sachdev, Subir (1991). "Large-N expansion for frustrated quantum antiferromagnets".
744: 557: 247:
Valence bond solid. The bonds form a specific pattern and consist of pairs of entangled spins.
2741: 2506: 1246:
interpreted as evidence for gapless, fractionalized spinons. Follow-up experiments (using O
39: 4549: 4492: 4427: 4331: 4274: 4208: 4121: 4057: 3949: 3881: 3818: 3752: 3657: 3595: 3534: 3486: 3410: 3329: 3267: 3194: 3084: 3031: 2980: 2937: 2875: 2814: 2697: 2641: 2494: 2441: 2388: 2335: 2292: 2239: 2196: 2149: 2005: 1891: 1771: 1663: 1362:
at B=7 Tesla are shown. T-dependence T at B=0 is depicted by the solid curve. The maximum χ
1257:
behavior. Magnetic response of this material displays scaling relation in both the bulk ac
1200: 1156: 526: 326: 186: 91: 2326:
Wen, Xiao-Gang (1991). "Mean Field Theory of Spin Liquid States with Finite Energy Gaps".
1342:
Fig.2: T-dependence of the magnetic susceptibility χ at different magnetic fields for ZnCu
369: 8: 2230:
Wen, Xiao-Gang; Wilczek, F.; Zee, A. (1989). "Chiral Spin States and Superconductivity".
1033:
J≈250 K between neighboring spins in this compound. Further investigations include:
653: 438: 4553: 4496: 4431: 4335: 4278: 4212: 4125: 4061: 3953: 3885: 3822: 3756: 3729:
Wen, Jinsheng; Yu, Shun-Li; Li, Shiyan; Yu, Weiqiang; Li, Jian-Xin (12 September 2019).
3661: 3636: 3599: 3538: 3513: 3490: 3414: 3333: 3271: 3198: 3088: 3035: 2984: 2941: 2879: 2818: 2701: 2645: 2498: 2445: 2392: 2339: 2296: 2243: 2200: 2153: 2009: 1895: 1783: 1775: 1549:
and the other implementing a theoretical blueprint of atoms on a ruby lattice held with
4573: 4539: 4508: 4482: 4451: 4417: 4355: 4321: 4290: 4264: 4232: 4198: 4137: 4111: 3975: 3939: 3905: 3871: 3842: 3808: 3776: 3742: 3673: 3647: 3619: 3585: 3558: 3524: 3476: 3426: 3400: 3361: 3319: 3291: 3257: 3218: 3184: 3108: 3074: 3004: 2953: 2927: 2899: 2865: 2838: 2804: 2721: 2687: 2657: 2631: 2560: 2542: 2510: 2484: 2457: 2431: 2404: 2378: 2029: 1915: 1795: 1761: 117: 113: 102: 4527: 4470: 4405: 2453: 153:, where each individual spin behaves independently of the rest, just like atoms in an 4577: 4565: 4512: 4455: 4443: 4359: 4347: 4294: 4224: 4141: 4102: 4016: 3979: 3909: 3897: 3834: 3780: 3768: 3709: 3677: 3611: 3550: 3430: 3353: 3345: 3283: 3210: 3143: 3100: 3047: 2996: 2891: 2830: 2713: 2661: 2604: 2564: 2461: 2422:
Kitaev, A.Yu.; Balents, Leon (2003). "Fault-tolerant quantum computation by anyons".
2408: 2351: 2308: 2265: 2212: 2165: 2047: 2021: 1942: 1935: 1907: 1831: 1787: 1710: 1554: 1546: 768: 397: 182: 95: 4070: 4035: 3846: 3623: 3222: 3112: 2957: 2903: 2842: 2514: 1919: 1799: 4686: 4557: 4500: 4435: 4339: 4286: 4282: 4236: 4216: 4129: 4065: 4006: 3967: 3893: 3889: 3830: 3826: 3760: 3730: 3701: 3665: 3603: 3562: 3542: 3494: 3418: 3365: 3341: 3337: 3295: 3279: 3275: 3202: 3135: 3092: 3039: 3008: 2988: 2945: 2883: 2822: 2725: 2705: 2649: 2596: 2552: 2533:
Norman, M.R. (2016). "Herbertsmithite and the Search for the Quantum Spin Liquid".
2502: 2449: 2396: 2343: 2300: 2257: 2204: 2157: 2120: 2033: 2013: 1899: 1827: 1779: 1550: 1415: 1262: 676:. An ideal quantum spin liquid would not develop magnetic order at any temperature 551: 109: 83: 4625: 3971: 3206: 2826: 2709: 1903: 1269:, and two-dimensional He as a signature of proximity to a quantum critical point. 4652:"New kind of magnetism discovered: Experiments demonstrate 'quantum spin liquid'" 3930: 2556: 2086: 2056: 1703: 1691: 1570: 1494: 1451: 1153:
over the oxygen bonds creates a strong antiferromagnetic interaction between the
1126: 1074: 862: 166: 162: 3695: 3043: 2887: 2304: 2208: 771:
are listed in the table below. All of them are proposed spin liquid candidates.
4593:"This Weird Crystal Demonstrates a New Magnetic Behavior That Works Like Magic" 4504: 4133: 3698:
Theory of Heavy-Fermion Compounds - Theory of Strongly Correlated Fermi-Systems
3669: 3499: 2185:"Equivalence of the resonating-valence-bond and fractional quantum Hall states" 1628: 1621: 1595: 1483: 1146: 977: 953: 901: 868: 265: 87: 3764: 3705: 3379:
Mendels, Philippe; Bert, Fabrice (2010). "Quantum kagome antiferromagnet: ZnCu
2475:
Knolle, Johannes; Moessner, Roderich (2019). "A field guide to spin liquids".
2261: 1561:
Specific properties: topological fermion condensation quantum phase transition
4675: 4255: 3772: 3349: 2347: 2161: 2077: 1818:
P. W. Anderson (1973). "Resonating valence bonds: A new kind of insulator?".
1699: 1674:
properties of strongly correlated Fermi systems and M* becomes a function of
1659: 1577: 1475: 1459: 1447: 1276:
of herbertsmithite (~10 nm) were synthesized at room temperature, using
1273: 1150: 412:) that explicitly breaks the spin rotation symmetry and is exactly solvable. 177: 98: 4561: 4439: 4343: 3607: 3096: 3022:
Elser, Veit (1989). "Nuclear antiferromagnetism in a registered 3He solid".
1606:. The emergence of FCQPT is directly related to the unlimited growth of the 1378:
shown in Fig. 1 exhibits the similar behavior as χ does. Thus, SCQSL in ZnCu
650:
In a classic antiferromagnet, the two temperatures should coincide and give
550:, where magnetic order in the material begins to develop, as evidenced by a 4592: 4569: 4447: 4351: 4228: 4020: 3901: 3838: 3615: 3554: 3422: 3357: 3287: 3214: 3147: 3104: 3051: 3000: 2895: 2834: 2717: 2608: 2312: 2216: 2025: 1911: 1791: 1534: 1280:, showing that their spin liquid nature persists at such small dimensions. 1142: 2355: 2269: 2169: 1070: 4155: 3189: 2870: 2738:
In literature, the value of J is commonly given in units of temperature (
2692: 2436: 2383: 2125: 1614: 1603: 1599: 1587: 1052:
gives information about the nature of excitations and correlations (e.g.
158: 3546: 2992: 2677: 2400: 2100: 2017: 1298:
at different magnetic fields as shown in the legend. The values of (C/T)
209: 4011: 3994: 3064: 2107:
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G (October 2022).
1326:
shown in Fig. 2 exhibits the similar behavior as heavy fermions in YbRh
430: 405: 222: 150: 4528:"Probing topological spin liquids on a programmable quantum simulator" 3139: 2653: 2600: 1102:
Afterwards, it was observed in an organic Mott insulator (κ-(BEDT-TTF)
1005:
One of the most direct evidence for absence of magnetic ordering give
4469:
Verresen, Ruben; Lukin, Mikhail D.; Vishwanath, Ashvin (2021-07-08).
4220: 2949: 1671: 243: 154: 3700:. Springer Series in Solid-State Sciences. Vol. 182. Springer. 3443: 2184: 4544: 4487: 4422: 4326: 4203: 3747: 3652: 3590: 2547: 2489: 1766: 1706: 1635: 1573: 1419: 1234:
excitations. A broad array of additional experiments, including O
4471:"Prediction of Toric Code Topological Order from Rydberg Blockade" 4269: 4116: 3944: 3876: 3813: 3529: 3481: 3405: 3324: 3262: 3079: 2932: 2809: 2636: 2109:"Pattern of frustration formation in the functional brain network" 1752:
Savary, L.; Balents, L. (2017). "Quantum spin liquids: a review".
1474:=3, as it should be in the case of a conventional insulator whose 1498: 1077:, the mineral whose ground state was shown to have QSL behaviour 306: 4406:"Realizing topologically ordered states on a quantum processor" 4310:"Realizing topologically ordered states on a quantum processor" 3696:
Amusia, M.; Popov, K.; Shaginyan, V.; Stephanovich, V. (2014).
1874:
P. W. Anderson (1987). "The resonating valence bond state in La
1642: 1231: 1063: 1053: 320: 2855: 2106: 1010: 108:
The quantum spin liquid state was first proposed by physicist
1695: 190: 4525: 4168:"New state of matter detected in a two-dimensional material" 1418:, in a two-dimensional material with a structure similar to 1287:
Fig. 1: T-dependence of the electronic specific heat C/T of
268:
in 1973 as the ground state of spin liquids and is called a
3992: 3927: 2970: 145:
Example of a spin liquid emerging from frustrated magnetism
2052:"Physicists Aim to Classify All Possible Phases of Matter" 1429: 1091:
Neutron scattering measurements of cesium chlorocuprate Cs
4619:"Topological Quantum Computation from non-abelian anyons" 4381:"Quantum Simulators Create a Totally New Phase of Matter" 4036:"High-field phase diagram of the heavy-fermion metal YbRh 3308: 3125: 1247: 1235: 1014: 1006: 284:
One possible short-range pairing of spins in a RVB state.
1489:
is applied to SCI the specific heat depends strongly on
1283: 1046:
can determine if excitations are localized or itinerant.
408:
model is yet another realization of Z2 spin liquid (and
4468: 4187: 2586: 112:
in 1973 as the ground state for a system of spins on a
4403: 4160: 3995:"Spin transition nanoparticles made electrochemically" 360: 4087: 3731:"Experimental identification of quantum spin liquids" 2744: 2139: 1964:"A Strange New Quantum State of Matter: Spin Liquids" 1203: 1159: 788: 747: 721: 682: 656: 592: 560: 529: 499: 484:{\displaystyle \chi \sim {\frac {C}{T-\Theta _{CW}}}} 446: 415: 372: 329: 2621: 715:
and so would have a diverging frustration parameter
1747: 1745: 34:
may be too technical for most readers to understand
2917: 2765: 1934: 1450:metals with one exception: it resists the flow of 1223: 1179: 815: 759: 733: 707: 668: 640: 575: 542: 515: 483: 387: 349: 641:{\displaystyle f={\frac {|\Theta _{cw}|}{T_{c}}}} 232: 4673: 2182: 1742: 1366:(T) decreases as magnetic field B grows, while T 1310:decreases with growing magnetic field B, while T 1932: 2782: 2528: 2526: 2524: 2474: 2368: 2082:"Inside the Knotty World of 'Anyon' Particles" 1996:(2010). "Spin liquids in frustrated magnets". 1873: 1817: 204: 3691: 3689: 3687: 2421: 2229: 1751: 1462:of this type of insulator is proportional to 2908:Note that the preprint was uploaded in 2000. 2673: 2671: 2362: 2176: 2133: 1992: 1869: 1867: 1813: 1811: 1809: 124:in terms of a disordered spin-liquid state. 4610: 4248: 4246: 3378: 3372: 3302: 2521: 2282: 1988: 1986: 1984: 323:which are neutral in charge and carry spin 4643: 3684: 3229: 3154: 3119: 2849: 2468: 2415: 2371:Progress of Theoretical Physics Supplement 424: 4543: 4486: 4421: 4325: 4268: 4252: 4202: 4115: 4069: 4033: 4010: 3961: 3943: 3875: 3812: 3746: 3728: 3651: 3589: 3575: 3528: 3498: 3480: 3404: 3323: 3261: 3188: 3078: 3015: 2964: 2931: 2911: 2869: 2808: 2691: 2668: 2635: 2615: 2580: 2546: 2488: 2477:Annual Review of Condensed Matter Physics 2435: 2382: 2251: 2124: 2070: 2046: 2040: 1933:Chaikin, Paul M; Lubensky, Tom C (1995). 1864: 1838: 1806: 1765: 1402:It may realize a U(1)-Dirac spin liquid. 1306:at B=8 Tesla are shown. The maximum (C/T) 149:The simplest kind of magnetic phase is a 62:Learn how and when to remove this message 46:, without removing the technical details. 4649: 4624:. University of Virginia. Archived from 4243: 4181: 3986: 3859: 3792: 3790: 3393:Journal of the Physical Society of Japan 3128:Journal of the American Chemical Society 2589:Journal of the American Chemical Society 2507:10.1146/annurev-conmatphys-031218-013401 2276: 1981: 1337: 1282: 1069: 305: 242: 208: 131: 4590: 4584: 4148: 4083: 4081: 3853: 3630: 3507: 3437: 3058: 2319: 2223: 2076: 1961: 1844: 1613:*. Near FCQPT, M* starts to depend on 1436:strongly correlated quantum spin liquid 1430:Strongly correlated quantum spin liquid 4674: 4156:https://arxiv.org/abs/cond-mat/0611414 3796: 3569: 3235: 3160: 2532: 2183:Kalmeyer, V.; Laughlin, R. B. (1987). 1937:Principles of Condensed-Matter Physics 1634:and other external parameters such as 1405: 1081: 4650:Chandler, David (December 20, 2012). 3923: 3921: 3919: 3787: 3021: 1962:Wilkins, Alasdair (August 15, 2011). 1272:In 2020, monodisperse single-crystal 1253:Some measurements were suggestive of 44:make it understandable to non-experts 4591:Aguilar, Mario (December 20, 2012). 4378: 4307: 4078: 4027: 2776: 1565:The experimental facts collected on 1278:gas-diffusion electrocrystallization 213:Frustrated Ising spins on a triangle 18: 4616: 4034:Gegenwart, P.; et al. (2006). 2577:Phys. Rev. Lett. 116, 107203 (2016) 2325: 1926: 1586:* is very large, or even diverges. 1446:(SCI) that possesses properties of 583:. The ratio of these is called the 361:Realizations of (stable) RVB states 127: 101:, and absence of ordinary magnetic 13: 3916: 1955: 1847:"A new spin on superconductivity?" 1731:high temperature superconductivity 1715:high-temperature superconductivity 1540: 1238:, and neutron spectroscopy of the 1121: 806: 790: 728: 608: 523:. There is a second temperature, 501: 466: 416:Experimental signatures and probes 122:high-temperature superconductivity 86:that can be formed by interacting 14: 4713: 1390:behaves as heavy fermions in YbRh 1240:dynamic magnetic structure factor 429:In a high-temperature, classical 1845:Trafton, Anne (March 28, 2011). 289: 277: 23: 4519: 4462: 4397: 4372: 4301: 3722: 2732: 2571: 1727:topological quantum computation 1720: 3894:10.1103/PhysRevLett.100.157205 3831:10.1103/PhysRevLett.104.147201 3342:10.1103/PhysRevLett.103.237201 3280:10.1103/PhysRevLett.100.087202 1941:. Cambridge university press. 1754:Reports on Progress in Physics 1516: 1044:Thermal transport measurements 810: 802: 725: 702: 683: 621: 603: 570: 564: 382: 376: 301: 239:Resonating valence bond theory 233:Resonating valence bonds (RVB) 1: 3972:10.1016/j.physrep.2010.03.001 3207:10.1103/PhysRevLett.98.107204 2827:10.1103/PhysRevLett.99.156402 2710:10.1103/PhysRevLett.91.107001 2454:10.1016/S0003-4916(02)00018-0 1904:10.1126/science.235.4793.1196 1784:10.1088/0034-4885/80/1/016502 1736: 1412:Oak Ridge National Laboratory 950:Cu-(1,3-benzenedicarboxylate) 310:Spinon moving in spin liquids 4379:Wood, Charlie (2021-12-02). 4308:Wood, Charlie (2021-12-02). 2557:10.1103/RevModPhys.88.041002 1832:10.1016/0025-5408(73)90167-0 1501:with chemical structure ZnCu 1470:less or equal 1 rather than 1194:inelastic neutron scattering 1017:measurements on κ-(BEDT-TTF) 816:{\displaystyle \Theta _{cw}} 734:{\displaystyle f\to \infty } 516:{\displaystyle \Theta _{CW}} 296:Long-range pairing of spins. 7: 3044:10.1103/PhysRevLett.62.2405 2888:10.1103/PhysRevLett.86.1335 2305:10.1103/physrevlett.66.1773 2209:10.1103/physrevlett.59.2095 1820:Materials Research Bulletin 1086: 252:spins forming the bond are 205:Frustrated magnetic moments 196: 10: 4718: 4505:10.1103/PhysRevX.11.031005 4287:10.1209/0295-5075/97/56001 4134:10.1103/PhysRevB.84.060401 3670:10.1103/PhysRevB.94.060409 3500:10.1103/PhysRevB.83.100402 1641:, etc. In contrast to the 1038:Specific heat measurements 236: 176:spins, in comparison to a 4071:10.1088/1367-2630/8/9/171 3765:10.1038/s41535-019-0151-6 3706:10.1007/978-3-319-10825-4 2535:Reviews of Modern Physics 2262:10.1103/physrevb.39.11413 1567:heavy fermion (HF) metals 708:{\displaystyle (T_{c}=0)} 366:contain emergent gapless 4697:Condensed matter physics 2348:10.1103/physrevb.44.2664 2162:10.1103/physrevb.35.8865 1882:and superconductivity". 1592:quantum phase transition 1060:Reflectance measurements 1000: 760:{\displaystyle f>100} 576:{\displaystyle \chi (T)} 76:condensed matter physics 4562:10.1126/science.abi8794 4440:10.1126/science.abi8378 4344:10.1126/science.abi8378 3863:Physical Review Letters 3800:Physical Review Letters 3608:10.1126/science.aab2120 3312:Physical Review Letters 3250:Physical Review Letters 3176:Physical Review Letters 3097:10.1126/science.1201080 3024:Physical Review Letters 2858:Physical Review Letters 2797:Physical Review Letters 2766:{\displaystyle J/k_{B}} 2680:Physical Review Letters 2285:Physical Review Letters 2189:Physical Review Letters 1702:, quantum spin liquid, 769:Curie–Weiss temperature 435:magnetic susceptibility 425:Magnetic susceptibility 270:resonating valence bond 4049:New Journal of Physics 3423:10.1143/JPSJ.79.011001 2767: 1454:. At low temperatures 1424:Kitaev honeycomb model 1399: 1335: 1225: 1181: 1116:muon spin spectroscopy 1078: 841:anisotropic triangular 817: 761: 735: 709: 670: 642: 577: 544: 517: 485: 389: 351: 311: 248: 214: 146: 3735:npj Quantum Materials 2768: 1590:fermion condensation 1576:demonstrate that the 1535:kagome bilayer magnet 1341: 1286: 1226: 1224:{\displaystyle S=1/2} 1182: 1180:{\displaystyle S=1/2} 1073: 818: 762: 736: 710: 671: 643: 585:frustration parameter 578: 545: 543:{\displaystyle T_{c}} 518: 486: 390: 352: 350:{\displaystyle S=1/2} 309: 246: 212: 144: 118:antiferromagnetically 4682:Correlated electrons 2773:) instead of energy. 2742: 2126:10.1162/netn_a_00268 2113:Network Neuroscience 1694:that consists of HF 1267:heavy-fermion metals 1201: 1157: 786: 745: 719: 680: 654: 590: 558: 527: 497: 444: 410:Z2 topological order 402:Z2 topological order 388:{\displaystyle U(1)} 370: 327: 217:Localized spins are 187:quantum entanglement 92:quantum entanglement 4554:2021Sci...374.1242S 4538:(6572): 1242–1247. 4497:2021PhRvX..11c1005V 4432:2021Sci...374.1237S 4416:(6572): 1237–1241. 4336:2021Sci...374.1237S 4320:(6572): 1237–1241. 4279:2012EL.....9756001S 4213:2016NatMa..15..733B 4126:2011PhRvB..84f0401S 4062:2006NJPh....8..171G 3954:2010PhR...492...31S 3886:2008PhRvL.100o7205D 3823:2010PhRvL.104n7201H 3757:2019npjQM...4...12W 3662:2016PhRvB..94f0409H 3600:2015Sci...350..655F 3547:10.1038/nature11659 3539:2012Natur.492..406H 3491:2011PhRvB..83j0402H 3415:2010JPSJ...79a1001M 3334:2009PhRvL.103w7201D 3272:2008PhRvL.100h7202O 3199:2007PhRvL..98j7204H 3134:(39): 13462–13463. 3089:2011Sci...332.1173Y 3073:(6034): 1173–1176. 3036:1989PhRvL..62.2405E 2993:10.1038/nature09910 2985:2011Natur.471..612P 2942:2007NatPh...3..790K 2880:2001PhRvL..86.1335C 2819:2007PhRvL..99o6402N 2702:2003PhRvL..91j7001S 2646:2010NatPh...6..865M 2499:2019ARCMP..10..451K 2446:2003AnPhy.303....2K 2401:10.1143/PTPS.145.37 2393:2002PThPS.145...37M 2340:1991PhRvB..44.2664W 2297:1991PhRvL..66.1773R 2244:1989PhRvB..3911413W 2238:(16): 11413–11423. 2201:1987PhRvL..59.2095K 2154:1987PhRvB..35.8865K 2018:10.1038/nature08917 2010:2010Natur.464..199B 1896:1987Sci...235.1196A 1890:(4793): 1196–1198. 1776:2017RPPh...80a6502S 1478:is proportional to 1406:Kitaev spin liquids 1082:Candidate materials 669:{\displaystyle f=1} 254:maximally entangled 80:quantum spin liquid 4100:Herbertsmithite". 4012:10.1039/C9NR09884D 2763: 2048:Wolchover, Natalie 1594:(FCQPT) preserves 1400: 1336: 1221: 1177: 1079: 1050:Neutron scattering 813: 757: 731: 705: 666: 638: 573: 540: 513: 481: 385: 347: 317:exotic excitations 312: 258:valence bond solid 249: 215: 147: 114:triangular lattice 4475:Physical Review X 4103:Physical Review B 3715:978-3-319-10825-4 3640:Physical Review B 3584:(6261): 655–658. 3523:(7429): 406–410. 3469:Physical Review B 3140:10.1021/ja053891p 3030:(20): 2405–2408. 2979:(7340): 612–616. 2654:10.1038/nphys1761 2601:10.1021/ja709991u 2595:(10): 2922–2923. 2424:Annals of Physics 2328:Physical Review B 2291:(13): 1773–1776. 2232:Physical Review B 2195:(18): 2095–2098. 2148:(16): 8865–8868. 2142:Physical Review B 2004:(7286): 199–208. 1598:, and forms flat 1555:quantum simulator 1547:quantum processor 1416:Majorana fermions 1354:. The values of χ 1031:coupling constant 998: 997: 636: 479: 398:topological order 183:topological order 142: 72: 71: 64: 4709: 4692:Phases of matter 4667: 4666: 4664: 4662: 4647: 4641: 4640: 4638: 4636: 4630: 4623: 4614: 4608: 4607: 4605: 4603: 4588: 4582: 4581: 4547: 4523: 4517: 4516: 4490: 4466: 4460: 4459: 4425: 4401: 4395: 4394: 4392: 4391: 4376: 4370: 4369: 4367: 4366: 4329: 4305: 4299: 4298: 4272: 4250: 4241: 4240: 4221:10.1038/nmat4604 4206: 4191:Nature Materials 4185: 4179: 4178: 4176: 4174: 4164: 4158: 4152: 4146: 4145: 4119: 4085: 4076: 4075: 4073: 4031: 4025: 4024: 4014: 4005:(9): 5412–5421. 3990: 3984: 3983: 3965: 3947: 3925: 3914: 3913: 3879: 3857: 3851: 3850: 3816: 3794: 3785: 3784: 3750: 3726: 3720: 3719: 3693: 3682: 3681: 3655: 3634: 3628: 3627: 3593: 3573: 3567: 3566: 3532: 3511: 3505: 3504: 3502: 3484: 3466: 3441: 3435: 3434: 3408: 3376: 3370: 3369: 3327: 3306: 3300: 3299: 3265: 3233: 3227: 3226: 3192: 3190:cond-mat/0610539 3158: 3152: 3151: 3123: 3117: 3116: 3082: 3062: 3056: 3055: 3019: 3013: 3012: 2968: 2962: 2961: 2950:10.1038/nphys749 2935: 2915: 2909: 2907: 2873: 2871:cond-mat/0007172 2864:(7): 1335–1338. 2853: 2847: 2846: 2812: 2780: 2774: 2772: 2770: 2769: 2764: 2762: 2761: 2752: 2736: 2730: 2729: 2695: 2693:cond-mat/0307483 2675: 2666: 2665: 2639: 2619: 2613: 2612: 2584: 2578: 2575: 2569: 2568: 2550: 2530: 2519: 2518: 2492: 2472: 2466: 2465: 2439: 2437:quant-ph/9707021 2419: 2413: 2412: 2386: 2384:cond-mat/0205029 2366: 2360: 2359: 2334:(6): 2664–2672. 2323: 2317: 2316: 2280: 2274: 2273: 2255: 2227: 2221: 2220: 2180: 2174: 2173: 2137: 2131: 2130: 2128: 2119:(4): 1334–1356. 2104: 2098: 2097: 2095: 2094: 2074: 2068: 2067: 2065: 2064: 2044: 2038: 2037: 1990: 1979: 1978: 1976: 1974: 1959: 1953: 1952: 1940: 1930: 1924: 1923: 1871: 1862: 1861: 1859: 1857: 1842: 1836: 1835: 1815: 1804: 1803: 1769: 1749: 1551:optical tweezers 1533:is a frustrated 1263:antiferromagnets 1255:quantum critical 1230: 1228: 1227: 1222: 1217: 1186: 1184: 1183: 1178: 1173: 1149:. Additionally, 822: 820: 819: 814: 809: 801: 800: 774: 773: 766: 764: 763: 758: 741:. A large value 740: 738: 737: 732: 714: 712: 711: 706: 695: 694: 675: 673: 672: 667: 647: 645: 644: 639: 637: 635: 634: 625: 624: 619: 618: 606: 600: 582: 580: 579: 574: 549: 547: 546: 541: 539: 538: 522: 520: 519: 514: 512: 511: 490: 488: 487: 482: 480: 478: 477: 476: 454: 437:is given by the 394: 392: 391: 386: 356: 354: 353: 348: 343: 293: 281: 189:properties, and 143: 128:Basic properties 67: 60: 56: 53: 47: 27: 26: 19: 4717: 4716: 4712: 4711: 4710: 4708: 4707: 4706: 4672: 4671: 4670: 4660: 4658: 4648: 4644: 4634: 4632: 4628: 4621: 4617:Fendley, Paul. 4615: 4611: 4601: 4599: 4589: 4585: 4524: 4520: 4467: 4463: 4402: 4398: 4389: 4387: 4385:Quanta Magazine 4377: 4373: 4364: 4362: 4306: 4302: 4251: 4244: 4186: 4182: 4172: 4170: 4166: 4165: 4161: 4153: 4149: 4099: 4095: 4091: 4086: 4079: 4043: 4039: 4032: 4028: 3991: 3987: 3963:10.1.1.749.3376 3931:Physics Reports 3926: 3917: 3858: 3854: 3795: 3788: 3727: 3723: 3716: 3694: 3685: 3635: 3631: 3574: 3570: 3512: 3508: 3464: 3461: 3457: 3453: 3449: 3442: 3438: 3390: 3386: 3382: 3377: 3373: 3307: 3303: 3247: 3243: 3239: 3234: 3230: 3172: 3168: 3164: 3159: 3155: 3124: 3120: 3063: 3059: 3020: 3016: 2969: 2965: 2916: 2912: 2854: 2850: 2794: 2790: 2786: 2781: 2777: 2757: 2753: 2748: 2743: 2740: 2739: 2737: 2733: 2676: 2669: 2630:(11): 865–869. 2620: 2616: 2585: 2581: 2576: 2572: 2531: 2522: 2473: 2469: 2420: 2416: 2367: 2363: 2324: 2320: 2281: 2277: 2228: 2224: 2181: 2177: 2138: 2134: 2105: 2101: 2092: 2090: 2087:Quanta Magazine 2075: 2071: 2062: 2060: 2057:Quanta Magazine 2045: 2041: 1991: 1982: 1972: 1970: 1960: 1956: 1949: 1931: 1927: 1881: 1877: 1872: 1865: 1855: 1853: 1843: 1839: 1816: 1807: 1750: 1743: 1739: 1723: 1704:two-dimensional 1692:state of matter 1571:two dimensional 1563: 1543: 1541:Toric code type 1532: 1528: 1524: 1519: 1512: 1508: 1504: 1495:Herbertsmithite 1452:electric charge 1432: 1408: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1296: 1292: 1213: 1202: 1199: 1198: 1169: 1158: 1155: 1154: 1147:kagome lattices 1140: 1136: 1132: 1127:Herbertsmithite 1124: 1122:Herbertsmithite 1113: 1109: 1105: 1098: 1094: 1089: 1084: 1075:Herbertsmithite 1028: 1024: 1020: 1003: 989: 974: 970: 966: 939: 935: 921: 917: 913: 893: 889: 885: 881: 863:herbertsmithite 860: 856: 852: 838: 834: 830: 805: 793: 789: 787: 784: 783: 746: 743: 742: 720: 717: 716: 690: 686: 681: 678: 677: 655: 652: 651: 630: 626: 620: 611: 607: 602: 601: 599: 591: 588: 587: 559: 556: 555: 534: 530: 528: 525: 524: 504: 500: 498: 495: 494: 469: 465: 458: 453: 445: 442: 441: 439:Curie–Weiss law 427: 418: 371: 368: 367: 363: 339: 328: 325: 324: 304: 297: 294: 285: 282: 241: 235: 207: 199: 163:antiferromagnet 132: 130: 84:phase of matter 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 16:Phase of matter 12: 11: 5: 4715: 4705: 4704: 4702:Quasiparticles 4699: 4694: 4689: 4684: 4669: 4668: 4642: 4609: 4583: 4518: 4461: 4396: 4371: 4300: 4242: 4197:(7): 733–740. 4180: 4159: 4147: 4097: 4093: 4089: 4077: 4041: 4037: 4026: 3985: 3915: 3870:(15): 157205. 3852: 3807:(14): 147201. 3786: 3721: 3714: 3683: 3629: 3568: 3506: 3475:(10): 100402. 3459: 3455: 3451: 3447: 3436: 3388: 3384: 3380: 3371: 3318:(23): 237201. 3301: 3245: 3241: 3237: 3228: 3183:(10): 107204. 3170: 3166: 3162: 3153: 3118: 3057: 3014: 2963: 2920:Nature Physics 2910: 2848: 2803:(15): 156402. 2792: 2788: 2784: 2775: 2760: 2756: 2751: 2747: 2731: 2686:(10): 107001. 2667: 2624:Nature Physics 2614: 2579: 2570: 2520: 2467: 2414: 2361: 2318: 2275: 2253:10.1.1.676.519 2222: 2175: 2132: 2099: 2080:(2017-02-28). 2078:Wilczek, Frank 2069: 2050:(2018-01-03). 2039: 1980: 1954: 1947: 1925: 1879: 1875: 1863: 1837: 1826:(2): 153–160. 1805: 1740: 1738: 1735: 1722: 1719: 1629:magnetic field 1622:number density 1608:effective mass 1596:quasiparticles 1581:effective mass 1562: 1559: 1542: 1539: 1530: 1526: 1522: 1518: 1515: 1510: 1506: 1502: 1484:magnetic field 1431: 1428: 1407: 1404: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1294: 1290: 1259:susceptibility 1220: 1216: 1212: 1209: 1206: 1176: 1172: 1168: 1165: 1162: 1138: 1134: 1130: 1123: 1120: 1111: 1107: 1103: 1096: 1092: 1088: 1085: 1083: 1080: 1068: 1067: 1057: 1047: 1041: 1026: 1022: 1018: 1002: 999: 996: 995: 993: 990: 987: 983: 982: 980: 975: 972: 968: 964: 960: 959: 956: 951: 947: 946: 943: 940: 937: 933: 929: 928: 925: 922: 919: 915: 911: 907: 906: 904: 899: 891: 887: 883: 879: 875: 874: 871: 866: 858: 854: 850: 846: 845: 842: 839: 836: 832: 828: 824: 823: 812: 808: 804: 799: 796: 792: 781: 778: 756: 753: 750: 730: 727: 724: 704: 701: 698: 693: 689: 685: 665: 662: 659: 633: 629: 623: 617: 614: 610: 605: 598: 595: 572: 569: 566: 563: 537: 533: 510: 507: 503: 475: 472: 468: 464: 461: 457: 452: 449: 426: 423: 417: 414: 384: 381: 378: 375: 362: 359: 346: 342: 338: 335: 332: 303: 300: 299: 298: 295: 288: 286: 283: 276: 266:P. W. Anderson 237:Main article: 234: 231: 206: 203: 198: 195: 129: 126: 116:that interact 96:fractionalized 70: 69: 31: 29: 22: 15: 9: 6: 4: 3: 2: 4714: 4703: 4700: 4698: 4695: 4693: 4690: 4688: 4685: 4683: 4680: 4679: 4677: 4657: 4653: 4646: 4631:on 2013-07-28 4627: 4620: 4613: 4598: 4594: 4587: 4579: 4575: 4571: 4567: 4563: 4559: 4555: 4551: 4546: 4541: 4537: 4533: 4529: 4522: 4514: 4510: 4506: 4502: 4498: 4494: 4489: 4484: 4481:(3): 031005. 4480: 4476: 4472: 4465: 4457: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4424: 4419: 4415: 4411: 4407: 4400: 4386: 4382: 4375: 4361: 4357: 4353: 4349: 4345: 4341: 4337: 4333: 4328: 4323: 4319: 4315: 4311: 4304: 4296: 4292: 4288: 4284: 4280: 4276: 4271: 4266: 4262: 4258: 4257: 4249: 4247: 4238: 4234: 4230: 4226: 4222: 4218: 4214: 4210: 4205: 4200: 4196: 4192: 4184: 4169: 4163: 4157: 4151: 4143: 4139: 4135: 4131: 4127: 4123: 4118: 4113: 4110:(6): 060401. 4109: 4105: 4104: 4084: 4082: 4072: 4067: 4063: 4059: 4055: 4051: 4050: 4045: 4030: 4022: 4018: 4013: 4008: 4004: 4000: 3996: 3989: 3981: 3977: 3973: 3969: 3964: 3959: 3955: 3951: 3946: 3941: 3937: 3933: 3932: 3924: 3922: 3920: 3911: 3907: 3903: 3899: 3895: 3891: 3887: 3883: 3878: 3873: 3869: 3865: 3864: 3856: 3848: 3844: 3840: 3836: 3832: 3828: 3824: 3820: 3815: 3810: 3806: 3802: 3801: 3793: 3791: 3782: 3778: 3774: 3770: 3766: 3762: 3758: 3754: 3749: 3744: 3740: 3736: 3732: 3725: 3717: 3711: 3707: 3703: 3699: 3692: 3690: 3688: 3679: 3675: 3671: 3667: 3663: 3659: 3654: 3649: 3646:(6): 060409. 3645: 3641: 3633: 3625: 3621: 3617: 3613: 3609: 3605: 3601: 3597: 3592: 3587: 3583: 3579: 3572: 3564: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3531: 3526: 3522: 3518: 3510: 3501: 3496: 3492: 3488: 3483: 3478: 3474: 3470: 3463: 3440: 3432: 3428: 3424: 3420: 3416: 3412: 3407: 3402: 3399:(1): 011001. 3398: 3394: 3375: 3367: 3363: 3359: 3355: 3351: 3347: 3343: 3339: 3335: 3331: 3326: 3321: 3317: 3313: 3305: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3269: 3264: 3259: 3256:(9): 087202. 3255: 3251: 3232: 3224: 3220: 3216: 3212: 3208: 3204: 3200: 3196: 3191: 3186: 3182: 3178: 3177: 3157: 3149: 3145: 3141: 3137: 3133: 3129: 3122: 3114: 3110: 3106: 3102: 3098: 3094: 3090: 3086: 3081: 3076: 3072: 3068: 3061: 3053: 3049: 3045: 3041: 3037: 3033: 3029: 3025: 3018: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2967: 2959: 2955: 2951: 2947: 2943: 2939: 2934: 2929: 2925: 2921: 2914: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2872: 2867: 2863: 2859: 2852: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2811: 2806: 2802: 2798: 2779: 2758: 2754: 2749: 2745: 2735: 2727: 2723: 2719: 2715: 2711: 2707: 2703: 2699: 2694: 2689: 2685: 2681: 2674: 2672: 2663: 2659: 2655: 2651: 2647: 2643: 2638: 2633: 2629: 2625: 2618: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2574: 2566: 2562: 2558: 2554: 2549: 2544: 2541:(4): 041002. 2540: 2536: 2529: 2527: 2525: 2516: 2512: 2508: 2504: 2500: 2496: 2491: 2486: 2482: 2478: 2471: 2463: 2459: 2455: 2451: 2447: 2443: 2438: 2433: 2429: 2425: 2418: 2410: 2406: 2402: 2398: 2394: 2390: 2385: 2380: 2376: 2372: 2365: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2329: 2322: 2314: 2310: 2306: 2302: 2298: 2294: 2290: 2286: 2279: 2271: 2267: 2263: 2259: 2254: 2249: 2245: 2241: 2237: 2233: 2226: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2179: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2127: 2122: 2118: 2114: 2110: 2103: 2089: 2088: 2083: 2079: 2073: 2059: 2058: 2053: 2049: 2043: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1989: 1987: 1985: 1969: 1965: 1958: 1950: 1948:9780521432245 1944: 1939: 1938: 1929: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1870: 1868: 1852: 1848: 1841: 1833: 1829: 1825: 1821: 1814: 1812: 1810: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1768: 1763: 1760:(1): 016502. 1759: 1755: 1748: 1746: 1741: 1734: 1732: 1728: 1718: 1716: 1712: 1708: 1705: 1701: 1700:quasicrystals 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1660:thermodynamic 1656: 1652: 1648: 1644: 1640: 1637: 1633: 1630: 1626: 1623: 1619: 1616: 1612: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1582: 1579: 1578:quasiparticle 1575: 1572: 1568: 1558: 1556: 1552: 1548: 1538: 1536: 1514: 1500: 1496: 1492: 1488: 1485: 1481: 1477: 1476:heat capacity 1473: 1469: 1465: 1461: 1460:specific heat 1457: 1453: 1449: 1448:heavy fermion 1445: 1441: 1437: 1427: 1425: 1421: 1417: 1413: 1403: 1340: 1297: 1285: 1281: 1279: 1275: 1274:nanoparticles 1270: 1268: 1264: 1260: 1256: 1251: 1249: 1243: 1241: 1237: 1233: 1218: 1214: 1210: 1207: 1204: 1195: 1189: 1174: 1170: 1166: 1163: 1160: 1152: 1151:superexchange 1148: 1144: 1128: 1119: 1117: 1100: 1076: 1072: 1065: 1061: 1058: 1055: 1051: 1048: 1045: 1042: 1039: 1036: 1035: 1034: 1032: 1016: 1012: 1008: 994: 991: 985: 984: 981: 979: 976: 962: 961: 957: 955: 952: 949: 948: 944: 941: 931: 930: 926: 923: 909: 908: 905: 903: 900: 897: 877: 876: 872: 870: 867: 864: 848: 847: 843: 840: 826: 825: 797: 794: 782: 779: 776: 775: 772: 770: 754: 751: 748: 722: 699: 696: 691: 687: 663: 660: 657: 648: 631: 627: 615: 612: 596: 593: 586: 567: 561: 553: 535: 531: 508: 505: 491: 473: 470: 462: 459: 455: 450: 447: 440: 436: 432: 422: 413: 411: 407: 403: 399: 379: 373: 358: 344: 340: 336: 333: 330: 322: 318: 308: 292: 287: 280: 275: 274: 273: 271: 267: 261: 259: 255: 245: 240: 230: 226: 224: 220: 211: 202: 194: 193:excitations. 192: 188: 185:, long-range 184: 179: 178:ferromagnetic 175: 170: 168: 164: 160: 156: 152: 125: 123: 119: 115: 111: 110:Phil Anderson 106: 104: 100: 97: 93: 89: 88:quantum spins 85: 81: 77: 66: 63: 55: 52:December 2012 45: 41: 35: 32:This article 30: 21: 20: 4659:. Retrieved 4655: 4645: 4633:. Retrieved 4626:the original 4612: 4600:. Retrieved 4596: 4586: 4535: 4531: 4521: 4478: 4474: 4464: 4413: 4409: 4399: 4388:. Retrieved 4384: 4374: 4363:. Retrieved 4317: 4313: 4303: 4263:(5): 56001. 4260: 4254: 4194: 4190: 4183: 4171:. Retrieved 4162: 4150: 4107: 4101: 4053: 4047: 4029: 4002: 3998: 3988: 3935: 3929: 3867: 3861: 3855: 3804: 3798: 3738: 3734: 3724: 3697: 3643: 3639: 3632: 3581: 3577: 3571: 3520: 3516: 3509: 3472: 3468: 3439: 3396: 3392: 3374: 3315: 3311: 3304: 3253: 3249: 3231: 3180: 3174: 3156: 3131: 3127: 3121: 3070: 3066: 3060: 3027: 3023: 3017: 2976: 2972: 2966: 2923: 2919: 2913: 2861: 2857: 2851: 2800: 2796: 2778: 2734: 2683: 2679: 2627: 2623: 2617: 2592: 2588: 2582: 2573: 2538: 2534: 2480: 2476: 2470: 2427: 2423: 2417: 2374: 2370: 2364: 2331: 2327: 2321: 2288: 2284: 2278: 2235: 2231: 2225: 2192: 2188: 2178: 2145: 2141: 2135: 2116: 2112: 2102: 2091:. Retrieved 2085: 2072: 2061:. Retrieved 2055: 2042: 2001: 1997: 1994:Leon Balents 1971:. Retrieved 1967: 1957: 1936: 1928: 1887: 1883: 1854:. Retrieved 1850: 1840: 1823: 1819: 1757: 1753: 1724: 1721:Applications 1687: 1683: 1679: 1675: 1654: 1650: 1646: 1638: 1631: 1624: 1617: 1610: 1583: 1564: 1544: 1520: 1490: 1486: 1479: 1471: 1467: 1463: 1455: 1439: 1435: 1433: 1409: 1401: 1271: 1252: 1244: 1190: 1143:rhombohedral 1125: 1101: 1090: 1062:can uncover 1059: 1049: 1043: 1037: 1004: 827:κ-(BEDT-TTF) 649: 584: 552:non-analytic 492: 428: 419: 364: 316: 313: 269: 262: 257: 250: 227: 216: 200: 171: 148: 107: 79: 73: 58: 49: 33: 4661:24 December 4635:24 December 4602:24 December 3938:(2–3): 31. 2926:(11): 790. 2483:: 451–472. 2430:(1): 2–30. 1973:23 December 1856:24 December 1713:exhibiting 1615:temperature 1604:Fermi level 1600:energy band 1588:Topological 1517:Kagome type 942:Hyperkagome 924:Hyperkagome 896:vesignieite 554:feature in 433:phase, the 302:Excitations 223:Ising spins 159:ferromagnet 99:excitations 4676:Categories 4545:2104.04119 4488:2011.12310 4423:2104.01180 4390:2022-03-11 4365:2021-12-04 4327:2104.01180 4204:1504.08037 4056:(9): 171. 3748:1904.04435 3653:1512.06807 3591:1511.02174 2548:1710.02991 2490:1804.02037 2093:2019-05-05 2063:2019-05-05 1767:1601.03742 1737:References 1664:relaxation 992:Triangular 431:paramagnet 406:toric code 219:frustrated 174:disordered 151:paramagnet 4578:233204440 4513:227162637 4456:233025160 4360:233025160 4295:119288349 4270:1111.0179 4189:magnet". 4142:118651738 4117:1103.2353 3999:Nanoscale 3980:119235769 3958:CiteSeerX 3945:1006.2658 3910:118805305 3877:0705.0654 3814:1002.1091 3781:104292206 3773:2397-4648 3741:(1): 12. 3678:115149342 3530:1307.5047 3482:1102.2179 3431:118545779 3406:1001.0801 3350:0031-9007 3325:0902.3194 3263:0711.2459 3080:1011.6114 2933:0706.2012 2810:0706.0050 2662:118664640 2637:1007.3625 2565:118727125 2462:119087885 2409:119370249 2377:: 37–42. 2248:CiteSeerX 1711:compounds 1672:transport 1482:. When a 1444:insulator 791:Θ 729:∞ 726:→ 609:Θ 562:χ 502:Θ 467:Θ 463:− 451:∼ 448:χ 229:systems. 155:ideal gas 4656:Phys.org 4570:34855494 4448:34855491 4352:34855491 4229:27043779 4021:32080699 3902:18518149 3847:10718733 3839:20481955 3624:22287797 3616:26542565 3555:23257883 3358:20366167 3288:18352658 3223:23174611 3215:17358563 3148:16190686 3113:34864628 3105:21527676 3052:10039977 3001:21455176 2958:28004603 2904:39524266 2896:11178077 2843:45188091 2835:17995193 2718:14525498 2609:18275194 2515:85529148 2313:10043303 2217:10035416 2026:20220838 1920:28146486 1912:17818979 1851:MIT News 1800:22285828 1792:27823986 1707:Helium-3 1636:pressure 1574:Helium-3 1420:graphene 1087:RVB type 777:Material 197:Examples 4687:Liquids 4597:Gizmodo 4550:Bibcode 4532:Science 4493:Bibcode 4428:Bibcode 4410:Science 4332:Bibcode 4314:Science 4275:Bibcode 4237:3406627 4209:Bibcode 4173:5 April 4122:Bibcode 4058:Bibcode 3950:Bibcode 3882:Bibcode 3819:Bibcode 3753:Bibcode 3658:Bibcode 3596:Bibcode 3578:Science 3563:4344923 3535:Bibcode 3487:Bibcode 3411:Bibcode 3366:2540295 3330:Bibcode 3296:2682652 3268:Bibcode 3195:Bibcode 3085:Bibcode 3067:Science 3032:Bibcode 3009:4430673 2981:Bibcode 2938:Bibcode 2876:Bibcode 2815:Bibcode 2726:4652670 2698:Bibcode 2642:Bibcode 2495:Bibcode 2442:Bibcode 2389:Bibcode 2356:9999836 2336:Bibcode 2293:Bibcode 2270:9947970 2240:Bibcode 2197:Bibcode 2170:9941277 2150:Bibcode 2034:4408289 2006:Bibcode 1892:Bibcode 1884:Science 1772:Bibcode 1668:scaling 1602:at the 1499:mineral 1466:, with 1064:spinons 1054:spinons 780:Lattice 321:spinons 260:(VBS). 167:domains 38:Please 4576:  4568:  4511:  4454:  4446:  4358:  4350:  4293:  4235:  4227:  4140:  4019:  3978:  3960:  3908:  3900:  3845:  3837:  3779:  3771:  3712:  3676:  3622:  3614:  3561:  3553:  3517:Nature 3429:  3364:  3356:  3348:  3294:  3286:  3221:  3213:  3146:  3111:  3103:  3050:  3007:  2999:  2973:Nature 2956:  2902:  2894:  2841:  2833:  2724:  2716:  2660:  2607:  2563:  2513:  2460:  2407:  2354:  2311:  2268:  2250:  2215:  2168:  2032:  2024:  1998:Nature 1945:  1918:  1910:  1798:  1790:  1709:, and 1696:metals 1643:Landau 1232:spinon 1141:and a 986:1T-TaS 978:Kagome 954:Kagome 932:PbCuTe 902:Kagome 869:Kagome 4629:(PDF) 4622:(PDF) 4574:S2CID 4540:arXiv 4509:S2CID 4483:arXiv 4452:S2CID 4418:arXiv 4356:S2CID 4322:arXiv 4291:S2CID 4265:arXiv 4233:S2CID 4199:arXiv 4138:S2CID 4112:arXiv 3976:S2CID 3940:arXiv 3906:S2CID 3872:arXiv 3843:S2CID 3809:arXiv 3777:S2CID 3743:arXiv 3674:S2CID 3648:arXiv 3620:S2CID 3586:arXiv 3559:S2CID 3525:arXiv 3477:arXiv 3465:(PDF) 3427:S2CID 3401:arXiv 3362:S2CID 3320:arXiv 3292:S2CID 3258:arXiv 3219:S2CID 3185:arXiv 3109:S2CID 3075:arXiv 3005:S2CID 2954:S2CID 2928:arXiv 2900:S2CID 2866:arXiv 2839:S2CID 2805:arXiv 2722:S2CID 2688:arXiv 2658:S2CID 2632:arXiv 2561:S2CID 2543:arXiv 2511:S2CID 2485:arXiv 2458:S2CID 2432:arXiv 2405:S2CID 2379:arXiv 2030:S2CID 1916:S2CID 1796:S2CID 1762:arXiv 1553:on a 1440:SCQSL 1358:and T 1302:and T 1001:Other 927:-650 873:-241 844:-375 191:anyon 103:order 82:is a 4663:2012 4637:2012 4604:2012 4566:PMID 4444:PMID 4348:PMID 4225:PMID 4175:2016 4092:(OH) 4017:PMID 3898:PMID 3835:PMID 3769:ISSN 3710:ISBN 3612:PMID 3551:PMID 3454:(OH) 3383:(OH) 3354:PMID 3346:ISSN 3284:PMID 3240:(OH) 3211:PMID 3165:(OH) 3144:PMID 3101:PMID 3048:PMID 2997:PMID 2892:PMID 2831:PMID 2791:(CN) 2714:PMID 2605:PMID 2352:PMID 2309:PMID 2266:PMID 2213:PMID 2166:PMID 2022:PMID 1975:2012 1943:ISBN 1908:PMID 1858:2012 1788:PMID 1670:and 1569:and 1505:(OH) 1497:, a 1458:the 1434:The 1382:(OH) 1346:(OH) 1318:(OH) 1289:YbRh 1133:(OH) 1110:(CN) 1095:CuCl 1025:(CN) 958:-33 945:-22 890:(OH) 878:BaCu 853:(OH) 849:ZnCu 835:(CN) 752:> 161:(or 78:, a 4558:doi 4536:374 4501:doi 4436:doi 4414:374 4340:doi 4318:374 4283:doi 4256:EPL 4217:doi 4130:doi 4066:doi 4007:doi 3968:doi 3936:492 3890:doi 3868:100 3827:doi 3805:104 3761:doi 3702:doi 3666:doi 3604:doi 3582:350 3543:doi 3521:492 3495:doi 3452:4-x 3419:doi 3391:". 3338:doi 3316:103 3276:doi 3254:100 3248:". 3203:doi 3173:". 3136:doi 3132:127 3093:doi 3071:332 3040:doi 2989:doi 2977:471 2946:doi 2884:doi 2823:doi 2795:". 2706:doi 2650:doi 2597:doi 2593:130 2553:doi 2503:doi 2450:doi 2428:303 2397:doi 2375:145 2344:doi 2301:doi 2258:doi 2205:doi 2158:doi 2121:doi 2014:doi 2002:464 1968:io9 1900:doi 1888:235 1878:CuO 1828:doi 1780:doi 1368:max 1364:max 1360:max 1356:max 1312:max 1308:max 1304:max 1300:max 1248:NMR 1236:NMR 1015:NMR 1011:μSR 1009:or 1007:NMR 971:SnF 755:100 74:In 42:to 4678:: 4654:. 4595:. 4572:. 4564:. 4556:. 4548:. 4534:. 4530:. 4507:. 4499:. 4491:. 4479:11 4477:. 4473:. 4450:. 4442:. 4434:. 4426:. 4412:. 4408:. 4383:. 4354:. 4346:. 4338:. 4330:. 4316:. 4312:. 4289:. 4281:. 4273:. 4261:97 4259:. 4245:^ 4231:. 4223:. 4215:. 4207:. 4195:15 4193:. 4136:. 4128:. 4120:. 4108:84 4106:. 4096:Cl 4080:^ 4064:. 4052:. 4046:. 4040:Si 4015:. 4003:12 4001:. 3997:. 3974:. 3966:. 3956:. 3948:. 3934:. 3918:^ 3904:. 3896:. 3888:. 3880:. 3866:. 3841:. 3833:. 3825:. 3817:. 3803:. 3789:^ 3775:. 3767:. 3759:. 3751:. 3737:. 3733:. 3708:. 3686:^ 3672:. 3664:. 3656:. 3644:94 3642:. 3618:. 3610:. 3602:. 3594:. 3580:. 3557:. 3549:. 3541:. 3533:. 3519:. 3493:. 3485:. 3473:83 3471:. 3467:. 3458:Cl 3450:Cu 3425:. 3417:. 3409:. 3397:79 3395:. 3387:Cl 3360:. 3352:. 3344:. 3336:. 3328:. 3314:. 3290:. 3282:. 3274:. 3266:. 3252:. 3244:Cl 3217:. 3209:. 3201:. 3193:. 3181:98 3179:. 3169:Cl 3142:. 3130:. 3107:. 3099:. 3091:. 3083:. 3069:. 3046:. 3038:. 3028:62 3026:. 3003:. 2995:. 2987:. 2975:. 2952:. 2944:. 2936:. 2922:. 2898:. 2890:. 2882:. 2874:. 2862:86 2860:. 2837:. 2829:. 2821:. 2813:. 2801:99 2799:. 2787:Cu 2720:. 2712:. 2704:. 2696:. 2684:91 2682:. 2670:^ 2656:. 2648:. 2640:. 2626:. 2603:. 2591:. 2559:. 2551:. 2539:88 2537:. 2523:^ 2509:. 2501:. 2493:. 2481:10 2479:. 2456:. 2448:. 2440:. 2426:. 2403:. 2395:. 2387:. 2373:. 2350:. 2342:. 2332:44 2330:. 2307:. 2299:. 2289:66 2287:. 2264:. 2256:. 2246:. 2236:39 2234:. 2211:. 2203:. 2193:59 2191:. 2187:. 2164:. 2156:. 2146:35 2144:. 2115:. 2111:. 2084:. 2054:. 2028:. 2020:. 2012:. 2000:. 1983:^ 1966:. 1914:. 1906:. 1898:. 1886:. 1866:^ 1849:. 1822:. 1808:^ 1794:. 1786:. 1778:. 1770:. 1758:80 1756:. 1744:^ 1733:. 1717:. 1698:, 1686:, 1682:, 1678:, 1666:, 1662:, 1653:, 1649:, 1627:, 1620:, 1557:. 1531:28 1525:Cr 1523:10 1521:Ca 1513:. 1509:Cl 1426:. 1394:Si 1386:Cl 1374:Si 1350:Cl 1330:Si 1322:Cl 1293:Si 1265:, 1137:Cl 1118:. 1106:Cu 1056:). 1021:Cu 973:12 967:Cu 963:Rb 914:Ir 910:Na 857:Cl 831:Cu 400:– 105:. 94:, 4665:. 4639:. 4606:. 4580:. 4560:: 4552:: 4542:: 4515:. 4503:: 4495:: 4485:: 4458:. 4438:: 4430:: 4420:: 4393:. 4368:. 4342:: 4334:: 4324:: 4297:. 4285:: 4277:: 4267:: 4239:. 4219:: 4211:: 4201:: 4177:. 4144:. 4132:: 4124:: 4114:: 4098:2 4094:6 4090:3 4074:. 4068:: 4060:: 4054:8 4044:" 4042:2 4038:2 4023:. 4009:: 3982:. 3970:: 3952:: 3942:: 3912:. 3892:: 3884:: 3874:: 3849:. 3829:: 3821:: 3811:: 3783:. 3763:: 3755:: 3745:: 3739:4 3718:. 3704:: 3680:. 3668:: 3660:: 3650:: 3626:. 3606:: 3598:: 3588:: 3565:. 3545:: 3537:: 3527:: 3503:. 3497:: 3489:: 3479:: 3462:" 3460:2 3456:6 3448:x 3433:. 3421:: 3413:: 3403:: 3389:2 3385:6 3381:3 3368:. 3340:: 3332:: 3322:: 3298:. 3278:: 3270:: 3260:: 3246:2 3242:6 3238:3 3225:. 3205:: 3197:: 3187:: 3171:2 3167:6 3163:3 3150:. 3138:: 3115:. 3095:: 3087:: 3077:: 3054:. 3042:: 3034:: 3011:. 2991:: 2983:: 2960:. 2948:: 2940:: 2930:: 2924:3 2906:. 2886:: 2878:: 2868:: 2845:. 2825:: 2817:: 2807:: 2793:3 2789:2 2785:2 2759:B 2755:k 2750:/ 2746:J 2728:. 2708:: 2700:: 2690:: 2664:. 2652:: 2644:: 2634:: 2628:6 2611:. 2599:: 2567:. 2555:: 2545:: 2517:. 2505:: 2497:: 2487:: 2464:. 2452:: 2444:: 2434:: 2411:. 2399:: 2391:: 2381:: 2358:. 2346:: 2338:: 2315:. 2303:: 2295:: 2272:. 2260:: 2242:: 2219:. 2207:: 2199:: 2172:. 2160:: 2152:: 2129:. 2123:: 2117:6 2096:. 2066:. 2036:. 2016:: 2008:: 1977:. 1951:. 1922:. 1902:: 1894:: 1880:4 1876:2 1860:. 1834:. 1830:: 1824:8 1802:. 1782:: 1774:: 1764:: 1688:P 1684:B 1680:x 1676:T 1655:B 1651:x 1647:T 1639:P 1632:B 1625:x 1618:T 1611:M 1584:M 1529:O 1527:7 1511:2 1507:6 1503:3 1491:B 1487:B 1480:T 1472:n 1468:n 1464:T 1456:T 1438:( 1398:. 1396:2 1392:2 1388:2 1384:6 1380:3 1376:2 1372:2 1352:2 1348:6 1344:3 1334:. 1332:2 1328:2 1324:2 1320:6 1316:3 1295:2 1291:2 1219:2 1215:/ 1211:1 1208:= 1205:S 1175:2 1171:/ 1167:1 1164:= 1161:S 1139:2 1135:6 1131:3 1112:3 1108:2 1104:2 1097:4 1093:2 1027:3 1023:2 1019:2 988:2 969:3 965:2 938:6 936:O 934:2 920:8 918:O 916:3 912:4 898:) 894:( 892:2 888:8 886:O 884:2 882:V 880:3 865:) 861:( 859:2 855:6 851:3 837:3 833:2 829:2 811:] 807:K 803:[ 798:w 795:c 749:f 723:f 703:) 700:0 697:= 692:c 688:T 684:( 664:1 661:= 658:f 632:c 628:T 622:| 616:w 613:c 604:| 597:= 594:f 571:) 568:T 565:( 536:c 532:T 509:W 506:C 474:W 471:C 460:T 456:C 383:) 380:1 377:( 374:U 345:2 341:/ 337:1 334:= 331:S 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
condensed matter physics
phase of matter
quantum spins
quantum entanglement
fractionalized
excitations
order
Phil Anderson
triangular lattice
antiferromagnetically
high-temperature superconductivity
paramagnet
ideal gas
ferromagnet
antiferromagnet
domains
disordered
ferromagnetic
topological order
quantum entanglement
anyon

frustrated
Ising spins
Resonating valence bond theory

maximally entangled

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.