Knowledge

Oxygen minimum zone

Source đź“ť

267: 80: 460:
with the North Pacific emerging as a particular hotspot of deoxygenation due to the increased amount of time since its deep waters were last ventilated (see thermohaline circulation) and related high apparent oxygen utilization (AOU). Estimates of total oxygen loss in the global ocean range from 119 to 680 T mol decade since the 1950s. These estimates represent 2% of the global ocean oxygen inventory.
444:
quantify. Some of the processes being studied are changes in oxygen gas solubility as a result of rising ocean temperatures, as well as changes in the amount of respiration and photosynthesis occurring around OMZs. Many studies have concluded that OMZs are expanding in multiple locations, but fluctuations of modern OMZs are still not fully understood. Existing
153:
major current systems. Low oxygen water may spread (by advection) from under areas of high productivity up to these physical boundaries to create a stagnant pool of water with no direct connection to the ocean surface even though (as in the Eastern Tropical North Pacific) there may be relatively little organic matter falling from the surface.
357:
Decreased oxygen availability results in decreases in many zooplankton species’ egg production, food intake, respiration, and metabolic rates. Temperature and salinity in areas of decreased oxygen concentrations also affect oxygen availability. Higher temperatures and salinity lower oxygen solubility
152:
Physical processes then constrain the mixing and isolate this low oxygen water from outside water. Vertical mixing is constrained due to the separation from the mixed layer by depth. Horizontal mixing is constrained by bathymetry and boundaries formed by interactions with sub-tropical gyres and other
111:
The downward flux of organic matter decreases sharply with depth, with 80–90% being consumed in the top 1,000 m (3,300 ft). The deep ocean thus has higher oxygen because rates of oxygen consumption are low compared with the supply of cold, oxygen-rich deep waters from polar regions. In the
182:
At depths in the ocean where no light can reach, aerobic respiration is the dominant process. When the oxygen in a parcel of water is consumed, the oxygen cannot be replaced without the water reaching the surface ocean. When oxygen concentrations drop to below <10 nM, microbial processes that are
443:
Research has attempted to model potential changes to OMZs as a result of rising global temperatures and human impact. This is challenging due to the many factors that could contribute to changes in OMZs. The factors used for modeling change in OMZs are numerous, and in some cases hard to measure or
219:
Life stages of organisms also have different metabolic demands. In general, younger stages tend to grow in size and advance in developmental complexity quickly. As the organism reaches maturity, metabolic demands switch from growth and development to maintenance, which requires far fewer resources.
439:
Measurement of dissolved oxygen in coastal and open ocean waters for the past 50 years has revealed a marked decline in oxygen content. This decline is associated with expanding spatial extent, expanding vertical extent, and prolonged duration of oxygen-poor conditions in all regions of the global
432:
is that substantial warming and loss of oxygen throughout the majority of the upper ocean will occur. Global warming increases ocean temperatures, especially in shallow coastal areas. When the water temperature increases, its ability to hold oxygen decreases, leading to oxygen concentrations going
259:
of the organism, but does not account for behavioral or physiological changes in organisms to compensate for reduced oxygen availability. The Metabolic Index accounts for the supply of oxygen in terms of solubility, partial pressure, and diffusivity of oxygen in water, and the organism's metabolic
459:
The global decrease in oceanic oxygen content is statistically significant and emerging beyond the envelope of natural fluctuations. This trend of oxygen loss is accelerating, with widespread and obvious losses occurring after the 1980s. The rate and total content of oxygen loss varies by region,
378:
OMZs have changed over time due to effects from numerous global chemical and biological processes. To assess these changes, scientists utilize climate models and sediment samples to understand changes to dissolved oxygen in OMZs. Many recent studies of OMZs have focused on their fluctuations over
178:
to build organic molecules (organic matter) releasing oxygen in the process. A large fraction of the organic matter from photosynthesis becomes dissolved organic matter (DOM) that is consumed by bacteria during aerobic respiration in sunlit waters. Another fraction of organic matter sinks to the
46:
is at its lowest. This zone occurs at depths of about 200 to 1,500 m (700–4,900 ft), depending on local circumstances. OMZs are found worldwide, typically along the western coast of continents, in areas where an interplay of physical and biological processes concurrently lower the
361:
In addition to affecting their vital functions, zooplankton alter their distribution in response to hypoxic or anoxic zones. Many species actively avoid low oxygen zones, while others take advantage of their predators’ low tolerance for hypoxia and use these areas as a refuge. Zooplankton that
161:
In OMZs oxygen concentration drops to levels <10 nM at the base of the oxycline and can remain anoxic for over 700 m depth. This lack of oxygen can be reinforced or increased due to physical processes changing oxygen supply such as eddy-driven advection, sluggish ventilation, increases in
112:
surface layers, oxygen is supplied by photosynthesis of phytoplankton. Depths in between, however, have higher rates of oxygen consumption and lower rates of advective supply of oxygen-rich waters. In much of the ocean, mixing processes enable the resupply of oxygen to these waters (see
251:
equation for respiration. However, organisms have ways of altering their oxygen intake and carbon dioxide release, so the strict stoichiometric equation is not necessarily accurate. The Oxygen Supply Index accounts for oxygen solubility and partial pressure, along with the
169:
At a microscopic scale the processes causing ocean deoxygenation rely on microbial aerobic respiration. Aerobic respiration is a metabolic process that microorganisms like bacteria or archaea use to obtain energy by degrading organic matter, consuming oxygen, producing
440:
oceans. Examinations of the spatial extent of OMZs in the past through paleoceanographical methods clearly shows that the spatial extent of OMZs has expanded through time, and this expansion is coupled to ocean warming and reduced ventilation of thermocline waters.
148:
due to the influx of nutrients. Since oxygen is not being produced as a byproduct of photosynthesis below the euphotic zone, these microbes use up what oxygen is in the water as they break down the falling organic matter thus creating the lower oxygen conditions.
298:
Since bioavailability is specific to each organism and temperature, calculation of these thresholds is done experimentally by measuring activity and respiration rates under different temperature and oxygen conditions, or by collecting data from separate studies.
216:) fluctuates with the temperature of the water. As the external temperature increases, ectotherm metabolisms increase as well, increasing their demand for oxygen. Different species have different basal metabolic rates and therefore different oxygen demands. 47:
oxygen concentration (biological processes) and restrict the water from mixing with surrounding waters (physical processes), creating a "pool" of water where oxygen concentrations fall from the normal range of 4–6 mg/L to below 2 mg/L.
1935:
Vanderploeg, HA; Ludsin, SA; Ruberg, SA; Höök, TO; Pothoven, SA; Brandt, SB; Lang, GA; Liebig, JR; Cavaletto, JF (2009). "Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie".
341:. The oxygen minimum zones thus play an important role in regulating the productivity and ecological community structure of the global ocean. For example, giant bacterial mats floating in the oxygen minimum zone off the west coast of 220:
Smaller organisms have higher metabolisms per unit of mass, so smaller organisms will require more oxygen per unit mass, while larger organisms generally require more total oxygen. Higher activity levels also require more oxygen.
325:) continues to live aerobically (using oxygen) in OMZs. They have highly developed gills with large surface area and thin blood-to-water diffusion distance that enables effective removal of oxygen from the water (up to 90% O 474:
that causes ocean deoxygenation is circulation changes. As the ocean warms from the surface, stratification is expected to increase, which shows a tendency for slowing down ocean circulation, which then increases ocean
119:
A distribution of the open-ocean oxygen minimum zones is controlled by the large-scale ocean circulation as well as local physical as well as biological processes. For example, wind blowing parallel to the coast causes
75:
process, lowering its concentration within the water. Therefore, the concentration of oxygen in deep water is dependent on the amount of oxygen it had when it was at the surface, minus depletion by deep sea organisms.
208:. Metabolic rates can be affected by external factors such as the temperature of the water, and internal factors such as the species, life stage, size, and activity level of the organism. The body temperature of 1896:
Vanderploeg, HA; Ludsin, SA; Cavaletto, JF; Höök, TO; Pothoven, SA; Brandt, SB; Liebig, JR; Lang, GA (2009). "Hypoxic zones as habitat for zooplankton in Lake Erie: refuges from predation or exclusion zones?".
336:
Another strategy used by some classes of bacteria in the oxygen minimum zones is to use nitrate rather than oxygen, thus drawing down the concentrations of this important nutrient. This process is called
362:
exhibit daily vertical migrations to avoid predation and low oxygen conditions also excrete ammonium near the oxycline and contribute to increased anaerobic ammonium oxidation (anammox, which produces N
395:. Throughout the history of Earth's oceans, OMZs have fluctuated on long time scales, becoming larger or smaller depending on multiple variables. The factors that change OMZs are the amount of oceanic 191:. Both processes extract elemental nitrogen from nitrogen compounds and that elemental nitrogen which does not stay in solution escapes as a gas, resulting in a net loss of nitrogen from the ocean. 235:
Several indices to measure bioavailability have been suggested: Respiration Index, Oxygen Supply Index, and the Metabolic Index. The Respiration Index describes oxygen availability based on the
436:
Open ocean areas with no oxygen have grown more than 1.7 million square miles in the last 50 years, and coastal waters have seen a tenfold increase in low-oxygen areas in the same time.
1199:
Verberk, WCEP; Bilton, DT; Calosi, P; Spicer, JI (2011). "Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns".
2917:
Gilly, William F.; Beman, J. Michael; Litvin, Steven Y.; Robison, Bruce H. (3 January 2013). "Oceanographic and Biological Effects of Shoaling of the Oxygen Minimum Zone".
358:
decrease the partial pressure of oxygen. This decreased partial pressure increases organisms’ respiration rates, causing the oxygen demand of the organism to increase.
2960:
Ito, T; Nenes, A; Johnson, MS; Meskhidze, N; Deutsch, C (2016). "Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants".
1596:
Deutsch, Curtis; Sarmiento, Jorge L.; Sigman, Daniel M.; Gruber, Nicolas; Dunne, John P. (2006). "Spatial coupling of nitrogen inputs and losses in the ocean".
2201:
Roman, MR; Pierson, JJ; Kimmel, DG; Boicourt, WC; Zhang, X (2012). "Impacts of hypoxia on zooplankton spatial distributions in the northern Gulf of Mexico".
1675:"Elliott, D.T., Pierson, J.J. and Roman, M.R., 2013. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana" 1412:"Elliott, D.T., Pierson, J.J. and Roman, M.R., 2013. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana" 1060:"Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids" 136:
nutrients (from phytodetritus, dead organisms, fecal pellets, excretions, shed shells, scales, and other parts). This "rain" of organic matter (see the
317:, special adaptations are needed to either make do with lesser amounts of oxygen or to extract oxygen from the water more efficiently. For example, the 2874:
Stramma, Lothar; Schmidtko, Sunke; Levin, Lisa A.; Johnson, Gregory C. (April 2010). "Ocean oxygen minima expansions and their biological impacts".
2273:
Stramma, Lothar; Schmidtko, Sunke; Levin, Lisa A.; Johnson, Gregory C. (April 2010). "Ocean oxygen minima expansions and their biological impacts".
179:
deep ocean forming aggregates called marine snow. These sinking aggregates are consumed via degradation of organic matter and respiration at depth.
462:
Melting of gas hydrates in bottom layers of water may result in the release of more methane from sediments and subsequent consumption of oxygen by
399:
resulting in increased respiration at greater depths, changes in the oxygen supply due to poor ventilation, and amount of oxygen supplied through
543: 227:
is important in deoxygenated systems: an oxygen quantity which is dangerously low for one species might be more than enough for another species.
994:"The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment" 945:"The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment" 2511: 124:
that upwells nutrients from deep water. The increased nutrients support phytoplankton blooms, zooplankton grazing, and an overall productive
1502:"Adaptations to the Deep-Sea Oxygen Minimum Layer: Oxygen Binding by the Hemocyanin of the Bathypelagic Mysid, Gnathophausia ingens Dohrn" 2321:"Sensitivity of the North Pacific oxygen minimum zone to changes in ocean circulation: A simple model calibrated by chlorofluorocarbons" 1860:"Relationship between environmental conditions and zooplankton community structure during summer hypoxia in the northern Gulf of Mexico" 174:
and obtaining energy in the form of ATP. In the ocean surface photosynthetic microorganisms called phytoplankton use solar energy and CO
294:(lethal partial pressure)- the oxygen level below which an organism cannot support the minimum respiration rate necessary for survival. 2119:"Exploring effects of hypoxia on fish and fisheries in the northern Gulf of Mexico using a dynamic spatially explicit ecosystem model" 1363:"Oxygen- And capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems" 2373:"Northeastern Pacific oxygen minimum zone variability over the past 70 kyr: Impact of biological production and oceanic ventilation" 19:
This article is about a natural phenomenon in the ocean at particular depths. For expansion of the OMZ due to climate change, see
329:
removal from inhaled water) and an efficient circulatory system with high capacity and high blood concentration of a protein (
2486: 1729:"Ecophysiological implications of vertical migration into oxygen minimum zones for the hyperiid amphipod Phronima sedentaria" 574: 2158:
Kraus, RT; Secor, DH; Wingate, RL (2015). "Testing the thermal-niche oxygen-squeeze hypothesis for estuarine striped bass".
308: 1816:"Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions" 260:
rate. The metabolic index is generally viewed as a closer approximation of oxygen bioavailability than the other indices.
471: 2030:
Stramma, L; Prince, ED; Schmidtko, S; Luo, J; Hoolihan, JP; Visbeck, M; Wallace, DWR; Brandt, P; Körtzinger, A (2012).
1648: 523: 366:
gas. As hypoxic regions expand vertically and horizontally, the habitable ranges for phytoplankton, zooplankton, and
313:
Despite the low oxygen conditions, organisms have evolved to live in and around OMZs. For those organisms, like the
3032: 3003: 413: 3037: 3022: 665: 640: 253: 84: 129: 236: 1557:"Aerobic and anaerobic metabolism in oxygen minimum layer fishes: the role of alcohol dehydrogenase" 448:
project considerable reductions in oxygen and other physical-chemical variables in the ocean due to
3027: 400: 133: 433:
down in the water. This compounds the effects of eutrophication in coastal zones described above.
2082:
Prince, ED; Goodyear, CP (2006). "Hypoxia-based habitat compression of tropical pelagic fishes".
429: 420:
While oxygen minimum zones (OMZs) occur naturally, they can be exacerbated by human impacts like
128:
at the surface. The byproducts of these blooms and the subsequent grazing sink in the form of
281:(critical partial pressure)- the oxygen level below which an organism cannot support a normal 56: 2032:"Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes" 782:
Lam, P; Kuypers, MM (2011). "Microbial nitrogen cycling processes in oxygen minimum zones".
345:
may play a key role in the region's extremely rich fisheries, as bacterial mats the size of
99:. In the upper panel a minimum in oxygen content is indicated by light blue shading between 2969: 2883: 2819: 2749: 2702: 2657: 2597: 2551: 2433: 2384: 2332: 2282: 2210: 2167: 2130: 2117:
de Mutsert, K; Steenbeek, J; Lewis, K; Buszowski, J; Cowan Jr., JH; Christensen, V (2016).
2091: 2046: 1984: 1945: 1906: 1827: 1605: 1463:"Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers" 1333: 1276: 1208: 1071: 791: 689: 652: 603: 370:
increasingly overlap, increasing their susceptibility to predation and human exploitation.
318: 282: 163: 59:. In general, colder waters hold more oxygen than warmer waters. As water moves out of the 8: 2930: 2714: 1652: 803: 491: 485: 463: 392: 244: 104: 20: 2973: 2887: 2823: 2753: 2706: 2693:
Keeling, RF; Körtzinger, A; Gruber, N (2010). "Ocean Deoxygenation in a Warming World".
2661: 2601: 2555: 2437: 2388: 2336: 2286: 2214: 2171: 2134: 2095: 2050: 1988: 1949: 1910: 1831: 1609: 1337: 1280: 1212: 1075: 795: 734:
Bertagnolli, AD; Stewart, FJ (2018). "Microbial niches in marine oxygen minimum zones".
693: 656: 607: 592:"Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters" 55:
Surface ocean waters generally have oxygen concentrations close to equilibrium with the
2985: 2853: 2623: 2226: 2183: 2007: 1972: 1791: 1701: 1674: 1629: 1537: 1521: 1438: 1411: 1392: 1302: 1242: 1178: 1132: 1020: 993: 974: 925: 863: 759: 713: 621: 445: 396: 2780: 2737: 1107:
Singer, D (2004). "Metabolic adaptation to hypoxia: cost and benefit of being small".
3004:
Ocean deoxygenation: Everyone's problem - Causes, impacts, consequences and solutions
2989: 2942: 2934: 2899: 2857: 2845: 2837: 2785: 2767: 2718: 2675: 2615: 2492: 2482: 2459: 2451: 2402: 2350: 2298: 2103: 2012: 1783: 1706: 1621: 1578: 1529: 1482: 1443: 1384: 1306: 1294: 1234: 1182: 1170: 1124: 1089: 1025: 966: 917: 817: 812: 751: 705: 570: 519: 88: 39: 2245: 2230: 2187: 2143: 2118: 1795: 1633: 1541: 1396: 1136: 978: 929: 867: 763: 717: 488:, localized areas of dramatically reduced oxygen levels, often due to human impacts. 2977: 2926: 2891: 2827: 2775: 2757: 2710: 2665: 2627: 2605: 2559: 2441: 2392: 2340: 2290: 2218: 2175: 2138: 2099: 2062: 2054: 2002: 1992: 1953: 1914: 1871: 1835: 1773: 1740: 1696: 1686: 1613: 1568: 1513: 1474: 1433: 1423: 1374: 1341: 1322:"The real limits to marine life : a further critique of the Respiration Index" 1284: 1224: 1216: 1162: 1116: 1079: 1015: 1005: 956: 909: 853: 807: 799: 743: 697: 660: 625: 611: 539: 68: 1762:"Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones" 1246: 240: 1691: 1428: 701: 338: 224: 184: 137: 121: 95:(approximately the centre of the Pacific Ocean). White regions indicate section 2420:
Deutsch, C.; Ferrel, A.; Seibel, B.; Portner, H.-O.; Huey, R. B. (4 June 2015).
2031: 1957: 1918: 1501: 1462: 992:
Makarieva, AM; Gorshkov, VG; Li, BA; Chown, SL; Reich, PB; Gavrilov, VM (2008).
424:
and land-based pollution from agriculture and sewage. The prediction of current
1656: 1120: 467: 449: 421: 380: 266: 205: 141: 92: 2895: 2294: 2222: 2179: 747: 3016: 2938: 2903: 2841: 2771: 2496: 2455: 2406: 2354: 2302: 858: 841: 567:
Dynamics of Marine Ecosystems: Biological-Physical interactions in the oceans
425: 342: 314: 248: 213: 2832: 2807: 2670: 2645: 2512:"Global warming, pollution supersize the oceans' oxygen-depleted dead zones" 2446: 2421: 2244:
US Department of Commerce, National Oceanic and Atmospheric Administration.
1997: 1876: 1859: 1840: 1815: 1745: 1728: 1346: 1321: 1289: 1264: 1166: 1084: 1059: 1010: 2946: 2849: 2789: 2762: 2722: 2679: 2619: 2463: 2016: 1787: 1710: 1625: 1582: 1533: 1478: 1447: 1388: 1298: 1238: 1174: 1128: 1093: 1029: 970: 921: 900:
Azam, F; Malfatti, F (2007). "Microbial structuring of marine ecosystems".
821: 755: 709: 2738:"The change in oceanic O2 inventory associated with recent global warming" 1486: 2564: 2539: 2397: 2372: 2371:
Cartapanis, Olivier; Tachikawa, Kazuyo; Bard, Edouard (29 October 2011).
2345: 2320: 2058: 881:
Sigman, DM; Hain, MP (2012). "The biological productivity of the ocean".
145: 64: 60: 16:
Zone in which oxygen saturation in seawater in the ocean is at its lowest
2610: 2585: 1617: 913: 2806:
Stramma, L.; Johnson, G. C.; Sprintall, J.; Mohrholz, V. (2 May 2008).
2586:"Decline in global oceanic oxygen content during the past five decades" 1778: 1761: 1573: 1556: 1525: 1379: 1362: 1229: 961: 944: 330: 209: 96: 79: 72: 2319:
van Geen, A.; Smethie, W. M.; Horneman, A.; Lee, H. (7 October 2006).
2067: 1220: 680:
Pedlosky, J. (1990). "The dynamics of the oceanic subtropical gyres".
616: 591: 166:, and increases in ocean temperature which reduces oxygen solubility. 2981: 453: 113: 71:
feed on this organic matter; oxygen is used as part of the bacterial
2639: 2637: 2579: 2577: 2575: 1973:"Enhancement of anammox by the excretion of diel vertical migrators" 1517: 2422:"Climate change tightens a metabolic constraint on marine habitats" 1265:"Climate change tightens a metabolic constraint on marine habitats" 125: 2634: 2572: 2116: 1057: 391:
Some research has aimed to understand how OMZs have changed over
346: 188: 100: 2996: 2470: 2413: 2805: 2686: 1263:
Deutsch, C; Ferrel, A; Seibel, B; Pörtner, HO; Huey, R (2015).
367: 2533: 2531: 2529: 2527: 2525: 1895: 91:. The data plotted show a section running north–south at the 43: 2873: 2272: 1595: 1058:
Rosenfeld, J; Van Leeuwen, T; Richards, J; Allen, D (2015).
2953: 2522: 1934: 379:
time and how they may be currently changing as a result of
2419: 2318: 2200: 1262: 842:"Microbial respiration, the engine of ocean deoxygenation" 263:
There are two thresholds of oxygen required by organisms:
2869: 2867: 2801: 2799: 2646:"Declining oxygen in the global ocean and coastal waters" 2029: 1198: 1153:
Brewer, PG; Peltzer, ET (2009). "Limits to Marine Life".
589: 2959: 991: 666:
10.1175/1520-0485(1983)013<0292:tvt>2.0.co;2
107:
at an average depth of ca. 1,000 m (3,300 ft).
67:, it is exposed to a rain of organic matter from above. 2916: 2876:
Deep Sea Research Part I: Oceanographic Research Papers
2808:"Expanding Oxygen-Minimum Zones in the Tropical Oceans" 2692: 2583: 2370: 2275:
Deep Sea Research Part I: Oceanographic Research Papers
1813: 2910: 2864: 2796: 1970: 2243: 638: 2537: 590:
Gnanadesikan, A.; Bianchi, D.; Pradal, M.A. (2013).
204:
An organism's demand for oxygen is dependent on its
144:
and may lead to bacterial blooms in water below the
50: 1930: 1928: 1891: 1889: 1887: 1857: 1672: 1554: 1409: 1938:Journal of Experimental Marine Biology and Ecology 1899:Journal of Experimental Marine Biology and Ecology 1814:Kiko, R; Hauss, H; Bucholz, F; Melzner, F (2016). 1555:Torres, J.J.; Grigsby, M.D.; Clarke, M.E. (2012). 733: 2157: 183:normally inhibited by oxygen can take place like 3014: 2538:Ito, T; Minobe, S; Long, MC; Deutsch, C (2017). 1925: 1884: 1499: 893: 729: 727: 3002:Laffoley, D. & Baxter, J.M. (eds.) (2019). 2742:Proceedings of the National Academy of Sciences 1977:Proceedings of the National Academy of Sciences 1460: 1319: 998:Proceedings of the National Academy of Sciences 544:National Oceanic and Atmospheric Administration 83:Annual mean dissolved oxygen (upper panel) and 2081: 1971:Bianchi, D; Babbin, AR; Galbraith, ED (2014). 1853: 1851: 1668: 1666: 1258: 1256: 1194: 1192: 874: 835: 833: 831: 2736:Keeling, R. F.; Garcia, H. E. (4 June 2002). 2735: 2584:Schmidtko, S; Stramma, L; Visbeck, M (2017). 2110: 1152: 724: 1858:Elliott, DT; Pierson, JJ; Roman, MR (2012). 1673:Elliott, DT; Pierson, JJ; Roman, MR (2013). 1410:Elliott, DT; Pierson, JJ; Roman, MR (2013). 1403: 899: 513: 414:Ocean deoxygenation § Role of climate change 386: 194: 2023: 1964: 1848: 1809: 1807: 1805: 1726: 1663: 1354: 1253: 1189: 936: 828: 639:Luyten, J; Pedlosky, J; Stommel, H (1983). 230: 1753: 880: 781: 564: 406: 2831: 2779: 2761: 2669: 2643: 2609: 2563: 2445: 2396: 2344: 2194: 2151: 2142: 2066: 2006: 1996: 1875: 1839: 1777: 1744: 1722: 1720: 1700: 1690: 1572: 1437: 1427: 1378: 1345: 1288: 1228: 1148: 1146: 1109:Respiratory Physiology & Neurobiology 1083: 1019: 1009: 960: 857: 811: 664: 615: 1802: 839: 777: 775: 773: 679: 516:Biological Oceanography: An Introduction 265: 78: 2476: 1500:Sanders, N.K.; Childress, J.J. (1990). 1360: 942: 514:Lalli, Carol; Parsons, Timothy (1993). 3015: 2509: 2075: 1759: 1717: 1461:Childress, J.J.; Seibel, B.A. (1998). 1313: 1143: 1106: 1042: 2366: 2364: 2314: 2312: 2268: 2266: 1646: 770: 569:. Blackwell Scientific Publications. 2931:10.1146/annurev-marine-120710-100849 2715:10.1146/annurev.marine.010908.163855 1649:"Giant Bacteria Colonise the Oceans" 804:10.1146/annurev-marine-120709-142814 509: 507: 309:Microbiology of oxygen minimum zones 1561:The Journal of Experimental Biology 1467:The Journal of Experimental Biology 565:Mann, K.H.; Lazier, J.R.N. (1991). 452:, with potential ramifications for 13: 2644:Breitburg, D; et al. (2018). 2540:"Upper ocean O2 trends: 1958–2015" 2361: 2309: 2263: 1320:Seibel, BA; Childress, JJ (2013). 472:effect of climate change on oceans 302: 14: 3049: 2510:Gokkon, Basten (9 January 2018). 504: 51:Physical and biological processes 2104:10.1111/j.1365-2419.2005.00393.x 1647:Leahy, Stephen (20 April 2010). 412:This section is an excerpt from 199: 34:), sometimes referred to as the 2919:Annual Review of Marine Science 2729: 2695:Annual Review of Marine Science 2503: 2325:Journal of Geophysical Research 2237: 2160:Environmental Biology of Fishes 2144:10.1016/j.ecolmodel.2015.10.013 1766:Journal of Experimental Biology 1640: 1589: 1548: 1493: 1454: 1367:Journal of Experimental Biology 1100: 1051: 1036: 985: 949:Journal of Experimental Biology 784:Annual Review of Marine Science 1727:Elder, LE; Seibel, BA (2015). 1655:. TierramĂ©rica. Archived from 673: 632: 583: 558: 532: 352: 1: 497: 333:) that readily binds oxygen. 2544:Geophysical Research Letters 2477:Manahan, Stanley E. (2005). 1864:Journal of Plankton Research 1733:Journal of Plankton Research 1692:10.1371/journal.pone.0063987 1429:10.1371/journal.pone.0063987 702:10.1126/science.248.4953.316 641:"The ventilated thermocline" 596:Geophysical Research Letters 270:Respiration- Pcrit and Pleth 7: 1958:10.1016/j.jembe.2009.07.027 1919:10.1016/j.jembe.2009.07.015 1045:Modern Engineering Dynamics 902:Nature Reviews Microbiology 846:Frontiers in Marine Science 736:Nature Reviews Microbiology 479: 156: 85:apparent oxygen utilisation 10: 3054: 1121:10.1016/j.resp.2004.02.009 883:Nature Education Knowledge 411: 373: 306: 18: 2896:10.1016/j.dsr.2010.01.005 2295:10.1016/j.dsr.2010.01.005 2223:10.1007/s12237-012-9531-x 2180:10.1007/s10641-015-0431-3 1064:Journal of Animal Ecology 813:21.11116/0000-0001-CA25-2 748:10.1038/s41579-018-0087-z 387:In geological time scales 195:Bioavailability of oxygen 859:10.3389/fmars.2018.00533 540:"World Ocean Atlas 2009" 430:climate change scenarios 401:thermohaline circulation 231:Indices and calculations 3033:Biological oceanography 2833:10.1126/science.1153847 2671:10.1126/science.aam7240 2479:Environmental chemistry 2447:10.1126/science.aaa1605 1998:10.1073/pnas.1410790111 1841:10.5194/bg-13-2241-2016 1347:10.5194/bg-10-2815-2013 1290:10.1126/science.aaa1605 1167:10.1126/science.1170756 1085:10.1111/1365-2656.12260 1011:10.1073/pnas.0802148105 407:Since industrialization 349:have been found there. 87:(lower panel) from the 38:, is the zone in which 2763:10.1073/pnas.122154899 2246:"What is a dead zone?" 2084:Fisheries Oceanography 1479:10.1242/jeb.201.8.1223 393:geological time scales 271: 108: 3038:Physical oceanography 3023:Chemical oceanography 2250:oceanservice.noaa.gov 2039:Nature Climate Change 1877:10.1093/plankt/fbs029 1746:10.1093/plankt/fbv066 307:Further information: 269: 82: 3006:. IUCN, Switzerland. 2565:10.1002/2017GL073613 2398:10.1029/2011pa002126 2346:10.1029/2005jc003192 2203:Estuaries and Coasts 2123:Ecological Modelling 2059:10.1038/nclimate1304 1361:Pörtner, HO (2010). 943:Schulte, PM (2015). 840:Robinson, C (2019). 323:Gnathophausia ingens 212:(such as fishes and 164:ocean stratification 2974:2016NatGe...9..443I 2888:2010DSRI...57..587S 2824:2008Sci...320..655S 2754:2002PNAS...99.7848K 2707:2010ARMS....2..199K 2662:2018Sci...359M7240B 2611:10.1038/nature21399 2602:2017Natur.542..335S 2556:2017GeoRL..44.4214I 2438:2015Sci...348.1132D 2432:(6239): 1132–1135. 2389:2011PalOc..26.4208C 2337:2006JGRC..11110004V 2287:2010DSRI...57..587S 2215:2012EstCo..35.1261R 2172:2015EnvBF..98.2083K 2135:2016AGUOSAH43A..07D 2096:2006FisOc..15..451P 2051:2012NatCC...2...33S 1989:2014PNAS..11115653B 1983:(44): 15653–15658. 1950:2009JEMBE.381S..92V 1911:2009JEMBE.381S.108V 1832:2016BGeo...13.2241K 1760:Seibel, BA (2011). 1653:Inter Press Service 1618:10.1038/nature05392 1610:2007Natur.445..163D 1506:Biological Bulletin 1473:(Pt 8): 1223–1232. 1338:2013BGeo...10.2815S 1281:2015Sci...348.1132D 1275:(6239): 1132–1135. 1213:2011Ecol...92.1565V 1076:2015JAnEc..84....4R 1043:Balmer, RT (2011). 1004:(44): 16994–16999. 914:10.1038/nrmicro1747 796:2011ARMS....3..317L 694:1990Sci...248..316P 657:1983JPO....13..292L 608:2013GeoRL..40.5194G 492:Ocean deoxygenation 486:Dead zone (ecology) 464:aerobic respiration 446:Earth system models 42:in seawater in the 28:oxygen minimum zone 21:ocean deoxygenation 2656:(6371): eaam7240. 1779:10.1242/jeb.049171 1574:10.1242/jeb.060236 1380:10.1242/jeb.037523 962:10.1242/jeb.118851 397:primary production 272: 109: 57:Earth's atmosphere 2962:Nature Geoscience 2818:(5876): 655–658. 2748:(12): 7848–7853. 2596:(7641): 335–339. 2488:978-1-4987-7693-6 2166:(10): 2083–2092. 1567:(11): 1905–1914. 1221:10.1890/10-2369.1 1161:(5925): 347–348. 1047:. Academic Press. 955:(12): 1856–1866. 688:(4953): 316–322. 617:10.1002/grl.50998 602:(19): 5194–5198. 576:978-1-4051-1118-8 239:available in the 89:World Ocean Atlas 40:oxygen saturation 3045: 3007: 3000: 2994: 2993: 2982:10.1038/ngeo2717 2957: 2951: 2950: 2914: 2908: 2907: 2871: 2862: 2861: 2835: 2803: 2794: 2793: 2783: 2765: 2733: 2727: 2726: 2690: 2684: 2683: 2673: 2641: 2632: 2631: 2613: 2581: 2570: 2569: 2567: 2550:(9): 4214–4223. 2535: 2520: 2519: 2507: 2501: 2500: 2474: 2468: 2467: 2449: 2417: 2411: 2410: 2400: 2377:Paleoceanography 2368: 2359: 2358: 2348: 2316: 2307: 2306: 2270: 2261: 2260: 2258: 2256: 2241: 2235: 2234: 2209:(5): 1261–1269. 2198: 2192: 2191: 2155: 2149: 2148: 2146: 2114: 2108: 2107: 2079: 2073: 2072: 2070: 2036: 2027: 2021: 2020: 2010: 2000: 1968: 1962: 1961: 1932: 1923: 1922: 1893: 1882: 1881: 1879: 1855: 1846: 1845: 1843: 1826:(8): 2241–2255. 1811: 1800: 1799: 1781: 1757: 1751: 1750: 1748: 1724: 1715: 1714: 1704: 1694: 1670: 1661: 1660: 1659:on 24 June 2010. 1644: 1638: 1637: 1593: 1587: 1586: 1576: 1552: 1546: 1545: 1497: 1491: 1490: 1458: 1452: 1451: 1441: 1431: 1407: 1401: 1400: 1382: 1358: 1352: 1351: 1349: 1317: 1311: 1310: 1292: 1260: 1251: 1250: 1232: 1207:(8): 1565–1572. 1196: 1187: 1186: 1150: 1141: 1140: 1104: 1098: 1097: 1087: 1055: 1049: 1048: 1040: 1034: 1033: 1023: 1013: 989: 983: 982: 964: 940: 934: 933: 897: 891: 890: 878: 872: 871: 861: 837: 826: 825: 815: 779: 768: 767: 731: 722: 721: 677: 671: 670: 668: 636: 630: 629: 619: 587: 581: 580: 562: 556: 555: 553: 551: 536: 530: 529: 511: 69:Aerobic bacteria 3053: 3052: 3048: 3047: 3046: 3044: 3043: 3042: 3028:Aquatic ecology 3013: 3012: 3011: 3010: 3001: 2997: 2958: 2954: 2915: 2911: 2872: 2865: 2804: 2797: 2734: 2730: 2691: 2687: 2642: 2635: 2582: 2573: 2536: 2523: 2508: 2504: 2489: 2475: 2471: 2418: 2414: 2369: 2362: 2331:(C10): C10004. 2317: 2310: 2271: 2264: 2254: 2252: 2242: 2238: 2199: 2195: 2156: 2152: 2115: 2111: 2080: 2076: 2034: 2028: 2024: 1969: 1965: 1933: 1926: 1894: 1885: 1856: 1849: 1812: 1803: 1758: 1754: 1725: 1718: 1671: 1664: 1645: 1641: 1604:(7124): 163–7. 1594: 1590: 1553: 1549: 1518:10.2307/1541830 1498: 1494: 1459: 1455: 1408: 1404: 1359: 1355: 1318: 1314: 1261: 1254: 1197: 1190: 1151: 1144: 1105: 1101: 1056: 1052: 1041: 1037: 990: 986: 941: 937: 908:(10): 782–791. 898: 894: 879: 875: 838: 829: 780: 771: 742:(12): 723–729. 732: 725: 678: 674: 645:J Phys Oceanogr 637: 633: 588: 584: 577: 563: 559: 549: 547: 538: 537: 533: 526: 512: 505: 500: 482: 477: 476: 417: 409: 389: 376: 365: 355: 339:denitrification 328: 319:giant red mysid 311: 305: 303:Life in the OMZ 292: 279: 257: 233: 225:bioavailability 202: 197: 185:denitrification 177: 173: 159: 138:biological pump 122:Ekman transport 53: 24: 17: 12: 11: 5: 3051: 3041: 3040: 3035: 3030: 3025: 3009: 3008: 2995: 2968:(6): 443–447. 2952: 2925:(1): 393–420. 2909: 2882:(4): 587–595. 2863: 2795: 2728: 2701:(1): 199–229. 2685: 2633: 2571: 2521: 2502: 2487: 2469: 2412: 2360: 2308: 2281:(4): 587–595. 2262: 2236: 2193: 2150: 2109: 2090:(6): 451–464. 2074: 2022: 1963: 1924: 1883: 1870:(7): 602–613. 1847: 1820:Biogeosciences 1801: 1772:(2): 326–336. 1752: 1739:(5): 897–911. 1716: 1662: 1639: 1588: 1547: 1512:(3): 286–294. 1492: 1453: 1402: 1373:(6): 881–893. 1353: 1326:Biogeosciences 1312: 1252: 1188: 1142: 1115:(3): 215–228. 1099: 1050: 1035: 984: 935: 892: 873: 827: 769: 723: 672: 651:(2): 292–309. 631: 582: 575: 557: 531: 524: 502: 501: 499: 496: 495: 494: 489: 481: 478: 475:deoxygenation. 468:carbon dioxide 466:of methane to 450:climate change 426:climate models 422:climate change 418: 410: 408: 405: 388: 385: 381:climate change 375: 372: 363: 354: 351: 326: 304: 301: 296: 295: 290: 286: 277: 255: 249:stoichiometric 232: 229: 206:metabolic rate 201: 198: 196: 193: 175: 171: 158: 155: 142:microbial loop 93:180th meridian 52: 49: 15: 9: 6: 4: 3: 2: 3050: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3020: 3018: 3005: 2999: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2956: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2913: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2870: 2868: 2859: 2855: 2851: 2847: 2843: 2839: 2834: 2829: 2825: 2821: 2817: 2813: 2809: 2802: 2800: 2791: 2787: 2782: 2777: 2773: 2769: 2764: 2759: 2755: 2751: 2747: 2743: 2739: 2732: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2689: 2681: 2677: 2672: 2667: 2663: 2659: 2655: 2651: 2647: 2640: 2638: 2629: 2625: 2621: 2617: 2612: 2607: 2603: 2599: 2595: 2591: 2587: 2580: 2578: 2576: 2566: 2561: 2557: 2553: 2549: 2545: 2541: 2534: 2532: 2530: 2528: 2526: 2517: 2516:Mongabay News 2513: 2506: 2498: 2494: 2490: 2484: 2481:. CRC Press. 2480: 2473: 2465: 2461: 2457: 2453: 2448: 2443: 2439: 2435: 2431: 2427: 2423: 2416: 2408: 2404: 2399: 2394: 2390: 2386: 2383:(4): PA4208. 2382: 2378: 2374: 2367: 2365: 2356: 2352: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2315: 2313: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2269: 2267: 2251: 2247: 2240: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2197: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2154: 2145: 2140: 2136: 2132: 2128: 2124: 2120: 2113: 2105: 2101: 2097: 2093: 2089: 2085: 2078: 2069: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2033: 2026: 2018: 2014: 2009: 2004: 1999: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1959: 1955: 1951: 1947: 1943: 1939: 1931: 1929: 1920: 1916: 1912: 1908: 1905:: S108–S120. 1904: 1900: 1892: 1890: 1888: 1878: 1873: 1869: 1865: 1861: 1854: 1852: 1842: 1837: 1833: 1829: 1825: 1821: 1817: 1810: 1808: 1806: 1797: 1793: 1789: 1785: 1780: 1775: 1771: 1767: 1763: 1756: 1747: 1742: 1738: 1734: 1730: 1723: 1721: 1712: 1708: 1703: 1698: 1693: 1688: 1685:(5): e63987. 1684: 1680: 1676: 1669: 1667: 1658: 1654: 1650: 1643: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1592: 1584: 1580: 1575: 1570: 1566: 1562: 1558: 1551: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1503: 1496: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1457: 1449: 1445: 1440: 1435: 1430: 1425: 1422:(5): e63987. 1421: 1417: 1413: 1406: 1398: 1394: 1390: 1386: 1381: 1376: 1372: 1368: 1364: 1357: 1348: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1308: 1304: 1300: 1296: 1291: 1286: 1282: 1278: 1274: 1270: 1266: 1259: 1257: 1248: 1244: 1240: 1236: 1231: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1195: 1193: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1149: 1147: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1110: 1103: 1095: 1091: 1086: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1046: 1039: 1031: 1027: 1022: 1017: 1012: 1007: 1003: 999: 995: 988: 980: 976: 972: 968: 963: 958: 954: 950: 946: 939: 931: 927: 923: 919: 915: 911: 907: 903: 896: 888: 884: 877: 869: 865: 860: 855: 851: 847: 843: 836: 834: 832: 823: 819: 814: 809: 805: 801: 797: 793: 789: 785: 778: 776: 774: 765: 761: 757: 753: 749: 745: 741: 737: 730: 728: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 676: 667: 662: 658: 654: 650: 646: 642: 635: 627: 623: 618: 613: 609: 605: 601: 597: 593: 586: 578: 572: 568: 561: 545: 541: 535: 527: 525:0-7506-2742-5 521: 517: 510: 508: 503: 493: 490: 487: 484: 483: 473: 469: 465: 461: 457: 455: 451: 447: 441: 437: 434: 431: 427: 423: 415: 404: 402: 398: 394: 384: 382: 371: 369: 359: 350: 348: 344: 343:South America 340: 334: 332: 324: 320: 316: 315:vampire squid 310: 300: 293: 287: 284: 280: 274: 273: 268: 264: 261: 258: 250: 246: 242: 238: 228: 226: 221: 217: 215: 214:invertebrates 211: 207: 200:Oxygen demand 192: 190: 186: 180: 167: 165: 154: 150: 147: 146:euphotic zone 143: 139: 135: 131: 127: 123: 117: 115: 106: 102: 98: 94: 90: 86: 81: 77: 74: 70: 66: 62: 58: 48: 45: 41: 37: 33: 29: 22: 2998: 2965: 2961: 2955: 2922: 2918: 2912: 2879: 2875: 2815: 2811: 2745: 2741: 2731: 2698: 2694: 2688: 2653: 2649: 2593: 2589: 2547: 2543: 2515: 2505: 2478: 2472: 2429: 2425: 2415: 2380: 2376: 2328: 2324: 2278: 2274: 2253:. Retrieved 2249: 2239: 2206: 2202: 2196: 2163: 2159: 2153: 2126: 2122: 2112: 2087: 2083: 2077: 2045:(1): 33–37. 2042: 2038: 2025: 1980: 1976: 1966: 1944:: S92–S107. 1941: 1937: 1902: 1898: 1867: 1863: 1823: 1819: 1769: 1765: 1755: 1736: 1732: 1682: 1678: 1657:the original 1642: 1601: 1597: 1591: 1564: 1560: 1550: 1509: 1505: 1495: 1470: 1466: 1456: 1419: 1415: 1405: 1370: 1366: 1356: 1329: 1325: 1315: 1272: 1268: 1204: 1200: 1158: 1154: 1112: 1108: 1102: 1067: 1063: 1053: 1044: 1038: 1001: 997: 987: 952: 948: 938: 905: 901: 895: 886: 882: 876: 849: 845: 787: 783: 739: 735: 685: 681: 675: 648: 644: 634: 599: 595: 585: 566: 560: 548:. Retrieved 534: 515: 458: 456:and humans. 442: 438: 435: 419: 390: 377: 360: 356: 335: 322: 312: 297: 288: 275: 262: 234: 223:This is why 222: 218: 203: 181: 168: 160: 151: 140:) feeds the 118: 110: 101:0° (equator) 54: 35: 31: 27: 25: 2255:13 November 2129:: 142–150. 1332:(5): 2815. 1230:2066/111573 1070:(1): 4–20. 790:: 317–345. 353:Zooplankton 283:respiration 237:free energy 130:particulate 65:thermocline 61:mixed layer 36:shadow zone 3017:Categories 2068:10961/1538 889:(6): 1–16. 550:5 December 518:. Oxford. 498:References 470:. Another 454:ecosystems 331:hemocyanin 210:ectotherms 97:bathymetry 2990:133135734 2939:1941-1405 2904:0967-0637 2858:206510856 2842:0036-8075 2772:0027-8424 2497:994751366 2456:0036-8075 2407:0883-8305 2355:0148-0227 2303:0967-0637 1307:206633086 1183:206518536 241:reactants 134:dissolved 114:upwelling 73:metabolic 63:into the 2947:22809177 2850:18451300 2790:12048249 2723:21141663 2680:29301986 2620:28202958 2464:26045435 2231:84592608 2188:16052635 2017:25288743 1796:16469678 1788:21177952 1711:23691134 1679:PLOS ONE 1634:10804715 1626:17215838 1583:22573769 1542:33072351 1534:29314949 1448:23691134 1416:PLOS ONE 1397:14695028 1389:20190113 1299:26045435 1239:21905423 1175:19372421 1137:34768843 1129:15288595 1094:24930825 1030:18952839 979:24578826 971:26085663 930:10055219 922:17853906 868:58010259 822:21329208 764:52811177 756:30250271 718:37589358 710:17784484 480:See also 245:products 157:Microbes 126:food web 2970:Bibcode 2884:Bibcode 2820:Bibcode 2812:Science 2750:Bibcode 2703:Bibcode 2658:Bibcode 2650:Science 2628:4404195 2598:Bibcode 2552:Bibcode 2434:Bibcode 2426:Science 2385:Bibcode 2333:Bibcode 2283:Bibcode 2211:Bibcode 2168:Bibcode 2131:Bibcode 2092:Bibcode 2047:Bibcode 2008:4226083 1985:Bibcode 1946:Bibcode 1907:Bibcode 1828:Bibcode 1702:3656935 1606:Bibcode 1526:1541830 1487:9510533 1439:3656935 1334:Bibcode 1277:Bibcode 1269:Science 1209:Bibcode 1201:Ecology 1155:Science 1072:Bibcode 1021:2572558 852:: 533. 792:Bibcode 690:Bibcode 682:Science 653:Bibcode 626:3426474 604:Bibcode 374:Changes 347:Uruguay 247:of the 189:anammox 2988:  2945:  2937:  2902:  2856:  2848:  2840:  2788:  2781:122983 2778:  2770:  2721:  2678:  2626:  2618:  2590:Nature 2495:  2485:  2462:  2454:  2405:  2353:  2301:  2229:  2186:  2015:  2005:  1794:  1786:  1709:  1699:  1632:  1624:  1598:Nature 1581:  1540:  1532:  1524:  1485:  1446:  1436:  1395:  1387:  1305:  1297:  1247:299377 1245:  1237:  1181:  1173:  1135:  1127:  1092:  1028:  1018:  977:  969:  928:  920:  866:  820:  762:  754:  716:  708:  624:  573:  546:. 2009 522:  368:nekton 2986:S2CID 2854:S2CID 2624:S2CID 2227:S2CID 2184:S2CID 2035:(PDF) 1792:S2CID 1630:S2CID 1538:S2CID 1522:JSTOR 1393:S2CID 1303:S2CID 1243:S2CID 1179:S2CID 1133:S2CID 975:S2CID 926:S2CID 864:S2CID 760:S2CID 714:S2CID 622:S2CID 44:ocean 2943:PMID 2935:ISSN 2900:ISSN 2846:PMID 2838:ISSN 2786:PMID 2768:ISSN 2719:PMID 2676:PMID 2616:PMID 2493:OCLC 2483:ISBN 2460:PMID 2452:ISSN 2403:ISSN 2351:ISSN 2299:ISSN 2257:2019 2013:PMID 1784:PMID 1707:PMID 1622:PMID 1579:PMID 1530:PMID 1483:PMID 1444:PMID 1385:PMID 1295:PMID 1235:PMID 1171:PMID 1125:PMID 1090:PMID 1026:PMID 967:PMID 918:PMID 818:PMID 752:PMID 706:PMID 571:ISBN 552:2012 520:ISBN 428:and 291:leth 285:rate 278:crit 243:and 187:and 132:and 105:60°N 103:and 26:The 2978:doi 2927:doi 2892:doi 2828:doi 2816:320 2776:PMC 2758:doi 2711:doi 2666:doi 2654:359 2606:doi 2594:542 2560:doi 2442:doi 2430:348 2393:doi 2341:doi 2329:111 2291:doi 2219:doi 2176:doi 2139:doi 2127:331 2100:doi 2063:hdl 2055:doi 2003:PMC 1993:doi 1981:111 1954:doi 1942:381 1915:doi 1903:381 1872:doi 1836:doi 1774:doi 1770:214 1741:doi 1697:PMC 1687:doi 1614:doi 1602:445 1569:doi 1565:215 1514:doi 1510:178 1475:doi 1471:201 1434:PMC 1424:doi 1375:doi 1371:213 1342:doi 1285:doi 1273:348 1225:hdl 1217:doi 1163:doi 1159:324 1117:doi 1113:141 1080:doi 1016:PMC 1006:doi 1002:105 957:doi 953:218 910:doi 854:doi 808:hdl 800:doi 744:doi 698:doi 686:248 661:doi 612:doi 116:). 32:OMZ 3019:: 2984:. 2976:. 2964:. 2941:. 2933:. 2921:. 2898:. 2890:. 2880:57 2878:. 2866:^ 2852:. 2844:. 2836:. 2826:. 2814:. 2810:. 2798:^ 2784:. 2774:. 2766:. 2756:. 2746:99 2744:. 2740:. 2717:. 2709:. 2697:. 2674:. 2664:. 2652:. 2648:. 2636:^ 2622:. 2614:. 2604:. 2592:. 2588:. 2574:^ 2558:. 2548:44 2546:. 2542:. 2524:^ 2514:. 2491:. 2458:. 2450:. 2440:. 2428:. 2424:. 2401:. 2391:. 2381:26 2379:. 2375:. 2363:^ 2349:. 2339:. 2327:. 2323:. 2311:^ 2297:. 2289:. 2279:57 2277:. 2265:^ 2248:. 2225:. 2217:. 2207:35 2205:. 2182:. 2174:. 2164:98 2162:. 2137:. 2125:. 2121:. 2098:. 2088:15 2086:. 2061:. 2053:. 2041:. 2037:. 2011:. 2001:. 1991:. 1979:. 1975:. 1952:. 1940:. 1927:^ 1913:. 1901:. 1886:^ 1868:34 1866:. 1862:. 1850:^ 1834:. 1824:13 1822:. 1818:. 1804:^ 1790:. 1782:. 1768:. 1764:. 1737:37 1735:. 1731:. 1719:^ 1705:. 1695:. 1681:. 1677:. 1665:^ 1651:. 1628:. 1620:. 1612:. 1600:. 1577:. 1563:. 1559:. 1536:. 1528:. 1520:. 1508:. 1504:. 1481:. 1469:. 1465:. 1442:. 1432:. 1418:. 1414:. 1391:. 1383:. 1369:. 1365:. 1340:. 1330:10 1328:. 1324:. 1301:. 1293:. 1283:. 1271:. 1267:. 1255:^ 1241:. 1233:. 1223:. 1215:. 1205:92 1203:. 1191:^ 1177:. 1169:. 1157:. 1145:^ 1131:. 1123:. 1111:. 1088:. 1078:. 1068:84 1066:. 1062:. 1024:. 1014:. 1000:. 996:. 973:. 965:. 951:. 947:. 924:. 916:. 904:. 885:. 862:. 848:. 844:. 830:^ 816:. 806:. 798:. 786:. 772:^ 758:. 750:. 740:16 738:. 726:^ 712:. 704:. 696:. 684:. 659:. 649:13 647:. 643:. 620:. 610:. 600:40 598:. 594:. 542:. 506:^ 403:. 383:. 256:10 170:CO 2992:. 2980:: 2972:: 2966:9 2949:. 2929:: 2923:5 2906:. 2894:: 2886:: 2860:. 2830:: 2822:: 2792:. 2760:: 2752:: 2725:. 2713:: 2705:: 2699:2 2682:. 2668:: 2660:: 2630:. 2608:: 2600:: 2568:. 2562:: 2554:: 2518:. 2499:. 2466:. 2444:: 2436:: 2409:. 2395:: 2387:: 2357:. 2343:: 2335:: 2305:. 2293:: 2285:: 2259:. 2233:. 2221:: 2213:: 2190:. 2178:: 2170:: 2147:. 2141:: 2133:: 2106:. 2102:: 2094:: 2071:. 2065:: 2057:: 2049:: 2043:2 2019:. 1995:: 1987:: 1960:. 1956:: 1948:: 1921:. 1917:: 1909:: 1880:. 1874:: 1844:. 1838:: 1830:: 1798:. 1776:: 1749:. 1743:: 1713:. 1689:: 1683:8 1636:. 1616:: 1608:: 1585:. 1571:: 1544:. 1516:: 1489:. 1477:: 1450:. 1426:: 1420:8 1399:. 1377:: 1350:. 1344:: 1336:: 1309:. 1287:: 1279:: 1249:. 1227:: 1219:: 1211:: 1185:. 1165:: 1139:. 1119:: 1096:. 1082:: 1074:: 1032:. 1008:: 981:. 959:: 932:. 912:: 906:5 887:3 870:. 856:: 850:5 824:. 810:: 802:: 794:: 788:3 766:. 746:: 720:. 700:: 692:: 669:. 663:: 655:: 628:. 614:: 606:: 579:. 554:. 528:. 416:. 364:2 327:2 321:( 289:P 276:P 254:Q 176:2 172:2 30:( 23:.

Index

ocean deoxygenation
oxygen saturation
ocean
Earth's atmosphere
mixed layer
thermocline
Aerobic bacteria
metabolic

apparent oxygen utilisation
World Ocean Atlas
180th meridian
bathymetry
0° (equator)
60°N
upwelling
Ekman transport
food web
particulate
dissolved
biological pump
microbial loop
euphotic zone
ocean stratification
denitrification
anammox
metabolic rate
ectotherms
invertebrates
bioavailability

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑