Knowledge

Neutrino detector

Source đź“ť

1022:... they are nevertheless almost undetectable: In just one second several tens of billions of neutrinos pass through every square centimetre of our bodies without us ever noticing. ... No magnetic field diverts them from their course, shooting straight ahead at almost the speed of light. ... Almost nothing stops them. ... Neutrinos are remarkably tricky customers. There are three types or flavours: electron, muon, and tau neutrinos, named after three other particles to which they give rise when they collide with an atom. 603: 357:" interactions with the protons in the water, producing positrons and neutrons. The resulting positrons annihilate with electrons, creating pairs of coincident photons with an energy of about 0.5 MeV each, which could be detected by the two scintillation detectors above and below the target. The neutrons were captured by cadmium nuclei, resulting in delayed gamma rays of about 8 MeV that were detected a few microseconds after the photons from a positron annihilation event. 1969: 551:. Scientists detected 19 neutrinos from an explosion of a star inside the Large Magellanic Cloud – only 19 out of the octo-decillion (10) neutrinos emitted by the supernova. The Kamiokande detector was able to detect the burst of neutrinos associated with this supernova, and in 1988 it was used to directly confirm the production of solar neutrinos. The largest such detector is the water-filled 31: 532:. This radiation is detected by the photomultiplier tubes and shows up as a characteristic ring-like pattern of activity in the array of photomultiplier tubes. As neutrinos can interact with atomic nuclei to produce charged leptons which emit Cherenkov radiation, this pattern can be used to infer direction, energy, and (sometimes) flavor information about incident neutrinos. 184:, and others are generated by nuclear reactions inside stars, planets, and by other interstellar processes. According to scientists' speculations, some may also originate from events in the universe such as "colliding black holes, gamma ray bursts from exploding stars, and/or violent events at the cores of distant galaxies". 365:. The detected antineutrinos thus all carried an energy greater than 1.8 MeV, which is the threshold for the reaction channel used (1.8 MeV is the energy needed to create a positron and a neutron from a proton). Only about 3% of the antineutrinos from a nuclear reactor carry enough energy for the reaction to occur. 666:
observatory, eventually increasing the volume of the detector array to one cubic kilometer. Ice Cube sits deep underneath the South Pole in a cubic kilometre of perfectly clear, bubble-free ancient ice. Like AMANDA it relies on detecting the flickers of light emitted on the exceedingly rare occasions
461:
transformation which is sensitive to lower-energy neutrinos. A neutrino is able to react with an atom of gallium-71, converting it into an atom of the unstable isotope germanium-71. The germanium was then chemically extracted and concentrated. Neutrinos were thus detected by measuring the radioactive
797:
The higher-energy (>50 MeV or so) neutrino experiments often cover or surround the primary detector with a "veto" detector which reveals when a cosmic ray passes into the primary detector, allowing the corresponding activity in the primary detector to be ignored ("vetoed"). Since the atmospheric
1101:
The $ 272M (ÂŁ170M) IceCube instrument is not your typical telescope. Instead of collecting light from the stars, planets or other celestial objects, IceCube looks for ghostly particles called neutrinos that hurtle across space with high-energy cosmic rays. If all goes to plan, the observatory will
566:
contained in a 12 metre-diameter vessel made of acrylic plastic surrounded by a cylinder of ultrapure ordinary water 22 metres in diameter and 34 metres high. In addition to the neutrino interactions visible in a regular water detector, a neutrino can break up the deuterium in heavy
1091:
New evidence confirms last year's indication that one type of neutrino emerging from the Sun's core does switch to another type en route to the Earth. ... The data were obtained from the underground Sudbury Neutrino Observatory (SNO) in Canada. ... Neutrinos are ghostly particles with no electric
590:
would be prohibitively expensive, detection volumes of this magnitude can be achieved by installing Cherenkov detector arrays deep inside already existing natural water or ice formations, with several other advantages. Firstly, hundreds of meters of water or ice partly protect the detector from
703:
detectors use alternating planes of absorber material and detector material. The absorber planes provide detector mass while the detector planes provide the tracking information. Steel is a popular absorber choice, being relatively dense and inexpensive and having the advantage that it can be
250:, the neutrino enters and then leaves the detector after having transferred some of its energy and momentum to a 'target' particle. If the target particle is charged and sufficiently lightweight (e.g. an electron), it might be accelerated to a relativistic speed and consequently emit 288:). However, if the neutrino does not have sufficient energy to create its heavier partner's mass, the charged current interaction is effectively unavailable to it. Neutrinos from the Sun and from nuclear reactors have enough energy to create electrons. Most 718:
range) neutrinos. At these energies, neutral current interactions appear as a shower of hadronic debris and charged current interactions are identified by the presence of the charged lepton's track (possibly alongside some form of hadronic debris).
582:, so charged particles without sufficient energy to produce Cherenkov light still produce scintillation light. Low-energy muons and protons, invisible in water, can be detected. Thus the use of natural environment as a measurement medium emerged. 805:
neutrons and radioisotopes produced by the cosmic rays may mimic the desired signals. For these experiments, the solution is to place the detector deep underground so that the earth above can reduce the cosmic ray rate to acceptable levels.
1102:
reveal where these mysterious rays come from, and how they get to be so energetic. But that is just the start. Neutrino observatories such as IceCube will ultimately give astronomers fresh eyes with which to study the universe.
1170:
IceCube Collaboration; Fermi-LAT; MAGIC; AGILE; ASAS-SN; HAWC; INTEGRAL; Swift/NuSTAR; VERITAS; VLA/17B-403 teams (2018). "Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A".
758:) information. An electron in the detector produces an electromagnetic shower, which can be distinguished from hadronic showers if the granularity of the active detector is small compared to the physical extent of the shower. 2703: 523:
tubes. A charged lepton produced with sufficient energy and moving through such a detector does travel somewhat faster than the speed of light in the detector medium (although somewhat slower than the speed of light in
630:
will have a total instrumented volume of about 5 km. The detector will be distributed over three installation sites in the Mediterranean. Implementation of the first phase of the telescope was started in 2013.
1082:
In 1987, astronomers counted 19 neutrinos from an explosion of a star in the nearby Large Magellanic Cloud, 19 out of the billion trillion trillion trillion trillion neutrinos that flew from the supernova.
585:
Since the neutrino flux incoming to earth decreases with increasing energy, the size of neutrino detectors must increase too. Though building a kilometer-sized cube detector underground covered by thousands of
1115:
near Chicago will begin shooting trillions of subatomic "neutrino" particles through 450 miles of solid earth, their target a detector at the Soudan Underground Laboratory beneath this Iron Range town.
360:
This experiment was designed by Cowan and Reines to give a unique signature for antineutrinos, to prove the existence of these particles. It was not the experimental goal to measure the total antineutrino
722:
A muon produced in a charged current interaction leaves a long penetrating track and is easy to spot; The length of this muon track and its curvature in the magnetic field provide energy and charge (
1073:
Neutrino astronomy was given a strong push in 1987 when a supernova in a galaxy only one-quarter of a million light-years away from Earth flared into view – the closest supernova in 400 years.
567:
water. The resulting free neutron is subsequently captured, releasing a burst of gamma rays that can be detected. All three neutrino flavors participate equally in this dissociation reaction.
54:
with other particles of matter, neutrino detectors must be very large to detect a significant number of neutrinos. Neutrino detectors are often built underground, to isolate the detector from
2632: 1092:
charge and very little mass. They are known to exist in three types related to three different charged particles - the electron and its lesser-known relatives, the muon and the tau. ...
2729: 300:. A detector which can distinguish among these leptons can reveal the flavor of the neutrino incident to a charged current interaction; because the interaction involves the exchange of a 2345: 500:
as reaction mass. The price of gallium is prohibitive, so this experiment is difficult to afford on large-scale. Larger experiments have therefore turned to a less costly reaction mass.
2154: 180:
Neutrinos are omnipresent in nature: every second, tens of billions of them "pass through every square centimetre of our bodies without us ever noticing." Many were created during the
943: 782:. This effect has been used to make an extremely small neutrino detector. Unlike most other detection methods, coherent scattering does not depend on the flavor of the neutrino. 704:
magnetised. The active detector is often liquid or plastic scintillator, read out with photomultiplier tubes, although various kinds of ionisation chambers have also been used.
187:
Despite how common they are, neutrinos are extremely difficult to detect, due to their low mass and lack of electric charge. Unlike other particles, neutrinos only interact via
2698: 618:(Astronomy with a Neutrino Telescope and Abyss environmental Research) has been fully operational since 30 May 2008. Consisting of an array of twelve separate 350  2708: 1747: 2673: 515:. Cherenkov radiation is produced whenever charged particles such as electrons or muons are moving through a given detector medium somewhat faster than the 380:
detector was able to measure the most important components of the neutrino spectrum from the Sun, as well as antineutrinos from Earth and nuclear reactors.
766:, and cannot be observed directly in this kind of detector. (To directly observe taus, one typically looks for a kink in tracks in photographic emulsion.) 2355: 2251: 1779:
Akimov, D.; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; et al. (2017). "Observation of coherent elastic neutrino-nucleus scattering".
503:
Radiochemical detection methods are only useful for counting neutrinos; they provide almost no information on neutrino energy or direction of travel.
2582: 2225: 369: 2502: 1409: 1364: 419:-37 via the charged current interaction. The threshold neutrino energy for this reaction is 0.814 MeV. The fluid is periodically purged with 1232: 798:
muon incident flux is isotropic, a localised and anisotropic detection is discriminated in relation to the background betraying a cosmic event.
1031:
Sensors in the ice have detected the rare and fleeting flashes of light caused when neutrinos interact with the ice. ... Amanda 2 (Second
443:) of fluid, was the first to detect the solar neutrinos, and made the first measurement of the deficit of electron neutrinos from the sun (see 2322: 650:
using a three-dimensional array of detector modules each containing one photomultiplier tube. This method allows detection of neutrinos above
2552: 2426: 2194: 886: 481: 262:(electronic, muonic, and tauonic) can participate, regardless of the neutrino energy. However, no neutrino flavor information is left behind. 2001: 2230: 2467: 1032: 862: 774:
At low energies, a neutrino can scatter from the entire nucleus of an atom, rather than the individual nucleons, in a process known as
646:. The ice itself is the detector medium. The direction of incident neutrinos is determined by recording the arrival time of individual 635: 626:
optical modules, this detector uses the surrounding sea water as the detector medium. The next generation deep sea neutrino telescope
423:
gas which would remove the argon. The helium is then cooled to separate out the argon, and the argon atoms are counted based on their
2572: 2451: 2441: 2159: 906: 827: 2663: 658:. AMANDA was used to generate neutrino maps of the northern sky to search for extraterrestrial neutrino sources and to search for 555:. This detector uses 50,000 tons of pure water surrounded by 11,000 photomultiplier tubes buried 1 km underground. 2330: 1732:
Radovic, Alexander (12 January 2018). "Latest Oscillation Results from NOvA from NOvA" (Joint Experimental-Theoretical Physics).
1064:, and historically possession of the region has alternated between France and Germany; thus the joke in the technique's nickname. 638:(AMANDA) operated from 1996–2004. This detector used photomultiplier tubes mounted in strings buried deep (1.5–2 km) inside 82:
about 3.7 billion light years away. Neutrino observatories will "give astronomers fresh eyes with which to study the universe".
2547: 814:
Neutrino detectors can be aimed at astrophysics observations, since many astrophysical events are believed to emit neutrinos.
2577: 1872: 1112: 540: 2602: 2431: 2220: 2024: 972: 949: 688: 330: 17: 1501:
Halzen, Francis; Klein, Spencer R. (2010-08-30). "Invited Review Article: IceCube: An instrument for neutrino astronomy".
2780: 2144: 1973: 981: 892: 680: 1283: 1143: 2739: 2658: 1919: 1895: 591:
atmospheric muons. Secondly, these environments are transparent and dark, vital criteria in order to detect the faint
2734: 2693: 1947: 1660:
Aguilar, J.A.; et al. (2021). "Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)".
2668: 2597: 2312: 2051: 1994: 1754: 1474: 1252: 519:. In a Cherenkov detector, a large volume of clear material such as water or ice is surrounded by light-sensitive 2816: 2612: 2507: 2204: 676: 231:
have mass, but only a "smidgen of rest mass" – perhaps less than a "millionth as much as an electron" – so the
2678: 428: 2653: 2790: 2622: 2532: 2482: 2179: 2010: 993: 955: 924: 559: 493: 392: 106: 2826: 2811: 2770: 2174: 2169: 1987: 1060:, so the analogue is France → Germany → France. The Alsace-Lorraine territory sits on the two countries' 882: 711:
proposal suggests eliminating the absorber planes in favor of using a very large active detector volume.
62:
is still very much in its infancy – the only confirmed extraterrestrial sources as of 2018 are the
259: 255: 1061: 1003: 691:
is being built, exploiting the Askaryan effect in ice to detect neutrinos with energies >10 PeV.
2522: 1979: 1753:. Physics & Astronomy. Los Angeles, CA: University of California – Los Angeles. Archived from 342: 227:, or one of their antiparticles, if an antineutrino). According to the laws of physics neutrinos 1035:) is designed to look not up, but down, through the Earth to the sky of the Northern Hemisphere. 2028: 444: 71: 2184: 1226: 2537: 2411: 2105: 1845: 1798: 1679: 1589: 1520: 1436: 1190: 587: 516: 450:
A similar detector design, with a much lower detection threshold of 0.233 MeV, uses a
373: 289: 150: 679:
uses antennas to detect Cherenkov radiation from high-energy neutrinos in Antarctica. The
8: 2775: 2562: 2542: 2149: 1691: 929: 833: 801:
For lower-energy experiments, the cosmic rays are not directly the problem. Instead, the
615: 592: 544: 529: 512: 408: 388: 326: 251: 232: 161: 94: 1849: 1802: 1683: 1593: 1570:
Zaborov, D. N. (2009-09-01). "Coincidence analysis in ANTARES: Potassium-40 and muons".
1524: 1440: 1384: 1337: 1194: 599:
decay, even the abyss is not completely dark, so this decay must be used as a baseline.
345:
detectors were placed next to the water targets. Antineutrinos with an energy above the
129:, respectively, which are created by neutrinos interacting with the original substance. 2821: 2688: 2477: 2416: 2136: 2055: 1822: 1788: 1695: 1669: 1613: 1579: 1552: 1510: 1479: 1403: 1358: 1214: 1180: 1148: 998: 432: 354: 75: 59: 2648: 2110: 1448: 687:
produced by ultra-high-energy neutrinos interacting with the ice below. Currently the
376:
of antineutrinos from 53 Japanese nuclear power plants. A smaller, but more radiopure
2256: 2235: 2082: 1826: 1814: 1699: 1605: 1544: 1536: 1452: 1206: 611: 1617: 1556: 1424: 1218: 2683: 2607: 2436: 2391: 2335: 2307: 2199: 1853: 1806: 1687: 1634: 1597: 1528: 1444: 1198: 937: 933: 552: 424: 404: 346: 334: 236: 192: 86: 51: 2472: 2276: 1713: 684: 623: 520: 470: 204: 196: 157: 2749: 2744: 2724: 2557: 2291: 845: 821: 655: 301: 208: 200: 1601: 2805: 1857: 1609: 1540: 1456: 874:
DeepCore and PINGU, an existing extension and a proposed extension of IceCube
79: 1810: 1202: 113:
as the detecting medium. Other detectors have consisted of large volumes of
2497: 1818: 1548: 1257: 1210: 651: 602: 596: 579: 350: 322: 142: 134: 1308: 912: 659: 575: 563: 511:"Ring-imaging" Cherenkov detectors take advantage of a phenomenon called 341:
used two targets containing a solution of cadmium chloride in water. Two
338: 110: 1169: 622:-long vertical detector strings 70 meters apart, each with 75  2517: 2421: 2261: 802: 791: 759: 683:(ANITA) is a balloon-borne device flying over Antarctica and detecting 643: 536: 440: 55: 2266: 1532: 606:
An illustration of the Antares neutrino detector deployed under water.
235:
caused by neutrinos has so far proved too weak to detect, leaving the
2271: 1924: 1875:. Oak Ridge National Laboratory (Press release). Department of Energy 639: 571: 456: 436: 126: 90: 35: 407:, consist of a tank filled with a chlorine-containing fluid such as 2754: 2627: 2617: 2350: 2164: 2009: 1793: 1674: 1342: 1185: 1045: 916: 896: 548: 466: 412: 377: 277: 216: 181: 138: 114: 98: 67: 47: 1873:"World's smallest neutrino detector finds big physics fingerprint" 1584: 1515: 762:
decay essentially immediately to either another charged lepton or
2592: 1057: 868: 663: 528:). The charged lepton generates a visible "optical shockwave" of 497: 485: 452: 395:
which used heavy water and detected Cherenkov light (see below).
195:. The two types of weak interactions they (rarely) engage in are 188: 165: 118: 708: 146: 2785: 2567: 2527: 2512: 2446: 2386: 2360: 1968: 1053: 966: 839: 647: 627: 525: 489: 420: 273: 212: 169: 2587: 2492: 2487: 2370: 2365: 2340: 2189: 2078: 920: 900: 851: 700: 619: 416: 384: 297: 285: 224: 130: 122: 1659: 854:(prospective telescope; path finders deployed in 2018, 2020) 776:
coherent neutral current neutrino-nucleus elastic scattering
667:
when a neutrino does interact with an atom of ice or water.
30: 2286: 2281: 763: 362: 293: 281: 220: 102: 715: 391:
as a liquid scintillator, in contrast to its predecessor
63: 1920:"Minnesota neutrino project to get under way this month" 1840:
Grant, Andrew (2017). "Neutrino detection goes small".
1378: 1376: 1374: 1331: 1329: 714:
Tracking calorimeters are only useful for high-energy (
160:
effect is the subject of dedicated studies done by the
1914: 1912: 978:
Tauwer experiment (construction date to be determined)
427:
radioactive decays. A chlorine detector in the former
27:
Physics apparatus which is designed to study neutrinos
1629: 1627: 403:
Chlorine detectors, based on the method suggested by
272:, a high-energy neutrino transforms into its partner 254:, which can be observed directly. All three neutrino 156:
The proposed acoustic detection of neutrinos via the
1468: 1466: 1371: 1326: 1909: 1246: 1244: 1242: 790:Most neutrino experiments must address the flux of 1624: 1472: 1277: 1275: 1137: 1135: 1133: 1131: 1048:of the technique comes from the reaction sequence 654:with a spatial resolution of approximately 2  578:as its detection medium. Mineral oil is a natural 211:and causes the neutrino to convert into a charged 46:is a physics apparatus which is designed to study 1778: 1463: 842:(future telescope; under construction since 2013) 145:scintillator also watched by phototubes; and the 2803: 1745: 1239: 484:experiment in Russia used about 50 tons of 2011:Neutrino detectors, experiments, and facilities 1272: 1128: 610:Located at a depth of about 2.5 km in the 149:detector uses a liquid scintillator watched by 121:which are periodically checked for excesses of 1141: 58:and other background radiation. The field of 1995: 97:emitted when an incoming neutrino creates an 1408:: CS1 maint: multiple names: authors list ( 1363:: CS1 maint: multiple names: authors list ( 304:, the 'target' particle also changes (e.g., 1500: 1429:Nuclear Physics B - Proceedings Supplements 1250: 1231:: CS1 maint: numeric names: authors list ( 1163: 1144:"Tiny, plentiful, and really hard to catch" 769: 496:experiments in Italy about 30 tons of 2771:BNO (Baksan or Baxan Neutrino Observatory) 2002: 1988: 1870: 1382: 1335: 1033:Antarctic Muon and Neutrino Detector Array 636:Antarctic Muon And Neutrino Detector Array 562:(SNO) used 1,000 tonnes of ultrapure 372:detector used similar techniques to study 85:Various detection methods have been used. 1893: 1792: 1673: 1583: 1514: 1253:"The hunt for neutrinos in the Antarctic" 1184: 907:Jiangmen Underground Neutrino Observatory 828:Baikal Deep Underwater Neutrino Telescope 785: 535:Two water-filled detectors of this type ( 89:is a large volume of water surrounded by 1383:Whitehouse, David, Dr. (22 April 2002). 1338:"Icebound telescope probes the Universe" 694: 601: 398: 29: 1569: 1473:Browne, Malcolm W. (28 February 1995). 1336:Whitehouse, David, Dr. (15 July 2003). 473:" technique in a joke-reference to the 312: 14: 2804: 1281: 809: 506: 368:A more recently built and much larger 1983: 1839: 1425:"The SNO Liquid Scintillator Project" 1113:Fermi National Accelerator Laboratory 952:(DUNE), South Dakota, USA to Fermilab 411:. A neutrino occasionally converts a 1746:Winslow, Lindley (18 October 2012). 1422: 973:Daya Bay Reactor Neutrino Experiment 950:Deep Underground Neutrino Experiment 878:Underground neutrino observatories: 689:Radio Neutrino Observatory Greenland 203:and only results in deflection) and 1284:"Tracking down the crafty neutrino" 982:Antarctic Impulse Transient Antenna 681:Antarctic Impulse Transient Antenna 24: 1894:ERNENWEIN, J.P (5–12 March 2005). 1736:. Femilab. Retrieved 30 March 2018 1475:"Four telescopes in neutrino hunt" 1387:. BBC News Online science editor. 1385:"Experiment confirms Sun theories" 958:(SNOLAB), Sudbury, Ontario, Canada 865:(1996–2009, superseded by IceCube) 794:that bombard the Earth's surface. 699:Tracking calorimeters such as the 670: 662:. AMANDA has been upgraded to the 290:accelerator-created neutrino beams 207:(which involves the exchange of a 199:(which involves the exchange of a 25: 2838: 2735:Long Baseline Neutrino Experiment 1961: 1449:10.1016/j.nuclphysbps.2005.03.037 239:as the main method of detection: 1967: 1948:"Tauwer aims for cosmic heights" 1896:"THE ANTARES NEUTRINO TELESCOPE" 1635:"Hang on, that's not a neutrino" 1503:Review of Scientific Instruments 1282:Le Hir, Pierre (22 March 2011). 1142:Chang, Kenneth (26 April 2005). 944:Underground Neutrino Observatory 909:(JUNO), Kaiping, Jiangmen, China 893:Gran Sasso National Laboratories 817:Underwater neutrino telescopes: 331:Cowan–Reines neutrino experiment 317: 1940: 1887: 1864: 1833: 1772: 1739: 1726: 1706: 1653: 1563: 1494: 1416: 1251:Sample, Ian (23 January 2011). 1105: 1095: 1085: 1076: 1067: 1056:, and germanium is named after 1038: 940:, currently under construction. 858:Under-ice neutrino telescopes: 74:. Another likely source (three 1748:"Coherent neutrino scattering" 1692:10.1088/1748-0221/16/03/P03025 1301: 1025: 1016: 975:, (2011–2020), Daya bay, China 848:(under development since 1998) 677:Radio Ice Cherenkov Experiment 327:Savannah River nuclear reactor 13: 1: 2052:Lederman–Schwartz–Steinberger 1122: 1050:gallium → germanium → gallium 517:speed of light in that medium 325:were first detected near the 2791:List of neutrino experiments 1871:Levy, Dawn (3 August 2017). 1009: 994:List of neutrino experiments 956:Sudbury Neutrino Observatory 946:, Mont Blanc, France / Italy 936:(Super-K) and its successor 889:, GGNT and the future BLVSD. 780:coherent neutrino scattering 560:Sudbury Neutrino Observatory 393:Sudbury Neutrino Observatory 296:, and a very few can create 107:Sudbury Neutrino Observatory 7: 987: 883:Baksan Neutrino Observatory 270:charged current interaction 248:neutral current interaction 10: 2843: 1662:Journal of Instrumentation 1423:Chen, M.C. (August 2005). 595:. In practice, because of 2763: 2717: 2641: 2460: 2404: 2379: 2321: 2300: 2244: 2213: 2135: 2120: 2017: 1602:10.1134/S1063778809090130 1340:. Online science editor. 1052:. Gallium is named after 1004:Multi-messenger astronomy 175: 50:. Because neutrinos only 1858:10.1063/PT.6.1.20170817b 1572:Physics of Atomic Nuclei 903:, and other experiments. 770:Coherent Recoil Detector 353:caused charged current " 1811:10.1126/science.aao0990 1203:10.1126/science.aat1378 895:(LNGS), Italy, site of 137:watched by phototubes; 2817:Neutrino observatories 1734:NOvA Document Database 1714:"Collaboration | NOvA" 824:(1976–1995; cancelled) 786:Background suppression 607: 574:detector employs pure 465:This latter method is 445:Solar neutrino problem 435:, containing 520  109:was similar, but used 72:Large Magellanic Cloud 39: 1309:"All About Neutrinos" 695:Tracking calorimeters 642:glacial ice near the 605: 415:-37 atom into one of 399:Radiochemical methods 151:avalanche photodiodes 133:used a solid plastic 33: 2106:Neutrino oscillation 1976:at Wikimedia Commons 1760:on 29 September 2017 462:decay of germanium. 313:Detection techniques 18:Neutrino observatory 2776:Kamioka Observatory 1850:2017PhT..2017h2197G 1803:2017Sci...357.1123C 1787:(6356): 1123–1126. 1684:2021JInst..16P3025A 1594:2009PAN....72.1537Z 1525:2010RScI...81h1101H 1441:2005NuPhS.145...65C 1195:2018Sci...361.1378I 930:Kamioka Observatory 810:Neutrino telescopes 530:Cherenkov radiation 507:Cherenkov detectors 477:reaction sequence. 409:tetrachloroethylene 389:linear alkylbenzene 252:Cherenkov radiation 233:gravitational force 95:Cherenkov radiation 93:that watch for the 76:standard deviations 2827:Particle detectors 2812:Neutrino astronomy 1974:Neutrino detectors 1928:. 11 February 2005 1480:The New York Times 1179:(6398): eaat1378. 1149:The New York Times 1111:Later this month, 999:Neutrino astronomy 969:(1991–1997; ended) 885:, Russia, site of 685:Askaryan radiation 608: 433:Lead, South Dakota 355:Inverse beta decay 105:in the water. The 60:neutrino astronomy 40: 34:The inside of the 2799: 2798: 2533:Heidelberg-Moscow 2400: 2399: 2257:ICARUS (Fermilab) 1972:Media related to 1952:Symmetry Magazine 1641:. 1 December 2010 1533:10.1063/1.3480478 932:, Japan, home of 616:ANTARES telescope 612:Mediterranean Sea 44:neutrino detector 38:neutrino detector 16:(Redirected from 2834: 2684:Neutrino Factory 2437:Hyper-Kamiokande 2200:Super-Kamiokande 2133: 2132: 2100: 2099: 2098: 2090: 2089: 2073: 2072: 2071: 2063: 2062: 2046: 2045: 2044: 2036: 2035: 2004: 1997: 1990: 1981: 1980: 1971: 1956: 1955: 1944: 1938: 1937: 1935: 1933: 1916: 1907: 1906: 1900: 1891: 1885: 1884: 1882: 1880: 1868: 1862: 1861: 1837: 1831: 1830: 1796: 1776: 1770: 1769: 1767: 1765: 1759: 1752: 1743: 1737: 1730: 1724: 1723: 1721: 1720: 1710: 1704: 1703: 1677: 1657: 1651: 1650: 1648: 1646: 1631: 1622: 1621: 1587: 1578:(9): 1537–1542. 1567: 1561: 1560: 1518: 1498: 1492: 1491: 1489: 1487: 1470: 1461: 1460: 1420: 1414: 1413: 1407: 1399: 1397: 1395: 1380: 1369: 1368: 1362: 1354: 1352: 1350: 1333: 1324: 1323: 1321: 1319: 1313:icecube.wisc.edu 1305: 1299: 1298: 1296: 1294: 1279: 1270: 1269: 1267: 1265: 1248: 1237: 1236: 1230: 1222: 1188: 1167: 1161: 1160: 1158: 1156: 1139: 1116: 1109: 1103: 1099: 1093: 1089: 1083: 1080: 1074: 1071: 1065: 1051: 1042: 1036: 1029: 1023: 1020: 938:Hyper-Kamiokande 934:Super-Kamiokande 757: 756: 755: 748: 747: 739: 738: 737: 730: 729: 553:Super-Kamiokande 476: 460: 425:electron capture 405:Bruno Pontecorvo 387:experiment uses 335:Frederick Reines 307: 306:neutron → proton 292:can also create 237:weak interaction 193:weak interaction 172:collaborations. 87:Super Kamiokande 78:) is the blazar 21: 2842: 2841: 2837: 2836: 2835: 2833: 2832: 2831: 2802: 2801: 2800: 2795: 2759: 2713: 2637: 2456: 2396: 2375: 2317: 2296: 2240: 2209: 2128: 2126: 2124: 2122: 2116: 2097: 2094: 2093: 2092: 2088: 2086: 2085: 2084: 2083: 2070: 2067: 2066: 2065: 2061: 2059: 2058: 2057: 2056: 2043: 2040: 2039: 2038: 2034: 2032: 2031: 2030: 2029: 2013: 2008: 1964: 1959: 1954:. 16 June 2011. 1946: 1945: 1941: 1931: 1929: 1918: 1917: 1910: 1898: 1892: 1888: 1878: 1876: 1869: 1865: 1838: 1834: 1777: 1773: 1763: 1761: 1757: 1750: 1744: 1740: 1731: 1727: 1718: 1716: 1712: 1711: 1707: 1658: 1654: 1644: 1642: 1633: 1632: 1625: 1568: 1564: 1499: 1495: 1485: 1483: 1471: 1464: 1421: 1417: 1401: 1400: 1393: 1391: 1381: 1372: 1356: 1355: 1348: 1346: 1334: 1327: 1317: 1315: 1307: 1306: 1302: 1292: 1290: 1288:Guardian Weekly 1280: 1273: 1263: 1261: 1249: 1240: 1224: 1223: 1168: 1164: 1154: 1152: 1140: 1129: 1125: 1120: 1119: 1110: 1106: 1100: 1096: 1090: 1086: 1081: 1077: 1072: 1068: 1049: 1043: 1039: 1030: 1026: 1021: 1017: 1012: 990: 812: 788: 772: 754: 752: 751: 750: 746: 744: 743: 742: 741: 736: 734: 733: 732: 728: 726: 725: 724: 723: 697: 673: 671:Radio detectors 624:photomultiplier 593:Cherenkov light 588:photomultiplier 547:from supernova 521:photomultiplier 513:Cherenkov light 509: 474: 471:Alsace-Lorraine 451: 401: 320: 315: 305: 265:Charged current 243:Neutral current 205:charged current 197:neutral current 178: 68:supernova 1987A 52:weakly interact 28: 23: 22: 15: 12: 11: 5: 2840: 2830: 2829: 2824: 2819: 2814: 2797: 2796: 2794: 2793: 2788: 2783: 2778: 2773: 2767: 2765: 2761: 2760: 2758: 2757: 2752: 2747: 2745:NESTOR Project 2742: 2737: 2732: 2727: 2725:DUMAND Project 2721: 2719: 2715: 2714: 2712: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2645: 2643: 2639: 2638: 2636: 2635: 2630: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2535: 2530: 2525: 2520: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2464: 2462: 2458: 2457: 2455: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2414: 2408: 2406: 2402: 2401: 2398: 2397: 2395: 2394: 2389: 2383: 2381: 2377: 2376: 2374: 2373: 2368: 2363: 2358: 2353: 2348: 2343: 2338: 2333: 2327: 2325: 2319: 2318: 2316: 2315: 2310: 2304: 2302: 2298: 2297: 2295: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2248: 2246: 2242: 2241: 2239: 2238: 2233: 2228: 2223: 2217: 2215: 2211: 2210: 2208: 2207: 2202: 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2141: 2139: 2130: 2118: 2117: 2115: 2114: 2113:neutrino burst 2108: 2103: 2095: 2087: 2076: 2068: 2060: 2049: 2041: 2033: 2021: 2019: 2015: 2014: 2007: 2006: 1999: 1992: 1984: 1978: 1977: 1963: 1962:External links 1960: 1958: 1957: 1939: 1908: 1886: 1863: 1832: 1771: 1738: 1725: 1705: 1652: 1623: 1562: 1493: 1462: 1415: 1370: 1325: 1300: 1271: 1238: 1162: 1126: 1124: 1121: 1118: 1117: 1104: 1094: 1084: 1075: 1066: 1037: 1024: 1014: 1013: 1011: 1008: 1007: 1006: 1001: 996: 989: 986: 985: 984: 979: 976: 970: 960: 959: 953: 947: 941: 927: 910: 904: 890: 876: 875: 872: 866: 856: 855: 849: 846:NESTOR Project 843: 837: 831: 825: 822:DUMAND Project 811: 808: 787: 784: 771: 768: 753: 745: 735: 727: 696: 693: 672: 669: 545:neutrino burst 508: 505: 429:Homestake Mine 400: 397: 319: 316: 314: 311: 310: 309: 266: 263: 244: 177: 174: 158:thermoacoustic 141:uses a liquid 70:in the nearby 26: 9: 6: 4: 3: 2: 2839: 2828: 2825: 2823: 2820: 2818: 2815: 2813: 2810: 2809: 2807: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2768: 2766: 2762: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2722: 2720: 2716: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2646: 2644: 2640: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2536: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2465: 2463: 2459: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2409: 2407: 2403: 2393: 2390: 2388: 2385: 2384: 2382: 2378: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2328: 2326: 2324: 2320: 2314: 2311: 2309: 2306: 2305: 2303: 2299: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2249: 2247: 2243: 2237: 2234: 2232: 2229: 2227: 2224: 2222: 2219: 2218: 2216: 2212: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2142: 2140: 2138: 2134: 2131: 2119: 2112: 2109: 2107: 2104: 2101: 2080: 2077: 2074: 2053: 2050: 2047: 2026: 2023: 2022: 2020: 2016: 2012: 2005: 2000: 1998: 1993: 1991: 1986: 1985: 1982: 1975: 1970: 1966: 1965: 1953: 1949: 1943: 1927: 1926: 1921: 1915: 1913: 1904: 1903:antares.in2p3 1897: 1890: 1874: 1867: 1859: 1855: 1851: 1847: 1843: 1842:Physics Today 1836: 1828: 1824: 1820: 1816: 1812: 1808: 1804: 1800: 1795: 1790: 1786: 1782: 1775: 1756: 1749: 1742: 1735: 1729: 1715: 1709: 1701: 1697: 1693: 1689: 1685: 1681: 1676: 1671: 1667: 1663: 1656: 1640: 1639:The Economist 1636: 1630: 1628: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1586: 1581: 1577: 1573: 1566: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1517: 1512: 1509:(8): 081101. 1508: 1504: 1497: 1482: 1481: 1476: 1469: 1467: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1419: 1411: 1405: 1390: 1386: 1379: 1377: 1375: 1366: 1360: 1345: 1344: 1339: 1332: 1330: 1314: 1310: 1304: 1289: 1285: 1278: 1276: 1260: 1259: 1254: 1247: 1245: 1243: 1234: 1228: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1187: 1182: 1178: 1174: 1166: 1151: 1150: 1145: 1138: 1136: 1134: 1132: 1127: 1114: 1108: 1098: 1088: 1079: 1070: 1063: 1062:common border 1059: 1055: 1047: 1041: 1034: 1028: 1019: 1015: 1005: 1002: 1000: 997: 995: 992: 991: 983: 980: 977: 974: 971: 968: 965: 964: 963: 957: 954: 951: 948: 945: 942: 939: 935: 931: 928: 926: 922: 918: 914: 911: 908: 905: 902: 898: 894: 891: 888: 884: 881: 880: 879: 873: 870: 867: 864: 861: 860: 859: 853: 850: 847: 844: 841: 838: 835: 832: 829: 826: 823: 820: 819: 818: 815: 807: 804: 799: 795: 793: 783: 781: 777: 767: 765: 761: 720: 717: 712: 710: 705: 702: 692: 690: 686: 682: 678: 668: 665: 661: 657: 653: 649: 645: 641: 637: 632: 629: 625: 621: 617: 613: 604: 600: 598: 594: 589: 583: 581: 577: 573: 568: 565: 561: 556: 554: 550: 546: 543:) recorded a 542: 538: 533: 531: 527: 522: 518: 514: 504: 501: 499: 495: 491: 487: 483: 478: 472: 468: 463: 458: 454: 448: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 406: 396: 394: 390: 386: 381: 379: 375: 371: 366: 364: 358: 356: 352: 348: 344: 343:scintillation 340: 336: 332: 328: 324: 323:Antineutrinos 318:Scintillators 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 264: 261: 257: 253: 249: 245: 242: 241: 240: 238: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 190: 185: 183: 173: 171: 167: 163: 159: 154: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 37: 32: 19: 2740:NEMO Project 2498:Double Chooz 2405:Construction 2137:Astronomical 2025:Cowan–Reines 1951: 1942: 1930:. Retrieved 1923: 1902: 1889: 1879:29 September 1877:. Retrieved 1866: 1844:(8): 12197. 1841: 1835: 1784: 1780: 1774: 1764:29 September 1762:. Retrieved 1755:the original 1741: 1733: 1728: 1717:. Retrieved 1708: 1668:(3): 03025. 1665: 1661: 1655: 1643:. Retrieved 1638: 1575: 1571: 1565: 1506: 1502: 1496: 1484:. Retrieved 1478: 1432: 1428: 1418: 1392:. Retrieved 1388: 1347:. Retrieved 1341: 1316:. Retrieved 1312: 1303: 1291:. Retrieved 1287: 1262:. Retrieved 1258:The Guardian 1256: 1227:cite journal 1176: 1172: 1165: 1153:. Retrieved 1147: 1107: 1097: 1087: 1078: 1069: 1040: 1027: 1018: 961: 877: 857: 816: 813: 800: 796: 789: 779: 775: 773: 721: 713: 706: 698: 674: 633: 609: 597:Potassium 40 584: 580:scintillator 569: 557: 534: 510: 502: 479: 475:Ga → Ge → Ga 464: 449: 402: 382: 374:oscillations 367: 359: 321: 302:W boson 269: 247: 228: 209:W boson 201:Z boson 186: 179: 155: 143:pseudocumene 135:scintillator 84: 80:TXS 0506+056 43: 41: 2346:KamLAND-Zen 2245:Accelerator 2123:(divided by 2018:Discoveries 913:Soudan Mine 792:cosmic rays 760:Tau leptons 660:dark matter 652:50 GeV 576:mineral oil 564:heavy water 441:metric tons 339:Clyde Cowan 111:heavy water 56:cosmic rays 2806:Categories 2563:Kamiokande 2518:Gargamelle 2422:Baikal-GVD 2277:NA61/SHINE 2262:MicroBooNE 1794:1708.01294 1719:2020-05-02 1675:2010.12279 1186:1807.08816 1123:References 915:, home of 803:spallation 644:South Pole 537:Kamiokande 488:, and the 439:(470  437:short tons 91:phototubes 2822:Neutrinos 2718:Cancelled 2538:Homestake 2488:Cuoricino 2452:SuperNEMO 2272:MiniBooNE 2121:Operating 1925:USA Today 1827:206662173 1700:225062021 1610:1562-692X 1585:0812.4886 1541:0034-6748 1516:1007.1247 1457:0920-5632 1435:: 65–68. 1404:cite news 1359:cite news 1010:Footnotes 871:(2004 on) 836:(2006 on) 830:(1993 on) 640:Antarctic 572:MiniBooNE 467:nicknamed 457:germanium 347:threshold 333:in 1956. 127:germanium 48:neutrinos 36:MiniBooNE 2764:See also 2709:WATCHMAN 2659:JEM-EUSO 2642:Proposed 2628:Soudan 2 2618:SciBooNE 2351:MAJORANA 2301:Collider 2221:Daya Bay 2165:Borexino 2127:neutrino 1819:28775215 1618:14232095 1557:11048440 1549:20815596 1389:BBC News 1343:BBC News 1318:19 April 1219:49734791 1211:30002226 1046:nickname 988:See also 962:Others: 917:Soudan 2 897:Borexino 549:SN 1987A 413:chlorine 378:Borexino 278:electron 260:flavours 217:electron 191:and the 182:Big Bang 139:Borexino 115:chlorine 99:electron 66:and the 2689:Nucifer 2508:EXO-200 2461:Retired 2417:ARIANNA 2313:SND@LHC 2267:MINERνA 2226:KamLAND 2214:Reactor 2180:IceCube 2150:ANTARES 2129:source) 2125:primary 2111:SN 1987 1932:16 June 1846:Bibcode 1799:Bibcode 1781:Science 1680:Bibcode 1645:16 June 1590:Bibcode 1521:Bibcode 1486:16 June 1437:Bibcode 1394:16 June 1349:16 June 1293:16 June 1264:16 June 1191:Bibcode 1173:Science 1155:16 June 1058:Germany 869:IceCube 834:ANTARES 740:versus 664:IceCube 656:degrees 648:photons 498:gallium 486:gallium 455:(Ga) → 453:gallium 370:KamLAND 349:of 1.8 329:by the 256:flavors 223:, or a 189:gravity 166:IceCube 162:ANTARES 119:gallium 2786:SNOLAB 2730:LAGUNA 2674:LEGEND 2593:MINOS+ 2568:KARMEN 2543:ICARUS 2513:GALLEX 2468:AMANDA 2447:KM3NeT 2387:KATRIN 2361:PandaX 2236:STEREO 2096:τ 2091:ν 2069:μ 2064:ν 2037:ν 1825:  1817:  1698:  1616:  1608:  1555:  1547:  1539:  1455:  1217:  1209:  1054:France 967:GALLEX 923:, and 863:AMANDA 840:KM3NeT 749:μ 731:μ 628:KM3NeT 614:, the 526:vacuum 490:GALLEX 421:helium 298:tauons 274:lepton 213:lepton 176:Theory 170:KM3NeT 168:, and 2755:BOREX 2694:P-ONE 2664:GRAND 2649:CUPID 2608:OPERA 2588:MINOS 2583:MACRO 2523:GERDA 2493:DONUT 2478:Chooz 2392:WITCH 2380:Other 2371:XMASS 2341:CUORE 2336:COBRA 2331:AMoRE 2308:FASER 2252:ANNIE 2205:SNEWS 2190:NEVOD 2160:BDUNT 2145:ANITA 2079:DONUT 1899:(PDF) 1823:S2CID 1789:arXiv 1758:(PDF) 1751:(PDF) 1696:S2CID 1670:arXiv 1614:S2CID 1580:arXiv 1553:S2CID 1511:arXiv 1215:S2CID 1181:arXiv 921:MINOS 901:CUORE 852:P-ONE 764:pions 701:MINOS 620:meter 469:the " 431:near 417:argon 294:muons 286:tauon 284:, or 268:In a 258:, or 246:In a 225:tauon 215:: an 131:MINOS 123:argon 2781:LNGS 2699:SBND 2679:LENA 2654:nEXO 2633:Utah 2613:RICE 2603:NEMO 2598:NARC 2578:LSND 2548:IGEX 2503:ERPM 2483:CNGS 2473:CDHS 2442:JUNO 2432:DUNE 2427:BEST 2366:SNO+ 2356:NEXT 2323:0νββ 2287:NuMI 2282:NOvA 2231:RENO 2195:SAGE 2175:HALO 2170:BUST 1934:2011 1881:2017 1815:PMID 1766:2017 1647:2011 1606:ISSN 1545:PMID 1537:ISSN 1488:2011 1453:ISSN 1410:link 1396:2011 1365:link 1351:2011 1320:2018 1295:2011 1266:2011 1233:link 1207:PMID 1157:2011 1044:The 925:CDMS 887:SAGE 709:NOνA 707:The 675:The 634:The 570:The 558:The 539:and 482:SAGE 480:The 459:(Ge) 385:SNO+ 383:The 363:flux 337:and 282:muon 229:must 221:muon 219:, a 147:NOνA 103:muon 2750:SOX 2704:UNO 2669:INO 2623:SNO 2573:KGF 2558:K2K 2553:IMB 2528:GNO 2412:ARA 2292:T2K 2185:LVD 2155:ASD 1854:doi 1807:doi 1785:357 1688:doi 1598:doi 1529:doi 1445:doi 1433:145 1199:doi 1177:361 778:or 716:GeV 541:IMB 494:GNO 447:). 351:MeV 125:or 117:or 101:or 64:Sun 2808:: 1950:. 1922:. 1911:^ 1901:. 1852:. 1821:. 1813:. 1805:. 1797:. 1783:. 1694:. 1686:. 1678:. 1666:16 1664:. 1637:. 1626:^ 1612:. 1604:. 1596:. 1588:. 1576:72 1574:. 1551:. 1543:. 1535:. 1527:. 1519:. 1507:81 1505:. 1477:. 1465:^ 1451:. 1443:. 1431:. 1427:. 1406:}} 1402:{{ 1373:^ 1361:}} 1357:{{ 1328:^ 1311:. 1286:. 1274:^ 1255:. 1241:^ 1229:}} 1225:{{ 1213:. 1205:. 1197:. 1189:. 1175:. 1146:. 1130:^ 919:, 899:, 492:/ 308:). 280:, 164:, 153:. 42:A 2102:) 2081:( 2075:) 2054:( 2048:) 2042:e 2027:( 2003:e 1996:t 1989:v 1936:. 1905:. 1883:. 1860:. 1856:: 1848:: 1829:. 1809:: 1801:: 1791:: 1768:. 1722:. 1702:. 1690:: 1682:: 1672:: 1649:. 1620:. 1600:: 1592:: 1582:: 1559:. 1531:: 1523:: 1513:: 1490:. 1459:. 1447:: 1439:: 1412:) 1398:. 1367:) 1353:. 1322:. 1297:. 1268:. 1235:) 1221:. 1201:: 1193:: 1183:: 1159:. 276:( 20:)

Index

Neutrino observatory

MiniBooNE
neutrinos
weakly interact
cosmic rays
neutrino astronomy
Sun
supernova 1987A
Large Magellanic Cloud
standard deviations
TXS 0506+056
Super Kamiokande
phototubes
Cherenkov radiation
electron
muon
Sudbury Neutrino Observatory
heavy water
chlorine
gallium
argon
germanium
MINOS
scintillator
Borexino
pseudocumene
NOνA
avalanche photodiodes
thermoacoustic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑