Knowledge

Cherenkov radiation

Source 📝

2235:, developed in the 1980s. In a RICH detector, a cone of Cherenkov light is produced when a high-speed charged particle traverses a suitable medium, often called radiator. This light cone is detected on a position sensitive planar photon detector, which allows reconstructing a ring or disc, whose radius is a measure for the Cherenkov emission angle. Both focusing and proximity-focusing detectors are in use. In a focusing RICH detector, the photons are collected by a spherical mirror and focused onto the photon detector placed at the focal plane. The result is a circle with a radius independent of the emission point along the particle track. This scheme is suitable for low refractive index radiators—i.e. gases—due to the larger radiator length needed to create enough photons. In the more compact proximity-focusing design, a thin radiator volume emits a cone of Cherenkov light which traverses a small distance—the proximity gap—and is detected on the photon detector plane. The image is a ring of light whose radius is defined by the Cherenkov emission angle and the proximity gap. The ring thickness is determined by the thickness of the radiator. An example of a proximity gap RICH detector is the High Momentum Particle Identification Detector (HMPID), a detector currently under construction for ALICE ( 538: 1196:). This means that, when a charged particle (usually electrons) passes through a medium at a speed greater than the phase velocity of light in that medium, that particle emits trailing radiation from its progress through the medium rather than in front of it (as is the case in normal materials with, both permittivity and permeability positive). One can also obtain such reverse-cone Cherenkov radiation in non-metamaterial periodic media where the periodic structure is on the same scale as the wavelength, so it cannot be treated as an effectively homogeneous metamaterial. 307: 485: 20: 1962:
emission, where the detected signal can be imaged at the entry and exit surfaces of the tissue. The Cherenkov light emitted from patient's tissue during radiation therapy is a very low light level signal but can be detected by specially designed cameras that synchronize their acquisition to the linear accelerator pulses. The ability to see this signal shows the shape of the radiation beam as it is incident upon the tissue in real time.
1971: 1914: 558: 238:. The light was observed using a camera imaging system called a CDose, which is specially designed to view light emissions from biological systems. For decades, patients had reported phenomena such as "flashes of bright or blue light" when receiving radiation treatments for brain cancer, but the effects had never been experimentally observed. 1905:. Radioactive atoms such as phosphorus-32 are readily introduced into biomolecules by enzymatic and synthetic means and subsequently may be easily detected in small quantities for the purpose of elucidating biological pathways and in characterizing the interaction of biological molecules such as affinity constants and dissociation rates. 549:
nuclei. On the other hand, the phenomenon can be explained both qualitatively and quantitatively if one takes into account the fact that an electron moving in a medium does radiate light even if it is moving uniformly provided that its velocity is greater than the velocity of light in the medium."
548:
In their original work on the theoretical foundations of Cherenkov radiation, Tamm and Frank wrote, "This peculiar radiation can evidently not be explained by any common mechanism such as the interaction of the fast electron with individual atom or as radiative scattering of electrons on atomic
1961:
External beam radiation therapy has been shown to induce a substantial amount of Cherenkov light in the tissue being treated, due to electron beams or photon beams with energy in the 6 MV to 18 MV ranges. The secondary electrons induced by these high energy x-rays result in the Cherenkov light
1872:
is directly related to the velocity of the disruption. The Cherenkov angle is zero at the threshold velocity for the emission of Cherenkov radiation. The angle takes on a maximum as the particle speed approaches the speed of light. Hence, observed angles of incidence can be used to compute the
1535: 1925:
More recently, Cherenkov light has been used to image substances in the body. These discoveries have led to intense interest around the idea of using this light signal to quantify and/or detect radiation in the body, either from internal sources such as injected
3609:
Jarvis, Lesley A; Zhang, Rongxiao; Gladstone, David J; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D; Glaser, Adam K; Jermyn, Michael; Pogue, Brian W (2014). "Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time".
3154:
Tendler, Irwin I.; Hartford, Alan; Jermyn, Michael; LaRochelle, Ethan; Cao, Xu; Borza, Victor; Alexander, Daniel; Bruza, Petr; Hoopes, Jack; Moodie, Karen; Marr, Brian P.; Williams, Benjamin B.; Pogue, Brian W.; Gladstone, David J.; Jarvis, Lesley A. (2020).
1853:) would be observed. However, X-rays can be generated at special frequencies just below the frequencies corresponding to core electronic transitions in a material, as the index of refraction is often greater than 1 just below a resonant frequency (see 1157: 476:
field is asymmetric along the direction of motion of the particle, as the particles of the medium do not have enough time to recover to their "normal" randomized states. This results in overlapping waveforms (as in the animation) and
1747:
that have characteristic spectral peaks, Cherenkov radiation is continuous. Around the visible spectrum, the relative intensity per unit frequency is approximately proportional to the frequency. That is, higher frequencies (shorter
1386: 2227:
of the medium) by looking at whether this particle emits Cherenkov light in a certain medium. Knowing particle momentum, one can separate particles lighter than a certain threshold from those heavier than the threshold.
427:, that is the velocity of the charged particle is less than that of the speed of light in the medium, then the polarization field which forms around the moving particle is usually symmetric. The corresponding emitted 2137:
The simplest type of particle identification device based on a Cherenkov radiation technique is the threshold counter, which answers whether the velocity of a charged particle is lower or higher than a certain value
2032:
with enormous velocities. The Cherenkov radiation emitted in the atmosphere by these charged particles is used to determine the direction and energy of the cosmic ray or gamma ray, which is used for example in the
382:). When any charged particle passes through a medium, the particles of the medium will polarize around it in response. The charged particle excites the molecules in the polarizable medium and on returning to their 534:, one can also obtain a variety of other anomalous Cherenkov effects, such as radiation in a backwards direction (see below) whereas ordinary Cherenkov radiation forms an acute angle with the particle velocity. 979: 211:
observed a pale blue light in a highly concentrated radium solution in 1910, but did not investigate its source. In 1926, the French radiotherapist Lucien Mallet described the luminous radiation of
917: 639: 1756:
spectrum—it is only with sufficiently accelerated charges that it even becomes visible; the sensitivity of the human eye peaks at green, and is very low in the violet portion of the spectrum.
1025: 801: 2088:
Astrophysics observatories using the Cherenkov technique to measure air showers are key to determining the properties of astronomical objects that emit very-high-energy gamma rays, such as
3550: 848: 159:. Cherenkov saw a faint bluish light around a radioactive preparation in water during experiments. His doctorate thesis was on luminescence of uranium salt solutions that were excited by 386:, the molecules re-emit the energy given to them to achieve excitation as photons. These photons form the spherical wavefronts which can be seen originating from the moving particle. If 729: 1831:
varies with frequency (and hence with wavelength) in such a way that the intensity cannot continue to increase at ever shorter wavelengths, even for very relativistic particles (where
3071: 1806: 1329:
Radiation with the same properties of typical Cherenkov radiation can be created by structures of electric current that travel faster than light. By manipulating density profiles in
3098:
Malaca, Bernardo; Pardal, Miguel; Ramsey, Dillon; Pierce, Jacob R.; Weichman, Kale; Andryiash, Igor A.; Mori, Warren B.; Palastro, John P.; Fonseca, Ricardo; Vieira, Jorge (2023).
1075: 470: 425: 2889:
Genevet, P.; Wintz, D.; Ambrosio, A.; She, A.; Blanchard, R.; Capasso, F. (2015). "Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial".
3499: 1263: 1188:(materials with a subwavelength microstructure that gives them an effective "average" property very different from their constituent materials, in this case having negative 1626: 755: 590: 507:
waves generated by the aircraft travel at the speed of sound, which is slower than the aircraft, and cannot propagate forward from the aircraft, instead forming a conical
1659: 2177: 1319: 1070: 3257:
Liu, H.; Zhang, X.; Xing, B.; Han, P.; Gambhir, S. S.; Cheng, Z. (21 May 2010). "Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging".
3549:
Spinelli, Antonello Enrico; Ferdeghini, Marco; Cavedon, Carlo; Zivelonghi, Emanuele; Calandrino, Riccardo; Fenzi, Alberto; Sbarbati, Andrea; Boschi, Federico (2013).
1597: 1997:
decay. The glow continues after the chain reaction stops, dimming as the shorter-lived products decay. Similarly, Cherenkov radiation can characterize the remaining
1283: 2053:. Cherenkov radiation emitted in tanks filled with water by those charged particles reaching earth is used for the same goal by the Extensive Air Shower experiment 356: 1752:) are more intense in Cherenkov radiation. This is why visible Cherenkov radiation is observed to be brilliant blue. In fact, most Cherenkov radiation is in the 542: 2221: 2197: 1829: 1727: 1707: 1683: 1577: 1557: 1230: 683: 659: 376: 522:
of light. The phase velocity can be altered dramatically by using a periodic medium, and in that case one can even achieve Cherenkov radiation with
922: 431:
may be bunched up, but they do not coincide or cross, and there are therefore no interference effects to consider. In the reverse situation, i.e.
2001:
of spent fuel rods. This phenomenon is used to verify the presence of spent nuclear fuel in spent fuel pools for nuclear safeguards purposes.
1530:{\displaystyle {\frac {d^{2}E}{dx\,d\omega }}={\frac {q^{2}}{4\pi }}\mu (\omega )\omega {\left(1-{\frac {c^{2}}{v^{2}n^{2}(\omega )}}\right)}} 4298: 2440: 3670:"Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery" 866: 318:
The effect can be intuitively described in the following way. From classical physics, it is known that accelerating charged particles emit
595: 4283: 1341:
and emit optical shocks at the Cherenkov angle. Electrons are still subluminal, hence the electrons that compose the structure at a time
3069:
Bugaev, S. P.; Kanavets, V. I.; Klimov, A. I.; Koshelev, V. I.; Cherepenin, V. A. (1983). "Relativistic multiwave Cerenkov generator".
986: 763: 3857: 2432:
93 (1967) 385. V sbornike: Pavel Alekseyevich Čerenkov: Chelovek i Otkrytie pod redaktsiej A. N. Gorbunova i E. P. Čerenkovoj, M.,
2054: 810: 4394: 4252: 223: 3770: 2650: 2615: 2519: 2492: 2122:
of an electrically charged elementary particle by the properties of the Cherenkov light it emits in a certain medium. If the
2943: 1038:. The latter is designed to introduce a gradient of phase retardation along the trajectory of the fast travelling particle ( 4278: 4247: 4192: 3911: 2365: 511:. In a similar way, a charged particle can generate a "shock wave" of visible light as it travels through an insulator. 4227: 3515: 2395: 272:), the speed in a material may be significantly less, as it is perceived to be slowed by the medium. For example, in 1232:. In such a system, this effect can be derived from conservation of the energy and momentum where the momentum of a 4293: 2236: 2232: 2109: 1629: 1193: 2973:
Macleod, Alexander J.; Noble, Adam; Jaroszynski, Dino A. (2019). "Cherenkov radiation from the quantum vacuum".
692: 127:, the sharp sound heard when faster-than-sound movement occurs. The phenomenon is named after Soviet physicist 1917:
Cherenkov light emission imaged from the chest wall of a patient undergoing whole breast irradiation, using 6
1762: 4359: 3795:
Smith, S. J.; Purcell, E. M. (1953). "Visible Light from Localized Surface Charges Moving across a Grating".
2947: 852:
The left corner of the triangle represents the location of the superluminal particle at some initial moment (
323: 859:). The right corner of the triangle is the location of the particle at some later time t. In the given time 2411: 2070: 119:
in that medium. A classic example of Cherenkov radiation is the characteristic blue glow of an underwater
3294:
Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen (2010).
1901:
Cherenkov radiation is widely used to facilitate the detection of small amounts and low concentrations of
4389: 4379: 4115: 2752: 1881: 1855: 1845:
frequencies, the refractive index becomes less than 1 (note that in media, the phase velocity may exceed
1212:
decreases and the velocity of charged particles can exceed the phase velocity while remaining lower than
1034:
Cherenkov radiation can also radiate in an arbitrary direction using properly engineered one dimensional
434: 389: 227: 2081:, a former solar tower refurbished to work as a non-imaging Cherenkov observatory, which was located in 4347: 4202: 4175: 3850: 3839: 2416: 152: 4384: 4232: 4085: 804: 319: 84: 28: 3669: 2831: 2696: 2666: 1239: 4170: 4080: 3944: 2058: 1849:
without violating relativity) and hence no X-ray emission (or shorter wavelength emissions such as
1744: 1602: 1072:), reversing or steering Cherenkov emission at arbitrary angles given by the generalized relation: 734: 662: 527: 167:
of the radiation and came to the conclusion that the bluish glow was not a fluorescent phenomenon.
2541:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2437: 568: 4110: 3904: 1635: 537: 4399: 4351: 4262: 3936: 2826: 2295: 2279: 2141: 1380: 1295: 1041: 303:(can be polarized electrically) medium with a speed greater than light's speed in that medium. 144: 1152:{\displaystyle \cos \theta ={\frac {1}{n\beta }}+{\frac {n}{k_{0}}}\cdot {\frac {d\phi }{dx}}} 203:
in 1904, but both had been quickly dismissed following the relativity theory's restriction of
4355: 4090: 2891: 2457: 2290: 2240: 2022: 1943: 1582: 1165:. The angle stays the same, meaning that subsequent waves generated between the initial time 1162: 24: 3647:"Technical Note: Time-gating to medical linear accelerator pulses: Stray radiation detector" 3646: 2262: 1268: 1161:
Note that since this ratio is independent of time, one can take arbitrary times and achieve
4212: 4100: 4057: 4007: 3806: 3704: 3565: 3450: 3307: 3223: 3212:
Bolotovskii, B. M. (2009). "Vavilov – Cherenkov radiation: Its discovery and application".
3080: 2992: 2900: 2818: 2552: 2310: 1885: 1861: 473: 311: 292: 306: 8: 4329: 4207: 3872: 3716: 3692: 2667:"For the first time, scientists capture light flashes from human eye during radiotherapy" 1927: 1741: 1330: 1290: 1205: 333: 4288: 3810: 3781: 3708: 3569: 3454: 3351:
Zhong, Jianghong; Qin, Chenghu; Yang, Xin; Zhu, Shuping; Zhang, Xing; Tian, Jie (2011).
3311: 3296:"Optical imaging of reporter gene expression using a positron-emission-tomography probe" 3227: 3157:"Experimentally Observed Cherenkov Light Generation in the Eye During Radiation Therapy" 3084: 2996: 2904: 2822: 2697:"Experimentally Observed Cherenkov Light Generation in the Eye During Radiation Therapy" 2556: 2484:
Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age
481:
leads to an observed cone-like light signal at a characteristic angle: Cherenkov light.
4324: 4145: 4125: 4105: 3989: 3897: 3755: 3720: 3591: 3526: 3507: 3471: 3438: 3387: 3352: 3328: 3295: 3239: 3189: 3156: 3129: 3111: 3051: 3016: 2982: 2924: 2852: 2721: 2695:
Tendler, Irwin I.; Hartford, Alan; Jermyn, Michael; Pogue, Brian W. (25 October 2019).
2586: 2276:, about conjectural propagation of information or matter faster than the speed of light 2256: 2206: 2182: 2105: 1814: 1712: 1692: 1668: 1562: 1542: 1376: 1215: 668: 644: 565:
In the figure on the geometry, the particle (red arrow) travels in a medium with speed
361: 262: 175: 2801: 2270:, radiation produced when charged particles are decelerated by other charged particles 4217: 4095: 4032: 3997: 3766: 3724: 3627: 3583: 3531: 3511: 3476: 3419: 3392: 3333: 3276: 3243: 3194: 3176: 3133: 3099: 3055: 3008: 2916: 2844: 2809: 2772: 2726: 2646: 2621: 2611: 2578: 2570: 2548: 2515: 2488: 2433: 2391: 2300: 2273: 2089: 2050: 1986: 1978: 1931: 478: 219: 204: 200: 3020: 2928: 2870:
Tamm, I.E.; Frank, I.M. (1937), "Coherent radiation of fast electrons in a medium",
2856: 2590: 1184:
A reverse Cherenkov effect can be experienced using materials called negative-index
4222: 3814: 3712: 3619: 3595: 3573: 3521: 3503: 3466: 3458: 3382: 3372: 3323: 3315: 3268: 3235: 3231: 3184: 3168: 3147: 3121: 3043: 3004: 3000: 2908: 2836: 2764: 2716: 2708: 2560: 2357: 2224: 2115: 2066: 1994: 1809: 1662: 686: 531: 379: 196: 108: 88: 40: 3691:
Branger, E; Grape, S; Jacobsson Svärd, S; Jansson, P; Andersson Sundén, E (2017).
1908: 561:
The geometry of the Cherenkov radiation shown for the ideal case of no dispersion.
189:
Cherenkov radiation as conical wavefronts had been theoretically predicted by the
4334: 4319: 4135: 4047: 4037: 3889: 3797: 3623: 3259: 3214: 3172: 2951: 2768: 2712: 2640: 2509: 2482: 2444: 2029: 1877: 1876:
Cherenkov radiation can be generated in the eye by charged particles hitting the
1869: 1686: 919:
whereas the emitted electromagnetic waves are constricted to travel the distance
760:
We define the ratio between the speed of the particle and the speed of light as
171: 128: 120: 100: 484: 4182: 4140: 4130: 4052: 4042: 4012: 3787: 3762: 3125: 2428: 2334: 2267: 2200: 1990: 1837: 1730: 1338: 1334: 1286: 1209: 519: 515: 327: 252: 231: 148: 147:
winner, who was the first to detect it experimentally under the supervision of
116: 104: 3844: 3833: 3578: 3047: 3034:
Wang, Zhong-Yue (2016). "Generalized momentum equation of quantum mechanics".
2329: 1204:
The Cherenkov effect can occur in vacuum. In a slow-wave structure, like in a
1176:
will form similar triangles with coinciding right endpoints to the one shown.
4373: 4257: 4017: 4002: 3180: 2625: 2574: 2131: 1998: 1947: 163:
instead of less energetic visible light, as done commonly. He discovered the
3818: 2840: 2673:. American Association for the Advancement of Science (AAAS). 7 January 2020 170:
A theory of this effect was later developed in 1937 within the framework of
4237: 4197: 4062: 3631: 3587: 3535: 3480: 3462: 3396: 3337: 3280: 3272: 3198: 3100:"Coherence and superradiance from a plasma-based quasiparticle accelerator" 3012: 2920: 2912: 2848: 2776: 2730: 2582: 2565: 2536: 2077:. Other projects operated in the past applying related techniques, such as 2014: 1737: 1189: 1185: 1035: 383: 235: 140: 3423: 3410:
Sinoff, C. L (1991). "Radical irradiation for carcinoma of the prostate".
3377: 2605: 1930:
or from external beam radiotherapy in oncology. Radioisotopes such as the
1321:. This type of radiation (VCR) is used to generate high-power microwaves. 3979: 3439:"In vivo Cerenkov luminescence imaging: A new tool for molecular imaging" 2751:
Blumenthal, Deborah T.; Corn, Benjamin W.; Shtraus, Natan (August 2015).
1939: 1935: 1902: 1753: 310:
Cherenkov radiation during Scheduled Refueling and Maintenance Outage of
208: 3412:
South African Medical Journal = Suid-Afrikaanse Tydskrif vir Geneeskunde
1985:
Cherenkov radiation is used to detect high-energy charged particles. In
295:. Cherenkov radiation results when a charged particle, most commonly an 287:
can accelerate to a velocity higher than this (although still less than
19: 4027: 3974: 3437:
Mitchell, G. S; Gill, R. K; Boucher, D. L; Li, C; Cherry, S. R (2011).
2285: 2082: 2018: 1955: 1951: 1749: 508: 497: 493: 300: 183: 164: 124: 96: 3319: 2414:(1934). "Visible emission of clean liquids by action of γ radiation". 2118:
for particle identification. One could measure (or put limits on) the
4314: 4187: 4022: 3969: 3959: 3920: 1850: 428: 179: 160: 112: 1970: 326:
these waves will form spherical wavefronts which propagate with the
3964: 3949: 3548: 3116: 2987: 2800:
Luo, C.; Ibanescu, M.; Johnson, S. G.; Joannopoulos, J. D. (2003).
2511:
Radioactivity: Introduction and History, From the Quantum to Quarks
2123: 2119: 2062: 2046: 2026: 1913: 500: 296: 193: 92: 3690: 4242: 3737: 3494:
Das, S.; Thorek, D. L. J.; Grimm, J. (2014). "Cerenkov Imaging".
2305: 2126:
of the particle is measured independently, one could compute the
2074: 2042: 190: 1958:
have been imaged in humans for diagnostic value demonstration.
330:
of that medium (i.e. the speed of light in that medium given by
291:, the speed of light in vacuum) during nuclear reactions and in 3693:"On Cherenkov light production by irradiated nuclear fuel rods" 3153: 2610:(1st ed.). New Delhi: New Age International. p. 189. 2093: 2078: 1909:
Medical imaging of radioisotopes and external beam radiotherapy
1873:
direction and speed of a Cherenkov radiation-producing charge.
1233: 284: 257: 212: 2799: 4067: 3954: 3674:
International Journal of Radiation Oncology, Biology, Physics
3612:
International Journal of Radiation Oncology, Biology, Physics
3161:
International Journal of Radiation Oncology, Biology, Physics
2701:
International Journal of Radiation Oncology, Biology, Physics
1975: 1842: 974:{\displaystyle x_{\text{em}}=v_{\text{em}}t={\frac {c}{n}}t.} 504: 273: 43: 16:
Electromagnetic radiation from a charged particle in a medium
3068: 1354:
are different from the electrons in the structure at a time
557: 3753:
Landau, L. D.; Liftshitz, E. M.; Pitaevskii, L. P. (1984).
3443:
Philosophical Transactions of the Royal Society of London A
2244: 2127: 2061:
and other projects. Similar methods are used in very large
2038: 2034: 1559:
emitted from Cherenkov radiation, per unit length traveled
58: 55: 46: 3738:
The High Momentum Particle Identification Detector at CERN
2694: 64: 3752: 3608: 2010: 1918: 1868:
As in sonic booms and bow shocks, the angle of the shock
3097: 2259:, similar radiation produced by fast uncharged particles 689:
of the medium. If the medium is water, the condition is
2972: 2888: 543:
University of Massachusetts Lowell Radiation Laboratory
3496:
Emerging Applications of Molecular Imaging to Oncology
1954:
have measurable Cherenkov emission and isotopes F and
1759:
There is a cut-off frequency above which the equation
1539:
The Frank–Tamm formula describes the amount of energy
3436: 2750: 2231:
The most advanced type of a detector is the RICH, or
2209: 2185: 2144: 2114:
Cherenkov radiation is commonly used in experimental
1896: 1817: 1765: 1715: 1695: 1671: 1638: 1605: 1585: 1565: 1545: 1389: 1379:
of Cherenkov radiation by a particle is given by the
1298: 1271: 1242: 1218: 1078: 1044: 989: 925: 912:{\displaystyle x_{\text{p}}=v_{\text{p}}t=\beta \,ct} 869: 813: 766: 737: 695: 671: 647: 598: 571: 526:
minimum particle velocity, a phenomenon known as the
437: 392: 364: 336: 67: 61: 2944:"Topsy turvy: The first true "left handed" material" 1665:
of the material the charged particle moves through.
634:{\displaystyle {\frac {c}{n}}<v_{\text{p}}<c,} 52: 2426:Reprinted in Selected Papers of Soviet Physicists, 2390:(3rd ed.). New York: Wiley. pp. 637–638. 49: 3919: 3754: 2215: 2191: 2171: 2130:of the particle by its momentum and velocity (see 1823: 1800: 1721: 1701: 1677: 1653: 1620: 1591: 1571: 1551: 1529: 1313: 1277: 1257: 1224: 1151: 1064: 1019: 973: 911: 842: 795: 749: 723: 677: 653: 633: 584: 464: 419: 370: 350: 230:discovered Cherenkov light being generated in the 2753:"Flashes of light-radiation therapy to the brain" 1020:{\displaystyle \cos \theta ={\frac {1}{n\beta }}} 796:{\displaystyle \beta ={\frac {v_{\text{p}}}{c}}.} 199:in papers published between 1888 and 1889 and by 4371: 2537:"Oliver Heaviside: an accidental time traveller" 2507: 215:irradiating water having a continuous spectrum. 3350: 3256: 2099: 1921:beam from a linear accelerator in radiotherapy. 530:. In a more complex periodic medium, such as a 23:Cherenkov radiation glowing in the core of the 3493: 3293: 3905: 843:{\displaystyle v_{\text{em}}={\frac {c}{n}}.} 3846:Nuclear Reactor starting up (alternate link) 3794: 2282:, giving the spectrum of Cherenkov radiation 1993:(high-energy electrons) are released as the 3365:International Journal of Biomedical Imaging 3211: 2941: 2004: 1337:are created and may travel faster than the 1179: 1029: 3912: 3898: 2942:Schewe, P. F.; Stein, B. (24 March 2004). 2690: 2688: 2239:), one of the six experiments at the LHC ( 1880:, giving the impression of flashes, as in 807:(denoted by blue arrows) travel at speed 724:{\displaystyle 0.75c<v_{\text{p}}<c} 514:The velocity that must be exceeded is the 3577: 3525: 3470: 3386: 3376: 3327: 3188: 3115: 2986: 2869: 2830: 2802:"Cerenkov Radiation in Photonic Crystals" 2720: 2564: 2410: 1414: 1333:setups, structures up to nanocoulombs of 902: 123:. Its cause is similar to the cause of a 2795: 2793: 2603: 1969: 1912: 1801:{\displaystyle \cos \theta =1/(n\beta )} 556: 536: 483: 305: 186:, who also shared the 1958 Nobel Prize. 155:in 1934. Therefore, it is also known as 18: 3855: 3783:Cerenkov Radiation and Its Applications 2685: 2638: 2385: 2358:"Cerenkov – Search | ScienceDirect.com" 2035:Imaging Atmospheric Cherenkov Technique 1324: 4372: 4253:Wireless electronic devices and health 3779: 3667: 3644: 3409: 3353:"Cerenkov Luminescence Tomography for 2659: 3893: 2790: 2534: 2480: 4279:List of civilian radiation accidents 4248:Wireless device radiation and health 4243:Biological dose units and quantities 4193:Electromagnetic radiation and health 3858:"Cherenkov's Particles as Magnetons" 3033: 2134:), and hence identify the particle. 863:, the particle travels the distance 218:In 2019, a team of researchers from 143:scientist Pavel Cherenkov, the 1958 3757:Electrodynamics of Continuous Media 1965: 465:{\displaystyle v_{\text{p}}>c/n} 420:{\displaystyle v_{\text{p}}<c/n} 13: 4228:Radioactivity in the life sciences 3508:10.1016/B978-0-12-411638-2.00006-9 3502:. Vol. 124. pp. 213–34. 2071:Sudbury Neutrino Observatory (SNO) 1897:Detection of labelled biomolecules 1884:and possibly some observations of 1709:is the speed of the particle, and 1370: 241: 14: 4411: 3827: 2508:L'Annunziata, Michael F. (2016). 2458:"The Nobel Prize in Physics 1958" 1305: 1249: 983:So the emission angle results in 552: 178:theory by Cherenkov's colleagues 139:The radiation is named after the 3072:Soviet Technical Physics Letters 1808:can no longer be satisfied. The 488:Animation of Cherenkov radiation 39: 3731: 3684: 3668:Jarvis, L. A. (April 1, 2021). 3661: 3638: 3602: 3542: 3487: 3430: 3403: 3344: 3287: 3250: 3205: 3091: 3062: 3036:Optical and Quantum Electronics 3027: 2966: 2935: 2882: 2863: 2744: 2642:The Physics of Nuclear Reactors 2632: 2487:. JHU Press. pp. 125–126. 2368:from the original on 2024-01-22 2237:A Large Ion Collider Experiment 2233:ring-imaging Cherenkov detector 2110:Ring imaging Cherenkov detector 3717:10.1088/1748-0221/12/06/T06001 3236:10.3367/UFNe.0179.200911c.1161 3005:10.1103/PhysRevLett.122.161601 2597: 2528: 2514:. Elsevier. pp. 547–548. 2501: 2474: 2450: 2404: 2379: 2350: 2322: 1795: 1786: 1648: 1642: 1615: 1609: 1515: 1509: 1458: 1452: 1258:{\displaystyle p=\hbar \beta } 103:) at a speed greater than the 1: 4395:Experimental particle physics 3645:Ashraf, M.R. (Dec 14, 2018). 2948:American Institute of Physics 2025:, it may produce an electron– 1621:{\displaystyle \mu (\omega )} 750:{\displaystyle n\approx 1.33} 3624:10.1016/j.ijrobp.2014.01.046 3558:Journal of Biomedical Optics 3300:Journal of Biomedical Optics 3173:10.1016/j.ijrobp.2019.10.031 2769:10.1016/j.radonc.2015.07.034 2713:10.1016/j.ijrobp.2019.10.031 2386:Jackson, John David (1999). 2316: 2100:Particle physics experiments 1199: 585:{\displaystyle v_{\text{p}}} 7: 4116:Cosmic background radiation 3551:"First human Cerenkography" 3500:Advances in Cancer Research 2250: 1882:cosmic ray visual phenomena 541:Cherenkov radiation in the 228:Norris Cotton Cancer Center 207:particles until the 1970s. 157:Vavilov–Cherenkov radiation 10: 4416: 4345: 4203:Lasers and aviation safety 3745: 3697:Journal of Instrumentation 3126:10.1038/s41566-023-01311-z 2417:Doklady Akademii Nauk SSSR 2103: 2041:), by experiments such as 1654:{\displaystyle n(\omega )} 134: 4343: 4307: 4271: 4233:Radioactive contamination 4158: 4086:Electromagnetic radiation 4076: 3988: 3935: 3928: 3856:Radović, Andrija (2002). 3579:10.1117/1.JBO.18.2.020502 3048:10.1007/s11082-015-0261-8 2757:Radiotherapy and Oncology 2645:. Springer. p. 191. 2607:Classical electrodynamics 2443:October 22, 2007, at the 2388:Classical electrodynamics 2335:Dictionary.com Unabridged 2172:{\displaystyle v_{0}=c/n} 1974:Cherenkov radiation in a 1314:{\displaystyle p=\hbar k} 1065:{\displaystyle d\phi /dx} 757:for water at 20 °C. 518:of light rather than the 479:constructive interference 246: 85:electromagnetic radiation 29:Idaho National Laboratory 4346:See also the categories 4284:1996 Costa Rica accident 3945:Acoustic radiation force 3871:(4): 1–5. Archived from 3835:Nuclear Reactor start up 3699:(Submitted manuscript). 2059:Pierre Auger Observatory 2005:Astrophysics experiments 1180:Reverse Cherenkov effect 1030:Arbitrary emission angle 663:speed of light in vacuum 492:A common analogy is the 4258:Radiation heat-transfer 4111:Gravitational radiation 3819:10.1103/PhysRev.92.1069 2975:Physical Review Letters 2841:10.1126/science.1079549 2639:Marguet, Serge (2017). 2535:Nahin, Paul J. (2018). 2296:Non-radiation condition 2065:detectors, such as the 1891: 1856:Kramers–Kronig relation 1592:{\displaystyle \omega } 234:of patients undergoing 4299:1990 Zaragoza accident 4294:1984 Moroccan accident 4263:Linear energy transfer 3937:Non-ionizing radiation 3780:Jelley, J. V. (1958). 3463:10.1098/rsta.2011.0271 3306:(6): 060505–060505–3. 3273:10.1002/smll.200902408 2913:10.1038/nnano.2015.137 2566:10.1098/rsta.2017.0448 2217: 2193: 2173: 1982: 1922: 1825: 1802: 1723: 1703: 1679: 1655: 1622: 1593: 1573: 1553: 1531: 1315: 1279: 1278:{\displaystyle \beta } 1259: 1226: 1153: 1066: 1021: 975: 913: 844: 797: 751: 725: 679: 655: 635: 586: 562: 545: 489: 466: 421: 372: 352: 315: 31: 4289:1987 Goiânia accident 4091:Synchrotron radiation 4081:Earth's energy budget 4063:Radioactive materials 4058:Particle accelerators 3865:Journal of Theoretics 2892:Nature Nanotechnology 2872:Dokl. Akad. Nauk SSSR 2604:Sengupta, P. (2000). 2481:Nahin, P. J. (1988). 2436:, 1999, s. 149–153. ( 2291:List of light sources 2241:Large Hadron Collider 2218: 2194: 2174: 1973: 1916: 1886:criticality accidents 1826: 1803: 1724: 1704: 1680: 1656: 1623: 1594: 1574: 1554: 1532: 1316: 1280: 1260: 1227: 1154: 1067: 1022: 976: 914: 845: 798: 752: 726: 680: 656: 636: 587: 560: 540: 487: 467: 422: 373: 353: 309: 293:particle accelerators 25:Advanced Test Reactor 22: 4360:Radiation protection 4213:Radiation protection 4101:Black-body radiation 4008:Background radiation 3923:(physics and health) 2311:Transition radiation 2207: 2183: 2142: 2009:When a high-energy ( 1928:radiopharmaceuticals 1862:Anomalous dispersion 1815: 1763: 1713: 1693: 1669: 1636: 1603: 1583: 1563: 1543: 1387: 1325:Collective Cherenkov 1296: 1269: 1240: 1216: 1076: 1042: 987: 923: 867: 811: 764: 735: 693: 669: 645: 596: 569: 528:Smith–Purcell effect 435: 390: 362: 334: 312:Arkansas Nuclear One 299:, travels through a 4330:Radiation hardening 4272:Radiation incidents 4208:Medical radiography 4167:Radiation syndrome 4121:Cherenkov radiation 3811:1953PhRv...92.1069S 3709:2017JInst..12.6001B 3570:2013JBO....18b0502S 3455:2011RSPTA.369.4605M 3378:10.1155/2011/641618 3359:Radiopharmaceutical 3312:2010JBO....15f0505L 3228:2009PhyU...52.1099B 3085:1983PZhTF...9.1385B 2997:2019PhRvL.122p1601M 2905:2015NatNa..10..804G 2823:2003Sci...299..368L 2557:2018RSPTA.37670448N 2021:interacts with the 1841:is close to 1). At 1663:index of refraction 1331:plasma acceleration 1291:de Broglie relation 1206:traveling-wave tube 351:{\displaystyle c/n} 224:Dartmouth-Hitchcock 95:) passes through a 35:Cherenkov radiation 4390:Special relativity 4380:Physical phenomena 4325:Radioactive source 4146:Radiation exposure 4126:Askaryan radiation 4106:Particle radiation 3990:Ionizing radiation 2280:Frank–Tamm formula 2257:Askaryan radiation 2213: 2189: 2169: 2106:Cherenkov detector 2090:supernova remnants 2023:Earth's atmosphere 1987:open pool reactors 1983: 1923: 1821: 1798: 1719: 1699: 1675: 1651: 1618: 1589: 1579:and per frequency 1569: 1549: 1527: 1381:Frank–Tamm formula 1377:frequency spectrum 1311: 1289:) rather than the 1275: 1255: 1222: 1149: 1062: 1017: 971: 909: 840: 793: 747: 721: 675: 651: 631: 582: 563: 546: 490: 462: 417: 368: 348: 324:Huygens' principle 316: 263:universal constant 176:special relativity 81:Cerenkov radiation 32: 4367: 4366: 4348:Radiation effects 4218:Radiation therapy 4154: 4153: 4096:Thermal radiation 4033:Neutron radiation 3998:Radioactive decay 3772:978-0-08-030275-1 3449:(1955): 4605–19. 3320:10.1117/1.3514659 3222:(11): 1099–1110. 2652:978-3-319-59559-7 2617:978-81-224-1249-9 2549:The Royal Society 2521:978-0-444-63489-4 2494:978-0-8018-6909-9 2301:Radioluminescence 2274:Faster-than-light 2216:{\displaystyle n} 2192:{\displaystyle c} 1824:{\displaystyle n} 1722:{\displaystyle c} 1702:{\displaystyle v} 1689:of the particle, 1678:{\displaystyle q} 1572:{\displaystyle x} 1552:{\displaystyle E} 1519: 1447: 1422: 1225:{\displaystyle c} 1163:similar triangles 1147: 1124: 1104: 1015: 963: 946: 933: 890: 877: 835: 821: 788: 782: 712: 678:{\displaystyle n} 654:{\displaystyle c} 619: 607: 579: 445: 400: 371:{\displaystyle n} 270:= 299,792,458 m/s 201:Arnold Sommerfeld 153:Lebedev Institute 75:) (also known as 4407: 4385:Particle physics 4308:Related articles 4223:Radiation damage 4048:Nuclear reactors 3933: 3932: 3914: 3907: 3900: 3891: 3890: 3886: 3884: 3883: 3877: 3862: 3847: 3836: 3822: 3791: 3776: 3760: 3740: 3735: 3729: 3728: 3688: 3682: 3681: 3665: 3659: 3658: 3642: 3636: 3635: 3606: 3600: 3599: 3581: 3555: 3546: 3540: 3539: 3529: 3491: 3485: 3484: 3474: 3434: 3428: 3427: 3407: 3401: 3400: 3390: 3380: 3348: 3342: 3341: 3331: 3291: 3285: 3284: 3254: 3248: 3247: 3209: 3203: 3202: 3192: 3151: 3145: 3144: 3142: 3140: 3119: 3104:Nature Photonics 3095: 3089: 3088: 3066: 3060: 3059: 3031: 3025: 3024: 2990: 2970: 2964: 2963: 2961: 2959: 2950:. Archived from 2939: 2933: 2932: 2886: 2880: 2879: 2867: 2861: 2860: 2834: 2817:(5605): 368–71. 2806: 2797: 2788: 2787: 2785: 2783: 2748: 2742: 2741: 2739: 2737: 2724: 2692: 2683: 2682: 2680: 2678: 2663: 2657: 2656: 2636: 2630: 2629: 2601: 2595: 2594: 2568: 2532: 2526: 2525: 2505: 2499: 2498: 2478: 2472: 2471: 2469: 2468: 2454: 2448: 2425: 2412:Cherenkov, P. A. 2408: 2402: 2401: 2383: 2377: 2376: 2374: 2373: 2354: 2348: 2347: 2345: 2343: 2326: 2225:refractive index 2222: 2220: 2219: 2214: 2198: 2196: 2195: 2190: 2178: 2176: 2175: 2170: 2165: 2154: 2153: 2116:particle physics 2067:Super-Kamiokande 1995:fission products 1966:Nuclear reactors 1830: 1828: 1827: 1822: 1810:refractive index 1807: 1805: 1804: 1799: 1785: 1728: 1726: 1725: 1720: 1708: 1706: 1705: 1700: 1684: 1682: 1681: 1676: 1660: 1658: 1657: 1652: 1627: 1625: 1624: 1619: 1598: 1596: 1595: 1590: 1578: 1576: 1575: 1570: 1558: 1556: 1555: 1550: 1536: 1534: 1533: 1528: 1526: 1525: 1521: 1520: 1518: 1508: 1507: 1498: 1497: 1487: 1486: 1477: 1448: 1446: 1438: 1437: 1428: 1423: 1421: 1406: 1402: 1401: 1391: 1366: 1353: 1320: 1318: 1317: 1312: 1284: 1282: 1281: 1276: 1264: 1262: 1261: 1256: 1231: 1229: 1228: 1223: 1171: 1158: 1156: 1155: 1150: 1148: 1146: 1138: 1130: 1125: 1123: 1122: 1110: 1105: 1103: 1092: 1071: 1069: 1068: 1063: 1055: 1026: 1024: 1023: 1018: 1016: 1014: 1003: 980: 978: 977: 972: 964: 956: 948: 947: 944: 935: 934: 931: 918: 916: 915: 910: 892: 891: 888: 879: 878: 875: 858: 849: 847: 846: 841: 836: 828: 823: 822: 819: 802: 800: 799: 794: 789: 784: 783: 780: 774: 756: 754: 753: 748: 730: 728: 727: 722: 714: 713: 710: 687:refractive index 684: 682: 681: 676: 660: 658: 657: 652: 640: 638: 637: 632: 621: 620: 617: 608: 600: 591: 589: 588: 583: 581: 580: 577: 532:photonic crystal 471: 469: 468: 463: 458: 447: 446: 443: 426: 424: 423: 418: 413: 402: 401: 398: 380:refractive index 377: 375: 374: 369: 357: 355: 354: 349: 344: 279: 271: 197:Oliver Heaviside 115:in a medium) of 99:medium (such as 89:charged particle 74: 73: 70: 69: 66: 63: 60: 57: 54: 51: 48: 45: 4415: 4414: 4410: 4409: 4408: 4406: 4405: 4404: 4370: 4369: 4368: 4363: 4362: 4339: 4335:Havana syndrome 4320:Nuclear physics 4303: 4267: 4160: 4150: 4136:Unruh radiation 4072: 4053:Nuclear weapons 4038:Nuclear fission 3984: 3924: 3918: 3881: 3879: 3875: 3860: 3845: 3834: 3830: 3825: 3798:Physical Review 3773: 3748: 3743: 3736: 3732: 3689: 3685: 3680:(5): 1627–1637. 3666: 3662: 3657:(2): 1044–1048. 3651:Medical Physics 3643: 3639: 3607: 3603: 3553: 3547: 3543: 3518: 3492: 3488: 3435: 3431: 3408: 3404: 3349: 3345: 3292: 3288: 3267:(10): 1087–91. 3255: 3251: 3215:Physics-Uspekhi 3210: 3206: 3152: 3148: 3138: 3136: 3096: 3092: 3067: 3063: 3032: 3028: 2971: 2967: 2957: 2955: 2940: 2936: 2887: 2883: 2868: 2864: 2832:10.1.1.540.8969 2804: 2798: 2791: 2781: 2779: 2749: 2745: 2735: 2733: 2693: 2686: 2676: 2674: 2665: 2664: 2660: 2653: 2637: 2633: 2618: 2602: 2598: 2533: 2529: 2522: 2506: 2502: 2495: 2479: 2475: 2466: 2464: 2456: 2455: 2451: 2445:Wayback Machine 2409: 2405: 2398: 2384: 2380: 2371: 2369: 2356: 2355: 2351: 2341: 2339: 2328: 2327: 2323: 2319: 2253: 2208: 2205: 2204: 2184: 2181: 2180: 2161: 2149: 2145: 2143: 2140: 2139: 2112: 2102: 2007: 1968: 1911: 1899: 1894: 1878:vitreous humour 1816: 1813: 1812: 1781: 1764: 1761: 1760: 1714: 1711: 1710: 1694: 1691: 1690: 1687:electric charge 1670: 1667: 1666: 1637: 1634: 1633: 1604: 1601: 1600: 1584: 1581: 1580: 1564: 1561: 1560: 1544: 1541: 1540: 1503: 1499: 1493: 1489: 1488: 1482: 1478: 1476: 1469: 1465: 1464: 1439: 1433: 1429: 1427: 1407: 1397: 1393: 1392: 1390: 1388: 1385: 1384: 1373: 1371:Characteristics 1365: 1355: 1352: 1342: 1327: 1297: 1294: 1293: 1270: 1267: 1266: 1241: 1238: 1237: 1217: 1214: 1213: 1202: 1182: 1172:and final time 1166: 1139: 1131: 1129: 1118: 1114: 1109: 1096: 1091: 1077: 1074: 1073: 1051: 1043: 1040: 1039: 1032: 1007: 1002: 988: 985: 984: 955: 943: 939: 930: 926: 924: 921: 920: 887: 883: 874: 870: 868: 865: 864: 853: 827: 818: 814: 812: 809: 808: 779: 775: 773: 765: 762: 761: 736: 733: 732: 709: 705: 694: 691: 690: 670: 667: 666: 646: 643: 642: 616: 612: 599: 597: 594: 593: 576: 572: 570: 567: 566: 555: 454: 442: 438: 436: 433: 432: 409: 397: 393: 391: 388: 387: 363: 360: 359: 340: 335: 332: 331: 277: 276:it is only 0.75 266: 249: 244: 242:Physical origin 137: 129:Pavel Cherenkov 121:nuclear reactor 101:distilled water 87:emitted when a 42: 38: 17: 12: 11: 5: 4413: 4403: 4402: 4397: 4392: 4387: 4382: 4365: 4364: 4344: 4341: 4340: 4338: 4337: 4332: 4327: 4322: 4317: 4311: 4309: 4305: 4304: 4302: 4301: 4296: 4291: 4286: 4281: 4275: 4273: 4269: 4268: 4266: 4265: 4260: 4255: 4250: 4245: 4240: 4235: 4230: 4225: 4220: 4215: 4210: 4205: 4200: 4195: 4190: 4185: 4183:Health physics 4180: 4179: 4178: 4173: 4164: 4162: 4156: 4155: 4152: 4151: 4149: 4148: 4143: 4141:Dark radiation 4138: 4133: 4131:Bremsstrahlung 4128: 4123: 4118: 4113: 4108: 4103: 4098: 4093: 4088: 4083: 4077: 4074: 4073: 4071: 4070: 4065: 4060: 4055: 4050: 4045: 4043:Nuclear fusion 4040: 4035: 4030: 4025: 4020: 4015: 4013:Alpha particle 4010: 4005: 4000: 3994: 3992: 3986: 3985: 3983: 3982: 3977: 3972: 3967: 3962: 3957: 3952: 3947: 3941: 3939: 3930: 3926: 3925: 3917: 3916: 3909: 3902: 3894: 3888: 3887: 3853: 3842: 3829: 3828:External links 3826: 3824: 3823: 3792: 3788:Pergamon Press 3777: 3771: 3763:Pergamon Press 3749: 3747: 3744: 3742: 3741: 3730: 3683: 3660: 3637: 3618:(3): 615–622. 3601: 3541: 3516: 3486: 3429: 3402: 3343: 3286: 3249: 3204: 3167:(2): 422–429. 3146: 3090: 3061: 3026: 2981:(16): 161601. 2965: 2934: 2899:(9): 804–809. 2881: 2862: 2789: 2763:(2): 331–333. 2743: 2707:(2): 422–429. 2684: 2658: 2651: 2631: 2616: 2596: 2527: 2520: 2500: 2493: 2473: 2462:NobelPrize.org 2449: 2429:Usp. Fiz. Nauk 2403: 2396: 2378: 2362:Science Direct 2349: 2320: 2318: 2315: 2314: 2313: 2308: 2303: 2298: 2293: 2288: 2283: 2277: 2271: 2268:Bremsstrahlung 2265: 2260: 2252: 2249: 2212: 2201:speed of light 2188: 2168: 2164: 2160: 2157: 2152: 2148: 2101: 2098: 2006: 2003: 1991:beta particles 1967: 1964: 1910: 1907: 1898: 1895: 1893: 1890: 1820: 1797: 1794: 1791: 1788: 1784: 1780: 1777: 1774: 1771: 1768: 1731:speed of light 1718: 1698: 1674: 1650: 1647: 1644: 1641: 1617: 1614: 1611: 1608: 1588: 1568: 1548: 1524: 1517: 1514: 1511: 1506: 1502: 1496: 1492: 1485: 1481: 1475: 1472: 1468: 1463: 1460: 1457: 1454: 1451: 1445: 1442: 1436: 1432: 1426: 1420: 1417: 1413: 1410: 1405: 1400: 1396: 1372: 1369: 1363: 1350: 1339:speed of light 1326: 1323: 1310: 1307: 1304: 1301: 1287:phase constant 1274: 1254: 1251: 1248: 1245: 1221: 1210:phase velocity 1201: 1198: 1181: 1178: 1145: 1142: 1137: 1134: 1128: 1121: 1117: 1113: 1108: 1102: 1099: 1095: 1090: 1087: 1084: 1081: 1061: 1058: 1054: 1050: 1047: 1031: 1028: 1013: 1010: 1006: 1001: 998: 995: 992: 970: 967: 962: 959: 954: 951: 942: 938: 929: 908: 905: 901: 898: 895: 886: 882: 873: 839: 834: 831: 826: 817: 792: 787: 778: 772: 769: 746: 743: 740: 720: 717: 708: 704: 701: 698: 674: 650: 630: 627: 624: 615: 611: 606: 603: 575: 554: 553:Emission angle 551: 520:group velocity 516:phase velocity 461: 457: 453: 450: 441: 416: 412: 408: 405: 396: 367: 347: 343: 339: 328:phase velocity 322:waves and via 314:Unit 2 (ANO-2) 253:speed of light 248: 245: 243: 240: 232:vitreous humor 149:Sergey Vavilov 136: 133: 105:phase velocity 15: 9: 6: 4: 3: 2: 4412: 4401: 4400:Light sources 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4377: 4375: 4361: 4357: 4353: 4352:Radioactivity 4349: 4342: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4312: 4310: 4306: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4276: 4274: 4270: 4264: 4261: 4259: 4256: 4254: 4251: 4249: 4246: 4244: 4241: 4239: 4236: 4234: 4231: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4209: 4206: 4204: 4201: 4199: 4196: 4194: 4191: 4189: 4186: 4184: 4181: 4177: 4174: 4172: 4169: 4168: 4166: 4165: 4163: 4157: 4147: 4144: 4142: 4139: 4137: 4134: 4132: 4129: 4127: 4124: 4122: 4119: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4082: 4079: 4078: 4075: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4018:Beta particle 4016: 4014: 4011: 4009: 4006: 4004: 4003:Cluster decay 4001: 3999: 3996: 3995: 3993: 3991: 3987: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3942: 3940: 3938: 3934: 3931: 3929:Main articles 3927: 3922: 3915: 3910: 3908: 3903: 3901: 3896: 3895: 3892: 3878:on 2016-03-04 3874: 3870: 3866: 3859: 3854: 3852: 3848: 3843: 3841: 3837: 3832: 3831: 3820: 3816: 3812: 3808: 3804: 3800: 3799: 3793: 3789: 3785: 3784: 3778: 3774: 3768: 3764: 3759: 3758: 3751: 3750: 3739: 3734: 3726: 3722: 3718: 3714: 3710: 3706: 3703:(6): T06001. 3702: 3698: 3694: 3687: 3679: 3675: 3671: 3664: 3656: 3652: 3648: 3641: 3633: 3629: 3625: 3621: 3617: 3613: 3605: 3597: 3593: 3589: 3585: 3580: 3575: 3571: 3567: 3564:(2): 020502. 3563: 3559: 3552: 3545: 3537: 3533: 3528: 3523: 3519: 3517:9780124116382 3513: 3509: 3505: 3501: 3497: 3490: 3482: 3478: 3473: 3468: 3464: 3460: 3456: 3452: 3448: 3444: 3440: 3433: 3425: 3421: 3417: 3413: 3406: 3398: 3394: 3389: 3384: 3379: 3374: 3370: 3366: 3362: 3360: 3356: 3347: 3339: 3335: 3330: 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3290: 3282: 3278: 3274: 3270: 3266: 3262: 3261: 3253: 3245: 3241: 3237: 3233: 3229: 3225: 3221: 3217: 3216: 3208: 3200: 3196: 3191: 3186: 3182: 3178: 3174: 3170: 3166: 3162: 3158: 3150: 3135: 3131: 3127: 3123: 3118: 3113: 3109: 3105: 3101: 3094: 3086: 3082: 3079:: 1385–1389. 3078: 3074: 3073: 3065: 3057: 3053: 3049: 3045: 3041: 3037: 3030: 3022: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2989: 2984: 2980: 2976: 2969: 2954:on 2009-01-31 2953: 2949: 2945: 2938: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2893: 2885: 2877: 2873: 2866: 2858: 2854: 2850: 2846: 2842: 2838: 2833: 2828: 2824: 2820: 2816: 2812: 2811: 2803: 2796: 2794: 2778: 2774: 2770: 2766: 2762: 2758: 2754: 2747: 2732: 2728: 2723: 2718: 2714: 2710: 2706: 2702: 2698: 2691: 2689: 2672: 2668: 2662: 2654: 2648: 2644: 2643: 2635: 2627: 2623: 2619: 2613: 2609: 2608: 2600: 2592: 2588: 2584: 2580: 2576: 2572: 2567: 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2531: 2523: 2517: 2513: 2512: 2504: 2496: 2490: 2486: 2485: 2477: 2463: 2459: 2453: 2446: 2442: 2439: 2435: 2431: 2430: 2423: 2419: 2418: 2413: 2407: 2399: 2397:0-471-30932-X 2393: 2389: 2382: 2367: 2363: 2359: 2353: 2338:(Online). n.d 2337: 2336: 2331: 2325: 2321: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2281: 2278: 2275: 2272: 2269: 2266: 2264: 2261: 2258: 2255: 2254: 2248: 2246: 2242: 2238: 2234: 2229: 2226: 2210: 2202: 2186: 2166: 2162: 2158: 2155: 2150: 2146: 2135: 2133: 2132:four-momentum 2129: 2125: 2121: 2117: 2111: 2107: 2097: 2095: 2091: 2086: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2031: 2028: 2024: 2020: 2016: 2012: 2002: 2000: 1999:radioactivity 1996: 1992: 1988: 1980: 1977: 1972: 1963: 1959: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1920: 1915: 1906: 1904: 1889: 1887: 1883: 1879: 1874: 1871: 1866: 1864: 1863: 1858: 1857: 1852: 1848: 1844: 1840: 1839: 1834: 1818: 1811: 1792: 1789: 1782: 1778: 1775: 1772: 1769: 1766: 1757: 1755: 1751: 1746: 1743: 1739: 1734: 1732: 1716: 1696: 1688: 1672: 1664: 1645: 1639: 1631: 1612: 1606: 1586: 1566: 1546: 1537: 1522: 1512: 1504: 1500: 1494: 1490: 1483: 1479: 1473: 1470: 1466: 1461: 1455: 1449: 1443: 1440: 1434: 1430: 1424: 1418: 1415: 1411: 1408: 1403: 1398: 1394: 1382: 1378: 1368: 1362: 1358: 1349: 1345: 1340: 1336: 1332: 1322: 1308: 1302: 1299: 1292: 1288: 1272: 1252: 1246: 1243: 1235: 1219: 1211: 1207: 1197: 1195: 1192:and negative 1191: 1187: 1186:metamaterials 1177: 1175: 1169: 1164: 1159: 1143: 1140: 1135: 1132: 1126: 1119: 1115: 1111: 1106: 1100: 1097: 1093: 1088: 1085: 1082: 1079: 1059: 1056: 1052: 1048: 1045: 1037: 1036:metamaterials 1027: 1011: 1008: 1004: 999: 996: 993: 990: 981: 968: 965: 960: 957: 952: 949: 940: 936: 927: 906: 903: 899: 896: 893: 884: 880: 871: 862: 856: 850: 837: 832: 829: 824: 815: 806: 790: 785: 776: 770: 767: 758: 744: 741: 738: 718: 715: 706: 702: 699: 696: 688: 672: 664: 648: 628: 625: 622: 613: 609: 604: 601: 573: 559: 550: 544: 539: 535: 533: 529: 525: 521: 517: 512: 510: 506: 502: 499: 495: 486: 482: 480: 475: 459: 455: 451: 448: 439: 430: 414: 410: 406: 403: 394: 385: 381: 365: 345: 341: 337: 329: 325: 321: 313: 308: 304: 302: 298: 294: 290: 286: 282: 275: 269: 264: 260: 259: 254: 239: 237: 233: 229: 225: 221: 216: 214: 210: 206: 202: 198: 195: 192: 187: 185: 181: 177: 173: 168: 166: 162: 158: 154: 150: 146: 142: 132: 130: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 72: 36: 30: 26: 21: 4356:Radiobiology 4238:Radiobiology 4198:Laser safety 4120: 3880:. Retrieved 3873:the original 3868: 3864: 3802: 3796: 3782: 3761:. New York: 3756: 3733: 3700: 3696: 3686: 3677: 3673: 3663: 3654: 3650: 3640: 3615: 3611: 3604: 3561: 3557: 3544: 3495: 3489: 3446: 3442: 3432: 3415: 3411: 3405: 3368: 3364: 3358: 3354: 3346: 3303: 3299: 3289: 3264: 3258: 3252: 3219: 3213: 3207: 3164: 3160: 3149: 3137:. Retrieved 3107: 3103: 3093: 3076: 3070: 3064: 3039: 3035: 3029: 2978: 2974: 2968: 2956:. Retrieved 2952:the original 2937: 2896: 2890: 2884: 2875: 2871: 2865: 2814: 2808: 2780:. Retrieved 2760: 2756: 2746: 2734:. Retrieved 2704: 2700: 2675:. Retrieved 2671:EurekaAlert! 2670: 2661: 2641: 2634: 2606: 2599: 2551:: 20170448. 2544: 2540: 2530: 2510: 2503: 2483: 2476: 2465:. Retrieved 2461: 2452: 2427: 2421: 2415: 2406: 2387: 2381: 2370:. Retrieved 2361: 2352: 2340:. Retrieved 2333: 2324: 2230: 2136: 2113: 2087: 2015:gamma photon 2008: 1984: 1979:reactor pool 1960: 1924: 1903:biomolecules 1900: 1875: 1867: 1860: 1854: 1846: 1836: 1832: 1758: 1738:fluorescence 1735: 1630:permeability 1538: 1374: 1360: 1356: 1347: 1343: 1328: 1203: 1194:permeability 1190:permittivity 1183: 1173: 1167: 1160: 1033: 982: 860: 854: 851: 803:The emitted 759: 564: 547: 523: 513: 491: 474:polarization 384:ground state 317: 288: 280: 267: 255: 250: 236:radiotherapy 217: 205:superluminal 188: 169: 156: 138: 91:(such as an 80: 76: 34: 33: 3980:Ultraviolet 3975:Radio waves 3805:(4): 1069. 2330:"Cherenkov" 1754:ultraviolet 1750:wavelengths 1733:in vacuum. 1208:(TWT), the 805:light waves 592:such that 509:shock front 220:Dartmouth's 209:Marie Curie 145:Nobel Prize 109:propagation 4374:Categories 4161:and health 4159:Radiation 4028:Cosmic ray 3882:2015-09-30 3786:. London: 3418:(8): 514. 3139:28 October 3117:2301.11082 2988:1810.05027 2958:1 December 2467:2021-05-06 2372:2024-01-22 2286:Light echo 2263:Blue noise 2104:See also: 2083:New Mexico 2019:cosmic ray 1851:gamma rays 1236:should be 498:supersonic 494:sonic boom 429:wavefronts 301:dielectric 251:While the 184:Ilya Frank 165:anisotropy 161:gamma rays 125:sonic boom 107:(speed of 97:dielectric 4315:Half-life 4188:Dosimetry 4023:Gamma ray 3970:Microwave 3960:Starlight 3921:Radiation 3725:125858461 3244:122316009 3181:0360-3016 3134:256274794 3110:: 39–45. 3056:124732329 2827:CiteSeerX 2782:1 October 2736:1 October 2677:1 October 2626:233979329 2575:1471-2962 2317:Citations 1946:emitters 1934:emitters 1793:β 1773:θ 1770:⁡ 1646:ω 1613:ω 1607:μ 1587:ω 1513:ω 1474:− 1462:ω 1456:ω 1450:μ 1444:π 1419:ω 1306:ℏ 1273:β 1253:β 1250:ℏ 1200:In vacuum 1136:ϕ 1127:⋅ 1101:β 1086:θ 1083:⁡ 1049:ϕ 1012:β 997:θ 994:⁡ 900:β 768:β 742:≈ 180:Igor Tamm 113:wavefront 3965:Sunlight 3950:Infrared 3632:24685442 3588:23334715 3536:25287690 3481:22006909 3397:21747821 3361:Imaging" 3338:21198146 3281:20473988 3199:31669563 3021:84845048 3013:31075012 2929:18907930 2921:26149237 2857:16382089 2849:12532010 2777:26253952 2731:31669563 2591:53111930 2583:30373938 2547:(2134). 2441:Archived 2366:Archived 2251:See also 2179:, where 2124:momentum 2120:velocity 2063:neutrino 2047:H.E.S.S. 2027:positron 1932:positron 1742:emission 731:, since 501:aircraft 297:electron 194:polymath 172:Einstein 93:electron 77:Čerenkov 4176:chronic 3851:YouTube 3840:YouTube 3807:Bibcode 3746:Sources 3705:Bibcode 3596:3503642 3566:Bibcode 3527:4329979 3472:3263789 3451:Bibcode 3424:2020899 3388:3124671 3371:: 1–6. 3329:3003718 3308:Bibcode 3224:Bibcode 3190:7161418 3081:Bibcode 2993:Bibcode 2901:Bibcode 2819:Bibcode 2810:Science 2722:7161418 2553:Bibcode 2306:Tachyon 2223:is the 2199:is the 2094:blazars 2075:IceCube 2043:VERITAS 1745:spectra 1736:Unlike 1729:is the 1685:is the 1661:is the 1628:is the 685:is the 278:‍ 191:English 151:at the 135:History 4358:, and 3769:  3723:  3630:  3594:  3586:  3534:  3524:  3514:  3479:  3469:  3422:  3395:  3385:  3336:  3326:  3279:  3242:  3197:  3187:  3179:  3132:  3054:  3019:  3011:  2927:  2919:  2855:  2847:  2829:  2775:  2729:  2719:  2649:  2624:  2614:  2589:  2581:  2573:  2518:  2491:  2424:: 451. 2394:  2342:26 May 2203:, and 2079:STACEE 2069:, the 2057:, the 1335:charge 1234:photon 665:, and 641:where 503:. The 472:, the 378:, the 358:, for 285:Matter 258:vacuum 247:Basics 213:radium 141:Soviet 4171:acute 4068:X-ray 3955:Light 3876:(PDF) 3861:(PDF) 3721:S2CID 3592:S2CID 3554:(PDF) 3357:Vivo 3260:Small 3240:S2CID 3130:S2CID 3112:arXiv 3052:S2CID 3042:(2). 3017:S2CID 2983:arXiv 2925:S2CID 2878:: 107 2853:S2CID 2805:(PDF) 2587:S2CID 2434:Nauka 2243:) at 2051:MAGIC 1976:TRIGA 1843:X-ray 1359:> 505:sound 496:of a 274:water 261:is a 117:light 111:of a 83:) is 3767:ISBN 3628:PMID 3584:PMID 3532:PMID 3512:ISBN 3477:PMID 3420:PMID 3393:PMID 3369:2011 3334:PMID 3277:PMID 3195:PMID 3177:ISSN 3141:2023 3009:PMID 2960:2008 2917:PMID 2845:PMID 2784:2020 2773:PMID 2738:2020 2727:PMID 2679:2020 2647:ISBN 2622:OCLC 2612:ISBN 2579:PMID 2571:ISSN 2516:ISBN 2489:ISBN 2392:ISBN 2344:2020 2245:CERN 2128:mass 2108:and 2092:and 2073:and 2055:HAWC 2039:IACT 2030:pair 1944:beta 1938:and 1892:Uses 1870:cone 1859:and 1632:and 1375:The 745:1.33 716:< 703:< 697:0.75 623:< 610:< 449:> 404:< 222:and 182:and 3849:on 3838:on 3815:doi 3713:doi 3678:109 3620:doi 3574:doi 3522:PMC 3504:doi 3467:PMC 3459:doi 3447:369 3383:PMC 3373:doi 3324:PMC 3316:doi 3269:doi 3232:doi 3185:PMC 3169:doi 3165:106 3122:doi 3044:doi 3001:doi 2979:122 2909:doi 2837:doi 2815:299 2765:doi 2761:116 2717:PMC 2709:doi 2705:106 2561:doi 2545:376 2438:ref 2017:or 2011:TeV 1950:or 1942:or 1919:MeV 1865:). 1767:cos 1740:or 1285:is 1170:= 0 1080:cos 991:cos 857:= 0 661:is 256:in 226:'s 174:'s 79:or 27:at 4376:: 4354:, 4350:, 3867:. 3863:. 3813:. 3803:92 3801:. 3765:. 3719:. 3711:. 3701:12 3695:. 3676:. 3672:. 3655:46 3653:. 3649:. 3626:. 3616:89 3614:. 3590:. 3582:. 3572:. 3562:18 3560:. 3556:. 3530:. 3520:. 3510:. 3498:. 3475:. 3465:. 3457:. 3445:. 3441:. 3416:79 3414:. 3391:. 3381:. 3367:. 3363:. 3355:In 3332:. 3322:. 3314:. 3304:15 3302:. 3298:. 3275:. 3263:. 3238:. 3230:. 3220:52 3218:. 3193:. 3183:. 3175:. 3163:. 3159:. 3128:. 3120:. 3108:18 3106:. 3102:. 3075:. 3050:. 3040:48 3038:. 3015:. 3007:. 2999:. 2991:. 2977:. 2946:. 2923:. 2915:. 2907:. 2897:10 2895:. 2876:14 2874:, 2851:. 2843:. 2835:. 2825:. 2813:. 2807:. 2792:^ 2771:. 2759:. 2755:. 2725:. 2715:. 2703:. 2699:. 2687:^ 2669:. 2620:. 2585:. 2577:. 2569:. 2559:. 2543:. 2539:. 2460:. 2420:. 2364:. 2360:. 2332:. 2247:. 2096:. 2085:. 2049:, 2045:, 2013:) 1989:, 1888:. 1599:. 1383:: 1367:. 1346:= 945:em 932:em 820:em 524:no 320:EM 283:. 131:. 44:tʃ 3913:e 3906:t 3899:v 3885:. 3869:4 3821:. 3817:: 3809:: 3790:. 3775:. 3727:. 3715:: 3707:: 3634:. 3622:: 3598:. 3576:: 3568:: 3538:. 3506:: 3483:. 3461:: 3453:: 3426:. 3399:. 3375:: 3340:. 3318:: 3310:: 3283:. 3271:: 3265:6 3246:. 3234:: 3226:: 3201:. 3171:: 3143:. 3124:: 3114:: 3087:. 3083:: 3077:9 3058:. 3046:: 3023:. 3003:: 2995:: 2985:: 2962:. 2931:. 2911:: 2903:: 2859:. 2839:: 2821:: 2786:. 2767:: 2740:. 2711:: 2681:. 2655:. 2628:. 2593:. 2563:: 2555:: 2524:. 2497:. 2470:. 2447:) 2422:2 2400:. 2375:. 2346:. 2211:n 2187:c 2167:n 2163:/ 2159:c 2156:= 2151:0 2147:v 2138:( 2037:( 1981:. 1956:I 1952:Y 1948:P 1940:N 1936:F 1847:c 1838:c 1835:/ 1833:v 1819:n 1796:) 1790:n 1787:( 1783:/ 1779:1 1776:= 1717:c 1697:v 1673:q 1649:) 1643:( 1640:n 1616:) 1610:( 1567:x 1547:E 1523:) 1516:) 1510:( 1505:2 1501:n 1495:2 1491:v 1484:2 1480:c 1471:1 1467:( 1459:) 1453:( 1441:4 1435:2 1431:q 1425:= 1416:d 1412:x 1409:d 1404:E 1399:2 1395:d 1364:0 1361:t 1357:t 1351:0 1348:t 1344:t 1309:k 1303:= 1300:p 1265:( 1247:= 1244:p 1220:c 1174:t 1168:t 1144:x 1141:d 1133:d 1120:0 1116:k 1112:n 1107:+ 1098:n 1094:1 1089:= 1060:x 1057:d 1053:/ 1046:d 1009:n 1005:1 1000:= 969:. 966:t 961:n 958:c 953:= 950:t 941:v 937:= 928:x 907:t 904:c 897:= 894:t 889:p 885:v 881:= 876:p 872:x 861:t 855:t 838:. 833:n 830:c 825:= 816:v 791:. 786:c 781:p 777:v 771:= 739:n 719:c 711:p 707:v 700:c 673:n 649:c 629:, 626:c 618:p 614:v 605:n 602:c 578:p 574:v 460:n 456:/ 452:c 444:p 440:v 415:n 411:/ 407:c 399:p 395:v 366:n 346:n 342:/ 338:c 289:c 281:c 268:c 265:( 71:/ 68:f 65:ɒ 62:k 59:ŋ 56:ɛ 53:r 50:ˈ 47:ə 41:/ 37:(

Index


Advanced Test Reactor
Idaho National Laboratory
/əˈrɛŋkɒf/
electromagnetic radiation
charged particle
electron
dielectric
distilled water
phase velocity
propagation
wavefront
light
nuclear reactor
sonic boom
Pavel Cherenkov
Soviet
Nobel Prize
Sergey Vavilov
Lebedev Institute
gamma rays
anisotropy
Einstein
special relativity
Igor Tamm
Ilya Frank
English
polymath
Oliver Heaviside
Arnold Sommerfeld

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.