Knowledge

Nanophotonics

Source 📝

783: 576:
down by a factor of 100,000 or more. After all, radiowaves, microwaves, and visible light are all electromagnetic radiation; they differ only in frequency. So other things equal, a microwave circuit shrunk down by a factor of 100,000 will behave the same way but at 100,000 times higher frequency. This effect is somewhat analogous to a lightning rod, where the field concentrates at the tip. The technological field that makes use of the interaction between light and metals is called
755: 769: 174: 488:
of the solar spectrum, but well into the high-energy visible blue as well. In 2008, Thulin and Guerra published modeling that showed not only bandgap shift, but also band-edge shift, and higher hole mobility for lower charge recombination. The band-gap engineered titanium dioxide is used as a photoanode in efficient photolytic and photo-electro-chemical production of hydrogen fuel from sunlight and water.
592: 509:-based subfield of nanophotonics in which nano-scale structures of the optoelectronic devices realized on silicon substrates and that are capable to control both light and electrons. They allow to couple electronic and optical functionality in one single device. Such devices find a wide variety of applications outside of academic settings, e.g. mid-infrared and 456:). In 1995, Guerra demonstrated this by imaging a silicon grating having 50 nm lines and spaces with illumination having 650 nm wavelength in air. This was accomplished by coupling a transparent phase grating having 50 nm lines and spaces (metamaterial) with an immersion microscope objective (superlens). 575:
may be hundreds of times smaller than the free-space wavelength. For a similar reason, visible light can be confined to the nano-scale via nano-sized metal structures, such as nano-sized structures, tips, gaps, etc. Many nano-optics designs look like common microwave or radiowave circuits, but shrunk
487:
In 2002, Guerra (Nanoptek Corporation) demonstrated that nano-optical structures of semiconductors exhibit bandgap shifts because of induced strain. In the case of titanium dioxide, structures on the order of less than 200 nm half-height width will absorb not only in the normal ultraviolet part
478:
Nanophotonics in the form of subwavelength near-field optical structures, either separate from the recording media, or integrated into the recording media, were used to achieve optical recording densities much higher than the diffraction limit allows. This work began in the 1980s at Polaroid Optical
403:
often work best when the light is absorbed very close to the surface, both because electrons near the surface have a better chance of being collected, and because the device can be made thinner, which reduces cost. Researchers have investigated a variety of nanophotonic techniques to intensify light
412:
Nanophotonics has also been implicated in aiding the controlled and on-demand release of anti-cancer therapeutics like adriamycin from nanoporous optical antennas to target triple-negative breast cancer and mitigate exocytosis anti-cancer drug resistance mechanisms and therefore circumvent toxicity
742:
are artificial materials engineered to have properties that may not be found in nature. They are created by fabricating an array of structures much smaller than a wavelength. The small (nano) size of the structures is important: That way, light interacts with them as if they made up a uniform,
645:
frequencies, are some current areas of nanophotonics development. That said, there are a number of very important differences between nano-optics and scaled-down microwave circuits. For example, at optical frequency, metals behave much less like ideal conductors, and also exhibit interesting
372:
is a nanophotonic approach to increasing the amount of data that a magnetic disk drive can store. It requires a laser to heat a tiny, subwavelength area of the magnetic material before writing data. The magnetic write-head would have metal optical components to concentrate light at the right
465:
Near-field microscopy refers more generally to any technique using the near-field (see below) to achieve nanoscale, subwavelength resolution. In 1987, Guerra (while at the Polaroid Corporation) achieved this with a non-scanning whole-field Photon tunneling microscope. In another example,
462:(NSOM or SNOM) is a quite different nanophotonic technique that accomplishes the same goal of taking images with resolution far smaller than the wavelength. It involves raster-scanning a very sharp tip or very small aperture over the surface to be imaged. 1395:
Saha, Tanmoy; Mondal, Jayanta; Khiste, Sachin; Lusic, Hrvoje; Hu, Zhang-Wei; Jayabalan, Ruparoshni; Hodgetts, Kevin J.; Jang, Haelin; Sengupta, Shiladitya; Lee, Somin Eunice; Park, Younggeun; Lee, Luke P.; Goldman, Aaron (2021-06-24).
1496:
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G. (2013). "Chemical mapping of a single molecule by plasmon-enhanced Raman scattering".
702:, which correspond to the angular spatial frequencies. The frequency components with higher wavenumbers compared to the free-space wavenumber of the light form evanescent fields. Evanescent components exist only in the 1176:
Sidiropoulos, Themistoklis P. H.; Röder, Robert; Geburt, Sebastian; Hess, Ortwin; Maier, Stefan A.; Ronning, Carsten; Oulton, Rupert F. (2014). "Ultrafast plasmonic nanowire lasers near the surface plasmon frequency".
1039:
Hewakuruppu, Yasitha L.; Dombrovsky, Leonid A.; Chen, Chuyang; Timchenko, Victoria; Jiang, Xuchuan; Baek, Sung; Taylor, Robert A. (2013). "Plasmonic "pump–probe" method to study semi-transparent nanofluids".
366:, it has indeed been possible to make images much finer than the wavelength—for example, drawing 30 nm lines using 193 nm light. Plasmonic techniques have also been proposed for this application. 313:
Nanophotonics researchers pursue a very wide variety of goals, in fields ranging from biochemistry to electrical engineering to carbon-free energy. A few of these goals are summarized below.
424:: If a given amount of light energy is squeezed into a smaller and smaller volume ("hot-spot"), the intensity in the hot-spot gets larger and larger. This is especially helpful in 1224: 1788: 436:
measurements of even single molecules located in the hot-spot, unlike traditional spectroscopy methods which take an average over millions or billions of molecules.
479:
Engineering (Cambridge, Massachusetts), and continued under license at Calimetrics (Bedford, Massachusetts) with support from the NIST Advanced Technology Program.
2035: 816: 358:, i.e. exposure to light. In order to make very small transistors, the light needs to be focused into extremely sharp images. Using various techniques such as 392:(i.e. passing information from one part of a microchip to another by sending light through optical waveguides, instead of changing the voltage on a wire). 1083:
Assefa, Solomon; Xia, Fengnian; Vlasov, Yurii A. (2010). "Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects".
336:
including low threshold current (which helps power efficiency) and fast modulation (which means more data transmission). Very small lasers require
1241: 536:
etc. An area of particular interest is silicon nanostructures capable to efficiently generate electrical energy from solar light (e.g. for
388:
circuits can only be miniaturized if the optical components are shrunk along with the electronic components. This is relevant for on-chip
202: 2204: 1221: 633:
frequencies, the values of the latter being of the order of femtohenries and attofarads, respectively), and impedance-matching of
2255: 588:, usually ultraviolet), the permittivity of a metal is not so large, and the metal stops being useful for concentrating fields. 598:(SEM) image of a five-element Yagi-Uda antenna consisting of a feed element, one reflector, and three directors, fabricated by 459: 298: 2036:"Photonics Breakthrough for Silicon Chips: Light can exert enough force to flip switches on a silicon chip," by Hong X. Tang, 1266:
Pan, L.; Park, Y.; Xiong, Y.; Ulin-Avila, E.; Wang, Y.; Zeng, L.; Xiong, S.; Rho, J.; Sun, C.; Bogy, D. B.; Zhang, X. (2011).
2194: 128: 2030: 2080: 2245: 1323: 2006: 1821: 1137: 429: 1344:
Ferry, Vivian E.; Munday, Jeremy N.; Atwater, Harry A. (2010). "Design Considerations for Plasmonic Photovoltaics".
2159: 467: 369: 123: 782: 289:). Nevertheless, it is possible to squeeze light into a nanometer scale using other techniques like, for example, 277:
Normal optical components, like lenses and microscopes, generally cannot normally focus light to nanometer (deep
563:
Metals are an effective way to confine light to far below the wavelength. This was originally used in radio and
2260: 302: 286: 1936:
Dregely, Daniel; Taubert, Richard; Dorfmüller, Jens; Vogelgesang, Ralf; Kern, Klaus; Giessen, Harald (2011).
195: 103: 1867: 595: 325:
tend to have a variety of desirable properties including low noise, high speed, and low voltage and power.
1162: 2174: 452:(see below) or other techniques to create images that are more accurate than the diffraction limit (deep 321:
If light can be squeezed into a small volume, it can be absorbed and detected by a small detector. Small
60: 2048: 1837:
Marques Lameirinhas, Ricardo A.; N. Torres, João Paulo; Baptista, António; Marques Martins, Maria João.
1998: 17: 2025: 1814:
Near Field Optics: Principles and Applications / The Second Asia-Pacific Workshop on Near Field Optics
725:(mentioned above) would prevent the decay of the evanescent wave, allowing higher-resolution imaging. 2281: 2225: 2154: 1398:"Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer" 838:"Nano-plasmonic Bundt Optenna for broadband polarization-insensitive and enhanced infrared detection" 651: 599: 294: 251: 2343: 2149: 188: 1245: 2209: 2073: 1652:"Near-Field Optical Recording without Low-Flying Heads: Integral Near-Field Optical (INFO) Media" 691: 31: 2286: 2184: 1650:
Guerra, John; Vezenov, Dmitri; Sullivan, Paul; Haimberger, Walter; Thulin, Lukas (2002-03-30).
239: 564: 389: 359: 333: 297:
around nanoscale metal objects, and the nanoscale apertures and nanoscale sharp tips used in
257:
The term "nano-optics", just like the term "optics", usually refers to situations involving
1949: 1894: 1789:"Silicon Nanophotonics: Basic Principles, Present Status, and Perspectives, Second Edition" 1752: 1663: 1608: 1596: 1561: 1506: 1409: 1353: 1279: 1186: 1092: 1049: 995: 956: 919: 849: 607: 521: 65: 721:
Nanophotonics is primarily concerned with the near-field evanescent waves. For example, a
8: 2317: 2250: 2240: 2169: 680: 235: 1953: 1898: 1756: 1667: 1612: 1565: 1510: 1413: 1357: 1283: 1190: 1096: 1053: 999: 960: 923: 853: 230:
scale, and of the interaction of nanometer-scale objects with light. It is a branch of
2338: 2066: 1970: 1937: 1918: 1687: 1530: 1432: 1397: 1377: 1300: 1267: 1212: 1116: 1016: 983: 885: 872: 837: 707: 703: 683:. The higher spatial frequencies correspond to the very fine features and sharp edges. 671: 647: 638: 618: 381: 178: 1706: 1007: 584:
of the metal is very large and negative. At very high frequencies (near and above the
2128: 2123: 2002: 1975: 1910: 1817: 1770: 1691: 1679: 1632: 1624: 1577: 1534: 1522: 1478: 1437: 1369: 1305: 1216: 1108: 1065: 1021: 947:
Dürig, U.; Pohl, D. W.; Rohner, F. (1986). "Near-Field Optical Scanning Microscopy".
889: 877: 809: 774: 715: 676: 667: 525: 517: 502: 497: 282: 1922: 1381: 2265: 2230: 2179: 1965: 1957: 1902: 1846: 1760: 1718: 1671: 1616: 1569: 1514: 1468: 1427: 1417: 1361: 1295: 1287: 1202: 1194: 1120: 1100: 1057: 1011: 1003: 964: 927: 867: 857: 585: 533: 425: 355: 247: 118: 1473: 1456: 1739:
Karabchevsky, Alina; Katiyi, Aviad; Ang, Angeleene S.; Hazan, Adir (2020-09-04).
1549: 1228: 686:
In nanophotonics, strongly localized radiation sources (dipolar emitters such as
568: 558: 377: 348: 290: 98: 45: 2312: 2189: 2108: 1881:
Muhlschlegel, P.; Eisler, H. J.; Martin, O. J.; Hecht, B.; Pohl, D. W. (2005).
1851: 1838: 1836: 1722: 862: 788: 760: 634: 385: 340: 243: 113: 70: 1707:"Calculations of strain-modified anatase $ {\text{TiO}}_{2}$ band structures" 2332: 1774: 1765: 1740: 1683: 1628: 1581: 1422: 797: 711: 655: 630: 529: 510: 453: 337: 322: 278: 266: 262: 156: 88: 1906: 1550:"Super‐resolution through illumination by diffraction‐born evanescent waves" 470:
has picometer resolution in the vertical plane above the waveguide surface.
2103: 1979: 1914: 1882: 1636: 1526: 1482: 1441: 1373: 1365: 1309: 1207: 1112: 1069: 1025: 881: 739: 734: 687: 581: 449: 433: 1816:. Singapore New Jersey London Hong Kong: World Scientific. pp. 9–21. 1651: 1324:"IBM Research | IBM Research | Silicon Integrated Nanophotonics" 690:
molecules) are often studied. These sources can be decomposed into a vast
516:
As of 2016 the research of in silicon photonics spanned light modulators,
2052: 1675: 1620: 1061: 743:
continuous medium, rather than scattering off the individual structures.
626: 537: 400: 258: 1518: 1104: 2291: 2235: 2199: 2117: 1961: 699: 695: 622: 614: 577: 554: 146: 108: 1291: 1198: 754: 2144: 2089: 1573: 968: 803: 722: 642: 572: 445: 363: 227: 1812:
Pohl, D. W. (2000). "Near Field Optics Seen as an Antenna Problem".
932: 907: 1935: 981: 173: 93: 1038: 982:
Betzig, E.; Harootunian, A.; Isaacson, M.; Kratschmer, E. (1986).
768: 610:
following essentially the same design as used for radio antennas.
250:, or metallic components, which can transport and focus light via 714:
information from the emitter is blurred out; this results in the
506: 407: 706:
of the emitter and decay without transferring net energy to the
591: 2307: 1649: 344: 231: 2164: 1880: 329: 223: 2058: 1455:
Acuna, Guillermo; Grohmann, Dina; Tinnefeld, Philip (2014).
606:
For example, researchers have made nano-optical dipoles and
269:
light (free-space wavelengths from 300 to 1200 nanometers).
1868:"Optical Nano-antenna Controls Single Quantum Dot Emission" 1457:"Enhancing single-molecule fluorescence with nanophotonics" 1175: 908:"Optical Stethoscopy: Image Recording with Resolution λ/20" 1738: 2026:
ePIXnet Nanostructuring Platform for Photonic Integration
1839:"A Novel Analysis for Light Patterns in Nano Structures" 444:
One goal of nanophotonics is to construct a so-called "
316: 1454: 1265: 817:
Ultraperformance Nanophotonic Intrachip Communications
679:
of a spatial field distribution consists of different
1394: 658:
in a fundamentally different way than microwaves do.
1268:"Maskless Plasmonic Lithography at 22 nm Resolution" 750: 380:, for example the miniaturization of transistors in 1495: 422:
Using nanophotonics to create high peak intensities
1343: 1138:"Research Discovery By Ethiopian Scientist At IBM" 246:. It often involves dielectric structures such as 580:. It is fundamentally based on the fact that the 2330: 2045:Nanophotonics, nano-optics and nanospectroscopy 2031:Optically induced mass transport in near fields 1242:"High-Index Lenses Push Immersion Beyond 32 nm" 1082: 984:"Near Field scanning optical microscopy (NSOM)" 946: 1160: 513:, logic gates and cryptography on a chip etc. 408:Controlled release of anti-cancer therapeutics 404:in the optimal locations within a solar cell. 384:, has improved their speed and cost. However, 2074: 1741:"On-chip nanophotonics and future challenges" 1163:"Avalanche photodetector breaks speed record" 196: 1992: 1986: 1704: 905: 901: 899: 548: 2081: 2067: 1705:Thulin, Lukas; Guerra, John (2008-05-14). 203: 189: 1969: 1850: 1764: 1472: 1431: 1421: 1299: 1206: 1132: 1130: 1015: 931: 896: 871: 861: 654:. Likewise, optical fields interact with 2205:Time stretch analog-to-digital converter 590: 491: 2256:Monte Carlo method for photon transport 1938:"3D optical Yagi–Uda nanoantenna array" 906:Pohl, D.W.; Denk, W.; Lanz, M. (1984). 482: 473: 14: 2331: 1594: 1547: 1127: 460:Near-field scanning optical microscope 413:to normal systemic tissues and cells. 332:have various desirable properties for 299:near-field scanning optical microscopy 2062: 1865: 1734: 1732: 1326:. Domino.research.ibm.com. 2010-03-04 27:Study of light on the nanometer scale 2195:Subwavelength-diameter optical fibre 1993:Novotny, Lukas; Hecht, Bert (2012). 1811: 1805: 661: 317:Optoelectronics and microelectronics 129:List of semiconductor scale examples 2055:Beilstein Journal of Nanotechnology 1656:Japanese Journal of Applied Physics 354:Integrated circuits are made using 24: 2246:Extraordinary optical transmission 1729: 1388: 25: 2355: 2019: 430:surface-enhanced Raman scattering 301:(SNOM or NSOM) and photoassisted 2160:Erbium-doped waveguide amplifier 1239: 781: 767: 753: 728: 468:dual-polarization interferometry 370:Heat-assisted magnetic recording 222:is the study of the behavior of 172: 124:Semiconductor device fabrication 1929: 1874: 1859: 1830: 1781: 1698: 1643: 1588: 1541: 1489: 1448: 1337: 1316: 1259: 1233: 416: 40:Part of a series of articles on 2261:Wavelength selective switching 1595:Guerra, John M. (1990-09-10). 1548:Guerra, John M. (1995-06-26). 1169: 1154: 1076: 1032: 975: 940: 829: 617:(striplines), lumped-constant 395: 308: 303:scanning tunnelling microscopy 13: 1: 2088: 1662:(Part 1, No. 3B): 1866–1875. 1597:"Photon tunneling microscopy" 1474:10.1016/j.febslet.2014.06.016 1161:Dumé, Isabelle (2010-03-04). 1008:10.1016/s0006-3495(86)83640-2 836:Awad, Ehab (21 August 2019). 822: 646:plasmon-related effects like 641:, all familiar techniques at 543: 439: 272: 596:Scanning electron microscopy 7: 2175:Photonic integrated circuit 1883:"Resonant Optical Antennas" 746: 432:. It also allows sensitive 80:Solid-state nanoelectronics 61:Molecular scale electronics 52:Single-molecule electronics 10: 2360: 1999:Cambridge University Press 1852:10.1109/JPHOT.2022.3227429 1723:10.1103/PhysRevB.77.195112 1227:December 25, 2016, at the 863:10.1038/s41598-019-48648-6 732: 665: 552: 495: 295:localized surface plasmons 252:surface plasmon polaritons 29: 2300: 2282:Fiber-optic communication 2274: 2226:Arrayed waveguide grating 2218: 2155:Delay line interferometer 2137: 2096: 1995:Principles of Nano-Optics 1793:Routledge & CRC Press 652:surface plasmon resonance 549:Plasmons and metal optics 281:) scales, because of the 2150:Optical DPSK demodulator 1766:10.1515/nanoph-2020-0204 1423:10.1515/nanoph-2021-0142 718:in the optical systems. 613:Metallic parallel-plate 2210:Wireless power transfer 1907:10.1126/science.1111886 1554:Applied Physics Letters 32:Nanophotonics (journal) 2287:Optical neural network 2185:Photonic-crystal fiber 1843:IEEE Photonics Journal 1366:10.1002/adma.201000488 835: 603: 240:electrical engineering 179:Electronics portal 1942:Nature Communications 594: 565:microwave engineering 511:overtone spectroscopy 492:Silicon nanophotonics 390:optical communication 360:immersion lithography 334:optical communication 30:For the journal, see 2047:A. J. Meixner (Ed.) 1676:10.1143/jjap.41.1866 1621:10.1364/AO.29.003741 1062:10.1364/AO.52.006041 483:Band-gap engineering 474:Optical data storage 66:Molecular logic gate 2318:Solid-state physics 2251:Holographic grating 2241:Diffraction grating 2170:Optical interleaver 1954:2011NatCo...2..267D 1899:2005Sci...308.1607M 1757:2020Nanop...9..204K 1668:2002JaJAP..41.1866G 1613:1990ApOpt..29.3741G 1566:1995ApPhL..66.3555G 1519:10.1038/nature12151 1511:2013Natur.498...82Z 1414:2021Nanop..10..142S 1358:2010AdM....22.4794F 1284:2011NatSR...1E.175P 1191:2014NatPh..10..870S 1105:10.1038/nature08813 1097:2010Natur.464...80A 1054:2013ApOpt..52.6041H 1000:1986BpJ....49..269B 961:1986JAP....59.3318D 924:1984ApPhL..44..651P 854:2019NatSR...912197A 681:spatial frequencies 532:, memory elements, 448:", which would use 382:integrated circuits 376:Miniaturization in 362:and phase-shifting 351:version of lasers. 236:optical engineering 1962:10.1038/ncomms1268 1346:Advanced Materials 1272:Scientific Reports 842:Scientific Reports 672:Near and far field 648:kinetic inductance 639:transmission lines 604: 600:e-beam lithography 526:optical amplifiers 518:optical waveguides 287:Rayleigh criterion 138:Related approaches 2326: 2325: 2129:Silicon photonics 2124:Optical computing 1866:van Hulst, Niek. 1751:(12): 3733–3753. 1711:Physical Review B 1607:(26): 3741–3752. 1560:(26): 3555–3557. 1467:(19): 3547–3552. 1408:(12): 3063–3073. 1352:(43): 4794–4808. 1292:10.1038/srep00175 1199:10.1038/nphys3103 1048:(24): 6041–6050. 955:(10): 3318–3327. 810:Photonics Spectra 775:Technology portal 716:diffraction limit 677:Fourier transform 668:Near-field optics 662:Near-field optics 621:elements such as 608:Yagi–Uda antennas 534:photonic crystals 503:Silicon photonics 498:Silicon photonics 283:diffraction limit 213: 212: 16:(Redirected from 2351: 2266:Photon diffusion 2231:Atomic coherence 2180:Photonic crystal 2083: 2076: 2069: 2060: 2059: 2013: 2012: 1990: 1984: 1983: 1973: 1933: 1927: 1926: 1893:(5728): 1607–9. 1878: 1872: 1871: 1863: 1857: 1856: 1854: 1834: 1828: 1827: 1809: 1803: 1802: 1800: 1799: 1785: 1779: 1778: 1768: 1736: 1727: 1726: 1702: 1696: 1695: 1647: 1641: 1640: 1592: 1586: 1585: 1574:10.1063/1.113814 1545: 1539: 1538: 1493: 1487: 1486: 1476: 1452: 1446: 1445: 1435: 1425: 1392: 1386: 1385: 1341: 1335: 1334: 1332: 1331: 1320: 1314: 1313: 1303: 1263: 1257: 1256: 1254: 1253: 1244:. Archived from 1237: 1231: 1220: 1210: 1173: 1167: 1166: 1165:. Physics World. 1158: 1152: 1151: 1149: 1148: 1134: 1125: 1124: 1080: 1074: 1073: 1036: 1030: 1029: 1019: 979: 973: 972: 969:10.1063/1.336848 944: 938: 937: 935: 912:Appl. Phys. Lett 903: 894: 893: 875: 865: 833: 791: 786: 785: 777: 772: 771: 763: 758: 757: 586:plasma frequency 428:; an example is 426:nonlinear optics 356:photolithography 343:. An example is 341:optical cavities 291:surface plasmons 205: 198: 191: 177: 176: 119:Multigate device 37: 36: 21: 2359: 2358: 2354: 2353: 2352: 2350: 2349: 2348: 2344:Nanoelectronics 2329: 2328: 2327: 2322: 2296: 2270: 2214: 2133: 2092: 2087: 2049:Thematic Series 2022: 2017: 2016: 2009: 1991: 1987: 1934: 1930: 1879: 1875: 1864: 1860: 1835: 1831: 1824: 1810: 1806: 1797: 1795: 1787: 1786: 1782: 1737: 1730: 1703: 1699: 1648: 1644: 1593: 1589: 1546: 1542: 1505:(7452): 82–86. 1494: 1490: 1453: 1449: 1393: 1389: 1342: 1338: 1329: 1327: 1322: 1321: 1317: 1264: 1260: 1251: 1249: 1238: 1234: 1229:Wayback Machine 1185:(11): 870–876. 1174: 1170: 1159: 1155: 1146: 1144: 1142:Tadias Magazine 1136: 1135: 1128: 1081: 1077: 1037: 1033: 980: 976: 945: 941: 933:10.1063/1.94865 904: 897: 834: 830: 825: 787: 780: 773: 766: 759: 752: 749: 737: 731: 698:with different 674: 666:Main articles: 664: 635:dipole antennas 561: 559:Surface plasmon 553:Main articles: 551: 546: 522:interconnectors 500: 494: 485: 476: 442: 419: 410: 398: 378:optoelectronics 349:surface plasmon 319: 311: 275: 209: 171: 161: 133: 99:Nanolithography 75: 71:Molecular wires 46:Nanoelectronics 35: 28: 23: 22: 15: 12: 11: 5: 2357: 2347: 2346: 2341: 2324: 2323: 2321: 2320: 2315: 2313:Quantum optics 2310: 2304: 2302: 2298: 2297: 2295: 2294: 2289: 2284: 2278: 2276: 2272: 2271: 2269: 2268: 2263: 2258: 2253: 2248: 2243: 2238: 2233: 2228: 2222: 2220: 2216: 2215: 2213: 2212: 2207: 2202: 2197: 2192: 2190:Slot-waveguide 2187: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2141: 2139: 2135: 2134: 2132: 2131: 2126: 2121: 2111: 2109:Microphotonics 2106: 2100: 2098: 2094: 2093: 2086: 2085: 2078: 2071: 2063: 2057: 2056: 2042: 2038:IEEE Spectrum, 2033: 2028: 2021: 2020:External links 2018: 2015: 2014: 2007: 1985: 1928: 1873: 1858: 1829: 1822: 1804: 1780: 1728: 1717:(19): 195112. 1697: 1642: 1601:Applied Optics 1587: 1540: 1488: 1447: 1387: 1336: 1315: 1258: 1232: 1179:Nature Physics 1168: 1153: 1126: 1091:(7285): 80–4. 1075: 1042:Applied Optics 1031: 994:(1): 269–279. 974: 939: 918:(7): 651–653. 895: 827: 826: 824: 821: 820: 819: 814: 806: 801: 793: 792: 789:Physics portal 778: 764: 761:Science portal 748: 745: 733:Main article: 730: 727: 663: 660: 656:semiconductors 567:, where metal 550: 547: 545: 542: 530:photodetectors 496:Main article: 493: 490: 484: 481: 475: 472: 441: 438: 418: 415: 409: 406: 397: 394: 386:optoelectronic 323:photodetectors 318: 315: 310: 307: 274: 271: 244:nanotechnology 211: 210: 208: 207: 200: 193: 185: 182: 181: 168: 167: 163: 162: 160: 159: 154: 149: 143: 140: 139: 135: 134: 132: 131: 126: 121: 116: 111: 106: 101: 96: 91: 85: 82: 81: 77: 76: 74: 73: 68: 63: 57: 54: 53: 49: 48: 42: 41: 26: 9: 6: 4: 3: 2: 2356: 2345: 2342: 2340: 2337: 2336: 2334: 2319: 2316: 2314: 2311: 2309: 2306: 2305: 2303: 2299: 2293: 2290: 2288: 2285: 2283: 2280: 2279: 2277: 2273: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2237: 2234: 2232: 2229: 2227: 2224: 2223: 2221: 2217: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2142: 2140: 2136: 2130: 2127: 2125: 2122: 2119: 2115: 2114:Nanophotonics 2112: 2110: 2107: 2105: 2102: 2101: 2099: 2095: 2091: 2084: 2079: 2077: 2072: 2070: 2065: 2064: 2061: 2054: 2050: 2046: 2043: 2041: 2039: 2034: 2032: 2029: 2027: 2024: 2023: 2010: 2008:9780511794193 2004: 2000: 1996: 1989: 1981: 1977: 1972: 1967: 1963: 1959: 1955: 1951: 1947: 1943: 1939: 1932: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1877: 1869: 1862: 1853: 1848: 1844: 1840: 1833: 1825: 1823:981-02-4365-0 1819: 1815: 1808: 1794: 1790: 1784: 1776: 1772: 1767: 1762: 1758: 1754: 1750: 1746: 1745:Nanophotonics 1742: 1735: 1733: 1724: 1720: 1716: 1712: 1708: 1701: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1591: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1544: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1492: 1484: 1480: 1475: 1470: 1466: 1462: 1458: 1451: 1443: 1439: 1434: 1429: 1424: 1419: 1415: 1411: 1407: 1403: 1402:Nanophotonics 1399: 1391: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1340: 1325: 1319: 1311: 1307: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1262: 1248:on 2015-09-29 1247: 1243: 1240:Hand, Aaron. 1236: 1230: 1226: 1223: 1222:Press release 1218: 1214: 1209: 1208:10044/1/18641 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1172: 1164: 1157: 1143: 1139: 1133: 1131: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1079: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1035: 1027: 1023: 1018: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 978: 970: 966: 962: 958: 954: 950: 949:J. Appl. Phys 943: 934: 929: 925: 921: 917: 913: 909: 902: 900: 891: 887: 883: 879: 874: 869: 864: 859: 855: 851: 847: 843: 839: 832: 828: 818: 815: 812: 811: 807: 805: 802: 800: 799: 798:ACS Photonics 795: 794: 790: 784: 779: 776: 770: 765: 762: 756: 751: 744: 741: 740:Metamaterials 736: 729:Metamaterials 726: 724: 719: 717: 713: 712:subwavelength 709: 705: 701: 697: 693: 689: 684: 682: 678: 673: 669: 659: 657: 653: 649: 644: 640: 636: 632: 631:visible light 628: 624: 620: 616: 611: 609: 601: 597: 593: 589: 587: 583: 579: 574: 570: 566: 560: 556: 541: 539: 535: 531: 527: 523: 519: 514: 512: 508: 504: 499: 489: 480: 471: 469: 463: 461: 457: 455: 454:subwavelength 451: 450:metamaterials 447: 437: 435: 431: 427: 423: 414: 405: 402: 393: 391: 387: 383: 379: 374: 371: 367: 365: 361: 357: 352: 350: 346: 342: 339: 338:subwavelength 335: 331: 326: 324: 314: 306: 304: 300: 296: 292: 288: 284: 280: 279:subwavelength 270: 268: 267:near-infrared 264: 260: 255: 253: 249: 245: 241: 237: 233: 229: 225: 221: 217: 216:Nanophotonics 206: 201: 199: 194: 192: 187: 186: 184: 183: 180: 175: 170: 169: 165: 164: 158: 157:Nanomechanics 155: 153: 152:Nanophotonics 150: 148: 145: 144: 142: 141: 137: 136: 130: 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 90: 89:Nanocircuitry 87: 86: 84: 83: 79: 78: 72: 69: 67: 64: 62: 59: 58: 56: 55: 51: 50: 47: 44: 43: 39: 38: 33: 19: 2275:Applications 2113: 2104:Biophotonics 2044: 2040:October 2009 2037: 1994: 1988: 1948:(267): 267. 1945: 1941: 1931: 1890: 1886: 1876: 1861: 1842: 1832: 1813: 1807: 1796:. Retrieved 1792: 1783: 1748: 1744: 1714: 1710: 1700: 1659: 1655: 1645: 1604: 1600: 1590: 1557: 1553: 1543: 1502: 1498: 1491: 1464: 1461:FEBS Letters 1460: 1450: 1405: 1401: 1390: 1349: 1345: 1339: 1328:. Retrieved 1318: 1275: 1271: 1261: 1250:. Retrieved 1246:the original 1235: 1182: 1178: 1171: 1156: 1145:. Retrieved 1141: 1088: 1084: 1078: 1045: 1041: 1034: 991: 987: 977: 952: 948: 942: 915: 911: 848:(1): 12197. 845: 841: 831: 808: 796: 738: 735:Metamaterial 720: 685: 675: 612: 605: 582:permittivity 562: 538:solar panels 515: 501: 486: 477: 464: 458: 443: 434:spectroscopy 421: 420: 417:Spectroscopy 411: 399: 375: 368: 353: 327: 320: 312: 276: 256: 248:nanoantennas 219: 215: 214: 151: 2053:Open Access 1997:. Norwood: 1870:. 2physics. 700:wavenumbers 696:plane waves 688:fluorescent 627:capacitance 401:Solar cells 396:Solar cells 309:Application 259:ultraviolet 220:nano-optics 114:Moore's law 2333:Categories 2292:Solar sail 2236:Dark state 2200:Superprism 2118:Plasmonics 1798:2021-08-31 1330:2010-03-15 1252:2014-09-27 1147:2010-03-15 988:Biophys. J 823:References 704:near field 623:inductance 615:waveguides 578:plasmonics 573:waveguides 555:Plasmonics 544:Principles 440:Microscopy 373:location. 364:photomasks 273:Background 147:Nanoionics 109:Nanosensor 18:Nanooptics 2339:Photonics 2145:Biophoton 2090:Photonics 1775:2192-8614 1692:119544019 1684:0021-4922 1629:2155-3165 1582:0003-6951 1535:205233946 1217:121825602 890:201105945 804:Photonics 723:superlens 708:far field 643:microwave 446:superlens 228:nanometer 94:Nanowires 2301:See also 2219:Concepts 1980:21468019 1923:40214874 1915:15947182 1637:20567479 1527:23739426 1483:24928436 1442:34589378 1382:20219632 1374:20814916 1310:22355690 1225:Archived 1113:20203606 1070:24085009 1026:19431633 882:31434970 747:See also 710:. Thus, 692:spectrum 569:antennas 2051:in the 1971:3104549 1950:Bibcode 1895:Bibcode 1887:Science 1753:Bibcode 1664:Bibcode 1609:Bibcode 1562:Bibcode 1507:Bibcode 1433:8478290 1410:Bibcode 1354:Bibcode 1301:3240963 1280:Bibcode 1278:: 175. 1187:Bibcode 1121:4372660 1093:Bibcode 1050:Bibcode 1017:1329633 996:Bibcode 957:Bibcode 920:Bibcode 873:6704059 850:Bibcode 813:journal 619:circuit 507:silicon 345:spasers 263:visible 226:on the 166:Portals 2308:Optics 2097:Fields 2005:  1978:  1968:  1921:  1913:  1820:  1773:  1690:  1682:  1635:  1627:  1580:  1533:  1525:  1499:Nature 1481:  1440:  1430:  1380:  1372:  1308:  1298:  1215:  1119:  1111:  1085:Nature 1068:  1024:  1014:  888:  880:  870:  347:, the 330:lasers 328:Small 265:, and 242:, and 232:optics 2165:Laser 2138:Tools 1919:S2CID 1688:S2CID 1531:S2CID 1378:S2CID 1213:S2CID 1117:S2CID 886:S2CID 505:is a 224:light 2003:ISBN 1976:PMID 1911:PMID 1818:ISBN 1771:ISSN 1680:ISSN 1633:PMID 1625:ISSN 1578:ISSN 1523:PMID 1479:PMID 1438:PMID 1370:PMID 1306:PMID 1109:PMID 1066:PMID 1022:PMID 878:PMID 670:and 650:and 629:(at 625:and 571:and 557:and 520:and 104:NEMS 1966:PMC 1958:doi 1903:doi 1891:308 1847:doi 1761:doi 1719:doi 1672:doi 1617:doi 1570:doi 1515:doi 1503:498 1469:doi 1465:588 1428:PMC 1418:doi 1362:doi 1296:PMC 1288:doi 1203:hdl 1195:doi 1101:doi 1089:464 1058:doi 1012:PMC 1004:doi 965:doi 928:doi 868:PMC 858:doi 694:of 637:to 540:). 218:or 2335:: 2001:. 1974:. 1964:. 1956:. 1944:. 1940:. 1917:. 1909:. 1901:. 1889:. 1885:. 1845:. 1841:. 1791:. 1769:. 1759:. 1747:. 1743:. 1731:^ 1715:77 1713:. 1709:. 1686:. 1678:. 1670:. 1660:41 1658:. 1654:. 1631:. 1623:. 1615:. 1605:29 1603:. 1599:. 1576:. 1568:. 1558:66 1556:. 1552:. 1529:. 1521:. 1513:. 1501:. 1477:. 1463:. 1459:. 1436:. 1426:. 1416:. 1406:10 1404:. 1400:. 1376:. 1368:. 1360:. 1350:22 1348:. 1304:. 1294:. 1286:. 1274:. 1270:. 1211:. 1201:. 1193:. 1183:10 1181:. 1140:. 1129:^ 1115:. 1107:. 1099:. 1087:. 1064:. 1056:. 1046:52 1044:. 1020:. 1010:. 1002:. 992:49 990:. 986:. 963:. 953:59 951:. 926:. 916:44 914:. 910:. 898:^ 884:. 876:. 866:. 856:. 844:. 840:. 528:, 524:, 305:. 293:, 261:, 254:. 238:, 234:, 2120:) 2116:( 2082:e 2075:t 2068:v 2011:. 1982:. 1960:: 1952:: 1946:2 1925:. 1905:: 1897:: 1855:. 1849:: 1826:. 1801:. 1777:. 1763:: 1755:: 1749:9 1725:. 1721:: 1694:. 1674:: 1666:: 1639:. 1619:: 1611:: 1584:. 1572:: 1564:: 1537:. 1517:: 1509:: 1485:. 1471:: 1444:. 1420:: 1412:: 1384:. 1364:: 1356:: 1333:. 1312:. 1290:: 1282:: 1276:1 1255:. 1219:. 1205:: 1197:: 1189:: 1150:. 1123:. 1103:: 1095:: 1072:. 1060:: 1052:: 1028:. 1006:: 998:: 971:. 967:: 959:: 936:. 930:: 922:: 892:. 860:: 852:: 846:9 602:. 285:( 204:e 197:t 190:v 34:. 20:)

Index

Nanooptics
Nanophotonics (journal)
Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e
light
nanometer
optics
optical engineering
electrical engineering
nanotechnology
nanoantennas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.