Knowledge

Nanoionics

Source 📝

298:(ITRS) relates nanoionics-based resistive switching memories to the category of "emerging research devices" ("ionic memory"). The area of close intersection of nanoelectronics and nanoionics had been called nanoelionics (1996). Now, the vision of future nanoelectronics constrained solely by fundamental ultimate limits is being formed in advanced research. The ultimate physical limits to computation are very far beyond the currently attained (10 cm, 10 Hz) region. What kind of logic switches might be used at the near nm- and sub-nm peta-scale integration? The question was the subject matter already in, where the term "nanoelectronics" was not used yet. Quantum mechanics constrains electronic distinguishable configurations by the tunneling effect at tera-scale. To overcome 10 cm bit density limit, atomic and ion configurations with a characteristic dimension of L <2 nm should be used in the information domain and materials with an effective mass of information carriers m* considerably larger than electronic ones are required: m* =13 m 259:–family). Nanoionics-I and nanoionics-II differ from each other in the design of interfaces. The role of boundaries in nanoionics-I is the creation of conditions for high concentrations of charged defects (vacancies and interstitials) in a disordered space-charge layer. But in nanoionics-II, it is necessary to conserve the original highly ionic conductive crystal structures of advanced superionic conductors at ordered (lattice-matched) heteroboundaries. Nanoionic-I can significantly enhance (up to ~10 times) the 2D-like ion conductivity in nanostructured materials with structural coherence, but it is remaining ~10 times smaller relatively to 3D ionic conductivity of advanced superionic conductors. 291:, nanoionics is unambiguously defined by its own objects (nanostructures with FIT), subject matter (properties, phenomena, effects, mechanisms of processes, and applications connected with FIT at nano-scale), method (interface design in nanosystems of superionic conductors), and the criterion (R/L ~1, where R is the length scale of device structures, and L is the characteristic length on which the properties, characteristics, and other parameters connected with FIT change drastically). 153: 401:. In 2012, a 1D structure-dynamic approach was developed in nanoionics for a detailed description of the space charge formation and relaxation processes in irregular potential relief (direct problem) and interpretation of characteristics of nanosystems with fast-ion transport (inverse problem), as an example, for the description of a collective phenomenon: coupled ion transport and dielectric-polarization processes which lead to 266:
and electrochemical potential.This means that accepted is the picture of a hopping ion transport in the potential landscape where all barriers are of the same height (uniform potential relief). Despite the obvious difference of objects of solid state ionics and nanoionics-I, -II, the true new problem
233:, charge and information. The term and conception of nanoionics (as a new branch of science) were first introduced by A.L. Despotuli and V.I. Nikolaichik (Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka) in January 1992. 240:, dealing with ionic transport phenomena in solids, considers Nanoionics as its new division. Nanoionics tries to describe, for example, diffusion&reactions, in terms that make sense only at a nanoscale, e.g., in terms of non-uniform (at a nanoscale) potential landscape. 275:) has a special common basis: non-uniform potential landscape on nanoscale (for example) which determines the character of the mobile ion subsystem response to an impulse or harmonic external influence, e.g. a weak influence in 571:
Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.; Sefrioui, Z.; Iborra, E.; Leon, C.; Pennycook, S. J.; Santamaria, J. (2008). "Colossal ionic conductivity at interfaces of epitaxial ZrO
377:. A significant role of boundary conditions with respect to ionic conductivity was first experimentally discovered by C.C. Liang who found an anomalously high conduction in the LiI-Al 692:
Bindi, L.; Evain M. (2006). "Fast ion conduction character and ionic phase-transitions in disordered crystals: the complex case of the minerals of the pearceite– polybasite group".
1113: 385:
two-phase system. Because a space-charge layer with specific properties has nanometer thickness, the effect is directly related to nanoionics (nanoionics-I). The
330:), lithium batteries and fuel cells with nanostructured electrodes, nano-switches with quantized conductivity on the basis of fast-ion conductors (see also 373:
An important case of fast-ionic conduction in solid states is in the surface space-charge layer of ionic crystals. Such conduction was first predicted by
295: 507: 310:(L =0,2 nm). Future short-sized devices may be nanoionic, i.e. based on the fast-ion transport at the nanoscale, as it was first stated in. 1372:
Despotuli, Alexandr; Andreeva, Alexandra (2013). "Structure-dynamic approach in nanoionics. Modeling of ion transport on blocking electrode".
1018:
Chiabrera, A.; Di Zitti, E.; Costa, F.; Bisio, G.M. (1989). "Physical limits of integration and information processing in molecular systems".
247:
and two fundamentally different nanoionics: (I) nanosystems based on solids with low ionic conductivity, and (II) nanosystems based on
735:
Despotuli, A.; Andreeva A. (2015). "Maxwell displacement current and nature of Jonsher's "universal" dynamic response in nanoionics".
181: 1395: 1062: 676: 649: 107: 1177:
Banno, N.; Sakamoto, T.; Iguchi, N.; Kawaura, H.; Kaeriyama, S.; Mizuno, M.; Terabe, K.; Hasegawa, T.; Aono, M. (2006).
197:
is the study and application of phenomena, properties, effects, methods and mechanisms of processes connected with fast
1393:
Despotuli, A.; Andreeva A.V. (2016). "Method of uniform effective field in structure-dynamic approach of nanoionics".
517: 339: 102: 1094: 904:
Zhirnov, V.V.; Cavin R.K. (2007). "Emerging research nanoelectronic devices: the choice of information carrier".
414: 335: 351: 248: 262:
The classical theory of diffusion and migration in solids is based on the notion of a diffusion coefficient,
214: 174: 82: 1280: 780:
Cavin, R.K.; Zhirnov V.V. (2006). "Generic device abstractions for information processing technologies".
39: 926: 536:
Despotuli, A.L.; Andreeva, A.V.; Rambabu, B. (2005). "Nanoionics of advanced superionic conductors".
1435: 327: 167: 1261:"Перспективы развития в России глубоко субвольтовой наноэлектроники и связанных с ней технологий" 276: 226: 1260: 1124:
Maier, J. (2005). "Nanoionics: ion transport and electrochemical storage in confined systems".
921: 256: 367: 1358: 1330: 1289: 1226: 1186: 1135: 1027: 976: 913: 867: 824: 789: 701: 596: 478: 44: 8: 1276:"Space-charge layer and distribution of lattice defects at the surface of ionic crystals" 1080:
Despotuli A.L.; Andreeva A.V. (2007). "High-value capacitors for 0.5-V nanoelectronics".
1334: 1293: 1230: 1190: 1139: 1031: 980: 917: 871: 828: 793: 705: 600: 482: 1412: 1373: 1178: 1159: 1043: 1000: 966: 939: 883: 840: 762: 744: 717: 620: 553: 390: 343: 272: 237: 210: 157: 1039: 1416: 1242: 1151: 1047: 992: 943: 672: 645: 612: 513: 451: 263: 1319:"Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes" 1163: 887: 844: 766: 721: 624: 557: 1404: 1338: 1297: 1234: 1217: 1198: 1194: 1143: 1126: 1035: 984: 931: 875: 832: 797: 754: 709: 604: 545: 486: 447: 359: 319: 222: 202: 97: 1004: 639: 394: 218: 77: 24: 815:
Cerofolini, G.F. (2007). "Realistic limits to computation. I. Physical limits".
491: 466: 402: 323: 288: 268: 92: 49: 1408: 879: 836: 801: 758: 713: 570: 1429: 135: 130: 67: 608: 1246: 1212: 1155: 996: 616: 386: 374: 1017: 971: 363: 244: 205:
systems. The topics of interest include fundamental properties of oxide
666: 1098: 549: 438:
Despotuli, A.L.; Nikolaichic V.I. (1993). "A step towards nanoionics".
389:
has become the basis for the creation of a multitude of nanostructured
331: 87: 1343: 1318: 1302: 1275: 1176: 935: 858:
Cerofolini, G.F.; Romano E. (2008). "Molecular electronic in silico".
1238: 1147: 988: 398: 355: 1215:; Aono, M. (2007). "Nanoionics-based resistive switching memories". 152: 72: 1378: 749: 644:(First ed.). Springer-Verlag Berlin Heidelberg. p. 651. 535: 509:
Introduction to Solid State Ionics: Phenomenology and Applications
671:(2nd ed.). Blackwell Scientific Publications. p. 1622. 206: 230: 957:
Lloyd, S. (2000). "Ultimate physical limits to computation".
342:
and could find wide applications, for example in autonomous
1079: 1060: 347: 326:
with fast-ion transport at the functional heterojunctions (
668:
IUPAC. Compendium of Chemical Terminology (the Gold Book)
437: 252: 198: 236:
A multidisciplinary scientific and industrial field of
1392: 1061:
Bate, R. T.; Reed M. A.; Frensley W. R (August 1987).
734: 857: 296:
International Technology Roadmap for Semiconductors
338:). These are well compatible with sub-voltage and 1371: 903: 779: 1427: 899: 897: 1359:"Структурно-динaмический подход в наноионике" 1211: 894: 691: 505: 175: 1316: 664: 531: 529: 471:Science and Technology of Advanced Materials 433: 431: 429: 467:"Nanoionics - Present and future prospects" 243:There are two classes of solid-state ionic 1063:"Nanoelectronics (in Final technical rept" 814: 512:(First ed.). CRC Press. p. 529. 182: 168: 1377: 1342: 1301: 970: 925: 748: 526: 490: 464: 426: 637: 499: 1273: 658: 271:(or transformation) for these objects ( 229:devices) for conversion and storage of 1428: 1123: 956: 631: 1179:"Solid-Electrolyte Nanometer Switch" 108:List of semiconductor scale examples 201:transport (FIT) in all-solid-state 13: 1095:"2007 №7 Содержание журнала "СТА"" 393:which are used in modern portable 287:Being a branch of nanoscience and 282: 14: 1447: 1183:IEICE Transactions on Electronics 405:'s "universal" dynamic response. 267:of fast-ion transport and charge/ 340:deep-sub-voltage nanoelectronics 221:. Potential applications are in 209:at nanometer length scales, and 151: 103:Semiconductor device fabrication 1386: 1365: 1351: 1310: 1267: 1253: 1205: 1170: 1117: 1073: 1054: 1011: 950: 851: 808: 773: 415:Programmable metallization cell 336:programmable metallization cell 19:Part of a series of articles on 728: 685: 564: 458: 306:(L =0,5 nm) and m* =336 m 249:advanced superionic conductors 1: 1185:. E89-C(11) (11): 1492–1498. 420: 215:advanced superionic conductor 1199:10.1093/ietele/e89-c.11.1492 1067:Texas Instruments Inc Dallas 452:10.1016/0167-2738(93)90005-N 7: 1281:Journal of Chemical Physics 1040:10.1088/0022-3727/22/11/001 408: 313: 59:Solid-state nanoelectronics 40:Molecular scale electronics 31:Single-molecule electronics 10: 1452: 492:10.1016/j.stam.2007.10.002 477:(6): 503 (free download). 279:(impedance spectroscopy). 1409:10.1007/s11581-016-1668-3 880:10.1007/s00339-008-4415-4 837:10.1007/s00339-006-3670-5 802:10.1016/j.sse.2006.03.027 759:10.1007/s11581-014-1183-3 714:10.1007/s00269-006-0117-7 328:nanoionic supercapacitors 302:at L =1 nm, m* =53 m 782:Solid-State Electronics 609:10.1126/science.1156393 277:Dielectric spectroscopy 227:electrical double layer 217:)/electronic conductor 1020:J. Phys. D: Appl. Phys 506:C S Sunandana (2015). 465:Yamaguchi, S. (2007). 257:rubidium silver iodide 158:Electronics portal 1317:Liang, C. C. (1973). 665:A D McNaught (1997). 1274:Lehovec, K. (1953). 1111:English translation: 366:, or reconfigurable 322:are all-solid-state 45:Molecular logic gate 1335:1973JElS..120.1289L 1323:J. Electrochem. Soc 1294:1953JChPh..21.1123L 1231:2007NatMa...6..833W 1191:2006IEITE..89.1492B 1140:2005NatMa...4..805M 1032:1989JPhD...22.1571C 981:2000Natur.406.1047L 965:(6799): 1047–1054. 918:2007ECSTr..11f..17Z 872:2008ApPhA..91..181C 829:2007ApPhA..86...23C 794:2006SSEle..50..520C 706:2006PCM....33..677B 641:Diffusion in solids 601:2008Sci...321..676G 587:heterostructures". 483:2007STAdM...8..503Y 391:fast-ion conductors 362:, other micro- and 344:micro power sources 273:fast-ion conductors 1082:Modern Electronics 550:10.1007/BF02430394 440:Solid State Ionics 238:solid state ionics 211:fast-ion conductor 117:Related approaches 1344:10.1149/1.2403248 1329:(10): 1289–1292. 1303:10.1063/1.1699148 1026:(11): 1571–1579. 936:10.1149/1.2778363 678:978-0-9678550-9-7 651:978-3-540-71488-0 638:H Mehrer (2007). 595:(5889): 676–680. 395:lithium batteries 320:nanoionic devices 264:activation energy 192: 191: 1443: 1421: 1420: 1403:(8): 1291–1298. 1390: 1384: 1383: 1381: 1369: 1363: 1362: 1355: 1349: 1348: 1346: 1314: 1308: 1307: 1305: 1288:(7): 1123–1128. 1271: 1265: 1264: 1257: 1251: 1250: 1239:10.1038/nmat2023 1218:Nature Materials 1209: 1203: 1202: 1174: 1168: 1167: 1148:10.1038/nmat1513 1127:Nature Materials 1121: 1115: 1109: 1107: 1106: 1097:. Archived from 1089: 1077: 1071: 1070: 1058: 1052: 1051: 1015: 1009: 1008: 989:10.1038/35023282 974: 972:quant-ph/9908043 954: 948: 947: 929: 927:10.1.1.1019.3697 906:ECS Transactions 901: 892: 891: 855: 849: 848: 812: 806: 805: 777: 771: 770: 752: 732: 726: 725: 689: 683: 682: 662: 656: 655: 635: 629: 628: 568: 562: 561: 544:(3–4): 306–314. 533: 524: 523: 503: 497: 496: 494: 462: 456: 455: 435: 360:nanomorphic cell 318:The examples of 219:heterostructures 184: 177: 170: 156: 155: 98:Multigate device 16: 15: 1451: 1450: 1446: 1445: 1444: 1442: 1441: 1440: 1436:Nanoelectronics 1426: 1425: 1424: 1391: 1387: 1370: 1366: 1357: 1356: 1352: 1315: 1311: 1272: 1268: 1259: 1258: 1254: 1225:(11): 833–840. 1210: 1206: 1175: 1171: 1134:(11): 805–815. 1122: 1118: 1104: 1102: 1093: 1078: 1074: 1059: 1055: 1016: 1012: 955: 951: 902: 895: 856: 852: 813: 809: 778: 774: 733: 729: 700:(10): 677–690. 694:Phys Chem Miner 690: 686: 679: 663: 659: 652: 636: 632: 586: 582: 578: 574: 569: 565: 534: 527: 520: 504: 500: 463: 459: 436: 427: 423: 411: 384: 380: 324:supercapacitors 316: 309: 305: 301: 285: 283:Characteristics 223:electrochemical 188: 150: 140: 112: 78:Nanolithography 54: 50:Molecular wires 25:Nanoelectronics 12: 11: 5: 1449: 1439: 1438: 1423: 1422: 1385: 1364: 1350: 1309: 1266: 1252: 1204: 1169: 1116: 1072: 1053: 1010: 949: 893: 866:(2): 181–210. 850: 807: 788:(4): 520–526. 772: 743:(2): 459–469. 727: 684: 677: 657: 650: 630: 584: 580: 576: 572: 563: 525: 518: 498: 457: 446:(4): 275–278. 424: 422: 419: 418: 417: 410: 407: 403:A. K. Jonscher 387:Lehovec effect 382: 378: 315: 312: 307: 303: 299: 289:nanotechnology 284: 281: 269:energy storage 190: 189: 187: 186: 179: 172: 164: 161: 160: 147: 146: 142: 141: 139: 138: 133: 128: 122: 119: 118: 114: 113: 111: 110: 105: 100: 95: 90: 85: 80: 75: 70: 64: 61: 60: 56: 55: 53: 52: 47: 42: 36: 33: 32: 28: 27: 21: 20: 9: 6: 4: 3: 2: 1448: 1437: 1434: 1433: 1431: 1418: 1414: 1410: 1406: 1402: 1398: 1397: 1389: 1380: 1375: 1368: 1360: 1354: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1304: 1299: 1295: 1291: 1287: 1283: 1282: 1277: 1270: 1262: 1256: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1219: 1214: 1208: 1200: 1196: 1192: 1188: 1184: 1180: 1173: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1128: 1120: 1114: 1112: 1101:on 2007-11-05 1100: 1096: 1092: 1087: 1083: 1076: 1068: 1064: 1057: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1014: 1006: 1002: 998: 994: 990: 986: 982: 978: 973: 968: 964: 960: 953: 945: 941: 937: 933: 928: 923: 919: 915: 911: 907: 900: 898: 889: 885: 881: 877: 873: 869: 865: 861: 860:Appl. Phys. A 854: 846: 842: 838: 834: 830: 826: 822: 818: 817:Appl. Phys. A 811: 803: 799: 795: 791: 787: 783: 776: 768: 764: 760: 756: 751: 746: 742: 738: 731: 723: 719: 715: 711: 707: 703: 699: 695: 688: 680: 674: 670: 669: 661: 653: 647: 643: 642: 634: 626: 622: 618: 614: 610: 606: 602: 598: 594: 590: 567: 559: 555: 551: 547: 543: 539: 532: 530: 521: 519:9781482229707 515: 511: 510: 502: 493: 488: 484: 480: 476: 472: 468: 461: 453: 449: 445: 441: 434: 432: 430: 425: 416: 413: 412: 406: 404: 400: 396: 392: 388: 376: 371: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 311: 297: 292: 290: 280: 278: 274: 270: 265: 260: 258: 254: 250: 246: 241: 239: 234: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 185: 180: 178: 173: 171: 166: 165: 163: 162: 159: 154: 149: 148: 144: 143: 137: 136:Nanomechanics 134: 132: 131:Nanophotonics 129: 127: 124: 123: 121: 120: 116: 115: 109: 106: 104: 101: 99: 96: 94: 91: 89: 86: 84: 81: 79: 76: 74: 71: 69: 68:Nanocircuitry 66: 65: 63: 62: 58: 57: 51: 48: 46: 43: 41: 38: 37: 35: 34: 30: 29: 26: 23: 22: 18: 17: 1400: 1394: 1388: 1367: 1353: 1326: 1322: 1312: 1285: 1279: 1269: 1255: 1222: 1216: 1207: 1182: 1172: 1131: 1125: 1119: 1110: 1103:. Retrieved 1099:the original 1090: 1085: 1081: 1075: 1066: 1056: 1023: 1019: 1013: 962: 958: 952: 912:(6): 17–28. 909: 905: 863: 859: 853: 823:(1): 23–29. 820: 816: 810: 785: 781: 775: 740: 736: 730: 697: 693: 687: 667: 660: 640: 633: 592: 588: 566: 541: 537: 508: 501: 474: 470: 460: 443: 439: 375:Kurt Lehovec 372: 317: 293: 286: 261: 251:(e.g. alpha– 242: 235: 194: 193: 125: 368:memory cell 364:nanosystems 245:nanosystems 93:Moore's law 1105:2007-10-13 421:References 399:fuel cells 332:memristors 195:Nanoionics 126:Nanoionics 88:Nanosensor 1417:100727969 1379:1311.3480 1213:Waser, R. 1048:250835760 944:138663309 922:CiteSeerX 750:1403.4818 356:smartdust 225:devices ( 203:nanoscale 73:Nanowires 1430:Category 1247:17972938 1164:13835739 1156:16379070 1091:Russian: 1088:: 24–29. 997:10984064 888:98046999 845:95576872 767:95593078 722:95315848 625:32000781 617:18669859 558:53352333 409:See also 370:arrays. 314:Examples 207:ceramics 1331:Bibcode 1290:Bibcode 1227:Bibcode 1187:Bibcode 1136:Bibcode 1028:Bibcode 977:Bibcode 914:Bibcode 868:Bibcode 825:Bibcode 790:Bibcode 702:Bibcode 597:Bibcode 589:Science 479:Bibcode 145:Portals 1415:  1396:Ionics 1245:  1162:  1154:  1046:  1003:  995:  959:Nature 942:  924:  886:  843:  765:  737:Ionics 720:  675:  648:  623:  615:  583:/SrTiO 556:  538:Ionics 516:  231:energy 1413:S2CID 1374:arXiv 1160:S2CID 1044:S2CID 1005:75923 1001:S2CID 967:arXiv 940:S2CID 884:S2CID 841:S2CID 763:S2CID 745:arXiv 718:S2CID 621:S2CID 554:S2CID 1243:PMID 1152:PMID 993:PMID 673:ISBN 646:ISBN 613:PMID 514:ISBN 397:and 352:MEMS 348:RFID 334:and 294:The 83:NEMS 1405:doi 1339:doi 1327:120 1298:doi 1235:doi 1195:doi 1144:doi 1036:doi 985:doi 963:406 932:doi 876:doi 833:doi 798:doi 755:doi 710:doi 605:doi 593:321 546:doi 487:doi 448:doi 253:AgI 199:ion 1432:: 1411:. 1401:22 1399:. 1337:. 1325:. 1321:. 1296:. 1286:21 1284:. 1278:. 1241:. 1233:. 1221:. 1193:. 1181:. 1158:. 1150:. 1142:. 1130:. 1084:. 1065:. 1042:. 1034:. 1024:22 1022:. 999:. 991:. 983:. 975:. 961:. 938:. 930:. 920:. 910:11 908:. 896:^ 882:. 874:. 864:91 862:. 839:. 831:. 821:86 819:. 796:. 786:50 784:. 761:. 753:. 741:21 739:. 716:. 708:. 698:33 696:. 619:. 611:. 603:. 591:. 575::Y 552:. 542:11 540:. 528:^ 485:. 473:. 469:. 444:60 442:. 428:^ 358:, 354:, 350:, 346:, 255:, 1419:. 1407:: 1382:. 1376:: 1361:. 1347:. 1341:: 1333:: 1306:. 1300:: 1292:: 1263:. 1249:. 1237:: 1229:: 1223:6 1201:. 1197:: 1189:: 1166:. 1146:: 1138:: 1132:4 1108:. 1086:7 1069:. 1050:. 1038:: 1030:: 1007:. 987:: 979:: 969:: 946:. 934:: 916:: 890:. 878:: 870:: 847:. 835:: 827:: 804:. 800:: 792:: 769:. 757:: 747:: 724:. 712:: 704:: 681:. 654:. 627:. 607:: 599:: 585:3 581:3 579:O 577:2 573:2 560:. 548:: 522:. 495:. 489:: 481:: 475:8 454:. 450:: 383:3 381:O 379:2 308:e 304:e 300:e 213:( 183:e 176:t 169:v

Index

Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e
ion
nanoscale
ceramics
fast-ion conductor
advanced superionic conductor
heterostructures
electrochemical
electrical double layer
energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.