Knowledge

Molecular wire

Source 📝

381: 511:, enhancing their mechanical and/or conducting properties. The enhancement of these properties relies on uniform dispersion of the wires into the host polymer. MoSI wires have been made in such composites, relying on their superior solubility within the polymer host compared to other nanowires or nanotubes. Bundles of wires can be used to enhance tribological properties of polymers, with applications in actuators and potentiometers. It has been recently proposed that twisted nanowires could work as electromechanical nanodevices (or 156: 252: 483:(CNTs) are conducting, and connectivity at their ends can be achieved by attachment of connecting groups. Unfortunately manufacturing CNTs with pre-determined properties is impossible at present, and the functionalized ends are typically not conducting, limiting their usefulness as molecular connectors. Individual CNTs can be soldered in an electron microscope, but the contact is not covalent and cannot be self-assembled. 444: 472:(for connections to outside world), biomolecules (for nanosensors, nanoelectrodes, molecular switches) and most importantly, they must allow branching. The connectors should also be available of pre-determined diameter and length. They should also have covalent bonding to ensure reproducible transport and contact properties. 471:
To be of use for connecting molecules, MWs need to self-assemble following well-defined routes and form reliable electrical contacts between them. To reproducibly self-assemble a complex circuit based on single molecules. Ideally, they would connect to diverse materials, such as gold metal surfaces
276:
Molecular wires conduct electricity. They typically have non-linear current-voltage characteristics, and do not behave as simple ohmic conductors. The conductance follows typical power law behavior as a function of temperature or electric field, whichever is the greater, arising from their strong
200:(or sometimes called molecular nanowires) are molecular chains that conduct electric current. They are the proposed building blocks for molecular electronic devices. Their typical diameters are less than three nanometers, while their lengths may be macroscopic, extending to centimeters or more. 475:
DNA-like molecules have specific molecular-scale recognition and can be used in molecular scaffold fabrication. Complex shapes have been demonstrated, but unfortunately metal coated DNA which is electrically conducting is too thick to connect to individual molecules. Thinner coated DNA lacks
337:
groups. Transition metal-mediated cross-coupling reactions are used to connect simple building blocks together in a convergent fashion to build organic molecular wires. For example, a simple oligo (phenylene ethylnylene) type molecular wire (B) was synthesized starting from readily available
372:
and pyridine-derived polymers can form electronically conductive polyazaacetylene chains under simple ultraviolet irradiation, and that the common observation of "browning" of aged pyridine samples is due in part to the formation of molecular wires. The gels exhibited a transition between
498:
MWs have been demonstrated, either via gold nanoparticles as linkers, or by direct connection to thiolated molecules. The two approaches may lead to different possible applications. The use of GNPs offers the possibility of branching and construction of larger circuits.
562:
Vrbani, Daniel; Rem Kar, Maja; Jesih, Adolf; Mrzel, Ale; Umek, Polona; Ponikvar, Maja; Jan Ar, Bo Tjan; Meden, Anton; Novosel, Barbara; Pejovnik, Stane; Venturini, Peter; Coleman, J C; Mihailovi, Dragan (2004). "Air-stable monodispersed
277:
one-dimensional character. Numerous theoretical ideas have been used in an attempt to understand the conductivity of one-dimensional systems, where strong interactions between electrons lead to departures from normal metallic (
346: 535:
Tarascon, J.M.; Hull, G.W.; Disalvo, F.J. (1984). "A facile synthesis of pseudo one-monodimensional ternary molybdenum chalcogenides M2Mo6X6 (X = Se,Te; M = Li,Na..Cs)".
317:(e.g. organic molecular wires and inorganic molecular wires). The basic principle is to assemble repeating modules. Organic molecular wires are usually synthesized via 963:
Hua, Shao-An; Liu, Isiah Po-Chun; Hasanov, Hasan; Huang, Gin-Chen; Ismayilov, Rayyat Huseyn; Chiu, Chien-Lan; Yeh, Chen-Yu; Lee, Gene-Hsiang; Peng, Shie-Ming (2010).
740:
Cattena, C. J.; Bustos-Marun, R. A.; Pastawski, H. M. (2010). "Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study".
672:
Yin, Xi; Warren, Steven A.; Pan, Yung-Tin; Tsao, Kai-Chieh; Gray, Danielle L.; Bertke, Jeffery; Yang, Hong (2014). "A Motif for Infinite Metal Atom Wires".
965:"Probing the electronic communication of linear heptanickel and nonanickel string complexes by utilizing two redox-active [Ni2(napy)4]3+ moieties" 394: 184: 920:
Mihailovic, D. (2009). "Inorganic molecular wires: Physical and functional properties of transition metal chalco-halide polymers".
380: 1061: 847: 645:
D. Mihailovic (2009). "Inorganic molecular wires: Physical and functional properties of transition metal chalco-halide polymers".
618:
Perrin, C. & Sergent, M. (1983). "A new family of monodimensional compounds with octahedral molybdenum clusters: Mo6X8Y2".
810: 1005:
Garcia, J. C.; Justo, J. F. (2014). "Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice".
110: 361:. Carbon nanotubes can be synthesized via various nano-technological approaches. DNA can be prepared by either step-wise 724: 1086: 871:"Light-Induced Reactions within Poly(4-vinyl pyridine)/Pyridine Gels: The 1,6-Polyazaacetylene Oligomers Formation" 374: 105: 1076: 177: 85: 244:
atoms directly bonded to each other. Molecular wires containing paramagnetic inorganic moieties can exhibit
208:
Most types of molecular wires are derived from organic molecules. One naturally occurring molecular wire is
42: 452: 237: 834:
Tour, J. M.; et al. (2001). "Synthesis and Preliminary Testing of Molecular Wires and Devices".
1091: 716: 170: 964: 869:
Vaganova, E; Eliaz, D; Shimanovich, U; Leitus, G; Aqad, E; Lokshin, V; Khodorkovsky, V (2021).
448: 465: 708: 1024: 759: 584: 339: 47: 8: 709: 512: 476:
electronic connectivity and is unsuited for connecting molecular electronics components.
302: 1028: 763: 588: 1096: 1040: 1014: 897: 870: 775: 749: 600: 305:
have also been found to be important in determining the properties of molecular wires.
282: 160: 1081: 1044: 987: 902: 851: 816: 806: 779: 720: 706: 689: 627: 604: 596: 548: 267:
molecular wire. Mo atoms are blue, iodine atoms are red and sulphur atoms are yellow.
1036: 1032: 979: 946: 929: 892: 882: 843: 798: 767: 681: 654: 592: 544: 354: 338:
1-bromo-4-iodobenzene (A). The final product was obtained through several steps of
318: 294: 241: 100: 933: 658: 384:
Formation of polyazaacetylenes from poly-(4-vinyl)pyridine under ultraviolet light
480: 314: 80: 27: 797:. Topics in Current Chemistry. Vol. 257. Berlin: Springer. pp. 33–62. 771: 330: 95: 887: 1070: 631: 362: 138: 133: 70: 991: 906: 855: 820: 693: 685: 486:
Possible routes for the construction of larger functional circuits using Mo
278: 245: 437:
clusters, which are joined together by flexible sulfur or iodine bridges.
848:
10.1002/1521-3765(20011203)7:23<5118::aid-chem5118>3.0.co;2-1
515: 365:
on solid-phase or by DNA-polymerase-catalyzed replication inside cells.
707:
Cotton, F. Albert; Murillo, Carlos A. & Walton, Richard A. (2005).
128: 90: 393:
One class of inorganic molecular wires consist of subunits related to
983: 334: 286: 212:. Prominent inorganic examples include polymeric materials such as Li 802: 518:) to measure forces and torques at nanoscale with great precision. 369: 155: 75: 1019: 754: 313:
Methods have been developed for the synthesis of diverse types of
251: 508: 410: 298: 290: 868: 440:
Chains can also be produced from metallo-organic precursors.
739: 345: 297:), interactions with vibrational degrees of freedom (called 443: 358: 209: 293:. Effects caused by classical Coulomb repulsion (called 561: 281:) behavior. Important concepts are those introduced by 793:
James, D. K.; Tour, J. M. (2005). "Molecular Wires".
617: 463: 534: 962: 949:, Carlos A. Murillo and Richard A. Walton (eds.), 833: 1068: 671: 644: 349:Synthesis of a simple organic molecular wire. 178: 409:was performed in sealed and vacuumed quartz 388: 377:and electronic conductivity on irradiation. 1004: 919: 324: 271: 185: 171: 1018: 896: 886: 792: 753: 507:Molecular wires can be incorporated into 442: 379: 344: 329:Organic molecular wires usually consist 250: 16:Electrically conductive molecular chains 674:Angewandte Chemie International Edition 1069: 353:Other organic molecular wires include 321:-mediated cross-coupling reactions. 111:List of semiconductor scale examples 13: 951:Multiple Bonds Between Metal Atoms 711:Multiple Bonds Between Metal Atoms 240:(EMACs) which comprise strings of 14: 1108: 1055: 715:(3 ed.). Springer. pp.  665: 502: 451:approach to molecular wires are 154: 106:Semiconductor device fabrication 998: 956: 953:, 3rd edition, Springer (2005). 940: 913: 862: 795:Molecular Wires and Electronics 333:connected by ethylene group or 22:Part of a series of articles on 827: 786: 733: 700: 638: 611: 555: 528: 1: 934:10.1016/j.pmatsci.2008.09.001 922:Progress in Materials Science 659:10.1016/j.pmatsci.2008.09.001 647:Progress in Materials Science 521: 549:10.1016/0025-5408(84)90054-0 308: 7: 1037:10.1209/0295-5075/108/36006 368:It was recently shown that 203: 62:Solid-state nanoelectronics 43:Molecular scale electronics 34:Single-molecule electronics 10: 1113: 772:10.1103/PhysRevB.82.144201 597:10.1088/0957-4484/15/5/039 453:extended metal atom chains 238:extended metal atom chains 888:10.3390/molecules26226925 425:, the repeat units are Mo 389:Inorganic molecular wires 236:, , and single-molecule 1087:Semiconductor materials 1062:Molybdenum sulfide MSDS 325:Organic molecular wires 272:Conduction of electrons 686:10.1002/anie.201408461 460: 449:coordination chemistry 385: 350: 268: 161:Electronics portal 466:molecular electronics 446: 397:. The synthesis of Mo 383: 348: 255:The structure of a Mo 254: 1077:Molybdenum compounds 447:Illustrative of the 340:Sonogashira coupling 48:Molecular logic gate 1029:2014EL....10836006G 972:Dalton Transactions 764:2010PhRvB..82n4201C 680:(51): 14087–14091. 589:2004Nanot..15..635V 303:Quantum Decoherence 479:Some varieties of 461: 386: 375:ionic conductivity 351: 269: 120:Related approaches 842:(23): 5118–5134. 812:978-3-540-25793-6 742:Physical Review B 195: 194: 1104: 1049: 1048: 1022: 1002: 996: 995: 984:10.1039/b923125k 969: 960: 954: 947:F. Albert Cotton 944: 938: 937: 917: 911: 910: 900: 890: 866: 860: 859: 831: 825: 824: 790: 784: 783: 757: 737: 731: 730: 714: 704: 698: 697: 669: 663: 662: 642: 636: 635: 615: 609: 608: 559: 553: 552: 537:Mater. Res. Bull 532: 481:carbon nanotubes 413:at 1343 K. In Mo 395:Chevrel clusters 355:carbon nanotubes 319:transition metal 295:Coulomb blockade 242:transition metal 187: 180: 173: 159: 158: 101:Multigate device 19: 18: 1112: 1111: 1107: 1106: 1105: 1103: 1102: 1101: 1092:Nanoelectronics 1067: 1066: 1058: 1053: 1052: 1003: 999: 967: 961: 957: 945: 941: 918: 914: 867: 863: 832: 828: 813: 803:10.1007/b136066 791: 787: 738: 734: 727: 705: 701: 670: 666: 643: 639: 616: 612: 574: 570: 566: 560: 556: 533: 529: 524: 505: 497: 493: 489: 469: 458: 436: 432: 428: 424: 420: 416: 408: 404: 400: 391: 327: 315:molecular wires 311: 274: 266: 262: 258: 235: 231: 227: 223: 219: 215: 206: 198:Molecular wires 191: 153: 143: 115: 81:Nanolithography 57: 53:Molecular wires 28:Nanoelectronics 17: 12: 11: 5: 1110: 1100: 1099: 1094: 1089: 1084: 1079: 1065: 1064: 1057: 1056:External links 1054: 1051: 1050: 1007:Europhys. Lett 997: 978:(16): 3890–6. 955: 939: 928:(3): 309–350. 912: 861: 826: 811: 785: 748:(14): 144201. 732: 725: 699: 664: 653:(3): 309–350. 637: 610: 583:(5): 635–638. 577:Nanotechnology 572: 568: 564: 554: 543:(7): 915–924. 526: 525: 523: 520: 504: 503:Other research 501: 495: 491: 487: 468: 462: 456: 455:, e.g. this Ni 434: 430: 426: 422: 418: 414: 406: 402: 398: 390: 387: 331:aromatic rings 326: 323: 310: 307: 273: 270: 264: 260: 256: 233: 229: 225: 221: 217: 213: 205: 202: 193: 192: 190: 189: 182: 175: 167: 164: 163: 150: 149: 145: 144: 142: 141: 136: 131: 125: 122: 121: 117: 116: 114: 113: 108: 103: 98: 93: 88: 83: 78: 73: 67: 64: 63: 59: 58: 56: 55: 50: 45: 39: 36: 35: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 1109: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1074: 1072: 1063: 1060: 1059: 1046: 1042: 1038: 1034: 1030: 1026: 1021: 1016: 1012: 1008: 1001: 993: 989: 985: 981: 977: 973: 966: 959: 952: 948: 943: 935: 931: 927: 923: 916: 908: 904: 899: 894: 889: 884: 880: 876: 872: 865: 857: 853: 849: 845: 841: 837: 830: 822: 818: 814: 808: 804: 800: 796: 789: 781: 777: 773: 769: 765: 761: 756: 751: 747: 743: 736: 728: 726:0-387-25829-9 722: 718: 713: 712: 703: 695: 691: 687: 683: 679: 675: 668: 660: 656: 652: 648: 641: 633: 629: 625: 621: 614: 606: 602: 598: 594: 590: 586: 582: 578: 558: 550: 546: 542: 538: 531: 527: 519: 517: 514: 510: 500: 484: 482: 477: 473: 467: 464:Nanowires in 454: 450: 445: 441: 438: 412: 396: 382: 378: 376: 371: 366: 364: 363:DNA synthesis 360: 356: 347: 343: 341: 336: 332: 322: 320: 316: 306: 304: 300: 296: 292: 288: 284: 280: 253: 249: 247: 243: 239: 211: 201: 199: 188: 183: 181: 176: 174: 169: 168: 166: 165: 162: 157: 152: 151: 147: 146: 140: 139:Nanomechanics 137: 135: 134:Nanophotonics 132: 130: 127: 126: 124: 123: 119: 118: 112: 109: 107: 104: 102: 99: 97: 94: 92: 89: 87: 84: 82: 79: 77: 74: 72: 71:Nanocircuitry 69: 68: 66: 65: 61: 60: 54: 51: 49: 46: 44: 41: 40: 38: 37: 33: 32: 29: 26: 25: 21: 20: 1013:(3): 36006. 1010: 1006: 1000: 975: 971: 958: 950: 942: 925: 921: 915: 881:(22): 6925. 878: 874: 864: 839: 836:Chem. Eur. J 835: 829: 794: 788: 745: 741: 735: 710: 702: 677: 673: 667: 650: 646: 640: 623: 620:J. Chem. Res 619: 613: 580: 576: 575:nanowires". 557: 540: 536: 530: 516:nanobalances 506: 485: 478: 474: 470: 439: 392: 367: 352: 328: 312: 279:Fermi liquid 275: 207: 197: 196: 52: 342:reactions. 246:Kondo peaks 96:Moore's law 1071:Categories 522:References 129:Nanoionics 91:Nanosensor 1097:Pyridines 1045:118792981 1020:1411.0375 875:Molecules 780:119099069 755:1004.5552 632:1747-5198 626:: 38–39. 605:250922114 335:acetylene 309:Synthesis 287:Luttinger 76:Nanowires 1082:Sulfides 992:20372713 907:34834017 856:11775685 821:22179334 694:25319757 509:polymers 459:complex. 370:pyridine 283:Tomonaga 204:Examples 1025:Bibcode 898:8621047 760:Bibcode 585:Bibcode 513:torsion 411:ampoule 299:phonons 148:Portals 1043:  990:  905:  895:  854:  819:  809:  778:  723:  719:–706. 692:  630:  603:  301:) and 291:Wigner 224:and Mo 1041:S2CID 1015:arXiv 968:(PDF) 776:S2CID 750:arXiv 601:S2CID 988:PMID 903:PMID 852:PMID 817:PMID 807:ISBN 721:ISBN 690:PMID 628:ISSN 357:and 289:and 86:NEMS 1033:doi 1011:108 980:doi 930:doi 893:PMC 883:doi 844:doi 799:doi 768:doi 717:669 682:doi 655:doi 593:doi 545:doi 492:9−x 431:9−x 419:9−x 403:9−x 359:DNA 261:9−x 230:9−x 210:DNA 1073:: 1039:. 1031:. 1023:. 1009:. 986:. 976:39 974:. 970:. 926:54 924:. 901:. 891:. 879:26 877:. 873:. 850:. 838:. 815:. 805:. 774:. 766:. 758:. 746:82 744:. 688:. 678:53 676:. 651:54 649:. 622:. 599:. 591:. 581:15 579:. 563:Mo 541:19 539:. 285:, 248:. 220:Se 216:Mo 1047:. 1035:: 1027:: 1017:: 994:. 982:: 936:. 932:: 909:. 885:: 858:. 846:: 840:7 823:. 801:: 782:. 770:: 762:: 752:: 729:. 696:. 684:: 661:. 657:: 634:. 624:5 607:. 595:: 587:: 573:6 571:I 569:3 567:S 565:6 551:. 547:: 496:x 494:I 490:S 488:6 457:9 435:x 433:I 429:S 427:6 423:x 421:I 417:S 415:6 407:x 405:I 401:S 399:6 265:x 263:I 259:S 257:6 234:x 232:I 228:S 226:6 222:6 218:6 214:2 186:e 179:t 172:v

Index

Nanoelectronics
Molecular scale electronics
Molecular logic gate
Molecular wires
Nanocircuitry
Nanowires
Nanolithography
NEMS
Nanosensor
Moore's law
Multigate device
Semiconductor device fabrication
List of semiconductor scale examples
Nanoionics
Nanophotonics
Nanomechanics
icon
Electronics portal
v
t
e
DNA
extended metal atom chains
transition metal
Kondo peaks

Fermi liquid
Tomonaga
Luttinger
Wigner

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.