Knowledge

Kondo effect

Source đź“ť

2921: 1849: 2277: 2301: 2313: 2289: 20: 517: 28: 584:
systems. In such systems, a quantum dot with at least one unpaired electron behaves as a magnetic impurity, and when the dot is coupled to a metallic conduction band, the conduction electrons can scatter off the dot. This is completely analogous to the more traditional case of a magnetic impurity in
459:
and B. Voigt observed that the resistivity of nominally pure gold reaches a minimum at 10 K, and similarly for nominally pure Cu at 2 K. Similar results were discovered in other metals. Kondo described the three puzzling aspects that frustrated previous researchers who tried to explain the effect:
610:
In 2017, teams from the Vienna University of Technology and Rice University conducted experiments into the development of new materials made from the metals cerium, bismuth and palladium in specific combinations and theoretical work experimenting with models of such structures, respectively. The
524:, the Fermi velocity, experiencing only a mild antiferromagnetic correlation in the vicinity of the impurity. In contrast, as the temperature tends to zero the impurity magnetic moment and one conduction electron moment bind very strongly to form an overall non-magnetic state. 493:
resulting in a divergence as the temperature approaches 0 K, but later methods used non-perturbative techniques to refine his result. These improvements produced a finite resistivity but retained the feature of a resistance minimum at a non-zero temperature. One defines the
513:, it was shown that the Kondo model lies in the strong coupling regime of the Anderson impurity model. The Schrieffer–Wolff transformation projects out the high energy charge excitations in the Anderson impurity model, obtaining the Kondo model as an effective Hamiltonian. 568:
materials, the non-perturbative growth of the interaction leads to quasi-electrons with masses up to thousands of times the free electron mass, i.e., the electrons are dramatically slowed by the interactions. In a number of instances they are
532:, i.e. a situation where the coupling becomes non-perturbatively strong at low temperatures and low energies. In the Kondo problem, the coupling refers to the interaction between the localized magnetic impurities and the itinerant electrons. 264: 1230:
Neupane, Madhab; Alidoust, Nasser; Belopolski, Ilya; Bian, Guang; Xu, Su-Yang; Kim, Dae-Jeong; Shibayev, Pavel P.; Sanchez, Daniel S.; Zheng, Hao; Chang, Tay-Rong; Jeng, Horng-Tay; et al. (2015-09-18).
73:). Kondo's calculation predicted that the scattering rate and the resulting part of the resistivity should increase logarithmically as the temperature approaches 0 K. Extended to a lattice of 471:
of the phonons, below which the phonons. However, in the AuFe alloy, the resistivity continues to rise sharply below 0.01 K, yet there seemed to be no energy gap in AuFe alloy that small.
1460:
Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P. (2016-01-01). "Holographic optical traps for atom-based topological Kondo devices".
520:
Schematic of the weakly coupled high temperature situation in which the magnetic moments of conduction electrons in the metal host pass by the impurity magnetic moment at speeds of v
486:
showed that phenomenon was caused by magnetic impurity in nominally pure metals. When Kondo sent a preview of his paper to Sarachik, Sarachik confirmed the data fit the theory.
447:
are constants independent of temperature. Jun Kondo derived the third term with logarithmic dependence on temperature and the experimentally observed concentration dependence.
294: 1657: 1763: 1178: 464:
The resistivity of a truly pure metal is expected to decrease monotonically, because with lower temperature, the probability of electron-phonon scattering decreases.
358: 324: 425: 135: 445: 398: 378: 155: 611:
results of the experiments were published in December 2017 and, together with the theoretical work, lead to the discovery of a new state, a correlation-driven
1010: 2351: 1707:. Cambridge studies in magnetism (1. paperback ed. (with corr.), transferred to digital printing 2003 ed.). Cambridge: Cambridge Univ. Press. 1286:
Neupane, M.; Alidoust, N.; Xu, S.-Y.; Kondo, T.; Ishida, Y.; Kim, D. J.; Liu, Chang; Belopolski, I.; Jo, Y. J.; Chang, T.-R.; Jeng, H.-T. (2013).
163: 2953: 2943: 2774: 2584: 1756: 2666: 2625: 2293: 589: 2404: 1749: 2429: 1521:
Dzsaber, S.; Prochaska, L.; Sidorenko, A.; Eguchi, G.; Svagera, R.; Waas, M.; Prokofiev, A.; Si, Q.; Paschen, S. (2017-06-16).
2764: 2533: 1731: 1712: 1692: 1378: 886: 573:. It is believed that a manifestation of the Kondo effect is necessary for understanding the unusual metallic delta-phase of 1359:"Topological Insulators, Topological Dirac semimetals, Topological Crystalline Insulators, and Topological Kondo Insulators" 2656: 2344: 1185: 2394: 1033: 510: 2512: 2924: 2281: 2854: 2661: 2604: 2424: 2814: 2717: 2697: 2457: 2337: 2620: 2379: 2374: 2948: 2317: 2262: 1873: 23:
Kondo effect: How gold with a small amount of what were probably iron impurities behaves at low temperatures
2893: 2769: 2419: 1808: 509:
theory were an important contribution to understanding the underlying physics of the problem. Based on the
994: 2958: 2888: 2682: 1288:"Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB 1074:
Schrieffer, J.R.; Wolff, P.A. (September 1966). "Relation between the Anderson and Kondo Hamiltonians".
2462: 2053: 1962: 868: 821: 2630: 2002: 1977: 1724:
Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunnelling centres
1358: 1216: 2866: 2172: 1926: 1916: 1772: 775:"Messungen mit Hilfe von flĂĽssigem Helium XI Widerstand der reinen Metalle in tiefen Temperaturen" 728:"Messungen mit Hilfe von flĂĽssigem Helium XI Widerstand der reinen Metalle in tiefen Temperaturen" 2738: 2594: 2563: 2538: 2477: 2018: 499: 2905: 2829: 2824: 2759: 2687: 2589: 2492: 2482: 2467: 2384: 774: 727: 272: 54: 2878: 2873: 2712: 2707: 2640: 2543: 2507: 2497: 2452: 2069: 2048: 1982: 1203: 588:
Band-structure hybridization and flat band topology in Kondo insulators have been imaged in
333: 299: 2819: 2553: 2389: 2360: 2038: 1813: 1611: 1544: 1479: 1418: 1313: 1258: 1136: 1083: 1048: 967: 920: 833: 786: 739: 698: 657: 403: 120: 46: 540:
Extended to a lattice of magnetic ions, the Kondo effect likely explains the formation of
430: 8: 2883: 2849: 2784: 2702: 2692: 2487: 1992: 1972: 1957: 1906: 1658:"Scientists discover entirely new material that cannot be explained by classical physics" 490: 62: 1615: 1548: 1491: 1483: 1422: 1317: 1262: 1140: 1087: 1052: 971: 924: 837: 790: 743: 702: 661: 2517: 2139: 2129: 1967: 1878: 1634: 1601: 1589: 1534: 1503: 1469: 1442: 1408: 1303: 1248: 1160: 1126: 1099: 529: 383: 363: 140: 878: 845: 2568: 2300: 2247: 2212: 2119: 2043: 1727: 1708: 1688: 1639: 1570: 1562: 1507: 1495: 1434: 1374: 1339: 1331: 1152: 1002: 955: 936: 882: 867:
Kondo, J. (1970-01-01), Seitz, Frederick; Turnbull, David; Ehrenreich, Henry (eds.),
849: 802: 755: 600: 503: 483: 50: 1676: 1446: 1103: 2839: 2217: 2109: 2089: 2084: 2079: 2074: 1931: 1911: 1868: 1833: 1803: 1738:
Monograph on newer versions of the Kondo effect in non-magnetic contexts especially
1629: 1619: 1557: 1552: 1522: 1487: 1430: 1426: 1399:
BĂ©ri, B.; Cooper, N. R. (2012). "Topological Kondo Effect with Majorana Fermions".
1366: 1321: 1266: 1164: 1144: 1091: 1056: 975: 928: 874: 841: 794: 747: 706: 665: 616: 596: 548:
in intermetallic compounds, especially those involving rare earth elements such as
456: 89:
in intermetallic compounds, especially those involving rare earth elements such as
2861: 2599: 2548: 2242: 2197: 1863: 1780: 1233:"Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 1148: 595:
In 2012, Beri and Cooper proposed a topological Kondo effect could be found with
570: 545: 506: 479: 84: 908: 2804: 2779: 2558: 2305: 2252: 2134: 2023: 1594:
Proceedings of the National Academy of Sciences of the United States of America
1271: 1232: 612: 604: 66: 1370: 979: 670: 645: 2937: 2900: 2834: 2809: 2409: 2177: 2159: 2144: 2124: 2028: 1997: 1828: 1566: 1499: 1335: 1006: 940: 853: 806: 798: 759: 751: 565: 541: 78: 1624: 1095: 467:
The resistivity should rapidly plateau when the temperature drops below the
259:{\displaystyle \rho (T)=\rho _{0}+aT^{2}+c_{m}\ln {\frac {\mu }{T}}+bT^{5},} 2844: 2754: 2472: 2414: 2399: 2114: 1838: 1741: 1643: 1574: 1438: 1343: 1060: 553: 327: 94: 1523:"Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling" 1156: 2502: 2329: 2234: 1952: 1921: 1901: 1848: 1131: 581: 468: 106: 70: 822:"The electrical resistance of gold, copper and lead at low temperatures" 474:
The phenomenon is universal, so any explanation should apply in general.
2149: 1987: 1823: 1326: 1287: 873:, Solid State Physics, vol. 23, Academic Press, pp. 183–281, 1117:
Cronenwett, Sara M. (1998). "A Tunable Kondo Effect in Quantum Dots".
932: 711: 686: 69:
conduction electrons off d-orbital electrons localized at impurities (
2635: 2207: 2033: 1818: 641: 620: 574: 557: 98: 58: 31: 498:
as the energy scale limiting the validity of the Kondo results. The
2733: 1539: 1474: 1606: 1459: 1413: 1308: 1253: 2257: 2224: 2202: 2182: 561: 102: 57:
with temperature. The cause of the effect was first explained by
38: 954:
Sarachik, M. P.; Corenzwit, E.; Longinotti, L. D. (1964-08-17).
2192: 2187: 1793: 1679:- special issue of the Journal of the Physical Society of Japan 1520: 820:
de Haas, W. J.; de Boer, J.; van dën Berg, G. J. (1934-05-01).
549: 90: 19: 2167: 1788: 1229: 27: 1073: 953: 819: 516: 1798: 1687:. Cambridge ; New York: Cambridge University Press. 53:, resulting in a characteristic change i.e. a minimum in 956:"Resistivity of Mo-Nb and Mo-Re Alloys Containing 1% Fe" 1357:
Hasan, M. Zahid; Xu, Su-Yang; Neupane, Madhab (2015),
1285: 433: 406: 386: 366: 336: 302: 275: 166: 143: 123: 1588:
Lai, H.H.; Grefe, S.E.; Paschen, S.; Si, Q. (2012).
528:
The Kondo effect can be considered as an example of
77:, the Kondo effect likely explains the formation of 439: 419: 392: 372: 352: 318: 288: 258: 149: 129: 1587: 2935: 1365:, John Wiley & Sons, Ltd., pp. 55–100, 1590:"Weyl–Kondo semimetal in heavy-fermion systems" 639: 1356: 687:"Resistance Minimum in Dilute Magnetic Alloys" 2345: 1757: 1721: 772: 725: 105:. The Kondo effect has also been observed in 1771: 157:, including the Kondo effect, is written as 65:to the problem to account for scattering of 1677:Kondo Effect - 40 Years after the Discovery 2359: 2352: 2338: 1847: 1764: 1750: 1398: 1116: 995:"Myriam Sarachik Never Gave Up on Physics" 1633: 1623: 1605: 1556: 1538: 1473: 1412: 1325: 1307: 1270: 1252: 1130: 710: 669: 590:angle-resolved photoemission spectroscopy 1031: 913:Journal of the Physical Society of Japan 773:Meissner, W.; Voigt, B. (January 1930). 726:Meissner, W.; Voigt, B. (January 1930). 515: 26: 18: 2954:Electric and magnetic fields in matter 2936: 2430:Two-dimensional conformal field theory 1702: 580:The Kondo effect has been observed in 296:is the residual resistivity, the term 2944:Electrical resistance and conductance 2333: 1745: 1685:The physics of dilute magnetic alloys 1682: 1034:"Localized Magnetic States in Metals" 992: 906: 866: 684: 16:Physical phenomenon due to impurities 2288: 1013:from the original on August 31, 2020 2312: 1722:Cox, D. L.; Zawadowski, A. (1999). 1705:The Kondo problem to heavy fermions 489:Kondo's solution was derived using 13: 1670: 993:Chang, Kenneth (August 31, 2020). 117:The dependence of the resistivity 14: 2970: 2925:Template:Quantum mechanics topics 607:may also demonstrate the effect. 2920: 2919: 2311: 2299: 2287: 2276: 2275: 1726:. London: Taylor & Francis. 870:Theory of Dilute Magnetic Alloys 560:, and actinide elements such as 360:is from the lattice vibrations: 326:shows the contribution from the 101:, and actinide elements such as 1650: 1581: 1514: 1453: 1392: 1350: 1279: 1223: 1171: 1110: 1067: 1025: 691:Progress of Theoretical Physics 599:, while it has been shown that 511:Schrieffer–Wolff transformation 1558:10.1103/PhysRevLett.118.246601 1431:10.1103/PhysRevLett.109.156803 986: 947: 900: 860: 813: 766: 719: 678: 633: 176: 170: 1: 1874:Spontaneous symmetry breaking 1703:Hewson, Alexander C. (2003). 1699:. Monograph by Kondo himeslf. 1492:10.1088/1367-2630/18/7/075012 879:10.1016/S0081-1947(08)60616-5 846:10.1016/S0031-8914(34)80310-2 626: 1149:10.1126/science.281.5376.540 478:Experiments in the 1960s by 45:describes the scattering of 7: 2889:Quantum information science 907:Kondo, Jun (January 2005). 615:. The team dubbed this new 535: 10: 2975: 2054:Spin gapless semiconductor 1963:Nearly free electron model 1272:10.1103/PhysRevB.92.104420 450: 61:, who applied third-order 2914: 2797: 2747: 2726: 2675: 2649: 2613: 2577: 2526: 2445: 2438: 2367: 2271: 2233: 2158: 2102: 2062: 2011: 2003:Density functional theory 1978:electronic band structure 1945: 1894: 1887: 1856: 1845: 1779: 1371:10.1002/9783527681594.ch4 980:10.1103/PhysRev.135.A1041 671:10.4249/scholarpedia.7529 330:properties, and the term 289:{\displaystyle \rho _{0}} 112: 2173:Bogoliubov quasiparticle 1917:Quantum spin Hall effect 1809:Bose–Einstein condensate 1773:Condensed matter physics 799:10.1002/andp.19303990803 752:10.1002/andp.19303990702 2585:2D free massless scalar 2478:Quantum electrodynamics 2405:QFT in curved spacetime 1625:10.1073/pnas.1715851115 1527:Physical Review Letters 1401:Physical Review Letters 1096:10.1103/PhysRev.149.491 500:Anderson impurity model 2906:Quantum thermodynamics 2830:On shell and off shell 2825:Loop quantum cosmology 2667:N = 4 super Yang–Mills 2626:N = 1 super Yang–Mills 2493:Scalar electrodynamics 2483:Quantum chromodynamics 2385:Conformal field theory 2361:Quantum field theories 1462:New Journal of Physics 1363:Topological Insulators 1211:Cite journal requires 1179:"Revival of the Kondo" 1061:10.1103/PhysRev.124.41 525: 441: 421: 394: 374: 354: 353:{\displaystyle bT^{5}} 320: 319:{\displaystyle aT^{2}} 290: 260: 151: 131: 55:electrical resistivity 34: 24: 2879:Quantum hydrodynamics 2874:Quantum hadrodynamics 2498:Scalar chromodynamics 2049:Topological insulator 1983:Anderson localization 1656:Gabbatiss, J. (2017) 1296:Nature Communications 1032:Anderson, P. (1961). 909:"Sticking to My Bush" 519: 442: 422: 420:{\displaystyle c_{m}} 395: 375: 355: 321: 291: 261: 152: 132: 130:{\displaystyle \rho } 30: 22: 2949:Correlated electrons 2850:Quantum fluctuations 2820:Loop quantum gravity 2390:Lattice field theory 1927:Aharonov–Bohm effect 1814:Fermionic condensate 440:{\displaystyle \mu } 431: 404: 384: 364: 334: 300: 273: 164: 141: 121: 47:conduction electrons 2884:Quantum information 2488:Quartic interaction 2318:Physics WikiProject 1993:tight binding model 1973:Fermi liquid theory 1958:Free electron model 1907:Quantum Hall effect 1888:Electrons in solids 1683:KondĹŤ, Jun (2012). 1616:2018PNAS..115...93L 1549:2017PhRvL.118x6601D 1484:2016NJPh...18g5012B 1423:2012PhRvL.109o6803B 1318:2013NatCo...4.2991N 1263:2015PhRvB..92j4420N 1141:1998Sci...281..540C 1088:1966PhRv..149..491S 1053:1961PhRv..124...41A 972:1964PhRv..135.1041S 966:(4A): A1041–A1045. 925:2005JPSJ...74....1K 838:1934Phy.....1.1115D 791:1930AnP...399..892M 744:1930AnP...399..761M 703:1964PThPh..32...37K 685:Kondo, Jun (1964). 662:2009SchpJ...4.7529H 601:quantum simulations 491:perturbation theory 75:magnetic impurities 63:perturbation theory 51:magnetic impurities 2959:Physical phenomena 2770:Nambu–Jona-Lasinio 2698:Higher dimensional 2605:Wess–Zumino–Witten 2395:Noncommutative QFT 1879:Critical phenomena 1327:10.1038/ncomms3991 999:The New York Times 779:Annalen der Physik 732:Annalen der Physik 530:asymptotic freedom 526: 437: 417: 390: 370: 350: 316: 286: 256: 147: 127: 49:in a metal due to 35: 25: 2931: 2930: 2793: 2792: 2327: 2326: 2213:Exciton-polariton 2098: 2097: 2070:Thermoelectricity 1733:978-0-7484-0889-4 1714:978-0-521-59947-4 1694:978-1-107-02418-2 1380:978-3-527-68159-4 1241:Physical Review B 1125:(5376): 540–544. 933:10.1143/JPSJ.74.1 888:978-0-12-607723-0 712:10.1143/PTP.32.37 597:Majorana fermions 502:and accompanying 496:Kondo temperature 484:Bell Laboratories 469:Debye temperature 393:{\displaystyle b} 373:{\displaystyle a} 235: 150:{\displaystyle T} 2966: 2923: 2922: 2840:Quantum dynamics 2513:Yang–Mills–Higgs 2468:Non-linear sigma 2458:Euler–Heisenberg 2443: 2442: 2354: 2347: 2340: 2331: 2330: 2315: 2314: 2303: 2291: 2290: 2279: 2278: 2218:Phonon polariton 2110:Amorphous magnet 2090:Electrostriction 2085:Flexoelectricity 2080:Ferroelectricity 2075:Piezoelectricity 1932:Josephson effect 1912:Spin Hall effect 1892: 1891: 1869:Phase transition 1851: 1834:Luttinger liquid 1781:States of matter 1766: 1759: 1752: 1743: 1742: 1737: 1718: 1698: 1664: 1654: 1648: 1647: 1637: 1627: 1609: 1585: 1579: 1578: 1560: 1542: 1518: 1512: 1511: 1477: 1457: 1451: 1450: 1416: 1396: 1390: 1389: 1388: 1387: 1354: 1348: 1347: 1329: 1311: 1283: 1277: 1276: 1274: 1256: 1227: 1221: 1220: 1214: 1209: 1207: 1199: 1197: 1196: 1190: 1184:. Archived from 1183: 1175: 1169: 1168: 1134: 1132:cond-mat/9804211 1114: 1108: 1107: 1071: 1065: 1064: 1038: 1029: 1023: 1022: 1020: 1018: 990: 984: 983: 951: 945: 944: 904: 898: 897: 896: 895: 864: 858: 857: 832:(7): 1115–1124. 817: 811: 810: 770: 764: 763: 723: 717: 716: 714: 682: 676: 675: 673: 640:Hewson, Alex C; 637: 617:quantum material 546:Kondo insulators 457:Walther Meissner 446: 444: 443: 438: 426: 424: 423: 418: 416: 415: 399: 397: 396: 391: 379: 377: 376: 371: 359: 357: 356: 351: 349: 348: 325: 323: 322: 317: 315: 314: 295: 293: 292: 287: 285: 284: 265: 263: 262: 257: 252: 251: 236: 228: 220: 219: 207: 206: 191: 190: 156: 154: 153: 148: 136: 134: 133: 128: 86:Kondo insulators 2974: 2973: 2969: 2968: 2967: 2965: 2964: 2963: 2934: 2933: 2932: 2927: 2910: 2862:Quantum gravity 2789: 2748:Particle theory 2743: 2722: 2671: 2645: 2609: 2573: 2527:Low dimensional 2522: 2463:Ginzburg–Landau 2434: 2425:Topological QFT 2363: 2358: 2328: 2323: 2267: 2248:Granular matter 2243:Amorphous solid 2229: 2154: 2140:Antiferromagnet 2130:Superparamagnet 2103:Magnetic phases 2094: 2058: 2007: 1968:Bloch's theorem 1941: 1883: 1864:Order parameter 1857:Phase phenomena 1852: 1843: 1775: 1770: 1734: 1715: 1695: 1673: 1671:Further reading 1668: 1667: 1662:The Independent 1655: 1651: 1586: 1582: 1519: 1515: 1458: 1454: 1397: 1393: 1385: 1383: 1381: 1355: 1351: 1291: 1284: 1280: 1236: 1228: 1224: 1212: 1210: 1201: 1200: 1194: 1192: 1188: 1181: 1177: 1176: 1172: 1115: 1111: 1076:Physical Review 1072: 1068: 1041:Physical Review 1036: 1030: 1026: 1016: 1014: 991: 987: 960:Physical Review 952: 948: 905: 901: 893: 891: 889: 865: 861: 818: 814: 771: 767: 724: 720: 683: 679: 638: 634: 629: 605:ultracold atoms 571:superconductors 538: 523: 507:renormalization 480:Myriam Sarachik 453: 432: 429: 428: 411: 407: 405: 402: 401: 385: 382: 381: 365: 362: 361: 344: 340: 335: 332: 331: 310: 306: 301: 298: 297: 280: 276: 274: 271: 270: 247: 243: 227: 215: 211: 202: 198: 186: 182: 165: 162: 161: 142: 139: 138: 137:on temperature 122: 119: 118: 115: 17: 12: 11: 5: 2972: 2962: 2961: 2956: 2951: 2946: 2929: 2928: 2915: 2912: 2911: 2909: 2908: 2903: 2898: 2897: 2896: 2886: 2881: 2876: 2871: 2870: 2869: 2859: 2858: 2857: 2847: 2842: 2837: 2832: 2827: 2822: 2817: 2812: 2807: 2805:Casimir effect 2801: 2799: 2795: 2794: 2791: 2790: 2788: 2787: 2782: 2780:Standard Model 2777: 2772: 2767: 2762: 2757: 2751: 2749: 2745: 2744: 2742: 2741: 2736: 2730: 2728: 2724: 2723: 2721: 2720: 2715: 2710: 2705: 2700: 2695: 2690: 2685: 2679: 2677: 2673: 2672: 2670: 2669: 2664: 2659: 2653: 2651: 2650:Superconformal 2647: 2646: 2644: 2643: 2638: 2633: 2631:Seiberg–Witten 2628: 2623: 2617: 2615: 2614:Supersymmetric 2611: 2610: 2608: 2607: 2602: 2597: 2592: 2587: 2581: 2579: 2575: 2574: 2572: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2530: 2528: 2524: 2523: 2521: 2520: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2449: 2447: 2440: 2436: 2435: 2433: 2432: 2427: 2422: 2417: 2412: 2407: 2402: 2397: 2392: 2387: 2382: 2377: 2371: 2369: 2365: 2364: 2357: 2356: 2349: 2342: 2334: 2325: 2324: 2322: 2321: 2309: 2306:Physics Portal 2297: 2285: 2272: 2269: 2268: 2266: 2265: 2260: 2255: 2253:Liquid crystal 2250: 2245: 2239: 2237: 2231: 2230: 2228: 2227: 2222: 2221: 2220: 2215: 2205: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2164: 2162: 2160:Quasiparticles 2156: 2155: 2153: 2152: 2147: 2142: 2137: 2132: 2127: 2122: 2120:Superdiamagnet 2117: 2112: 2106: 2104: 2100: 2099: 2096: 2095: 2093: 2092: 2087: 2082: 2077: 2072: 2066: 2064: 2060: 2059: 2057: 2056: 2051: 2046: 2044:Superconductor 2041: 2036: 2031: 2026: 2024:Mott insulator 2021: 2015: 2013: 2009: 2008: 2006: 2005: 2000: 1995: 1990: 1985: 1980: 1975: 1970: 1965: 1960: 1955: 1949: 1947: 1943: 1942: 1940: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1898: 1896: 1889: 1885: 1884: 1882: 1881: 1876: 1871: 1866: 1860: 1858: 1854: 1853: 1846: 1844: 1842: 1841: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1785: 1783: 1777: 1776: 1769: 1768: 1761: 1754: 1746: 1740: 1739: 1732: 1719: 1713: 1700: 1693: 1680: 1672: 1669: 1666: 1665: 1649: 1580: 1533:(24): 246601. 1513: 1452: 1407:(15): 156803. 1391: 1379: 1349: 1289: 1278: 1247:(10): 104420. 1234: 1222: 1213:|journal= 1170: 1109: 1082:(2): 491–492. 1066: 1024: 985: 946: 899: 887: 859: 812: 785:(8): 892–936. 765: 738:(7): 761–797. 718: 677: 646:"Kondo effect" 631: 630: 628: 625: 613:Weyl semimetal 542:heavy fermions 537: 534: 521: 476: 475: 472: 465: 452: 449: 436: 414: 410: 389: 369: 347: 343: 339: 313: 309: 305: 283: 279: 267: 266: 255: 250: 246: 242: 239: 234: 231: 226: 223: 218: 214: 210: 205: 201: 197: 194: 189: 185: 181: 178: 175: 172: 169: 146: 126: 114: 111: 80:heavy fermions 15: 9: 6: 4: 3: 2: 2971: 2960: 2957: 2955: 2952: 2950: 2947: 2945: 2942: 2941: 2939: 2926: 2918: 2913: 2907: 2904: 2902: 2901:Quantum logic 2899: 2895: 2892: 2891: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2868: 2865: 2864: 2863: 2860: 2856: 2853: 2852: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2835:Quantum chaos 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2810:Cosmic string 2808: 2806: 2803: 2802: 2800: 2796: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2752: 2750: 2746: 2740: 2737: 2735: 2732: 2731: 2729: 2725: 2719: 2716: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2683:Pure 4D N = 1 2681: 2680: 2678: 2674: 2668: 2665: 2663: 2660: 2658: 2655: 2654: 2652: 2648: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2618: 2616: 2612: 2606: 2603: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2583: 2582: 2580: 2576: 2570: 2567: 2565: 2564:Thirring–Wess 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2539:Bullough–Dodd 2537: 2535: 2534:2D Yang–Mills 2532: 2531: 2529: 2525: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2450: 2448: 2444: 2441: 2437: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2410:String theory 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2380:Axiomatic QFT 2378: 2376: 2375:Algebraic QFT 2373: 2372: 2370: 2366: 2362: 2355: 2350: 2348: 2343: 2341: 2336: 2335: 2332: 2320: 2319: 2310: 2308: 2307: 2302: 2298: 2296: 2295: 2286: 2284: 2283: 2274: 2273: 2270: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2240: 2238: 2236: 2232: 2226: 2223: 2219: 2216: 2214: 2211: 2210: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2165: 2163: 2161: 2157: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2111: 2108: 2107: 2105: 2101: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2067: 2065: 2061: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2029:Semiconductor 2027: 2025: 2022: 2020: 2017: 2016: 2014: 2010: 2004: 2001: 1999: 1998:Hubbard model 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1950: 1948: 1944: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1899: 1897: 1893: 1890: 1886: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1861: 1859: 1855: 1850: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1786: 1784: 1782: 1778: 1774: 1767: 1762: 1760: 1755: 1753: 1748: 1747: 1744: 1735: 1729: 1725: 1720: 1716: 1710: 1706: 1701: 1696: 1690: 1686: 1681: 1678: 1675: 1674: 1663: 1659: 1653: 1645: 1641: 1636: 1631: 1626: 1621: 1617: 1613: 1608: 1603: 1599: 1595: 1591: 1584: 1576: 1572: 1568: 1564: 1559: 1554: 1550: 1546: 1541: 1536: 1532: 1528: 1524: 1517: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1476: 1471: 1468:(7): 075012. 1467: 1463: 1456: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1415: 1410: 1406: 1402: 1395: 1382: 1376: 1372: 1368: 1364: 1360: 1353: 1345: 1341: 1337: 1333: 1328: 1323: 1319: 1315: 1310: 1305: 1301: 1297: 1293: 1282: 1273: 1268: 1264: 1260: 1255: 1250: 1246: 1242: 1238: 1226: 1218: 1205: 1191:on 2017-05-17 1187: 1180: 1174: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1133: 1128: 1124: 1120: 1113: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1070: 1062: 1058: 1054: 1050: 1046: 1042: 1035: 1028: 1012: 1008: 1004: 1000: 996: 989: 981: 977: 973: 969: 965: 961: 957: 950: 942: 938: 934: 930: 926: 922: 918: 914: 910: 903: 890: 884: 880: 876: 872: 871: 863: 855: 851: 847: 843: 839: 835: 831: 827: 823: 816: 808: 804: 800: 796: 792: 788: 784: 780: 776: 769: 761: 757: 753: 749: 745: 741: 737: 733: 729: 722: 713: 708: 704: 700: 696: 692: 688: 681: 672: 667: 663: 659: 655: 651: 647: 643: 636: 632: 624: 622: 618: 614: 608: 606: 602: 598: 593: 592:experiments. 591: 586: 583: 578: 576: 572: 567: 566:heavy fermion 563: 559: 555: 551: 547: 543: 533: 531: 518: 514: 512: 508: 505: 501: 497: 492: 487: 485: 481: 473: 470: 466: 463: 462: 461: 458: 448: 434: 412: 408: 387: 367: 345: 341: 337: 329: 311: 307: 303: 281: 277: 253: 248: 244: 240: 237: 232: 229: 224: 221: 216: 212: 208: 203: 199: 195: 192: 187: 183: 179: 173: 167: 160: 159: 158: 144: 124: 110: 108: 104: 100: 96: 92: 88: 87: 82: 81: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 33: 29: 21: 2916: 2845:Quantum foam 2785:Stueckelberg 2739:Chern–Simons 2676:Supergravity 2415:Supergravity 2400:Gauge theory 2316: 2304: 2292: 2280: 2198:Pines' demon 1937:Kondo effect 1936: 1839:Time crystal 1723: 1704: 1684: 1661: 1652: 1600:(1): 93–97. 1597: 1593: 1583: 1530: 1526: 1516: 1465: 1461: 1455: 1404: 1400: 1394: 1384:, retrieved 1362: 1352: 1299: 1295: 1281: 1244: 1240: 1225: 1204:cite journal 1193:. Retrieved 1186:the original 1173: 1122: 1118: 1112: 1079: 1075: 1069: 1047:(1): 41–53. 1044: 1040: 1027: 1015:. Retrieved 998: 988: 963: 959: 949: 916: 912: 902: 892:, retrieved 869: 862: 829: 825: 815: 782: 778: 768: 735: 731: 721: 697:(1): 37–49. 694: 690: 680: 653: 650:Scholarpedia 649: 635: 609: 594: 587: 579: 554:praseodymium 539: 527: 495: 488: 477: 454: 328:Fermi liquid 268: 116: 95:praseodymium 85: 79: 74: 43:Kondo effect 42: 36: 2727:Topological 2641:Wess–Zumino 2554:Sine-Gordon 2544:Gross–Neveu 2453:Born–Infeld 2420:Thermal QFT 2235:Soft matter 2135:Ferromagnet 1953:Drude model 1922:Berry phase 1902:Hall effect 1302:(1): 2991. 1017:October 13, 656:(3): 7529. 619:Weyl-Kondo 582:quantum dot 107:quantum dot 71:Kondo model 2938:Categories 2508:Yang–Mills 2150:Spin glass 2145:Metamagnet 2125:Paramagnet 2012:Conduction 1988:BCS theory 1829:Superfluid 1824:Supersolid 1540:1612.03972 1475:1511.06574 1386:2020-04-26 1195:2016-08-19 919:(1): 1–3. 894:2024-06-01 627:References 2917:See also: 2636:Super QCD 2590:Liouville 2578:Conformal 2549:Schwinger 2208:Polariton 2115:Diamagnet 2063:Couplings 2039:Conductor 2034:Semimetal 2019:Insulator 1895:Phenomena 1819:Fermi gas 1607:1206.2224 1567:0031-9007 1508:118610269 1500:1367-2630 1414:1206.2224 1336:2041-1723 1309:1312.1979 1254:1411.0302 1007:0362-4331 941:0031-9015 854:0031-8914 807:0003-3804 760:0003-3804 642:Jun Kondo 621:semimetal 585:a metal. 575:plutonium 558:ytterbium 504:Wilsonian 455:In 1930, 435:μ 278:ρ 230:μ 225:⁡ 184:ρ 168:ρ 125:ρ 109:systems. 99:ytterbium 67:s-orbital 59:Jun Kondo 32:Jun Kondo 2713:Type IIB 2708:Type IIA 2693:4D N = 8 2688:4D N = 1 2657:6D (2,0) 2621:4D N = 1 2600:Polyakov 2559:Thirring 2368:Theories 2282:Category 2263:Colloids 1644:29255021 1575:28665644 1447:45712589 1439:23102351 1344:24346502 1104:55838235 1011:Archived 644:(2009). 536:Examples 2815:History 2798:Related 2595:Minimal 2446:Regular 2294:Commons 2258:Polymer 2225:Polaron 2203:Plasmon 2183:Exciton 1635:5776817 1612:Bibcode 1545:Bibcode 1480:Bibcode 1419:Bibcode 1314:Bibcode 1259:Bibcode 1165:5139144 1157:9677192 1137:Bibcode 1119:Science 1084:Bibcode 1049:Bibcode 968:Bibcode 921:Bibcode 834:Bibcode 826:Physica 787:Bibcode 740:Bibcode 699:Bibcode 658:Bibcode 562:uranium 451:History 103:uranium 39:physics 2755:Chiral 2703:Type I 2518:Yukawa 2439:Models 2193:Phonon 2188:Magnon 1946:Theory 1804:Plasma 1794:Liquid 1730:  1711:  1691:  1642:  1632:  1573:  1565:  1506:  1498:  1445:  1437:  1377:  1342:  1334:  1163:  1155:  1102:  1005:  939:  885:  852:  805:  758:  556:, and 550:cerium 269:where 113:Theory 97:, and 91:cerium 41:, the 2894:links 2867:links 2855:links 2775:NMSSM 2760:Fermi 2503:Soler 2473:Proca 2168:Anyon 1789:Solid 1602:arXiv 1535:arXiv 1504:S2CID 1470:arXiv 1443:S2CID 1409:arXiv 1304:arXiv 1249:arXiv 1189:(PDF) 1182:(PDF) 1161:S2CID 1127:arXiv 1100:S2CID 1037:(PDF) 603:with 564:. In 2765:MSSM 2662:ABJM 2569:Toda 2178:Hole 1728:ISBN 1709:ISBN 1689:ISBN 1640:PMID 1571:PMID 1563:ISSN 1496:ISSN 1435:PMID 1375:ISBN 1340:PMID 1332:ISSN 1217:help 1153:PMID 1019:2021 1003:ISSN 937:ISSN 883:ISBN 850:ISSN 803:ISSN 756:ISSN 544:and 427:and 83:and 2718:11D 1799:Gas 1630:PMC 1620:doi 1598:115 1553:doi 1531:118 1488:doi 1427:doi 1405:109 1367:doi 1322:doi 1267:doi 1145:doi 1123:281 1092:doi 1080:149 1057:doi 1045:124 976:doi 964:135 929:doi 875:doi 842:doi 795:doi 783:399 748:doi 736:399 707:doi 666:doi 482:at 37:In 2940:: 2734:BF 1660:, 1638:. 1628:. 1618:. 1610:. 1596:. 1592:. 1569:. 1561:. 1551:. 1543:. 1529:. 1525:. 1502:. 1494:. 1486:. 1478:. 1466:18 1464:. 1441:. 1433:. 1425:. 1417:. 1403:. 1373:, 1361:, 1338:. 1330:. 1320:. 1312:. 1298:. 1294:. 1265:. 1257:. 1245:92 1243:. 1239:. 1208:: 1206:}} 1202:{{ 1159:. 1151:. 1143:. 1135:. 1121:. 1098:. 1090:. 1078:. 1055:. 1043:. 1039:. 1009:. 1001:. 997:. 974:. 962:. 958:. 935:. 927:. 917:74 915:. 911:. 881:, 848:. 840:. 828:. 824:. 801:. 793:. 781:. 777:. 754:. 746:. 734:. 730:. 705:. 695:32 693:. 689:. 664:. 652:. 648:. 623:. 577:. 552:, 400:, 380:, 222:ln 93:, 2353:e 2346:t 2339:v 1765:e 1758:t 1751:v 1736:. 1717:. 1697:. 1646:. 1622:: 1614:: 1604:: 1577:. 1555:: 1547:: 1537:: 1510:. 1490:: 1482:: 1472:: 1449:. 1429:: 1421:: 1411:: 1369:: 1346:. 1324:: 1316:: 1306:: 1300:4 1292:" 1290:6 1275:. 1269:: 1261:: 1251:: 1237:" 1235:6 1219:) 1215:( 1198:. 1167:. 1147:: 1139:: 1129:: 1106:. 1094:: 1086:: 1063:. 1059:: 1051:: 1021:. 982:. 978:: 970:: 943:. 931:: 923:: 877:: 856:. 844:: 836:: 830:1 809:. 797:: 789:: 762:. 750:: 742:: 715:. 709:: 701:: 674:. 668:: 660:: 654:4 522:F 413:m 409:c 388:b 368:a 346:5 342:T 338:b 312:2 308:T 304:a 282:0 254:, 249:5 245:T 241:b 238:+ 233:T 217:m 213:c 209:+ 204:2 200:T 196:a 193:+ 188:0 180:= 177:) 174:T 171:( 145:T

Index



Jun Kondo
physics
conduction electrons
magnetic impurities
electrical resistivity
Jun Kondo
perturbation theory
s-orbital
Kondo model
heavy fermions
Kondo insulators
cerium
praseodymium
ytterbium
uranium
quantum dot
Fermi liquid
Walther Meissner
Debye temperature
Myriam Sarachik
Bell Laboratories
perturbation theory
Anderson impurity model
Wilsonian
renormalization
Schrieffer–Wolff transformation

asymptotic freedom

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑