Knowledge

Mismatch negativity

Source đź“ť

132:
relevant aspects of the environment are not correctly represented in the brain, then the organism's behaviour cannot be appropriate. Without these representations our ability to understand spoken language, for example, would be seriously impaired. Cognitive neuroscience has consequently emphasised the importance of understanding brain mechanisms of sensory information processing, that is, the sensory prerequisites of cognition. Most of the data obtained, unfortunately, do not allow the objective measurement of the accuracy of these stimulus representations. In addition, recent cognitive neuroscience seems to have succeeded in extracting such a measure, however. This is the mismatch negativity (MMN), a component of the event-related potential (ERP), first reported by Näätänen, Gaillard, and Mäntysalo (1978). An in-depth review of MMN research can be found in Näätänen (1992) while other recent reviews also provide information on the generator mechanisms of MMN, its magnetic counterpart, MMNm (Näätänen, Ilmoniemi & Alho, 1994), and its clinical applicability.
189:
synthesised instrumental tones, or in the spectral component of tone timbre. Also the temporal order reversals elicit an MMN when successive sound elements differ either in frequency, intensity, or duration. The MMN is not elicited by stimuli with deviant stimulus parameters when they are presented without the intervening standards. Thus, the MMN has been suggested to reflect change detection when a memory trace representing the constant standard stimulus and the neural code of the stimulus with deviant parameter(s) are discrepant.
220:
suggest that a major problem underlying the reading deficit in dyslexia might be an inability of the dyslexics' auditory cortex to adequately model complex sound patterns with fast temporal variation. According to the results of an ongoing study, MMN might also be used in the evaluation of auditory perception deficits in aphasia.
80:, or location. The MMN can be elicited regardless of whether someone is paying attention to the sequence. During auditory sequences, a person can be reading or watching a silent subtitled movie, yet still show a clear MMN. In the case of visual stimuli, the MMN occurs after an infrequent change in a repetitive sequence of images. 240:
The mainstream "memory trace" interpretation of MMN is that it is elicited in response to violations of simple rules governing the properties of information. It is thought to arise from violation of an automatically formed, short-term neural model or memory trace of physical or abstract environmental
227:
While the results obtained thus far seem encouraging, several steps need to be taken before the MMN can be used as a clinical tool in patient treatment. A focus of research in the late 1990s aimed to tackle some of the key signal-analysis problems encountered in development of clinical use of MMN and
197:
The MMN data can be understood as providing evidence that stimulus features are separately analysed and stored in the vicinity of auditory cortex (for a discussion, please see the theory section below). The close resemblance of the behaviour of the MMN to that of the previously behaviourally observed
248:
An alternative "fresh afferent" interpretation is that there are no memory neuronal elements, but the sensory afferent neuronal elements that are tuned to properties of the standard stimulation respond less vigorously upon repeated stimulation. Thus when a deviant activates a distinct new population
223:
Alzheimer's patients demonstrate decreased amplitude of MMN, especially with long inter-stimulus intervals; this is thought to reflect reduced span of auditory sensory memory. Parkinsonian patients do demonstrate a similar deficit pattern, whereas alcoholism would appear to enhance the MMN response.
206:
The experimental evidence suggests that the auditory sensory memory index MMN provides sensory data for attentional processes, and, in essence, governs certain aspects of attentive information processing. This is evident in the finding that the latency of the MMN determines the timing of behavioural
244:
Integral to this memory trace view is that there are: i) a population of sensory afferent neuronal elements that respond to sound, and; ii) a separate population of memory neuronal elements that build a neural model of standard stimulation and respond more vigorously when the incoming stimulation
231:
A 2010 study found that MMN durations were reduced in a group of schizophrenia patients who later went on to have psychotic episodes, suggesting that MMN durations may predict future psychosis. Recent research advocates for the use of MMN in clinical intervention, because MMN can predict treatment
219:
MMN, which is elicited irrespective of attention, provides an objective means for evaluating possible auditory discrimination and sensory-memory anomalies in such clinical groups as dyslexics and patients with aphasia, who have a multitude of symptoms including attentional problems. Recent results
131:
is the deviant or oddball stimulus, and will elicit an MMN response. The mismatch negativity occurs even if the subject is not consciously paying attention to the stimuli. Processing of sensory stimulus features is essential for humans in determining their responses and actions. If behaviourally
207:
responses to changes in the auditory environment. Furthermore, even individual differences in discrimination ability can be probed with the MMN. The MMN is a component of the chain of brain events causing attention switches to changes in the environment. Attentional instructions also affect MMN.
188:
MMN is evoked by an infrequently presented stimulus ("deviant"), differing from the frequently-occurring stimuli ("standards") in one or several physical parameters like duration, intensity, or frequency. In addition, it is generated by a change in spectrally complex stimuli like phonemes, in
215:
The MMN has been documented in a number of studies to disclose neuropathological changes. Presently, the accumulated body of evidence suggests that while the MMN offers unique opportunities to basic research of the information processing of a healthy brain, it might be useful in tapping
170:
perception, to test whether or not these participants neurologically distinguish between certain kinds of sounds. The MMN response has been used to study how fetuses and newborns discriminate speech sounds. In addition to these kinds of studies focusing on
228:
challenges still remain. Nevertheless, as it stands, clinical research employing the MMN has already produced significant knowledge on the CNS functional changes related to cognitive decline in the aforementioned clinical disorders.
122:
The MMN is a response to a deviant within a sequence of otherwise regular stimuli; thus, in an experimental setting, it is produced when stimuli are presented in a many-to-one ratio; for example, in a sequence of sounds
1683:
Hochberger, William C.; Joshi, Yash B.; Thomas, Michael L.; Zhang, Wendy; Bismark, Andrew W.; Treichler, Emily B. H.; Tarasenko, Melissa; Nungaray, John; Sprock, Joyce; Cardoso, Lauren; Swerdlow, Neal (February 2019).
1602: 147:. The amplitude and latency of the MMN is related to how different the deviant stimulus is from the standard. Large deviances elicit MMN at earlier latencies. For very large deviances, the MMN can even overlap the 198:"echoic" memory system strongly suggests that the MMN provides a non-invasive, objective, task-independently measurable physiological correlate of stimulus-feature representations in auditory sensory memory. 179:
processing. Some of these studies have attempted to directly test the automaticity of the MMN, providing converging evidence for the understanding of the MMN as a task-independent and automatic response.
1429:
Woldorff MG, Hillyard SA, Gallen CC, Hampson SR, Bloom FE (May 1998). "Magnetoencephalographic recordings demonstrate attentional modulation of mismatch-related neural activity in human auditory cortex".
941:
Campbell T, Winkler I, Kujala T (July 2007). "N1 and the mismatch negativity are spatiotemporally distinct ERP components: disruption of immediate memory by auditory distraction can be related to N1".
166:
As kindred phenomena have been elicited with speech stimuli, under passive conditions that require very little active attention to the sound, a version of MMN has been frequently used in studies of
135:
The auditory MMN can occur in response to deviance in pitch, intensity, or duration. The auditory MMN is a fronto-central negative potential with sources in the primary and non-primary
800:
Rosburg T, Trautner P, Dietl T, Korzyukov OA, Boutros NN, Schaller C, et al. (April 2005). "Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy".
224:
This latter, seemingly contradictory, finding could be explained by hyperexcitability of CNS neurones resulting from neuroadaptive changes taking place during a heavy drinking bout.
1072:
Draganova R, Eswaran H, Murphy P, Huotilainen M, Lowery C, Preissl H (November 2005). "Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study".
154:
The visual MMN can occur in response to deviance in such aspects as color, size, or duration. The visual MMN is an occipital negative potential with sources in the primary
986:
Phillips C, Pellathy T, Marantz A, Yellin E, Wexler K, Poeppel D, et al. (November 2000). "Auditory cortex accesses phonological categories: an MEG mismatch study".
249:
of neuronal elements that is tuned to the different properties of the deviant rather than the standard, these fresh afferents respond more vigorously, eliciting an MMN.
1300:
PulvermĂĽller F, Shtyrov Y, Hasting AS, Carlyon RP (March 2008). "Syntax as a reflex: neurophysiological evidence for early automaticity of grammatical processing".
1255:
PulvermĂĽller F, Shtyrov Y, Hasting AS, Carlyon RP (March 2008). "Syntax as a reflex: neurophysiological evidence for early automaticity of grammatical processing".
1144:
Hasting AS, Kotz SA, Friederici AD (March 2007). "Setting the stage for automatic syntax processing: the mismatch negativity as an indicator of syntactic priming".
1115:
PulvermĂĽller F, Shtyrov Y (2007). "The mismatch negativity as an objective tool for studying higher language functions". In Meyer AS, Wheeldon LR, Krott A (eds.).
104: 1181:
Hasting AS, Winkler I, Kotz SA (March 2008). "Early differential processing of verbs and nouns in the human brain as indexed by event-related brain potentials".
1515:
Dittmann-Balcar A, Thienel R, Schall U (December 1999). "Attention-dependent allocation of auditory processing resources as measured by mismatch negativity".
1394:
Woldorff MG, Hackley SA, Hillyard SA (January 1991). "The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones".
241:
regularities. However, other than MMN, there is no other neurophysiological evidence for the formation of the memory representation of those regularities.
1741:
Näätänen R, Paavilainen P, Rinne T, Alho K (December 2007). "The mismatch negativity (MMN) in basic research of central auditory processing: a review".
1640:
Bodatsch M, Ruhrmann S, Wagner M, MĂĽller R, Schultze-Lutter F, Frommann I, et al. (May 2011). "Prediction of psychosis by mismatch negativity".
1979: 1343:
Tiitinen H, May P, Reinikainen K, Näätänen R (November 1994). "Attentive novelty detection in humans is governed by pre-attentive sensory memory".
114:
The first report of a visual MMN was in 1990 by Rainer Cammer. For a history of the development of the visual MMN, see Pazo-Alvarez et al. (2003).
1686:"Neurophysiologic measures of target engagement predict response to auditory-based cognitive training in treatment refractory schizophrenia" 679:
Alho K (February 1995). "Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes".
2002: 1879: 1218:
PulvermĂĽller F, Shtyrov Y (September 2003). "Automatic processing of grammar in the human brain as revealed by the mismatch negativity".
1951: 64:. The (v)MMN occurs after an infrequent change in a repetitive sequence of stimuli (sometimes the entire sequence is called an 1132: 1048: 655: 2233: 1972: 1905:
Jääskeläinen IP, Ahveninen J, Belliveau JW, Raij T, Sams M (December 2007). "Short-term plasticity in auditory cognition".
722:
Näätänen R, Ilmoniemi RJ, Alho K (September 1994). "Magnetoencephalography in studies of human cognitive brain function".
2027: 524:
Näätänen R, Gaillard AW, Mäntysalo S (July 1978). "Early selective-attention effect on evoked potential reinterpreted".
68:.) For example, a rare deviant (d) stimulus can be interspersed among a series of frequent standard (s) stimuli (e.g., 837:"Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography" 1784:
Näätänen R, Winkler I (November 1999). "The concept of auditory stimulus representation in cognitive neuroscience".
2259: 2254: 1965: 297: 2053: 2022: 470: 357: 282: 434:
Näätänen R, Paavilainen P, Tiitinen H, Jiang D, Alho K (September 1993). "Attention and mismatch negativity".
2088: 272: 139:
and a typical latency of 150-250 ms after the onset of the deviant stimulus. Sources could also include the
72:...). In hearing, a deviant sound can differ from the standards in one or more perceptual features such as 2289: 2264: 1819:
Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, et al. (April 2004).
765:
Näätänen R, Alho K (1995). "Mismatch negativity--a unique measure of sensory processing in audition".
2274: 884:
Blenkmann AO, Collavini S, Lubell J, Llorens A, Funderud I, Ivanovic J, et al. (December 2019).
1000: 2279: 2218: 2103: 287: 277: 267: 1552:"Task instructions modulate the attentional mode affecting the auditory MMN and the semantic N400" 2139: 2007: 292: 33: 2048: 2017: 1988: 995: 262: 140: 88: 84: 41: 1888: 100: 36:(ERP) to an odd stimulus in a sequence of stimuli. It arises from electrical activity in the 594:
Pazo-Alvarez P, Cadaveira F, Amenedo E (July 2003). "MMN in the visual modality: a review".
2012: 1832: 1352: 835:
Phillips HN, Blenkmann A, Hughes LE, Kochen S, Bekinschtein TA, Rowe JB (September 2016).
8: 2192: 2133: 2118: 2083: 2073: 352: 347: 322: 317: 307: 148: 1836: 1356: 2284: 2213: 2149: 2108: 1930: 1766: 1718: 1685: 1665: 1603:"Basic auditory dysfunction in dyslexia as demonstrated by brain activity measurements" 1578: 1551: 1497: 1407: 1376: 1325: 1280: 1243: 1206: 1169: 1097: 1021: 923: 861: 836: 747: 704: 619: 576: 501: 447: 411: 384: 232:
response for patients with schizophrenia in the context of pro-cognitive therapeutics.
1855: 1820: 1231: 607: 1922: 1860: 1801: 1758: 1723: 1705: 1657: 1622: 1583: 1532: 1528: 1489: 1485: 1447: 1411: 1368: 1317: 1272: 1235: 1198: 1194: 1161: 1128: 1089: 1085: 1054: 1044: 1013: 968: 954: 927: 915: 866: 817: 782: 739: 735: 696: 692: 661: 651: 611: 580: 541: 537: 493: 451: 416: 57: 1770: 1669: 1501: 1329: 1284: 1247: 1210: 1101: 751: 708: 645: 623: 2269: 2223: 2037: 1934: 1914: 1850: 1840: 1793: 1750: 1713: 1697: 1653: 1649: 1614: 1573: 1563: 1524: 1481: 1439: 1403: 1380: 1360: 1309: 1264: 1227: 1190: 1173: 1153: 1120: 1081: 1025: 1005: 958: 950: 905: 897: 885: 856: 848: 809: 774: 731: 688: 603: 568: 533: 505: 489: 485: 471:"Musical scale properties are automatically processed in the human auditory cortex" 443: 406: 396: 327: 167: 1754: 1601:
Kujala T, Myllyviita K, Tervaniemi M, Alho K, Kallio J, Näätänen R (March 2000).
901: 852: 136: 108: 53: 1797: 1313: 1268: 1957: 1918: 1825:
Proceedings of the National Academy of Sciences of the United States of America
1157: 144: 49: 1701: 1618: 1466: 1443: 1009: 778: 572: 2248: 2187: 1709: 1568: 1058: 401: 158:
and a typical latency of 150-250 ms after the onset of the deviant stimulus.
155: 73: 1845: 886:"Auditory deviance detection in the human insula: An intracranial EEG study" 665: 2177: 1926: 1864: 1805: 1762: 1727: 1661: 1626: 1587: 1536: 1321: 1276: 1239: 1202: 1165: 1093: 1017: 972: 919: 870: 821: 813: 615: 497: 420: 1493: 1451: 1415: 1372: 1124: 786: 743: 700: 455: 890:
Cortex; A Journal Devoted to the Study of the Nervous System and Behavior
841:
Cortex; A Journal Devoted to the Study of the Nervous System and Behavior
545: 963: 2172: 2167: 2157: 910: 103:, A. W. K. Gaillard, and S. Mäntysalo at the Institute for Perception, 45: 2182: 2162: 2063: 1821:"Human posterior auditory cortex gates novel sounds to consciousness" 1364: 362: 172: 252:
A third view is that the sensory afferents are the memory neurons.
77: 1954:
at the Cognitive Brain Research Unit at the University of Helsinki
1904: 1818: 2197: 1299: 1254: 1071: 468: 433: 2228: 883: 469:
Brattico E, Tervaniemi M, Näätänen R, Peretz I (October 2006).
176: 1600: 1342: 1467:"Mismatch negativity (MMN) is altered by directing attention" 1428: 985: 834: 799: 559:
Cammann R (1990). "Is there no MMN in the visual modality?".
37: 1740: 1639: 1549: 1514: 1041:
Developmental psychophysiology: theory, systems, and methods
593: 2113: 2078: 2068: 2058: 1119:. Advances in Behavioural Brain Science. pp. 217–242. 342: 312: 302: 1682: 2128: 2123: 523: 382: 337: 332: 201: 1393: 385:"Visual mismatch negativity: A predictive coding view" 1143: 1140:
Specific experimental studies include the following:
940: 721: 87:(EEG); MMF or MMNM refer to the mismatch response in 1464: 175:
processing, some research has implicated the MMN in
1550:Erlbeck H, KĂĽbler A, Kotchoubey B, Veser S (2014). 1217: 1114: 2003:Amplitude integrated electroencephalography (aEEG) 1180: 1887:(Ph.D. thesis). Hebrew University. Archived from 1038: 70:s s s s s s s s s d s s s s s s d s s s d s s s s 2246: 1987: 639: 637: 635: 633: 519: 517: 515: 1783: 1117:Automaticity and Control in Language Processing 383:Stefanics, G; Kremláček, J; Czigler, I (2014). 376: 245:violates that neural model, eliciting an MMN. 192: 183: 1973: 630: 512: 1543: 1508: 764: 1458: 1422: 1387: 99:The auditory MMN was discovered in 1978 by 52:, but has most frequently been studied for 2234:Neurophysiological Biomarker Toolbox (NBT) 1980: 1966: 1881:Neuronal Adaptation in Cat Auditory Cortex 1877: 1854: 1844: 1717: 1577: 1567: 1043:. Cambridge: Cambridge University Press. 999: 962: 909: 860: 767:The International Journal of Neuroscience 410: 400: 1465:Oades RD, Dittmann-Balcar A (May 1995). 643: 558: 210: 83:MMN refers to the mismatch response in 2247: 1961: 202:Relationship to attentional processes 60:, in which case it is abbreviated to 1183:The European Journal of Neuroscience 678: 2089:Contingent negative variation (CNV) 2028:Brainstem auditory evoked potential 216:neurodegenerative changes as well. 161: 40:and is studied within the field of 13: 1408:10.1111/j.1469-8986.1991.tb03384.x 1039:Schmidt LA, Segalowitz SJ (2008). 448:10.1111/j.1469-8986.1993.tb02067.x 125:s s s s s s s d s s s s d s s s... 117: 14: 2301: 1952:Mismatch Negativity (MMN) summary 1945: 1146:Journal of Cognitive Neuroscience 988:Journal of Cognitive Neuroscience 1529:10.1097/00001756-199912160-00005 1486:10.1097/00001756-199505300-00028 1195:10.1111/j.1460-9568.2008.06103.x 1086:10.1016/j.neuroimage.2005.06.011 955:10.1111/j.1469-8986.2007.00529.x 693:10.1097/00003446-199502000-00004 1898: 1871: 1812: 1777: 1734: 1676: 1633: 1594: 1556:Frontiers in Human Neuroscience 1336: 1293: 1108: 1065: 1032: 979: 934: 877: 828: 793: 758: 389:Frontiers in Human Neuroscience 298:Lateralized readiness potential 2023:Somatosensory evoked potential 1654:10.1016/j.biopsych.2010.09.057 715: 672: 650:. Hillsdale, N.J: L. Erlbaum. 587: 552: 490:10.1016/j.brainres.2006.08.023 462: 427: 358:Somatosensory evoked potential 283:Early left anterior negativity 1: 2219:Difference due to memory (Dm) 1878:Ulanovsky N (February 2004). 1232:10.1016/S1053-8119(03)00261-1 608:10.1016/s0301-0511(03)00049-8 561:Behavioral and Brain Sciences 369: 273:Contingent negative variation 2018:Magnetoencephalography (MEG) 1989:Electroencephalography (EEG) 1755:10.1016/j.clinph.2007.04.026 902:10.1016/j.cortex.2019.09.002 853:10.1016/j.cortex.2016.05.001 736:10.1016/0166-2236(94)90048-5 647:Attention and brain function 538:10.1016/0001-6918(78)90006-9 7: 2013:Electrocorticography (ECoG) 1798:10.1037/0033-2909.125.6.826 1314:10.1016/j.bandl.2007.05.002 1269:10.1016/j.bandl.2007.05.002 255: 193:Vs. auditory sensory memory 184:For basic stimulus features 10: 2306: 1919:10.1016/j.tins.2007.09.003 1158:10.1162/jocn.2007.19.3.386 94: 2206: 2148: 2036: 1995: 1702:10.1038/s41386-018-0256-9 1619:10.1111/1469-8986.3720262 1444:10.1017/s0048577298961601 1010:10.1162/08989290051137567 779:10.3109/00207459508986107 573:10.1017/s0140525x00078420 235: 1743:Clinical Neurophysiology 1569:10.3389/fnhum.2014.00654 402:10.3389/fnhum.2014.00666 288:Error-related negativity 278:Difference due to memory 32:) is a component of the 2140:Late positive component 2008:Event-related potential 1907:Trends in Neurosciences 1846:10.1073/pnas.0303760101 1690:Neuropsychopharmacology 724:Trends in Neurosciences 293:Late positive component 34:event-related potential 2260:Electroencephalography 2255:Cognitive neuroscience 2049:Bereitschaftspotential 1786:Psychological Bulletin 263:Bereitschaftspotential 141:inferior frontal gyrus 89:magnetoencephalography 85:electroencephalography 48:. It can occur in any 42:cognitive neuroscience 1642:Biological Psychiatry 1125:10.4324/9780203968512 596:Biological Psychology 814:10.1093/brain/awh442 211:In clinical research 2193:Sensorimotor rhythm 2150:Neural oscillations 2094:Mismatch negativity 1837:2004PNAS..101.6809J 1357:1994Natur.372...90T 644:Näätänen R (1992). 353:P600 (neuroscience) 348:P300 (neuroscience) 18:mismatch negativity 1302:Brain and Language 1257:Brain and Language 2290:Dyslexia research 2265:Evoked potentials 2242: 2241: 2136:(late positivity) 2038:Evoked potentials 1134:978-0-203-96851-2 1050:978-0-511-49979-1 657:978-0-8058-0984-8 526:Acta Psychologica 2297: 2275:Neurolinguistics 2224:Oddball paradigm 1982: 1975: 1968: 1959: 1958: 1939: 1938: 1902: 1896: 1895: 1894:on 11 June 2016. 1893: 1886: 1875: 1869: 1868: 1858: 1848: 1816: 1810: 1809: 1781: 1775: 1774: 1738: 1732: 1731: 1721: 1680: 1674: 1673: 1637: 1631: 1630: 1607:Psychophysiology 1598: 1592: 1591: 1581: 1571: 1547: 1541: 1540: 1512: 1506: 1505: 1471: 1462: 1456: 1455: 1432:Psychophysiology 1426: 1420: 1419: 1396:Psychophysiology 1391: 1385: 1384: 1365:10.1038/372090a0 1340: 1334: 1333: 1297: 1291: 1288: 1251: 1214: 1177: 1138: 1112: 1106: 1105: 1069: 1063: 1062: 1036: 1030: 1029: 1003: 983: 977: 976: 966: 943:Psychophysiology 938: 932: 931: 913: 881: 875: 874: 864: 832: 826: 825: 808:(Pt 4): 819–28. 797: 791: 790: 762: 756: 755: 719: 713: 712: 676: 670: 669: 641: 628: 627: 591: 585: 584: 556: 550: 549: 521: 510: 509: 475: 466: 460: 459: 436:Psychophysiology 431: 425: 424: 414: 404: 380: 328:Oddball paradigm 162:Neurolinguistics 66:oddball sequence 2305: 2304: 2300: 2299: 2298: 2296: 2295: 2294: 2280:Neuropsychology 2245: 2244: 2243: 2238: 2202: 2144: 2032: 1991: 1986: 1948: 1943: 1942: 1903: 1899: 1891: 1884: 1876: 1872: 1831:(17): 6809–14. 1817: 1813: 1782: 1778: 1749:(12): 2544–90. 1739: 1735: 1681: 1677: 1638: 1634: 1599: 1595: 1548: 1544: 1523:(18): 3749–53. 1513: 1509: 1469: 1463: 1459: 1427: 1423: 1392: 1388: 1341: 1337: 1298: 1294: 1139: 1135: 1113: 1109: 1070: 1066: 1051: 1037: 1033: 1001:10.1.1.201.5797 984: 980: 939: 935: 882: 878: 833: 829: 798: 794: 773:(1–4): 317–37. 763: 759: 720: 716: 681:Ear and Hearing 677: 673: 658: 642: 631: 592: 588: 557: 553: 522: 513: 473: 467: 463: 432: 428: 381: 377: 372: 367: 258: 238: 213: 204: 195: 186: 168:neurolinguistic 164: 137:auditory cortex 120: 118:Characteristics 109:The Netherlands 97: 12: 11: 5: 2303: 2293: 2292: 2287: 2282: 2277: 2272: 2267: 2262: 2257: 2240: 2239: 2237: 2236: 2231: 2226: 2221: 2216: 2210: 2208: 2204: 2203: 2201: 2200: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2154: 2152: 2146: 2145: 2143: 2142: 2137: 2131: 2126: 2121: 2116: 2111: 2106: 2101: 2097: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2042: 2040: 2034: 2033: 2031: 2030: 2025: 2020: 2015: 2010: 2005: 1999: 1997: 1993: 1992: 1985: 1984: 1977: 1970: 1962: 1956: 1955: 1947: 1946:External links 1944: 1941: 1940: 1913:(12): 653–61. 1897: 1870: 1811: 1776: 1733: 1696:(3): 606–612. 1675: 1648:(10): 959–66. 1632: 1593: 1542: 1507: 1480:(8): 1187–90. 1457: 1421: 1386: 1351:(6501): 90–2. 1335: 1292: 1290: 1289: 1252: 1215: 1178: 1152:(3): 386–400. 1133: 1107: 1064: 1049: 1031: 994:(6): 1038–55. 978: 933: 876: 827: 792: 757: 714: 671: 656: 629: 602:(3): 199–236. 586: 567:(2): 234–235. 551: 511: 478:Brain Research 461: 426: 374: 373: 371: 368: 366: 365: 360: 355: 350: 345: 340: 335: 330: 325: 320: 315: 310: 305: 300: 295: 290: 285: 280: 275: 270: 265: 259: 257: 254: 237: 234: 212: 209: 203: 200: 194: 191: 185: 182: 163: 160: 145:insular cortex 119: 116: 101:Risto Näätänen 96: 93: 50:sensory system 26:mismatch field 9: 6: 4: 3: 2: 2302: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2252: 2250: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2211: 2209: 2205: 2199: 2196: 2194: 2191: 2189: 2188:Sleep spindle 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2155: 2153: 2151: 2147: 2141: 2138: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2099: 2098: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2044: 2043: 2041: 2039: 2035: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 2000: 1998: 1996:Related tests 1994: 1990: 1983: 1978: 1976: 1971: 1969: 1964: 1963: 1960: 1953: 1950: 1949: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1901: 1890: 1883: 1882: 1874: 1866: 1862: 1857: 1852: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1815: 1807: 1803: 1799: 1795: 1792:(6): 826–59. 1791: 1787: 1780: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1737: 1729: 1725: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1679: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1636: 1628: 1624: 1620: 1616: 1612: 1608: 1604: 1597: 1589: 1585: 1580: 1575: 1570: 1565: 1561: 1557: 1553: 1546: 1538: 1534: 1530: 1526: 1522: 1518: 1511: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1468: 1461: 1453: 1449: 1445: 1441: 1438:(3): 283–92. 1437: 1433: 1425: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1339: 1331: 1327: 1323: 1319: 1315: 1311: 1308:(3): 244–53. 1307: 1303: 1296: 1286: 1282: 1278: 1274: 1270: 1266: 1263:(3): 244–53. 1262: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1226:(1): 159–72. 1225: 1221: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1189:(6): 1561–5. 1188: 1184: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1142: 1141: 1136: 1130: 1126: 1122: 1118: 1111: 1103: 1099: 1095: 1091: 1087: 1083: 1080:(2): 354–61. 1079: 1075: 1068: 1060: 1056: 1052: 1046: 1042: 1035: 1027: 1023: 1019: 1015: 1011: 1007: 1002: 997: 993: 989: 982: 974: 970: 965: 960: 956: 952: 949:(4): 530–40. 948: 944: 937: 929: 925: 921: 917: 912: 907: 903: 899: 895: 891: 887: 880: 872: 868: 863: 858: 854: 850: 846: 842: 838: 831: 823: 819: 815: 811: 807: 803: 796: 788: 784: 780: 776: 772: 768: 761: 753: 749: 745: 741: 737: 733: 730:(9): 389–95. 729: 725: 718: 710: 706: 702: 698: 694: 690: 686: 682: 675: 667: 663: 659: 653: 649: 648: 640: 638: 636: 634: 625: 621: 617: 613: 609: 605: 601: 597: 590: 582: 578: 574: 570: 566: 562: 555: 547: 543: 539: 535: 532:(4): 313–29. 531: 527: 520: 518: 516: 507: 503: 499: 495: 491: 487: 484:(1): 162–74. 483: 479: 472: 465: 457: 453: 449: 445: 442:(5): 436–50. 441: 437: 430: 422: 418: 413: 408: 403: 398: 394: 390: 386: 379: 375: 364: 361: 359: 356: 354: 351: 349: 346: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 269: 266: 264: 261: 260: 253: 250: 246: 242: 233: 229: 225: 221: 217: 208: 199: 190: 181: 178: 174: 169: 159: 157: 156:visual cortex 152: 150: 146: 142: 138: 133: 130: 126: 115: 112: 110: 106: 102: 92: 90: 86: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 23: 19: 2214:10-20 system 2178:Theta rhythm 2093: 1910: 1906: 1900: 1889:the original 1880: 1873: 1828: 1824: 1814: 1789: 1785: 1779: 1746: 1742: 1736: 1693: 1689: 1678: 1645: 1641: 1635: 1613:(2): 262–6. 1610: 1606: 1596: 1559: 1555: 1545: 1520: 1516: 1510: 1477: 1473: 1460: 1435: 1431: 1424: 1402:(1): 30–42. 1399: 1395: 1389: 1348: 1344: 1338: 1305: 1301: 1295: 1260: 1256: 1223: 1219: 1186: 1182: 1149: 1145: 1116: 1110: 1077: 1073: 1067: 1040: 1034: 991: 987: 981: 964:10138/136216 946: 942: 936: 893: 889: 879: 844: 840: 830: 805: 801: 795: 770: 766: 760: 727: 723: 717: 687:(1): 38–51. 684: 680: 674: 646: 599: 595: 589: 564: 560: 554: 529: 525: 481: 477: 464: 439: 435: 429: 395:(666): 666. 392: 388: 378: 251: 247: 243: 239: 230: 226: 222: 218: 214: 205: 196: 187: 173:phonological 165: 153: 134: 128: 124: 121: 113: 98: 82: 76:, duration, 69: 65: 61: 29: 25: 21: 17: 15: 2104:C1 & P1 1517:NeuroReport 1474:NeuroReport 911:10852/75077 896:: 189–200. 847:: 192–205. 2249:Categories 2173:Delta wave 2168:Gamma wave 2158:Alpha wave 2100:Positivity 2045:Negativity 1220:NeuroImage 1074:NeuroImage 370:References 143:, and the 46:psychology 2285:Audiology 2183:K-complex 2163:Beta wave 2064:Visual N1 1710:1740-634X 1059:190792301 996:CiteSeerX 928:202749677 581:143448593 363:Visual N1 268:C1 and P1 177:syntactic 1927:17981345 1865:15096618 1806:10589304 1771:16167197 1763:17931964 1728:30377381 1670:26287894 1662:21167475 1627:10731777 1588:25221494 1537:10716203 1502:37321558 1330:13870754 1322:17624417 1285:13870754 1277:17624417 1248:27124567 1240:14527578 1211:24540547 1203:18364028 1166:17335388 1102:19794076 1094:16023867 1018:11177423 973:17532805 920:31629197 871:27389803 822:15728656 752:10224526 709:31698419 666:25832590 624:14404599 616:12853168 498:16963000 421:25278859 256:See also 78:loudness 56:and for 2270:Hearing 2198:Mu wave 1935:7660360 1833:Bibcode 1719:6333927 1579:4145469 1562:: 654. 1494:7662904 1452:9564748 1416:1886962 1381:4255887 1373:7969425 1353:Bibcode 1174:3046335 1026:8686819 862:4981429 787:7775056 744:7529443 701:7774768 506:8401429 456:8416070 412:4165279 95:History 91:(MEG). 54:hearing 2229:EEGLAB 2207:Topics 1933:  1925:  1863:  1856:404127 1853:  1804:  1769:  1761:  1726:  1716:  1708:  1668:  1660:  1625:  1586:  1576:  1535:  1500:  1492:  1450:  1414:  1379:  1371:  1345:Nature 1328:  1320:  1283:  1275:  1246:  1238:  1209:  1201:  1172:  1164:  1131:  1100:  1092:  1057:  1047:  1024:  1016:  998:  971:  926:  918:  869:  859:  820:  785:  750:  742:  707:  699:  664:  654:  622:  614:  579:  546:685709 544:  504:  496:  454:  419:  409:  236:Theory 127:, the 58:vision 1931:S2CID 1892:(PDF) 1885:(PDF) 1767:S2CID 1666:S2CID 1498:S2CID 1470:(PDF) 1377:S2CID 1326:S2CID 1281:S2CID 1244:S2CID 1207:S2CID 1170:S2CID 1098:S2CID 1022:S2CID 924:S2CID 802:Brain 748:S2CID 705:S2CID 620:S2CID 577:S2CID 502:S2CID 474:(PDF) 74:pitch 38:brain 24:) or 2134:P600 2119:P300 2114:P200 2084:N400 2079:N2pc 2074:N200 2069:N170 2059:N100 2054:ELAN 1923:PMID 1861:PMID 1802:PMID 1759:PMID 1724:PMID 1706:ISSN 1658:PMID 1623:PMID 1584:PMID 1533:PMID 1490:PMID 1448:PMID 1412:PMID 1369:PMID 1318:PMID 1273:PMID 1236:PMID 1199:PMID 1162:PMID 1129:ISBN 1090:PMID 1055:OCLC 1045:ISBN 1014:PMID 969:PMID 916:PMID 867:PMID 818:PMID 783:PMID 740:PMID 697:PMID 662:OCLC 652:ISBN 612:PMID 542:PMID 494:PMID 482:1117 452:PMID 417:PMID 343:P200 323:N400 318:N200 313:N170 308:N100 303:N2pc 149:N100 62:vMMN 44:and 16:The 2129:P3b 2124:P3a 2109:P50 1915:doi 1851:PMC 1841:doi 1829:101 1794:doi 1790:125 1751:doi 1747:118 1714:PMC 1698:doi 1650:doi 1615:doi 1574:PMC 1564:doi 1525:doi 1482:doi 1440:doi 1404:doi 1361:doi 1349:372 1310:doi 1306:104 1265:doi 1261:104 1228:doi 1191:doi 1154:doi 1121:doi 1082:doi 1006:doi 959:hdl 951:doi 906:hdl 898:doi 894:121 857:PMC 849:doi 810:doi 806:128 775:doi 732:doi 689:doi 604:doi 569:doi 534:doi 486:doi 444:doi 407:PMC 397:doi 338:P3b 333:P3a 107:in 105:TNO 30:MMF 22:MMN 2251:: 1929:. 1921:. 1911:30 1909:. 1859:. 1849:. 1839:. 1827:. 1823:. 1800:. 1788:. 1765:. 1757:. 1745:. 1722:. 1712:. 1704:. 1694:44 1692:. 1688:. 1664:. 1656:. 1646:69 1644:. 1621:. 1611:37 1609:. 1605:. 1582:. 1572:. 1558:. 1554:. 1531:. 1521:10 1519:. 1496:. 1488:. 1476:. 1472:. 1446:. 1436:35 1434:. 1410:. 1400:28 1398:. 1375:. 1367:. 1359:. 1347:. 1324:. 1316:. 1304:. 1279:. 1271:. 1259:. 1242:. 1234:. 1224:20 1222:. 1205:. 1197:. 1187:27 1185:. 1168:. 1160:. 1150:19 1148:. 1127:. 1096:. 1088:. 1078:28 1076:. 1053:. 1020:. 1012:. 1004:. 992:12 990:. 967:. 957:. 947:44 945:. 922:. 914:. 904:. 892:. 888:. 865:. 855:. 845:82 843:. 839:. 816:. 804:. 781:. 771:80 769:. 746:. 738:. 728:17 726:. 703:. 695:. 685:16 683:. 660:. 632:^ 618:. 610:. 600:63 598:. 575:. 565:13 563:. 540:. 530:42 528:. 514:^ 500:. 492:. 480:. 476:. 450:. 440:30 438:. 415:. 405:. 391:. 387:. 151:. 111:. 1981:e 1974:t 1967:v 1937:. 1917:: 1867:. 1843:: 1835:: 1808:. 1796:: 1773:. 1753:: 1730:. 1700:: 1672:. 1652:: 1629:. 1617:: 1590:. 1566:: 1560:8 1539:. 1527:: 1504:. 1484:: 1478:6 1454:. 1442:: 1418:. 1406:: 1383:. 1363:: 1355:: 1332:. 1312:: 1287:. 1267:: 1250:. 1230:: 1213:. 1193:: 1176:. 1156:: 1137:. 1123:: 1104:. 1084:: 1061:. 1028:. 1008:: 975:. 961:: 953:: 930:. 908:: 900:: 873:. 851:: 824:. 812:: 789:. 777:: 754:. 734:: 711:. 691:: 668:. 626:. 606:: 583:. 571:: 548:. 536:: 508:. 488:: 458:. 446:: 423:. 399:: 393:8 129:d 28:( 20:(

Index

event-related potential
brain
cognitive neuroscience
psychology
sensory system
hearing
vision
pitch
loudness
electroencephalography
magnetoencephalography
Risto Näätänen
TNO
The Netherlands
auditory cortex
inferior frontal gyrus
insular cortex
N100
visual cortex
neurolinguistic
phonological
syntactic
Bereitschaftspotential
C1 and P1
Contingent negative variation
Difference due to memory
Early left anterior negativity
Error-related negativity
Late positive component
Lateralized readiness potential

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑