Knowledge

Localized surface plasmon

Source đź“ť

160:, and thermophotovoltaics. So far, high efficiency applications using plasmonics have not been realized due to the high ohmic losses inside metals especially in the optical spectral range (visible and NIR). Additionally surface plasmons have been used to create super lenses, invisibility cloaks, and to improve quantum computing. Another interesting area of research in plasmonics is the ability to turn plasmons "on" and "off" via modification of another molecule. The ability to turn plasmons on and off has important consequences for increasing sensitivity in detection methods. Recently, a supramolecular chromophore was coupled with a metal nanostructure. This interaction changed the localized surface plasmon resonance properties of the silver nanostructure by increasing the absorption intensity.   103: 48:. When a small spherical metallic nanoparticle is irradiated by light, the oscillating electric field causes the conduction electrons to oscillate coherently. When the electron cloud is displaced relative to its original position, a restoring force arises from Coulombic attraction between electrons and nuclei. This force causes the electron cloud to oscillate. The oscillation frequency is determined by the density of electrons, the effective electron mass, and the size and shape of the charge distribution. The LSP has two important effects: 72:
and its peak absorption wavelength is easily changed. For instance, the peak absorption wavelength of triangular silver nanoparticles was altered by changing the corner sharpness of the triangles. It underwent a blue-shift as corner sharpness of the triangles decreased. Additionally, peak absorption wavelength underwent a red-shift as a larger amount of HAuCl
17: 71:
For metals like silver and gold, the oscillation frequency is also affected by the electrons in d-orbitals. Silver is a popular choice in plasmonics, which studies the effect of coupling light to charges, because it can support a surface plasmon over a wide range of wavelengths (300-1200 nm),
93:
A goal of plasmonics is to understand and manipulate surface plasmons at the nano-scale, so characterization of surface plasmons is important. Some techniques frequently used to characterize surface plasmons are dark-field microscopy, UV-vis-NIR spectroscopy, and surface-enhanced Raman scattering
84:
Localized surface plasmons are distinct from propagating surface plasmons. In localized surface plasmons, the electron cloud oscillates collectively. In propagating surface plasmons, the surface plasmon propagates back and forth between the ends of the structure. Propagating surface plasmons also
965:
Zhou, Haibo; Yang, Danting; Ivleva, Natalia P.; Mircescu, Nicoleta E.; Schubert, Sören; Niessner, Reinhard; Wieser, Andreas; Haisch, Christoph (2015-07-07). "Label-Free in Situ Discrimination of Live and Dead Bacteria by Surface-Enhanced Raman Scattering".
426:
Zhou, Shu; Pi, Xiaodong; Ni, Zhenyi; Ding, Yi; Jiang, Yingying; Jin, Chuanhong; Delerue, Christophe; Yang, Deren; Nozaki, Tomohiro (2015). "Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals".
544:
Loo, Jacky Fong-Chuen; Yang, Chengbin; Tsang, Hing Lun; Lau, Pui Man; Yong, Ken-Tye; Ho, Ho Pui; Kong, Siu Kai (2017). "An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening".
85:
need to have at least one dimension that is close to or longer than the wavelength of incident light. The waves created in propagating surface plasmons can also be tuned by controlling the geometry of the metal nanostructure.
94:(SERS). With dark-field microscopy, it is possible to monitor the spectrum of an individual metal nanostructure as the incident light polarization, wavelength, or variations in the dielectric environment is changed. 63:
can also be tuned based on the shape of the nanoparticle. The plasmon frequency can be related to the metal dielectric constant. The enhancement falls off quickly with distance from the surface and, for
1025: 653:
ElKabbash, Mohamed; et al. (2017). "Tunable Black Gold: Controlling the Near-Field Coupling of Immobilized Au Nanoparticles Embedded in Mesoporous Silica Capsules".
76:
was added and porosity of the particles increased. For semiconductor nanoparticles, the maximum optical absorption is often in the near-infrared and mid-infrared region.
391:
Liu, Xin; Swihart, Mark T. (2014). "Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials".
68:
nanoparticles, the resonance occurs at visible wavelengths. Localized surface plasmon resonance creates brilliant colors in metal colloidal solutions.
209:
Kelly, K. Lance (December 21, 2002). "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment".
144:, could enhance the signal in surface plasmon resonance sensing. Nanostructures exhibiting LSP resonances are used to enhance signals in modern 462:
Haes, Amanda J.; Van Duyne, Richard P. (2004-08-01). "A unified view of propagating and localized surface plasmon resonance biosensors".
794:
Fang, Nicholas; Lee, Hyesog; Sun, Cheng; Zhang, Xiang (2005-04-22). "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens".
20:
Light incident on a metal nanoparticle causes the conduction band electrons to oscillate. This is the localized surface plasmon.
297:
Skrabalak, Sara E.; Au, Leslie; Li, Xingde; Xia, Younan (September 2007). "Facile synthesis of Ag nanocubes and Au nanocages".
245:
Rycenga, Matthew; Cobley, Claire M.; Zeng, Jie; Li, Weiyang; Moran, Christine H.; Zhang, Qiang; Qin, Dong; Xia, Younan (2011).
174: 749:
ElKabbash, Mohamed; et al. (2017). "Ultrafast transient optical loss dynamics in exciton–plasmon nano-assemblies".
153: 904:
Chang, D. E.; Sørensen, A. S.; Hemmer, P. R.; Lukin, M. D. (2006-08-03). "Quantum Optics with Surface Plasmons".
184: 157: 52:
near the particle's surface are greatly enhanced and the particle's optical absorption has a maximum at the
110: 102: 169: 60: 348:
Zeng, Jie; Roberts, Stefan; Xia, Younan (2010). "Nanocrystal-Based Time–Temperature Indicators".
1015: 136:. As the resonant frequency is easy to measure, this allows LSP nanoparticles to be used for 247:"Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications" 923: 862: 803: 707: 609: 554: 513:
Mayer, Kathryn M.; Hafner, Jason H. (2011). "Localized Surface Plasmon Resonance Sensors".
145: 598:"Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods" 596:
Law, Wing-Cheung; Yong, Ken-Tye; Baev, Alexander; Hu, Rui; Prasad, Paras N. (2009-10-12).
152:. Other applications that rely on efficient light to heat generation in the nanoscale are 8: 1020: 140:
sensing applications. Also, nanoparticles exhibiting strong LSP properties, such as gold
927: 866: 807: 711: 613: 558: 947: 913: 886: 835: 731: 697: 670: 495: 330: 271: 246: 133: 121: 56: 991: 983: 939: 878: 827: 819: 776: 723: 674: 635: 627: 578: 570: 526: 487: 479: 444: 408: 373: 365: 322: 314: 276: 688:
Khurgin, Jacob (2015). "How to deal with the loss in plasmonics and metamaterials".
334: 975: 951: 931: 870: 839: 811: 766: 758: 735: 715: 662: 617: 562: 518: 499: 471: 436: 400: 357: 306: 266: 258: 218: 137: 129: 125: 935: 890: 979: 33: 106: 49: 475: 1009: 987: 882: 853:
Shalaev, Vladimir M. (January 2007). "Optical negative-index metamaterials".
823: 631: 574: 483: 369: 318: 16: 874: 815: 995: 943: 831: 780: 727: 719: 666: 639: 582: 530: 491: 448: 412: 377: 361: 326: 310: 280: 179: 149: 88: 37: 918: 622: 597: 65: 771: 762: 566: 404: 522: 440: 262: 222: 702: 141: 118: 53: 45: 41: 903: 89:
Characterization and study of localized surface plasmons
40:
of size comparable to or smaller than the wavelength of
1026:
Scattering, absorption and radiative transfer (optics)
964: 512: 292: 290: 244: 287: 1007: 296: 793: 543: 79: 347: 595: 461: 425: 390: 917: 770: 748: 701: 652: 621: 270: 101: 32:) is the result of the confinement of a 15: 852: 687: 1008: 464:Analytical and Bioanalytical Chemistry 208: 240: 238: 236: 234: 232: 204: 202: 200: 211:The Journal of Physical Chemistry B 175:Surface-enhanced Raman spectroscopy 13: 14: 1037: 229: 197: 154:heat-assisted magnetic recording 128:of the environment; a change in 113:, exhibit strong LSP resonances. 958: 897: 846: 787: 742: 681: 646: 589: 517:. Plasmonics (111): 3828–3857. 185:Tip-enhanced Raman spectroscopy 97: 537: 506: 455: 419: 384: 350:Chemistry – A European Journal 341: 1: 936:10.1103/PhysRevLett.97.053002 190: 980:10.1021/acs.analchem.5b01271 111:scanning electron microscope 80:Propagating surface plasmons 7: 163: 158:photothermal cancer therapy 124:is highly sensitive to the 10: 1042: 655:Advanced Optical Materials 132:results in a shift in the 476:10.1007/s00216-004-2708-9 170:Surface plasmon resonance 61:Surface plasmon resonance 26:localized surface plasmon 906:Physical Review Letters 875:10.1038/nphoton.2006.49 816:10.1126/science.1108759 720:10.1038/nnano.2014.310 667:10.1002/adom.201700617 362:10.1002/chem.201002665 311:10.1038/nprot.2007.326 114: 109:, pictured here under 21: 690:Nature Nanotechnology 146:analytical techniques 105: 19: 968:Analytical Chemistry 623:10.1364/OE.17.019041 928:2006PhRvL..97e3002C 867:2007NaPho...1...41S 808:2005Sci...308..534F 712:2015NatNa..10....2K 614:2009OExpr..1719041L 608:(21): 19041–19046. 559:2017Ana...142.3579L 356:(42): 12559–12563. 44:used to excite the 763:10.1039/c7nr01512g 567:10.1039/C7AN01026E 405:10.1039/c3cs60417a 134:resonant frequency 122:resonant frequency 115: 107:Gold nanoparticles 57:resonant frequency 22: 974:(13): 6553–6561. 802:(5721): 534–537. 757:(19): 6558–6566. 553:(19): 3579–3587. 523:10.1021/cr100313v 441:10.1021/nn505416r 399:(11): 3908–3920. 263:10.1021/cr100275d 223:10.1021/jp026731y 1033: 1000: 999: 962: 956: 955: 921: 919:quant-ph/0506117 901: 895: 894: 855:Nature Photonics 850: 844: 843: 791: 785: 784: 774: 746: 740: 739: 705: 685: 679: 678: 650: 644: 643: 625: 593: 587: 586: 541: 535: 534: 515:Chemical Reviews 510: 504: 503: 459: 453: 452: 423: 417: 416: 388: 382: 381: 345: 339: 338: 305:(9): 2182–2190. 299:Nature Protocols 294: 285: 284: 274: 257:(6): 3669–3712. 242: 227: 226: 206: 130:refractive index 126:refractive index 1041: 1040: 1036: 1035: 1034: 1032: 1031: 1030: 1006: 1005: 1004: 1003: 963: 959: 902: 898: 851: 847: 792: 788: 747: 743: 686: 682: 661:(21): 1700617. 651: 647: 594: 590: 542: 538: 511: 507: 460: 456: 424: 420: 389: 385: 346: 342: 295: 288: 243: 230: 207: 198: 193: 166: 100: 91: 82: 75: 50:electric fields 34:surface plasmon 12: 11: 5: 1039: 1029: 1028: 1023: 1018: 1002: 1001: 957: 896: 845: 786: 741: 680: 645: 602:Optics Express 588: 536: 505: 470:(7): 920–930. 454: 435:(1): 378–386. 418: 393:Chem. Soc. Rev 383: 340: 286: 228: 217:(3): 668–677. 195: 194: 192: 189: 188: 187: 182: 177: 172: 165: 162: 99: 96: 90: 87: 81: 78: 73: 9: 6: 4: 3: 2: 1038: 1027: 1024: 1022: 1019: 1017: 1016:Nanoparticles 1014: 1013: 1011: 997: 993: 989: 985: 981: 977: 973: 969: 961: 953: 949: 945: 941: 937: 933: 929: 925: 920: 915: 912:(5): 053002. 911: 907: 900: 892: 888: 884: 880: 876: 872: 868: 864: 860: 856: 849: 841: 837: 833: 829: 825: 821: 817: 813: 809: 805: 801: 797: 790: 782: 778: 773: 768: 764: 760: 756: 752: 745: 737: 733: 729: 725: 721: 717: 713: 709: 704: 699: 695: 691: 684: 676: 672: 668: 664: 660: 656: 649: 641: 637: 633: 629: 624: 619: 615: 611: 607: 603: 599: 592: 584: 580: 576: 572: 568: 564: 560: 556: 552: 548: 540: 532: 528: 524: 520: 516: 509: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 458: 450: 446: 442: 438: 434: 430: 422: 414: 410: 406: 402: 398: 394: 387: 379: 375: 371: 367: 363: 359: 355: 351: 344: 336: 332: 328: 324: 320: 316: 312: 308: 304: 300: 293: 291: 282: 278: 273: 268: 264: 260: 256: 252: 248: 241: 239: 237: 235: 233: 224: 220: 216: 212: 205: 203: 201: 196: 186: 183: 181: 178: 176: 173: 171: 168: 167: 161: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 120: 112: 108: 104: 95: 86: 77: 69: 67: 62: 58: 55: 51: 47: 43: 39: 35: 31: 27: 18: 971: 967: 960: 909: 905: 899: 861:(1): 41–48. 858: 854: 848: 799: 795: 789: 754: 750: 744: 693: 689: 683: 658: 654: 648: 605: 601: 591: 550: 546: 539: 514: 508: 467: 463: 457: 432: 428: 421: 396: 392: 386: 353: 349: 343: 302: 298: 254: 250: 214: 210: 180:Nanoparticle 150:spectroscopy 116: 98:Applications 92: 83: 70: 38:nanoparticle 29: 25: 23: 772:11693/37238 547:The Analyst 66:noble metal 1021:Plasmonics 1010:Categories 696:(1): 2–6. 191:References 988:0003-2700 883:1749-4893 824:0036-8075 751:Nanoscale 703:1411.6577 675:103781835 632:1094-4087 575:0003-2654 484:1618-2650 370:1521-3765 319:1750-2799 251:Chem. Rev 148:based on 138:nanoscale 996:26017069 944:17026098 832:15845849 781:28470299 728:25559961 640:20372639 583:28852760 531:21648956 492:15338088 449:25551330 429:ACS Nano 413:24566528 378:20945450 335:20587542 327:17853874 281:21395318 164:See also 156:(HAMR), 142:nanorods 952:7782449 924:Bibcode 863:Bibcode 840:1085807 804:Bibcode 796:Science 736:6906889 708:Bibcode 610:Bibcode 555:Bibcode 500:4814291 272:3110991 119:plasmon 54:plasmon 46:plasmon 994:  986:  950:  942:  891:170678 889:  881:  838:  830:  822:  779:  734:  726:  673:  638:  630:  581:  573:  529:  498:  490:  482:  447:  411:  376:  368:  333:  325:  317:  279:  269:  948:S2CID 914:arXiv 887:S2CID 836:S2CID 732:S2CID 698:arXiv 671:S2CID 496:S2CID 331:S2CID 42:light 36:in a 992:PMID 984:ISSN 940:PMID 879:ISSN 828:PMID 820:ISSN 777:PMID 724:PMID 636:PMID 628:ISSN 579:PMID 571:ISSN 527:PMID 488:PMID 480:ISSN 445:PMID 409:PMID 374:PMID 366:ISSN 323:PMID 315:ISSN 277:PMID 117:The 976:doi 932:doi 871:doi 812:doi 800:308 767:hdl 759:doi 716:doi 663:doi 618:doi 563:doi 551:142 519:doi 472:doi 468:379 437:doi 401:doi 358:doi 307:doi 267:PMC 259:doi 255:111 219:doi 215:107 30:LSP 1012:: 990:. 982:. 972:87 970:. 946:. 938:. 930:. 922:. 910:97 908:. 885:. 877:. 869:. 857:. 834:. 826:. 818:. 810:. 798:. 775:. 765:. 753:. 730:. 722:. 714:. 706:. 694:10 692:. 669:. 657:. 634:. 626:. 616:. 606:17 604:. 600:. 577:. 569:. 561:. 549:. 525:. 494:. 486:. 478:. 466:. 443:. 431:. 407:. 397:43 395:. 372:. 364:. 354:16 352:. 329:. 321:. 313:. 301:. 289:^ 275:. 265:. 253:. 249:. 231:^ 213:. 199:^ 59:. 24:A 998:. 978:: 954:. 934:: 926:: 916:: 893:. 873:: 865:: 859:1 842:. 814:: 806:: 783:. 769:: 761:: 755:9 738:. 718:: 710:: 700:: 677:. 665:: 659:5 642:. 620:: 612:: 585:. 565:: 557:: 533:. 521:: 502:. 474:: 451:. 439:: 433:9 415:. 403:: 380:. 360:: 337:. 309:: 303:2 283:. 261:: 225:. 221:: 74:4 28:(

Index


surface plasmon
nanoparticle
light
plasmon
electric fields
plasmon
resonant frequency
Surface plasmon resonance
noble metal

Gold nanoparticles
scanning electron microscope
plasmon
resonant frequency
refractive index
refractive index
resonant frequency
nanoscale
nanorods
analytical techniques
spectroscopy
heat-assisted magnetic recording
photothermal cancer therapy
Surface plasmon resonance
Surface-enhanced Raman spectroscopy
Nanoparticle
Tip-enhanced Raman spectroscopy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑