Knowledge

Photothermal therapy

Source 📝

92:
because biological tissue is optically transparent at these wavelengths. While all AuNP are sensitive to change in their shape and size, Au nanorods properties are extremely sensitive to any change in any of their dimensions regarding their length and width or their aspect ratio. When light is shone on a metal NP, the NP forms a dipole oscillation along the direction of the electric field. When the oscillation reaches its maximum, this frequency is called the surface plasmon resonance (SPR). AuNR have two SPR spectrum bands: one in the NIR region caused by its longitudinal oscillation which tends to be stronger with a longer wavelength and one in the visible region caused by the transverse electronic oscillation which tends to be weaker with a shorter wavelength. The SPR characteristics account for the increase in light absorption for the particle. As the AuNR aspect ratio increases, the absorption wavelength is redshifted and light scattering efficiency is increased. The electrons excited by the NIR lose energy quickly after absorption via electron-electron collisions, and as these electrons relax back down, the energy is released as a phonon that then heats the environment of the AuNP which in cancer treatments would be the cancerous cells. This process is observed when a laser has a continuous wave onto the AuNP. Pulsed laser light beams generally results in the AuNP melting or ablation of the particle. Continuous wave lasers take minutes rather than a single pulse time for a pulsed laser, continues wave lasers are able to heat larger areas at once.
417:
more than 30 °C. Wang et al. designed four NIR-absorbing D-A structured conjugated polymer dots (Pdots) containing diketopyrrolo-pyrrole (DPP) and thiophene units as effective photothermal materials with the PCE up to 65% for in vivo cancer therapy. Zhang et al. constructed PBIBDF-BT D-A CPs by using isoindigo derivative (BIBDF) and bithiophene (BT) as EA and ED respectively. PBIBDF-BT was further modified with poly(ethylene glycol)-block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP) to obtain PBIBDF-BT@NP PPE with PCE of 46.7% and high stability in physiological environment. Yang’s group designed PBTPBF-BT CPs, in which the bis(5-oxothienopyrrole-6-ylidene)-benzodifurandione (BTPBF) and the 3,3′-didodecyl-2,2′-bithiophene (BT) units acting as EA and ED respectively. The D-A CPs have a maximum absorption peak at 1107 nm and a relative high photothermal conversion efficiency (66.4%). Pu et al. synthesized PC70BM-PCPDTBT D-A CPs via nanoprecipitation of EA (6,6)-phenyl-C71-butyric acid methyl ester (PC70BM) and ED PCPDTBT (SPs) for PA-guided PTT. Wang et al. developed D-A CPs TBDOPV-DT containing thiophene-fused benzodifurandione-based oligo(p-phenylenevinylene) (TBDOPV) as EA unit and 2,2′-bithio-phene (DT) as ED unit. TBDOPV-DT CPs have a strong absorption at 1093 nm and achieve highly efficient NIR-II photothermal conversion.
433:
animals showed no appreciable side effects for the tested dose and an excellent therapeutic efficacy under the 808 nm laser irradiation. Kang et al. synthesized magneto-conjugated polymer core−shell MNP@PEDOT:PSS nanoparticles for multimodal imaging-guided PTT. Furthermore, PEDOT:PSS NPs can not only serve as PTAs but also as a drug carrier to load various types of drugs, such as SN38, chemotherapy drugs DOX and photodynamic agent chlorin e6 (Ce6), thus achieving synergistic cancer therapy.
272:, and (III) nonradiative relaxation (heat generation). Because these three pathways of the S1 decaying back to the S0 are usually competitive in photosensitive materials, light emitting and intersystem crossing must be efficiently reduced in order to increase the heat generation and improve the photothermal conversion efficiency. For conjugated polymers, on the one hand, their unique structures lead to closed stacking of the molecular 357:
for fluorescence-guided photothermal/photodynamic therapy against oral squamous cell carcinoma (OSCC). A biodegradable PLGA-PEGylated DPPV (poly{2,2′--pyrrole-1,4-diyl)-dithiophene]-5,5′-diyl-alt-vinylene) conjugated polymer for PA-guided PTT with PCE 71% (@ 808 nm, 0.3 W cm−2). The vinylene bonds in the main chain improves the biodegradability, biocompatibility and photothermal conversion efficiency of CPs.
334:(PPy) is suited for PTT applications because of its strong NIR absorbance, large PCE, stability, and biocompatibility. In vivo experiments show that tumors treated with PPy NPs could be effectively eliminated under the irradiation of an 808 nm laser (1 W cm, 5 min). PPy nanosheets exhibit promising photothermal ablation ability toward cancer cells in the NIR II window for deep-tissue PTT. 338:
imaging (PA), computed tomography (CT), photodynamic therapy (PDT), chemotherapy, etc. For example, PPy has been used to encapsulate ultrasmall iron oxide nanoparticles (IONPs) and finally develop IONP@PPy NPs for in vivo MR and PA imaging-guided PTT. Polypyrrole (I-PPy) nanocomposites have been investigated for CT imaging-guided tumor PTT.
221:, outstanding PCE, good dispersibility in aqueous medium, increased accumulation at tumor site, and long blood circulation time. Moreover, conjugated polymers can be easily combined with other imaging agents and drugs to construct multifunctional nanomaterials for selective and synergistic cancer therapy. 356:
Conjugated copolymer (C3) with promising photothermal properties can be prepared by linking 2-N,N′-bis(2-(ethyl)hexyl)-perylene-3,4,9,10-tetra-carboxylic acid bis-imide to a thienylvinylene oligomer. C3 was coprecipitated with PEG-PCL and indocyanine green (ICG) to obtain PEG-PCL-C3-ICG nanoparticles
130:
ultrasmall nanoparticles (USNPs), meanwhile the maximum light-to-heat transduction is for < 5 nm nanoparticles. On the other hand, the surface plasmon of excretable gold USNPs is in the UV/visible region (far from the first biological windows), severely limiting their potential application in
116:
was used to irradiate the cells. Only the cells incubated with the gold nanoshells conjugated with the specific antibody (anti-HER2) were damaged by the laser. Another category of gold nanoshells are gold layer on liposomes, as soft template. In this case, drug can also be encapsulated inside and/or
337:
PPy nanoparticles and its derivative nanomaterials can also be combined with imaging contrast agents and diverse drugs to construct multifunctional theranostic applications in imaging-guided PTT and synergistic treatment, including fluorescent imaging, magnetic resonance imaging (MRI), photoacoustic
311:
gap of the D−A conjugated polymers can be easily tuned through changing the selection of electron donor (ED) and electron acceptor (EA) moieties, and thus D−A structured polymers with extremely low band gap can be developed to improve the NIR absorption and photothermal conversion efficiency of CPs.
306:
Furthermore, various efficient methods, especially donor-acceptor (D-A) strategy, have been designed to enhance the photothermal conversion efficiency and heat generation of conjugated polymers. The D-A assembly system in the conjugated polymers contributes to strong intermolecular electron transfer
154:
at a power density of 2 W/cm was used to irradiate the tumor sites on mice for 5 minutes. As noted by the authors, the power densities of lasers used to heat gold nanorods range from 2 to 4 W/cm. Thus, these nanoscale graphene sheets require a laser power on the lower end of the range used with gold
172:
PTT utilizes photothermal transduction agents (PTAs) which can transform light energy to heat through photothermal effect to raise the temperature of tumor area and thus cause the ablation of tumor cells. Specifically, ideal PTAs should have high photothermal conversion efficiency (PCE), excellent
158:
In 2012, Yang et al. incorporated the promising results regarding nanoscale reduced graphene oxide reported by Robinson et al. into another in vivo mice study.< The therapeutic treatment used in this study involved the use of nanoscale reduced graphene oxide sheets, nearly identical to the ones
91:
When AuNRs are exposed to NIR light, the oscillating electromagnetic field of the light causes the free electrons of the AuNR to collectively coherently oscillate. Changing the size and shape of AuNRs changes the wavelength that gets absorbed. A desired wavelength would be between 700-1000 nm
67:
tissue. When a tumor forms, it requires new blood vessels in order to fuel its growth; these new blood vessels in/near tumors have different properties as compared to regular blood vessels, such as poor lymphatic drainage and a disorganized, leaky vasculature. These factors lead to a significantly
432:
and have strong NIR absorption. In 2012, Liu’s group first reported PEGylated PEDOT:PSS polymeric nanoparticle (PEDOT:PSS-PEG) for near-infrared photothermal therapy of cancer. PEDOT:PSS-PEG nanoparticles have high stability in vivo and long blood circulation half-life of 21.4 ± 3.1 h. The PTT in
416:
have been investigated for the medicinal purposes. Nano-PCPDTBT CPs have two moieties: 2-ethylhexyl cyclopentadithiophene and 2,1,3-benzothiadiazole. When the PCPDTBT nanoparticle solution (0.115 mg/mL) was exposed to an 808 nm NIR laser (0.6 W/cm), the temperature could be increased by
276:
with highly frequent intermolecular collisions which can efficiently quench the fluorescence and intersystem crossing, and thus enhance the yield of nonradiative relaxation. On the other hand, compared with monomeric phototherapeutic molecules, conjugated polymers possess higher stability in vivo
403:
Dopamine-melanin colloidal nanospheres is an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. PDA can also be modified on the surface of other PTAs, such as gold nanorods, carbon-based materials, to enhance the photothermal stability and efficiency in vivo. For
138:
NAs are the first reported NIR-absorbing plasmonic ultrasmall-in-nano platforms that jointly combine: i) photothermal conversion efficacy suitable for hyperthermia, ii) multiple photothermal sequences and iii) renal excretion of the building blocks after the therapeutic action. Nowadays, tNAs
125:
The failure of clinical translation of nanoparticles-mediated PTT is mainly ascribed to concerns about their persistence in the body. Indeed, the optical response of anisotropic nanomaterials can be tuned in the NIR region by increasing their size to up to 150 nm. On the other hand, body
46:
Unlike photodynamic therapy, photothermal therapy does not require oxygen to interact with the target cells or tissues. Current studies also show that photothermal therapy is able to use longer wavelength light, which is less energetic and therefore less harmful to other cells and tissues.
126:
excretion of non-biodegradable noble metals nanomaterials above 10 nm occurs through the hepatobiliary route in a slow and inefficient manner. A common approach to avoid metal persistence is to reduce the nanoparticles size below the threshold for renal clearance,
159:
used by Robinson et al. (but without any active targeting sequences attached). Nanoscale reduced graphene oxide sheets were successfully irradiated in order to completely destroy the targeted tumors. Most notably, the required power density of the 808 nm
84:(anti-EGFR monoclonal antibodies) to the surface of gold nanorods, allowing the gold nanorods to bind specifically to certain malignant cancer cells (HSC and HOC malignant cells). After incubating the cells with the gold nanorods, an 800 nm Ti:sapphire 1345:
Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, De Sio L, Kowalewski TA (November 2018). "Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies".
163:
was reduced to 0.15 W/cm, an order of magnitude lower than previously required power densities. This study demonstrates the higher efficacy of nanoscale reduced graphene oxide sheets as compared to both nanoscale graphene sheets and gold nanorods.
285:. Therefore, conjugated polymers have high photothermal conversion efficiency and a large amount of heat generation. One of the most widely used equations to calculate photothermal conversion efficiency (η) of organic PTAs is as follows: 1535: 2150:
Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K (April 2016). "Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy".
1007:
Cassano D, Mapanao AK, Summa M, Vlamidis Y, Giannone G, Santi M, Guzzolino E, Pitto L, Poliseno L, Bertorelli R, Voliani V (2019-10-21). "Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature".
971:
Cassano D, Summa M, Pocovíd-Martínez S, Mapanao AK, Catelani T, Bertorelli R, Voliani V (February 2019). "Biodegradable Ultrasmall-in-Nano Gold Architectures: Mid-Period In Vivo Distribution and Excretion Assessment".
181:(NIR) region (650-1350 nm) due to the deep-tissue penetration and minimal absorption of NIR light in the biological tissues. PTAs mainly include inorganic materials and organic materials. Inorganic PTAs, such as 2114:
Cao Z, Feng L, Zhang G, Wang J, Shen S, Li D, Yang X (February 2018). "Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for in vivo photothermal therapy and photoacoustic imaging".
1824:
Lyu Y, Zeng J, Jiang Y, Zhen X, Wang T, Qiu S, et al. (February 2018). "Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy".
1788:
Ren S, Cheng X, Chen M, Liu C, Zhao P, Huang W, et al. (September 2017). "Hypotoxic and Rapidly Metabolic PEG-PCL-C3-ICG Nanoparticles for Fluorescence-Guided Photothermal/Photodynamic Therapy against OSCC".
2266:
Yan H, Zhao L, Shang W, Liu Z, Xie W, Qiang C, et al. (February 2017). "General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics".
388:, and high photothermal conversion efficiency. Furthermore, with π conjugated structure and different active groups, PDA can be easily combined with various materials to achieve multifunction, such as 2040:
Li S, Wang X, Hu R, Chen H, Li M, Wang J, et al. (December 2016). "Near-Infrared (NIR)-Absorbing Conjugated Polymer Dots as Highly Effective Photothermal Materials for In Vivo Cancer Therapy".
1137:
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (March 2012). "The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power".
1581:
Tian Q, Li Y, Jiang S, An L, Lin J, Wu H, et al. (October 2019). "Tumor pH-Responsive Albumin/Polyaniline Assemblies for Amplified Photoacoustic Imaging and Augmented Photothermal Therapy".
1905:
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y (August 2019). "Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine".
1702:
Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, et al. (September 2013). "Ultra-Small Iron Oxide Doped Polypyrrole Nanoparticles for In Vivo Multimodal Imaging Guided Photothermal Therapy".
2005:
MacNeill CM, Coffin RC, Carroll DL, Levi-Polyachenko NH (January 2013). "Low band gap donor-acceptor conjugated polymer nanoparticles and their NIR-mediated thermal ablation of cancer cells".
1870:
Wang X, Zhang J, Wang Y, Wang C, Xiao J, Zhang Q, Cheng Y (March 2016). "Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation".
1659:
Wang X, Ma Y, Sheng X, Wang Y, Xu H (April 2018). "Ultrathin Polypyrrole Nanosheets via Space-Confined Synthesis for Efficient Photothermal Therapy in the Second Near-Infrared Window".
1456:
Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (March 2013). "Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy".
1102:
Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (May 2011). "Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy".
2309:
Gong H, Cheng L, Xiang J, Xu H, Feng L, Shi X, Liu Z (December 2013). "Near-Infrared Absorbing Polymeric Nanoparticles as a Versatile Drug Carrier for Cancer Combination Therapy".
134:
Excretion of metals has been combined with NIR-triggered PTT by employing ultrasmall-in-nano architectures composed by metal USNPs embedded in biodegradable silica nanocapsules.
2196:
Cao Y, Dou JH, Zhao NJ, Zhang S, Zheng YQ, Zhang JP, et al. (January 2017). "Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer".
1499:
Yang J, Choi J, Bang D, Kim E, Lim EK, Park H, et al. (January 2011). "Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells".
88:
was used to irradiate the cells at varying powers. The authors reported successful destruction of the malignant cancer cells, while nonmalignant cells were unharmed.
2349:
Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (September 2006). "Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters".
512:
Huang X, El-Sayed IH, Qian W, El-Sayed MA (February 2006). "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods".
252:
The nonradiative process for heat generation of organic PTAs is different from that of inorganic PTAs such as metals and semiconductors which is related with
1410:
Zhao L, Liu Y, Chang R, Xing R, Yan X (November 2018). "Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy".
1745:
Zou Q, Huang J, Zhang X (November 2018). "One-Step Synthesis of Iodinated Polypyrrole Nanoparticles for CT Imaging Guided Photothermal Therapy of Tumors".
63:
observed with particles in a certain size range (typically 20 - 300 nm). Molecules in this range have been observed to preferentially accumulate in
1059:
Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (September 2010). "Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy".
307:
from the donor to the acceptor, thus bringing efficient fluorescence and intersystem crossing quenching, and improved heat generation. In addition, the
2231:
Cheng L, Yang K, Chen Q, Liu Z (June 2012). "Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer".
1624:
Chen M, Fang X, Tang S, Zheng N (September 2012). "Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy".
213:
with large π−π conjugated skeleton and a high electron delocalization structure show potential for PTT due to their strong NIR absorption, excellent
477:
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (March 2000). "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review".
349:(PTh) and its derivatives-based polymers are also one kind of conjugated polymers for PTT. Polythiophene-based polymers usually exhibit excellent 1253:
Yu C, Xu L, Zhang Y, Timashev PS, Huang Y, Liang XJ (September 2020). "Polymer-Based Nanomaterials for Noninvasive Cancer Photothermal Therapy".
903:
Jiang K, Smith DA, Pinchuk A (2013-12-27). "Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles".
400:, PA, targeted therapy etc. In view of this, PDA and its composite nanomaterials have a broad application prospect in the biomedical field. 39:
is excited with specific band light. This activation brings the sensitizer to an excited state where it then releases vibrational energy (
282: 60: 209:, are limited in the field of cancer treatment because of their susceptibility to photobleaching and poor tumor enrichment ability. 178: 193:, but they are not biodegradable and thus have potential long-term toxicity in vivo. Organic PTAs including small molecule dyes and 303:
means the light absorbance, I is the laser power density, and Qs is the heat associated with the light absorbance of the solvent.
2420: 686:
Loo C, Lowery A, Halas N, West J, Drezek R (April 2005). "Immunotargeted nanoshells for integrated cancer imaging and therapy".
1185:
Wang Y, Meng HM, Song G, Li Z, Zhang XB (August 2020). "Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy".
643:
Huang X, Jain PK, El-Sayed IH, El-Sayed MA (July 2008). "Plasmonic photothermal therapy (PPTT) using gold nanoparticles".
197:(CPs) have good biocompatibility and biodegradability, but poor photostability. Among them, small molecule dyes, such as 112:(anti-HER2 or anti-IgG) via PEG linkers. After incubation of SKBr3 cancer cells with the gold nanoshells, an 820 nm 404:
example, PDA-modified spiky gold nanoparticles (SGNP@PDAs) have been investigated for chemo-photothermal therapy.
380:-like substance under mild alkaline conditions. PDA has strong NIR absorption, good photothermal stability, excellent 1536:"Targeted lipid-polyaniline hybrid nanoparticles for photoacoustic imaging guided photothermal therapy of cancer" 815:"Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment" 240:(PDA), donor−acceptor (D-A) conjugated polymers, and poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ( 2077:"A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors" 457: 353:, large light-harvesting ability, easy synthesis, and facile functionalization with different substituents. 2410: 560:"Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy" 1950:"Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer" 1301:
Xu L, Cheng L, Wang C, Peng R, Liu Z (2014). "Conjugated polymers for photothermal therapy of cancer".
393: 936: 729:
Abbasi A, Park K, Bose A, Bothun GD (May 2017). "Near-Infrared Responsive Gold-Layersome Nanoshells".
253: 20: 2400: 2405: 2415: 186: 139:
therapeutic effect has been assessed on valuable 3D models of human pancreatic adenocarcinoma.
55:
Most materials of interest currently being investigated for photothermal therapy are on the
2425: 2358: 1961: 1668: 1547: 1068: 695: 452: 389: 269: 32: 2378: 68:
higher concentration of certain particles in a tumor as compared to the rest of the body.
8: 1559: 864:"Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics" 429: 413: 210: 194: 2379:"Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters" 2362: 1965: 1672: 1551: 1072: 699: 2326: 2291: 2128: 1982: 1949: 1930: 1883: 1770: 1727: 1606: 1481: 1435: 1381: 1278: 1210: 1150: 1041: 989: 839: 814: 790: 765: 668: 622: 2370: 490: 2330: 2295: 2283: 2248: 2213: 2178: 2132: 2096: 2057: 2022: 1987: 1934: 1922: 1887: 1852: 1806: 1762: 1719: 1684: 1641: 1610: 1598: 1563: 1516: 1473: 1439: 1427: 1373: 1318: 1282: 1270: 1214: 1202: 1154: 1119: 1084: 1045: 1033: 1025: 993: 885: 844: 795: 746: 711: 672: 660: 626: 614: 529: 494: 80:
for both cancer cell imaging as well as photothermal therapy. The authors conjugated
1774: 1731: 1385: 880: 863: 2366: 2318: 2275: 2240: 2205: 2168: 2160: 2124: 2088: 2076: 2049: 2014: 1977: 1969: 1914: 1879: 1842: 1834: 1798: 1754: 1711: 1676: 1633: 1590: 1555: 1508: 1485: 1465: 1419: 1363: 1355: 1310: 1262: 1194: 1146: 1111: 1076: 1017: 981: 951: 937:"Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures" 912: 875: 834: 826: 785: 777: 738: 703: 652: 604: 593:"Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia" 571: 521: 486: 385: 381: 369: 323:(PANI) is one of the earliest types of conjugated polymers reported for tumor PTT. 174: 56: 2209: 2053: 1680: 742: 36: 281:, longer blood circulation time, and more accumulation at tumor site due to the 1973: 1359: 576: 559: 350: 278: 214: 206: 190: 2279: 656: 2394: 2287: 2217: 2061: 1723: 1431: 1322: 1274: 1206: 1029: 618: 447: 442: 346: 308: 295:
where h is the heat transfer coefficient, A is the container surface area, ΔΤ
257: 233: 77: 2164: 1918: 1838: 260:(S1) under light irradiation and then excited state (S1) decays back to the 2322: 2252: 2182: 2136: 2100: 2026: 2018: 1991: 1926: 1891: 1856: 1810: 1802: 1766: 1758: 1715: 1688: 1645: 1602: 1594: 1567: 1520: 1512: 1477: 1469: 1423: 1377: 1266: 1198: 1158: 1123: 1088: 1037: 1021: 985: 889: 848: 799: 750: 715: 664: 609: 592: 533: 498: 373: 265: 261: 237: 218: 105: 766:"Nanomedicine for targeted photothermal cancer therapy: where are we now?" 1368: 591:
Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WC (October 2008).
331: 320: 273: 256:. As shown in the figure, conjugated polymers are first activated to the 229: 225: 182: 27:
wavelengths) for the treatment of various medical conditions, including
2173: 2092: 1847: 1637: 1314: 956: 935:
Cassano D, Santi M, D'Autilia F, Mapanao AK, Luin S, Voliani V (2019).
781: 109: 101: 81: 2244: 1451: 1449: 1115: 1080: 916: 830: 707: 525: 2075:
Zhang G, Li P, Tang L, Ma J, Wang X, Lu H, et al. (March 2014).
2004: 1948:
Nam J, Son S, Ochyl LJ, Kuai R, Schwendeman A, Moon JJ (March 2018).
425: 376:(PDA) is obtained through the self-aggregation of dopamine to form a 241: 202: 1446: 970: 819:
Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology
365: 147: 24: 397: 377: 198: 1344: 934: 28: 590: 2348: 861: 160: 151: 113: 85: 64: 117:
in bilayer and the release can be triggered by laser light.
1006: 40: 1101: 642: 511: 426:
Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)
862:
Cassano D, Pocoví-Martínez S, Voliani V (January 2018).
299:
means the maximum temperature change in the solution, A
1534:
Wang J, Yan R, Guo F, Yu M, Tan F, Li N (July 2016).
728: 476: 247: 150:is viable for photothermal therapy. An 808 nm 120: 108:with a thin layer of gold. have been conjugated to 76:Huang et al. investigated the feasibility of using 685: 1869: 1623: 1252: 1058: 902: 264:(S0) via three processes: (I) emitting a photon ( 185:materials, carbon-based nanomaterials, and other 2392: 2308: 2230: 2113: 1823: 1701: 1409: 1136: 974:Particle & Particle Systems Characterization 283:enhanced permeability and retention (EPR) effect 2265: 2195: 2149: 1947: 1904: 1787: 1658: 1498: 1340: 1338: 1336: 1334: 1332: 1300: 930: 928: 926: 155:nanoparticles to photothermally ablate tumors. 1184: 142: 2074: 1744: 1580: 557: 372:in the body which helps cells send impulses. 2039: 1533: 1455: 1405: 1403: 1401: 1399: 1397: 1395: 1329: 1180: 1178: 1176: 1174: 1172: 1170: 1168: 1130: 1095: 923: 638: 636: 553: 551: 549: 547: 545: 543: 167: 59:. One of the key reasons behind this is the 1248: 1246: 1244: 407: 43:), which is what kills the targeted cells. 1296: 1294: 1292: 1242: 1240: 1238: 1236: 1234: 1232: 1230: 1228: 1226: 1224: 224:The CPs used for tumor PTT mainly include 61:enhanced permeability and retention effect 2172: 1981: 1846: 1492: 1392: 1367: 1165: 1052: 955: 879: 838: 789: 633: 608: 575: 540: 505: 470: 1104:Journal of the American Chemical Society 812: 514:Journal of the American Chemical Society 1289: 1221: 763: 679: 71: 2393: 1791:ACS Applied Materials & Interfaces 341: 50: 558:Huang X, El-Sayed MA (January 2010). 360: 315: 177:, and strong light adsorption in the 326: 905:The Journal of Physical Chemistry C 31:. This approach is an extension of 13: 2341: 2129:10.1016/j.biomaterials.2017.11.016 1884:10.1016/j.biomaterials.2015.11.037 1151:10.1016/j.biomaterials.2011.11.064 95: 14: 2437: 248:Photothermal conversion mechanism 121:thermo Nano-Architectures (tNAs) 2302: 2259: 2224: 2189: 2143: 2107: 2068: 2033: 1998: 1941: 1898: 1863: 1817: 1781: 1738: 1695: 1652: 1617: 1574: 1527: 1000: 964: 896: 881:10.1021/acs.bioconjchem.7b00664 855: 19:(PTT) refers to efforts to use 2421:Experimental cancer treatments 1560:10.1088/0957-4484/27/28/285102 813:Riley RS, Day ES (July 2017). 806: 764:Chen F, Cai W (January 2015). 757: 722: 584: 189:, have high PCE and excellent 1: 2311:Advanced Functional Materials 2210:10.1021/acs.chemmater.6b04405 2054:10.1021/acs.chemmater.6b03738 1704:Advanced Functional Materials 1412:Advanced Functional Materials 1255:ACS Applied Polymer Materials 1187:ACS Applied Polymer Materials 491:10.1016/s0168-3659(99)00248-5 479:Journal of Controlled Release 463: 458:Experimental cancer treatment 428:(PEDOT:PSS) is often used in 1681:10.1021/acs.nanolett.7b04675 743:10.1021/acs.langmuir.7b01273 564:Journal of Advanced Research 420: 7: 2371:10.1088/0957-4484/17/20/022 436: 143:Graphene and graphene oxide 10: 2442: 1974:10.1038/s41467-018-03473-9 1360:10.1021/acs.biomac.8b01138 577:10.1016/j.jare.2010.02.002 2280:10.1007/s12274-016-1330-4 2007:Macromolecular Bioscience 1010:ACS Applied Bio Materials 657:10.1007/s10103-007-0470-x 645:Lasers in Medical Science 254:surface plasmon resonance 168:Conjugated polymers (CPs) 21:electromagnetic radiation 408:Donor−Acceptor (D−A) CPs 277:against disassembly and 2165:10.1021/acsnano.6b00168 2081:Chemical Communications 1919:10.1021/acsnano.9b04436 1839:10.1021/acsnano.7b08616 1626:Chemical Communications 2323:10.1002/adfm.201301555 2198:Chemistry of Materials 2042:Chemistry of Materials 2019:10.1002/mabi.201200241 1803:10.1021/acsami.7b09522 1759:10.1002/smll.201803101 1716:10.1002/adfm.201302463 1595:10.1002/smll.201902926 1513:10.1002/anie.201005075 1470:10.1002/adma.201204683 1424:10.1002/adfm.201806877 1267:10.1021/acsapm.0c00704 1199:10.1021/acsapm.0c00680 1022:10.1021/acsabm.9b00630 986:10.1002/ppsc.201800464 868:Bioconjugate Chemistry 610:10.1002/adma.200800921 173:optical stability and 1954:Nature Communications 412:Donor−acceptor (D−A) 2385:. November 13, 2006. 453:Hyperthermia therapy 390:fluorescence imaging 270:intersystem crossing 72:Gold NanoRods (AuNR) 33:photodynamic therapy 17:Photothermal therapy 2363:2006Nanot..17.5167K 1966:2018NatCo...9.1074N 1797:(37): 31509–31518. 1673:2018NanoL..18.2217W 1552:2016Nanot..27B5102W 1073:2010NanoL..10.3318Y 911:(51): 27073–27080. 700:2005NanoL...5..709L 430:organic electronics 414:conjugated polymers 342:Polythiophene (PTh) 211:Conjugated polymers 195:conjugated polymers 51:Nanoscale materials 2411:Medical treatments 2093:10.1039/c3cc48695h 1638:10.1039/c2cc34463g 1458:Advanced Materials 1315:10.1039/C3PY01196H 957:10.1039/C9MH00096H 944:Materials Horizons 782:10.2217/nnm.14.186 597:Advanced Materials 361:Polydopamine (PDA) 316:Polyaniline (PANI) 2357:(20): 5167–5179. 2317:(48): 6059–6067. 2245:10.1021/nn301539m 2048:(23): 8669–8675. 1501:Angewandte Chemie 1354:(11): 4147–4167. 1348:Biomacromolecules 1261:(10): 4289–4305. 1193:(10): 4258–4272. 1116:10.1021/ja2010175 1081:10.1021/nl100996u 1016:(10): 4464–4470. 917:10.1021/jp409067h 831:10.1002/wnan.1449 737:(21): 5321–5327. 708:10.1021/nl050127s 603:(20): 3832–3838. 526:10.1021/ja057254a 370:neurotransmitters 327:Polypyrrole (PPy) 2433: 2386: 2383:News-Medical.net 2374: 2335: 2334: 2306: 2300: 2299: 2263: 2257: 2256: 2228: 2222: 2221: 2193: 2187: 2186: 2176: 2147: 2141: 2140: 2111: 2105: 2104: 2072: 2066: 2065: 2037: 2031: 2030: 2002: 1996: 1995: 1985: 1945: 1939: 1938: 1913:(8): 8537–8565. 1902: 1896: 1895: 1867: 1861: 1860: 1850: 1833:(2): 1801–1810. 1821: 1815: 1814: 1785: 1779: 1778: 1753:(45): e1803101. 1742: 1736: 1735: 1710:(9): 1194–1201. 1699: 1693: 1692: 1667:(4): 2217–2225. 1656: 1650: 1649: 1621: 1615: 1614: 1589:(42): e1902926. 1578: 1572: 1571: 1531: 1525: 1524: 1496: 1490: 1489: 1453: 1444: 1443: 1407: 1390: 1389: 1371: 1342: 1327: 1326: 1309:(5): 1573–1580. 1298: 1287: 1286: 1250: 1219: 1218: 1182: 1163: 1162: 1134: 1128: 1127: 1099: 1093: 1092: 1056: 1050: 1049: 1004: 998: 997: 968: 962: 961: 959: 941: 932: 921: 920: 900: 894: 893: 883: 859: 853: 852: 842: 810: 804: 803: 793: 761: 755: 754: 726: 720: 719: 683: 677: 676: 640: 631: 630: 612: 588: 582: 581: 579: 555: 538: 537: 509: 503: 502: 474: 386:biodegradability 382:biocompatibility 175:biocompatibility 104:, coated silica 2441: 2440: 2436: 2435: 2434: 2432: 2431: 2430: 2401:Medical physics 2391: 2390: 2389: 2377: 2344: 2342:Further reading 2339: 2338: 2307: 2303: 2264: 2260: 2229: 2225: 2194: 2190: 2148: 2144: 2112: 2108: 2073: 2069: 2038: 2034: 2003: 1999: 1946: 1942: 1903: 1899: 1868: 1864: 1822: 1818: 1786: 1782: 1743: 1739: 1700: 1696: 1657: 1653: 1622: 1618: 1579: 1575: 1532: 1528: 1497: 1493: 1454: 1447: 1408: 1393: 1343: 1330: 1299: 1290: 1251: 1222: 1183: 1166: 1135: 1131: 1110:(17): 6825–31. 1100: 1096: 1057: 1053: 1005: 1001: 969: 965: 939: 933: 924: 901: 897: 860: 856: 811: 807: 762: 758: 727: 723: 684: 680: 641: 634: 589: 585: 556: 541: 510: 506: 485:(1–2): 271–84. 475: 471: 466: 439: 423: 410: 363: 344: 329: 318: 302: 298: 291: 250: 170: 145: 123: 98: 96:Gold Nanoshells 74: 53: 37:photosensitizer 23:(most often in 12: 11: 5: 2439: 2429: 2428: 2423: 2418: 2413: 2408: 2406:Photochemistry 2403: 2388: 2387: 2375: 2351:Nanotechnology 2345: 2343: 2340: 2337: 2336: 2301: 2274:(2): 704–717. 2258: 2239:(6): 5605–13. 2223: 2204:(2): 718–725. 2188: 2159:(4): 4472–81. 2142: 2106: 2087:(24): 3180–3. 2067: 2032: 1997: 1940: 1897: 1862: 1816: 1780: 1737: 1694: 1651: 1632:(71): 8934–6. 1616: 1573: 1546:(28): 285102. 1540:Nanotechnology 1526: 1491: 1445: 1418:(4): 1806877. 1391: 1328: 1288: 1220: 1164: 1145:(7): 2206–14. 1129: 1094: 1067:(9): 3318–23. 1051: 999: 980:(2): 1800464. 963: 950:(3): 531–537. 922: 895: 854: 805: 756: 721: 678: 632: 583: 539: 520:(6): 2115–20. 504: 468: 467: 465: 462: 461: 460: 455: 450: 445: 438: 435: 422: 419: 409: 406: 362: 359: 351:photostability 343: 340: 328: 325: 317: 314: 300: 296: 289: 279:photobleaching 249: 246: 215:photostability 207:phthalocyanine 191:photostability 169: 166: 144: 141: 122: 119: 97: 94: 73: 70: 52: 49: 9: 6: 4: 3: 2: 2438: 2427: 2424: 2422: 2419: 2417: 2416:Light therapy 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2398: 2396: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2352: 2347: 2346: 2332: 2328: 2324: 2320: 2316: 2312: 2305: 2297: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2268:Nano Research 2262: 2254: 2250: 2246: 2242: 2238: 2234: 2227: 2219: 2215: 2211: 2207: 2203: 2199: 2192: 2184: 2180: 2175: 2170: 2166: 2162: 2158: 2154: 2146: 2138: 2134: 2130: 2126: 2122: 2118: 2110: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2071: 2063: 2059: 2055: 2051: 2047: 2043: 2036: 2028: 2024: 2020: 2016: 2012: 2008: 2001: 1993: 1989: 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1944: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1901: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1858: 1854: 1849: 1844: 1840: 1836: 1832: 1828: 1820: 1812: 1808: 1804: 1800: 1796: 1792: 1784: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1741: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1577: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1530: 1522: 1518: 1514: 1510: 1506: 1502: 1495: 1487: 1483: 1479: 1475: 1471: 1467: 1464:(9): 1353–9. 1463: 1459: 1452: 1450: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1413: 1406: 1404: 1402: 1400: 1398: 1396: 1387: 1383: 1379: 1375: 1370: 1369:11573/1178237 1365: 1361: 1357: 1353: 1349: 1341: 1339: 1337: 1335: 1333: 1324: 1320: 1316: 1312: 1308: 1304: 1297: 1295: 1293: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1249: 1247: 1245: 1243: 1241: 1239: 1237: 1235: 1233: 1231: 1229: 1227: 1225: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1181: 1179: 1177: 1175: 1173: 1171: 1169: 1160: 1156: 1152: 1148: 1144: 1140: 1133: 1125: 1121: 1117: 1113: 1109: 1105: 1098: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1055: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1003: 995: 991: 987: 983: 979: 975: 967: 958: 953: 949: 945: 938: 931: 929: 927: 918: 914: 910: 906: 899: 891: 887: 882: 877: 873: 869: 865: 858: 850: 846: 841: 836: 832: 828: 824: 820: 816: 809: 801: 797: 792: 787: 783: 779: 775: 771: 767: 760: 752: 748: 744: 740: 736: 732: 725: 717: 713: 709: 705: 701: 697: 694:(4): 709–11. 693: 689: 682: 674: 670: 666: 662: 658: 654: 651:(3): 217–28. 650: 646: 639: 637: 628: 624: 620: 616: 611: 606: 602: 598: 594: 587: 578: 573: 569: 565: 561: 554: 552: 550: 548: 546: 544: 535: 531: 527: 523: 519: 515: 508: 500: 496: 492: 488: 484: 480: 473: 469: 459: 456: 454: 451: 449: 448:Light Therapy 446: 444: 443:Photomedicine 441: 440: 434: 431: 427: 418: 415: 405: 401: 399: 395: 391: 387: 383: 379: 375: 371: 367: 358: 354: 352: 348: 347:Polythiophene 339: 335: 333: 324: 322: 313: 310: 304: 293: 292:-Qs)/I(1-10) 286: 284: 280: 275: 271: 267: 263: 259: 258:excited state 255: 245: 243: 239: 235: 234:polythiophene 231: 227: 222: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 179:near-infrared 176: 165: 162: 156: 153: 149: 140: 137: 132: 129: 118: 115: 111: 107: 106:nanoparticles 103: 93: 89: 87: 83: 79: 78:gold nanorods 69: 66: 62: 58: 48: 44: 42: 38: 35:, in which a 34: 30: 26: 22: 18: 2382: 2354: 2350: 2314: 2310: 2304: 2271: 2267: 2261: 2236: 2232: 2226: 2201: 2197: 2191: 2156: 2152: 2145: 2120: 2117:Biomaterials 2116: 2109: 2084: 2080: 2070: 2045: 2041: 2035: 2013:(1): 28–34. 2010: 2006: 2000: 1957: 1953: 1943: 1910: 1906: 1900: 1875: 1872:Biomaterials 1871: 1865: 1830: 1826: 1819: 1794: 1790: 1783: 1750: 1746: 1740: 1707: 1703: 1697: 1664: 1661:Nano Letters 1660: 1654: 1629: 1625: 1619: 1586: 1582: 1576: 1543: 1539: 1529: 1507:(2): 441–4. 1504: 1500: 1494: 1461: 1457: 1415: 1411: 1351: 1347: 1306: 1302: 1258: 1254: 1190: 1186: 1142: 1139:Biomaterials 1138: 1132: 1107: 1103: 1097: 1064: 1061:Nano Letters 1060: 1054: 1013: 1009: 1002: 977: 973: 966: 947: 943: 908: 904: 898: 871: 867: 857: 825:(4): e1449. 822: 818: 808: 773: 770:Nanomedicine 769: 759: 734: 730: 724: 691: 688:Nano Letters 687: 681: 648: 644: 600: 596: 586: 570:(1): 13–28. 567: 563: 517: 513: 507: 482: 478: 472: 424: 411: 402: 374:Polydopamine 364: 355: 345: 336: 330: 319: 305: 294: 287: 266:fluorescence 262:ground state 251: 238:polydopamine 223: 219:cytotoxicity 187:2D materials 171: 157: 146: 135: 133: 127: 124: 99: 90: 75: 54: 45: 16: 15: 2426:Oncothermia 2174:10220/42127 2123:: 103–111. 1960:(1): 1074. 1878:: 114–124. 1848:10356/91064 1303:Polym. Chem 874:(1): 4–16. 332:Polypyrrole 321:Polyaniline 274:sensitizers 230:polypyrrole 226:polyaniline 183:noble metal 2395:Categories 776:(1): 1–3. 464:References 368:is one of 110:antibodies 102:nanoshells 82:antibodies 2331:137636106 2296:100521646 2288:1998-0124 2218:0897-4756 2062:0897-4756 1935:199380635 1724:1616-301X 1611:201750011 1440:106028103 1432:1616-301X 1323:1759-9954 1283:225312270 1275:2637-6105 1215:225217380 1207:2637-6105 1046:204266885 1030:2576-6422 994:104434042 673:207053590 627:137257403 619:1521-4095 421:PEDOT:PSS 309:HOMO-LUMO 288:η = (hAΔΤ 242:PEDOT:PSS 203:porphyrin 57:nanoscale 2253:22616847 2233:ACS Nano 2183:26959505 2153:ACS Nano 2137:29175079 2101:24519589 2027:23042788 1992:29540781 1927:31369230 1907:ACS Nano 1892:26731575 1857:29385336 1827:ACS Nano 1811:28858474 1775:52946295 1767:30300473 1732:97828466 1689:29528661 1646:22847451 1603:31448572 1568:27255659 1521:21132823 1478:23280690 1386:52293861 1378:30230317 1159:22169821 1124:21476500 1089:20684528 1038:35021406 890:29186662 849:28160445 800:25597770 751:28486807 731:Langmuir 716:15826113 665:17674122 534:16464114 499:10699287 437:See also 366:Dopamine 268:), (II) 228:(PANI), 148:Graphene 25:infrared 2359:Bibcode 1983:5852008 1962:Bibcode 1669:Bibcode 1548:Bibcode 1486:5241524 1069:Bibcode 840:5474189 791:4299941 696:Bibcode 378:melanin 236:(PTh), 232:(PPy), 199:cyanine 2329:  2294:  2286:  2251:  2216:  2181:  2135:  2099:  2060:  2025:  1990:  1980:  1933:  1925:  1890:  1855:  1809:  1773:  1765:  1730:  1722:  1687:  1644:  1609:  1601:  1566:  1519:  1484:  1476:  1438:  1430:  1384:  1376:  1321:  1281:  1273:  1213:  1205:  1157:  1122:  1087:  1044:  1036:  1028:  992:  888:  847:  837:  798:  788:  749:  714:  671:  663:  625:  617:  532:  497:  217:, low 29:cancer 2327:S2CID 2292:S2CID 1931:S2CID 1771:S2CID 1747:Small 1728:S2CID 1607:S2CID 1583:Small 1482:S2CID 1436:S2CID 1382:S2CID 1279:S2CID 1211:S2CID 1042:S2CID 990:S2CID 940:(PDF) 669:S2CID 623:S2CID 161:laser 152:laser 131:PTT. 114:laser 100:Gold 86:laser 65:tumor 2284:ISSN 2249:PMID 2214:ISSN 2179:PMID 2133:PMID 2097:PMID 2058:ISSN 2023:PMID 1988:PMID 1923:PMID 1888:PMID 1853:PMID 1807:PMID 1763:PMID 1720:ISSN 1685:PMID 1642:PMID 1599:PMID 1564:PMID 1517:PMID 1474:PMID 1428:ISSN 1374:PMID 1319:ISSN 1271:ISSN 1203:ISSN 1155:PMID 1120:PMID 1085:PMID 1034:PMID 1026:ISSN 886:PMID 845:PMID 796:PMID 747:PMID 712:PMID 661:PMID 615:ISSN 530:PMID 495:PMID 384:and 128:i.e. 41:heat 2367:doi 2319:doi 2276:doi 2241:doi 2206:doi 2169:hdl 2161:doi 2125:doi 2121:155 2089:doi 2050:doi 2015:doi 1978:PMC 1970:doi 1915:doi 1880:doi 1843:hdl 1835:doi 1799:doi 1755:doi 1712:doi 1677:doi 1634:doi 1591:doi 1556:doi 1509:doi 1466:doi 1420:doi 1364:hdl 1356:doi 1311:doi 1263:doi 1195:doi 1147:doi 1112:doi 1108:133 1077:doi 1018:doi 982:doi 952:doi 913:doi 909:117 876:doi 835:PMC 827:doi 786:PMC 778:doi 739:doi 704:doi 653:doi 605:doi 572:doi 522:doi 518:128 487:doi 394:MRI 297:max 290:max 244:). 2397:: 2381:. 2365:. 2355:17 2353:. 2325:. 2315:23 2313:. 2290:. 2282:. 2272:10 2270:. 2247:. 2235:. 2212:. 2202:29 2200:. 2177:. 2167:. 2157:10 2155:. 2131:. 2119:. 2095:. 2085:50 2083:. 2079:. 2056:. 2046:28 2044:. 2021:. 2011:13 2009:. 1986:. 1976:. 1968:. 1956:. 1952:. 1929:. 1921:. 1911:13 1909:. 1886:. 1876:81 1874:. 1851:. 1841:. 1831:12 1829:. 1805:. 1793:. 1769:. 1761:. 1751:14 1749:. 1726:. 1718:. 1708:24 1706:. 1683:. 1675:. 1665:18 1663:. 1640:. 1630:48 1628:. 1605:. 1597:. 1587:15 1585:. 1562:. 1554:. 1544:27 1542:. 1538:. 1515:. 1505:50 1503:. 1480:. 1472:. 1462:25 1460:. 1448:^ 1434:. 1426:. 1416:29 1414:. 1394:^ 1380:. 1372:. 1362:. 1352:19 1350:. 1331:^ 1317:. 1305:. 1291:^ 1277:. 1269:. 1257:. 1223:^ 1209:. 1201:. 1189:. 1167:^ 1153:. 1143:33 1141:. 1118:. 1106:. 1083:. 1075:. 1065:10 1063:. 1040:. 1032:. 1024:. 1012:. 988:. 978:36 976:. 946:. 942:. 925:^ 907:. 884:. 872:29 870:. 866:. 843:. 833:. 821:. 817:. 794:. 784:. 774:10 772:. 768:. 745:. 735:33 733:. 710:. 702:. 690:. 667:. 659:. 649:23 647:. 635:^ 621:. 613:. 601:20 599:. 595:. 566:. 562:. 542:^ 528:. 516:. 493:. 483:65 481:. 398:CT 396:, 392:, 205:, 201:, 2373:. 2369:: 2361:: 2333:. 2321:: 2298:. 2278:: 2255:. 2243:: 2237:6 2220:. 2208:: 2185:. 2171:: 2163:: 2139:. 2127:: 2103:. 2091:: 2064:. 2052:: 2029:. 2017:: 1994:. 1972:: 1964:: 1958:9 1937:. 1917:: 1894:. 1882:: 1859:. 1845:: 1837:: 1813:. 1801:: 1795:9 1777:. 1757:: 1734:. 1714:: 1691:. 1679:: 1671:: 1648:. 1636:: 1613:. 1593:: 1570:. 1558:: 1550:: 1523:. 1511:: 1488:. 1468:: 1442:. 1422:: 1388:. 1366:: 1358:: 1325:. 1313:: 1307:5 1285:. 1265:: 1259:2 1217:. 1197:: 1191:2 1161:. 1149:: 1126:. 1114:: 1091:. 1079:: 1071:: 1048:. 1020:: 1014:2 996:. 984:: 960:. 954:: 948:6 919:. 915:: 892:. 878:: 851:. 829:: 823:9 802:. 780:: 753:. 741:: 718:. 706:: 698:: 692:5 675:. 655:: 629:. 607:: 580:. 574:: 568:1 536:. 524:: 501:. 489:: 301:λ 136:t

Index

electromagnetic radiation
infrared
cancer
photodynamic therapy
photosensitizer
heat
nanoscale
enhanced permeability and retention effect
tumor
gold nanorods
antibodies
laser
nanoshells
nanoparticles
antibodies
laser
Graphene
laser
laser
biocompatibility
near-infrared
noble metal
2D materials
photostability
conjugated polymers
cyanine
porphyrin
phthalocyanine
Conjugated polymers
photostability

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.