Knowledge

Nanorod

Source 📝

258:
high aspect ratio (> 25:1) nanorods with high yield (> 90%) at the cost of increased polydispersity. Another improvement is to introduce silver ions to the growth solution, which results in the nanorods of aspect ratios less than five in greater than 90% yield. Silver, of a lower reduction potential than gold, can be reduced on the surface of the rods to form a monolayer by underpotential deposition. Here, silver deposition competes with that of gold, thereby retarding the growth rate of specific crystal facets, allowing for
59:(MEMS). Nanorods, along with other noble metal nanoparticles, also function as theragnostic agents. Nanorods absorb in the near IR, and generate heat when excited with IR light. This property has led to the use of nanorods as cancer therapeutics. Nanorods can be conjugated with tumor targeting motifs and ingested. When a patient is exposed to IR light (which passes through body tissue), nanorods selectively taken up by tumor cells are locally heated, destroying only the cancerous tissue while leaving healthy cells intact. 295: 76: 309: 1172: 17: 257:
The shortcoming of this method is the formation of gold nanospheres, which requires non-trivial separations and cleanings. In one modifications of this method sodium citrate is replaced with a stronger CTAB stabilizer in the nucleation and growth procedures. Raising the pH is another way to achieve
282:
Cation exchange is a conventional but promising technique for new nanorod synthesis. Cation exchange transformations in nanorods are kinetically favorable and often shape-conserving. Compared to bulk crystal systems, the cation exchange of nanorods is million-times faster due to high surface area.
196:
process. For example, to make a dense "carpet" of CuO nanorods it was found to be enough to heat Cu foil in air at 420 Â°C. Apart from these manufacturing schemes, ZnO nanorods and tubes can be fabricated by the combination of deep UV lithography, dry etch, and atomic layer deposition (ALD).
212:
nanorod array light-emitting diodes can be manufactured with dry etching or focused ion beam etching techniques. Such LEDs emit polarized blue or green light Three-dimensional nanorod structures have a larger emitting surface, which results in better efficiency and light emission compared to
151:
and evaporated by heating the mixture at elevated temperature. In the chemical reduction method, zinc vapor, generated by the reduction of ZnO, is transferred to the growth zone, followed by reoxidation to ZnO. The VLS process, originally proposed in 1964, is the most commonly used process to
253:
of 25) can be obtained in the absence of silver nitrate by use of a three-step addition procedure. In this protocol, seeds are sequentially added to growth solution in order to control the rate of heterogeneous deposition and thereby the rate of crystal growth.
142:
ZnO nanorods. Among those methods, growing from vapor phase is the most developed approach. In a typical growth process, ZnO vapor is condensed onto a solid substrate. ZnO vapor can be generated by three methods: thermal evaporation, chemical reduction, and
176:) has also been recently developed. No catalyst is involved in this process and the growth temperature is at 400 ~500 Â°C, i.e. considerably milder conditions compared to the traditional vapor growth method. Moreover, metal oxide nanorods (ZnO, CuO, Fe 512:
Rackauskas, Simas; Nasibulin, Albert G; Jiang, Hua; Tian, Ying; Kleshch, Victor I; Sainio, Jani; Obraztsova, Elena D; Bokova, Sofia N; Obraztsov, Alexander N; Kauppinen, Esko I (22 April 2009). "A novel method for metal oxide nanowire synthesis".
727: 283:
Existing nanorods serve as templates to make a variety of nanorods that are not accessible in traditional wet-chemical synthesis. Furthermore, complexity can be added by partial transformation, making nanorod heterostructures.
62:
Nanorods based on semiconducting materials have also been investigated for application as energy harvesting and light emitting devices. In 2006, Ramanathan et al. demonstrated electric-field mediated tunable
54:
One potential application of nanorods is in display technologies, because the reflectivity of the rods can be changed by changing their orientation with an applied electric field. Another application is for
918:"An Assay Using Localized Surface Plasmon Resonance and Gold Nanorods Functionalized with Aptamers to Sense the Cytochrome-c Released from Apoptotic Cancer Cells for Anti-Cancer Drug Effect Determination" 51:
act as shape control agents and bond to different facets of the nanorod with different strengths. This allows different faces of the nanorod to grow at different rates, producing an elongated object.
225:
The seed-mediated growth method is the most common and achieved method for synthesizing high-quality gold nanorods. A typical growth protocol involves the addition of gold nanospheres capped by
152:
synthesize single crystalline ZnO nanorods. In a typical process, catalytic droplets are deposited on the substrate and the gas mixtures, including Zn vapor and a mixture of CO/CO
1132:
Prashant K. Jain & Jessy B. Rivest (2012). "3. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing".
1032:
Wang, Chung-Hao; Chang, Chia-Wei; Peng, Ching-An (2010-12-18). "Gold nanorod stabilized by thiolated chitosan as photothermal absorber for cancer cell treatment".
213:
planar LEDs. Ink-printed quantum dot nanorod LED (QNED) displays are being researched by Samsung, with InGaN nanorod LEDs replacing the organic OLED layer in
274:; or biomolecules, such as phospholipids have been used to displace the CTAB out from the nanorod surface without affecting the stability has been reported. 865:
Xiaohua Huang; Svetlana Neretina & Mostafa A. El-Sayed (2009). "Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications".
608: 1195: 661:
Park, Hoo Keun; Yoon, Seong Woong; Eo, Yun Jae; Chung, Won Woo; Yoo, Gang Yeol; Oh, Ji Hye; Lee, Keyong Nam; Kim, Woong; Do, Young Rag (2016).
1083:
Roach, L.; Booth, M.; Ingram, N.; Paterson, D. A.; Moorcroft, S. C. T.; Bushby, R. J.; Critchley, K.; Coletta, P. L.; Evans, S. D. (2021).
119: 172:. ZnO nanowires are grown epitaxially on the substrate and assemble into monolayer arrays. Metal-organic chemical vapor deposition ( 122:, composition, size etc. Recent years, ZnO nanorods have been intensely used to fabricate nano-scale electronic devices, including 916:
Loo, Jacky; Lau, Pui-Man; Kong, Siu-Kai; Ho, Ho-Pui; Loo, Jacky Fong-Chuen; Lau, Pui-Man; Kong, Siu-Kai; Ho, Ho-Pui (2017-11-22).
663:"Horizontally assembled green InGaN nanorod LEDs: Scalable polarized surface emitting LEDs using electric-field assisted assembly" 1216: 564:
Shkondin, E.; Takayama, O., Aryaee Panah, M. E.; Liu, P., Larsen, P. V.; Mar, M. D., Jensen, F.; Lavrinenko, A. V. (2017).
1203:
S. Ramanathan, S. Patibandla, S. Bandyopadhyay, J.D. Edwards, J. Anderson, J. Mater. Sci.: Mater. Electron 17, 651 (2006)
773: 459:
Gyu-Chul Yi, Chunrui Wang & Won Il Park (2005). "ZnO nanorods: synthesis, characterization and applications".
402:"Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices" 156:, react at the catalyst-substrate interface, followed by nucleation and growth. Typical metal catalysts involve 969:"Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo" 242: 226: 56: 267: 362: 332: 262:
and rod formation. Another shortcoming of this method is the high toxicity of CTAB. Polymers, such as
565: 481: 624:"Characterization of InGaN-based nanorod light emitting diodes with different indium compositions" 67:
from ZnO nanorods, with potential for application as novel sources of near-ultraviolet radiation.
726:
Xu, Bingshe; Han, Dan; Liu, Peizhi; Liu, Qingming; Zhang, Aiqin; Ma, Shufang; Shang, Lin (2019).
123: 1181: 476: 967:
Wan, Jiali; Wang, Jia-Hong; Liu, Ting; Xie, Zhixiong; Yu, Xue-Feng; Li, Wenhua (2015-06-22).
827: 788: 602: 566:"Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials" 1041: 980: 874: 739: 674: 635: 580: 522: 468: 415: 135: 40: 8: 534: 263: 35:
are one morphology of nanoscale objects. Each of their dimensions range from 1–100
21: 1177: 1045: 984: 878: 789:"Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications" 743: 678: 639: 584: 526: 472: 419: 147:(VLS) method. In the thermal evaporation method, commercial ZnO powder is mixed with SnO 1065: 1009: 968: 944: 917: 898: 755: 708: 695: 546: 494: 436: 406: 401: 382: 144: 44: 1149: 1114: 1106: 1069: 1057: 1014: 996: 949: 890: 847: 808: 759: 700: 662: 538: 490: 441: 386: 314: 193: 64: 902: 498: 363:"Controlled physical properties and growth mechanism of manganese silicide nanorods" 1141: 1096: 1049: 1004: 988: 939: 929: 882: 839: 800: 747: 712: 690: 682: 643: 588: 550: 530: 486: 431: 423: 374: 623: 378: 864: 728:"Enhanced luminescence property of InGaN/GaN nanorod array light emitting diode" 138:(LED). Various methods have been developed to fabricate the single crystalline, 1085:"Evaluating Phospholipid-Functionalized Gold Nanorods for In Vivo Applications" 337: 300: 131: 115: 103: 28: 1201: 1053: 1210: 1110: 1061: 1000: 851: 812: 751: 259: 238: 127: 39:. They may be synthesized from metals or semiconducting materials. Standard 1153: 1118: 1101: 1084: 1018: 953: 894: 886: 843: 804: 704: 542: 445: 250: 118:
of 60 meV. The optical bandgap of ZnO nanorod can be tuned by changing the
107: 83: 233:
growth solution. The growth solution is obtained by the reduction of HAuCl
593: 563: 75: 1145: 787:
Huang, Xiaohua; Neretina, Svetlana; El‐Sayed, Mostafa A. (2009-12-28).
774:"Samsung's Quantum Dot successor, QNED, could enter production in 2021" 327: 246: 95: 992: 934: 686: 647: 427: 294: 458: 322: 271: 139: 99: 43:(length divided by width) are 3-5. Nanorods are produced by direct 308: 192:, others) can be simply made by heating initial metal in air in a 214: 80: 36: 16: 1131: 165: 161: 48: 342: 205: 173: 1082: 511: 157: 828:"An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods" 209: 169: 111: 826:
Busbee, B.D.; Obare, S.O.; Murphy, C.J. (2003-03-04).
786: 229:(CTAB) or citrate, served as seeds, to the bulk HAuCl 290: 825: 1208: 660: 1031: 966: 1196:Nanorods show negative refraction in near-IR 915: 607:: CS1 maint: multiple names: authors list ( 725: 621: 249:and silver ions. Longer nanorods (up to an 1100: 1008: 943: 933: 694: 592: 480: 435: 399: 74: 15: 270:(PAH) coating; dietary fibers, such as 1209: 360: 200: 622:Bai, J.; Wang, Q.; Wang, T. (2012). 461:Semiconductor Science and Technology 13: 400:Zheng, Z. Q.; et al. (2015). 277: 14: 1228: 1163: 1170: 1034:Journal of Nanoparticle Research 307: 293: 220: 1125: 1076: 1025: 960: 909: 858: 819: 780: 367:Journal of Alloys and Compounds 90: 766: 719: 654: 615: 557: 535:10.1088/0957-4484/20/16/165603 505: 452: 393: 361:Sadri, Rad (15 January 2021). 354: 243:cetyltrimethylammonium bromide 227:cetyltrimethylammonium bromide 110:, which is similar to that of 57:microelectromechanical systems 1: 379:10.1016/j.jallcom.2020.156693 348: 98:(ZnO) nanorod, also known as 1198:(EE Times, December 5, 2005) 268:Polyallylamine hydrochloride 70: 7: 1217:Nanoparticles by morphology 286: 114:, and it has an excitation 10: 1233: 628:Journal of Applied Physics 491:10.1088/0268-1242/20/4/003 333:Aggregated diamond nanorod 1054:10.1007/s11051-010-0162-5 573:Optical Materials Express 1134:Chemical Society Reviews 752:10.1117/1.OE.58.4.045102 634:(11): 113103–113103–7. 124:field effect transistor 86:, based on ZnO nanorods 1102:10.1002/smll.202006797 887:10.1002/adma.200802789 844:10.1002/adma.200390095 805:10.1002/adma.200802789 260:one-directional growth 87: 24: 78: 19: 594:10.1364/OME.7.001606 136:light-emitting diode 20:Gold nanorods under 1046:2011JNR....13.2749W 985:2015NatSR...511398W 879:2009AdM....21.4880H 744:2019OptEn..58d5102X 732:Optical Engineering 679:2016NatSR...628312P 640:2012JAP...111k3103B 585:2017OMExp...7.1606S 527:2009Nanot..20p5603R 473:2005SeScT..20S..22Y 420:2015NatSR...511070Z 264:Polyethylene glycol 241:in the presence of 134:, and ultra-bright 47:. A combination of 22:electron microscopy 1180:has a profile for 1146:10.1039/c2cs35241a 973:Scientific Reports 867:Advanced Materials 832:Advanced Materials 793:Advanced Materials 667:Scientific Reports 407:Scientific Reports 201:InGaN/GaN nanorods 145:Vapor-Liquid-Solid 88: 45:chemical synthesis 25: 1186: 993:10.1038/srep11398 935:10.3390/mi8110338 873:(48): 4880–4910. 799:(48): 4880–4910. 687:10.1038/srep28312 648:10.1063/1.4725417 428:10.1038/srep11070 315:Technology portal 194:thermal oxidation 65:photoluminescence 1224: 1184: 1174: 1173: 1158: 1157: 1129: 1123: 1122: 1104: 1080: 1074: 1073: 1040:(7): 2749–2758. 1029: 1023: 1022: 1012: 964: 958: 957: 947: 937: 913: 907: 906: 862: 856: 855: 823: 817: 816: 784: 778: 777: 770: 764: 763: 723: 717: 716: 698: 658: 652: 651: 619: 613: 612: 606: 598: 596: 579:(5): 1606–1627. 570: 561: 555: 554: 509: 503: 502: 484: 456: 450: 449: 439: 397: 391: 390: 358: 317: 312: 311: 303: 298: 297: 1232: 1231: 1227: 1226: 1225: 1223: 1222: 1221: 1207: 1206: 1192: 1191: 1190: 1175: 1171: 1166: 1161: 1130: 1126: 1095:(13): 2006797. 1081: 1077: 1030: 1026: 965: 961: 914: 910: 863: 859: 824: 820: 785: 781: 776:. 16 July 2020. 772: 771: 767: 724: 720: 659: 655: 620: 616: 600: 599: 568: 562: 558: 510: 506: 457: 453: 398: 394: 359: 355: 351: 313: 306: 299: 292: 289: 280: 278:Cation exchange 236: 232: 223: 203: 191: 187: 183: 179: 155: 150: 102:, has a direct 93: 73: 12: 11: 5: 1230: 1220: 1219: 1205: 1204: 1199: 1176: 1169: 1168: 1167: 1165: 1164:External links 1162: 1160: 1159: 1124: 1075: 1024: 959: 908: 857: 838:(5): 414–416. 818: 779: 765: 718: 653: 614: 556: 521:(16): 165603. 515:Nanotechnology 504: 482:10.1.1.453.931 467:(4): S22–S34. 451: 392: 352: 350: 347: 346: 345: 340: 338:Colloidal gold 335: 330: 325: 319: 318: 304: 301:Science portal 288: 285: 279: 276: 234: 230: 222: 219: 202: 199: 189: 185: 181: 177: 153: 148: 132:Schottky diode 126:, ultraviolet 116:binding energy 104:bandgap energy 92: 89: 72: 69: 29:nanotechnology 9: 6: 4: 3: 2: 1229: 1218: 1215: 1214: 1212: 1202: 1200: 1197: 1194: 1193: 1188: 1187: 1179: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1120: 1116: 1112: 1108: 1103: 1098: 1094: 1090: 1086: 1079: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1028: 1020: 1016: 1011: 1006: 1002: 998: 994: 990: 986: 982: 978: 974: 970: 963: 955: 951: 946: 941: 936: 931: 927: 923: 922:Micromachines 919: 912: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 861: 853: 849: 845: 841: 837: 833: 829: 822: 814: 810: 806: 802: 798: 794: 790: 783: 775: 769: 761: 757: 753: 749: 745: 741: 737: 733: 729: 722: 714: 710: 706: 702: 697: 692: 688: 684: 680: 676: 672: 668: 664: 657: 649: 645: 641: 637: 633: 629: 625: 618: 610: 604: 595: 590: 586: 582: 578: 574: 567: 560: 552: 548: 544: 540: 536: 532: 528: 524: 520: 516: 508: 500: 496: 492: 488: 483: 478: 474: 470: 466: 462: 455: 447: 443: 438: 433: 429: 425: 421: 417: 413: 409: 408: 403: 396: 388: 384: 380: 376: 372: 368: 364: 357: 353: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 320: 316: 310: 305: 302: 296: 291: 284: 275: 273: 269: 265: 261: 255: 252: 248: 244: 240: 239:ascorbic acid 228: 221:Gold nanorods 218: 216: 211: 207: 198: 195: 175: 171: 167: 163: 159: 146: 141: 137: 133: 129: 128:photodetector 125: 121: 117: 113: 109: 105: 101: 97: 85: 82: 77: 68: 66: 60: 58: 52: 50: 46: 42: 41:aspect ratios 38: 34: 30: 23: 18: 1182: 1140:(1): 89–96. 1137: 1133: 1127: 1092: 1088: 1078: 1037: 1033: 1027: 979:(1): 11398. 976: 972: 962: 925: 921: 911: 870: 866: 860: 835: 831: 821: 796: 792: 782: 768: 735: 731: 721: 670: 666: 656: 631: 627: 617: 603:cite journal 576: 572: 559: 518: 514: 507: 464: 460: 454: 411: 405: 395: 370: 366: 356: 281: 256: 251:aspect ratio 224: 204: 94: 91:ZnO nanorods 61: 53: 32: 26: 928:(11): 338. 1185:(Q2684948) 373:: 156693. 349:References 328:Nanopillar 247:surfactant 217:displays. 120:morphology 96:Zinc oxide 84:gas sensor 1111:1613-6829 1070:136533861 1062:1388-0764 1001:2045-2322 852:0935-9648 813:0935-9648 760:150200972 673:: 28312. 477:CiteSeerX 414:: 11070. 387:224922987 71:Synthesis 1211:Category 1183:nanorod 1154:22968228 1119:33682366 1019:26096816 954:30400530 903:38185180 895:25378252 738:(4): 1. 705:27324568 543:19420573 499:94547124 446:26076705 323:Nanowire 287:See also 272:chitosan 140:wurtzite 106:of 3.37 100:nanowire 33:nanorods 1178:Scholia 1042:Bibcode 1010:4476041 981:Bibcode 945:6190337 875:Bibcode 740:Bibcode 713:4911793 696:4915009 675:Bibcode 636:Bibcode 581:Bibcode 551:3529748 523:Bibcode 469:Bibcode 437:4468465 416:Bibcode 266:(PEG), 245:(CTAB) 215:QD-OLED 81:ethanol 49:ligands 1152:  1117:  1109:  1068:  1060:  1017:  1007:  999:  952:  942:  901:  893:  850:  811:  758:  711:  703:  693:  549:  541:  497:  479:  444:  434:  385:  168:, and 166:nickel 162:copper 1089:Small 1066:S2CID 899:S2CID 756:S2CID 709:S2CID 569:(PDF) 547:S2CID 495:S2CID 383:S2CID 237:with 206:InGaN 174:MOCVD 1150:PMID 1115:PMID 1107:ISSN 1058:ISSN 1015:PMID 997:ISSN 950:PMID 891:PMID 848:ISSN 809:ISSN 701:PMID 609:link 539:PMID 442:PMID 343:nano 158:gold 1142:doi 1097:doi 1050:doi 1005:PMC 989:doi 940:PMC 930:doi 883:doi 840:doi 801:doi 748:doi 691:PMC 683:doi 644:doi 632:111 589:doi 531:doi 487:doi 432:PMC 424:doi 375:doi 371:851 210:GaN 184:, V 170:tin 112:GaN 79:An 27:In 1213:: 1148:. 1138:42 1136:. 1113:. 1105:. 1093:17 1091:. 1087:. 1064:. 1056:. 1048:. 1038:13 1036:. 1013:. 1003:. 995:. 987:. 975:. 971:. 948:. 938:. 924:. 920:. 897:. 889:. 881:. 871:21 869:. 846:. 836:15 834:. 830:. 807:. 797:21 795:. 791:. 754:. 746:. 736:58 734:. 730:. 707:. 699:. 689:. 681:. 669:. 665:. 642:. 630:. 626:. 605:}} 601:{{ 587:. 575:. 571:. 545:. 537:. 529:. 519:20 517:. 493:. 485:. 475:. 465:20 463:. 440:. 430:. 422:. 410:. 404:. 381:. 369:. 365:. 164:, 160:, 130:, 108:eV 37:nm 31:, 1189:. 1156:. 1144:: 1121:. 1099:: 1072:. 1052:: 1044:: 1021:. 991:: 983:: 977:5 956:. 932:: 926:8 905:. 885:: 877:: 854:. 842:: 815:. 803:: 762:. 750:: 742:: 715:. 685:: 677:: 671:6 650:. 646:: 638:: 611:) 597:. 591:: 583:: 577:7 553:. 533:: 525:: 501:. 489:: 471:: 448:. 426:: 418:: 412:5 389:. 377:: 235:4 231:4 208:/ 190:5 188:O 186:2 182:3 180:O 178:2 154:2 149:2

Index


electron microscopy
nanotechnology
nm
aspect ratios
chemical synthesis
ligands
microelectromechanical systems
photoluminescence

ethanol
gas sensor
Zinc oxide
nanowire
bandgap energy
eV
GaN
binding energy
morphology
field effect transistor
photodetector
Schottky diode
light-emitting diode
wurtzite
Vapor-Liquid-Solid
gold
copper
nickel
tin
MOCVD

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑