Knowledge

Surface plasmon

Source đź“ť

818: 20: 205: 128: 831: 175:
As an SPP propagates along the surface, it loses energy to the metal due to absorption. It can also lose energy due to scattering into free-space or into other directions. The electric field falls off evanescently perpendicular to the metal surface. At low frequencies, the SPP penetration depth into
934:
The ability to dynamically control the plasmonic properties of materials in these nano-devices is key to their development. A new approach that uses plasmon-plasmon interactions has been demonstrated recently. Here the bulk plasmon resonance is induced or suppressed to manipulate the propagation of
1349:
Taverne, S.; Caron, B.; GĂ©tin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E. (2018-01-12). "Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED
180:
formula. In the dielectric, the field will fall off far more slowly. SPPs are very sensitive to slight perturbations within the skin depth and because of this, SPPs are often used to probe inhomogeneities of a surface. For more details, see
77:
The existence of surface plasmons was first predicted in 1957 by Rufus Ritchie. In the following two decades, surface plasmons were extensively studied by many scientists, the foremost of whom were T. Turbadar in the 1950s and 1960s, and
31:
waves. The exponential dependence of the electromagnetic field intensity on the distance away from the interface is shown on the right. These waves can be excited very efficiently with light in the visible range of the electromagnetic
968:
The wavelength and intensity of the plasmon-related absorption and emission peaks are affected by molecular adsorption that can be used in molecular sensors. For example, a fully operational prototype device detecting
119:
Surface plasmon polaritons can be excited by electrons or photons. In the case of photons, it cannot be done directly, but requires a prism, or a grating, or a defect on the metal surface.
924:
changes in thickness, density fluctuations, or molecular absorption. Recent works have also shown that SPR can be used to measure the optical indexes of multi-layered systems, where
149:, where the dispersion relation (relation between frequency and wavevector) is the same as in free space. At a higher frequency, the dispersion relation bends over and reaches an 961:, the second harmonic signal is proportional to the square of the electric field. The electric field is stronger at the interface because of the surface plasmon resulting in a 931:
Surface plasmon-based circuits have been proposed as a means of overcoming the size limitations of photonic circuits for use in high performance data processing nano devices.
881:
Localized surface plasmons arise in small metallic objects, including nanoparticles. Since the translational invariance of the system is lost, a description in terms of
916:(SPR). In SPR, the maximum excitation of surface plasmons are detected by monitoring the reflected power from a prism coupler as a function of incident angle or 1393:
Salvi, JĂ©rĂ´me; Barchiesi, Dominique (2014-04-01). "Measurement of thicknesses and optical properties of thin films from Surface Plasmon Resonance (SPR)".
900:, with increased local-field enhancements. LSP resonances largely depend on the shape of the particle; spherical particles can be studied analytically by 1570:
Xu, Zhida; Chen, Yi; Gartia, Manas; Jiang, Jing; Liu, Logan (2011). "Surface plasmon enhanced broadband spectrophotometry on black silver substrates".
862: 51:
changes sign across the interface (e.g. a metal-dielectric interface, such as a metal sheet in air). SPs have lower energy than bulk (or volume)
1527:
Wenshan Cai; Justin S. White & Mark L. Brongersma (2009). "Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators".
892:
LSPs can be excited directly through incident waves; efficient coupling to the LSP modes correspond to resonances and can be attributed to
1012: 170: 1652:
Minh Hiep, Ha; Endo, Tatsuro; Kerman, Kagan; Chikae, Miyuki; Kim, Do-Kyun; Yamamura, Shohei; Takamura, Yuzuru; Tamiya, Eiichi (2007).
140: 1249:
Arakawa, E. T.; Williams, M. W.; Hamm, R. N.; Ritchie, R. H. (29 October 1973). "Effect of Damping on Surface Plasmon Dispersion".
973:
in milk has been fabricated. The device is based on monitoring changes in plasmon-related absorption of light by a gold layer.
893: 855: 1333: 1291: 935:
light. This approach has been shown to have a high potential for nanoscale light manipulation and the development of a fully
1037: 943: 62:
The charge motion in a surface plasmon always creates electromagnetic fields outside (as well as inside) the metal. The
1069:
in metals. For lossy cases, the dispersion curve backbends after the reaching the surface plasmon frequency instead of
992: 958: 1233: 848: 835: 939:-compatible electro-optical plasmonic modulator, said to be a future key component in chip-scale photonic circuits. 1007: 987: 817: 114: 610: 86:, E. Kretschmann, and A. Otto in the 1960s and 1970s. Information transfer in nanoscale structures, similar to 1617:
V. K. Valev (2012). "Characterization of Nanostructured Plasmonic Surfaces with Second Harmonic Generation".
947: 897: 785: 265: 790: 415: 66:
excitation, including both the charge motion and associated electromagnetic field, is called either a
913: 876: 680: 355: 182: 158: 103: 71: 67: 55:
which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an
28: 675: 670: 196: 760: 1698: 1572: 1251: 886: 365: 770: 1325: 1130: 755: 695: 665: 615: 335: 225: 1654:"A localized surface plasmon resonance based immunosensor for the detection of casein in milk" 1492:
Akimov, Yu A; Chu, H S (2012). "Plasmon–plasmon interaction: Controlling light at nanoscale".
47:
oscillations that exist at the interface between any two materials where the real part of the
795: 410: 395: 1313: 912:
The excitation of surface plasmons is frequently used in an experimental technique known as
27:
interface. The charge density oscillations and associated electromagnetic fields are called
1665: 1591: 1536: 1448: 1402: 1359: 1103: 1027: 385: 275: 79: 44: 8: 1703: 1505: 1283: 1002: 997: 625: 435: 285: 1669: 1595: 1540: 1452: 1406: 1363: 1107: 1581: 1185: 1017: 885:, as in SPPs, can not be made. Also unlike the continuous dispersion relation in SPPs, 765: 740: 488: 479: 1150: 965:. This larger signal is often exploited to produce a stronger second harmonic signal. 1634: 1552: 1509: 1474: 1418: 1375: 1329: 1314: 1287: 1229: 735: 580: 470: 390: 1673: 1626: 1599: 1544: 1501: 1464: 1456: 1410: 1367: 1260: 1195: 1145: 1111: 1042: 962: 440: 405: 400: 360: 330: 300: 260: 220: 154: 150: 1439:(2006). "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions". 1176:(2006). "Generation of traveling surface plasmon waves by free-electron impact". 1094: 750: 700: 570: 325: 237: 1264: 1678: 1653: 1171: 1032: 1022: 901: 822: 800: 780: 775: 730: 650: 585: 483: 370: 215: 23:
Schematic representation of an electron density wave propagating along a metal–
1436: 1414: 1692: 1422: 1379: 1173: 1092:
Ritchie, R. H. (June 1957). "Plasma Losses by Fast Electrons in Thin Films".
1062: 511: 492: 474: 375: 295: 83: 1526: 1460: 1115: 705: 19: 1638: 1556: 1513: 1478: 925: 725: 715: 685: 645: 640: 620: 465: 445: 305: 146: 127: 1066: 951: 745: 720: 690: 635: 630: 562: 204: 24: 1220:
Maradudin, Alexei A.; Sambles, J. Roy; Barnes, William L., eds. (2014).
1190: 1469: 917: 882: 655: 497: 290: 177: 91: 48: 1630: 1603: 1548: 1371: 1199: 1172:
Bashevoy, M.V.; Jonsson, F.; Krasavin, A.V.; Zheludev, N.I.; Chen Y.;
1070: 982: 921: 710: 660: 533: 380: 280: 87: 56: 135:, the surface plasmon curve (red) approaches the photon curve (blue) 1321: 1225: 270: 1586: 171:
Surface plasmon polariton § Propagation length and skin depth
590: 575: 538: 529: 524: 52: 970: 543: 519: 250: 141:
Surface plasmon polariton § Fields and dispersion relation
954:, therefore sensors based on surface plasmons were developed. 1651: 548: 245: 936: 1248: 1061:
This lossless dispersion relation neglects the effects of
1563: 1348: 255: 131:
Lossless dispersion curve for surface plasmons. At low
1219: 1128: 1386: 1271: 1085: 164: 1520: 90:, by means of surface plasmons, is referred to as 1569: 1316:Principles of Surface-Enhanced Raman Spectroscopy 1122: 1690: 1645: 1429: 1485: 1392: 1311: 1215: 1213: 1211: 1209: 157:" (see figure at right). For more details see 1342: 856: 188: 176:the metal is commonly approximated using the 97: 1658:Science and Technology of Advanced Materials 1312:Le Ru, Eric C.; Etchegoin, Pablo G. (2009). 907: 74:for the closed surface of a small particle. 1616: 1610: 1307: 1305: 1303: 1206: 115:Surface plasmon polariton § Excitation 1013:Multi-parametric surface plasmon resonance 863: 849: 203: 16:Coherent delocalized electron oscillations 1677: 1585: 1491: 1468: 1280:Plasmonics: Fundamentals and Applications 1242: 1189: 1149: 1129:Polman, Albert; Harry A. Atwater (2005). 1300: 920:. This technique can be used to observe 126: 18: 1091: 1691: 145:At low frequency, an SPP approaches a 122: 1435: 1277: 1131:"Plasmonics: optics at the nanoscale" 1038:Surface plasmon resonance microscopy 942:Some other surface effects such as 13: 993:Extraordinary optical transmission 959:surface second harmonic generation 950:are induced by surface plasmon of 889:of the particle are discretized. 14: 1715: 165:Propagation length and skin depth 1008:Heat-assisted magnetic recording 988:Dual-polarization interferometry 830: 829: 816: 1506:10.1088/0957-4484/23/44/444004 1165: 1055: 1: 1151:10.1016/S1369-7021(04)00685-6 1079: 948:surface-enhanced fluorescence 108: 70:at a planar interface, or a 7: 1265:10.1103/PhysRevLett.31.1127 976: 10: 1720: 1679:10.1016/j.stam.2006.12.010 1352:Journal of Applied Physics 1071:asymptotically increasing. 874: 416:Spin gapless semiconductor 189:Localized surface plasmons 168: 138: 112: 101: 98:Surface plasmon polaritons 1415:10.1007/s00339-013-8038-z 1278:Maier, Stefan A. (2007). 963:non-linear optical effect 928:failed to give a result. 914:surface plasmon resonance 908:Experimental applications 877:Localized surface plasmon 356:Electronic band structure 183:surface plasmon polariton 159:surface plasmon polariton 104:Surface plasmon polariton 72:localized surface plasmon 68:surface plasmon polariton 29:surface plasmon-polariton 1048: 266:Bose–Einstein condensate 197:Condensed matter physics 1573:Applied Physics Letters 1461:10.1126/science.1114849 1252:Physical Review Letters 1116:10.1103/PhysRev.106.874 147:Sommerfeld-Zenneck wave 944:surface-enhanced Raman 136: 33: 1065:factors, such as the 887:electromagnetic modes 411:Topological insulator 130: 22: 1028:Plasmonics (journal) 429:Electronic phenomena 276:Fermionic condensate 45:delocalized electron 1670:2007STAdM...8..331M 1625:(44): 15454–15471. 1596:2011ApPhL..98x1904X 1541:2009NanoL...9.4403C 1453:2006Sci...311..189O 1407:2014ApPhA.115..245S 1364:2018JAP...123b3108T 1284:Springer Publishing 1108:1957PhRv..106..874R 1003:Gap surface plasmon 998:Free electron model 436:Quantum Hall effect 123:Dispersion relation 49:dielectric function 1018:Plasma oscillation 823:Physics portal 137: 34: 1631:10.1021/la302485c 1604:10.1063/1.3599551 1549:10.1021/nl902701b 1395:Applied Physics A 1372:10.1063/1.5003869 1335:978-0-444-52779-0 1293:978-0-387-33150-8 1259:(18): 1127–1129. 1222:Modern Plasmonics 1200:10.1021/nl060941v 873: 872: 581:Granular material 349:Electronic phases 1711: 1684: 1683: 1681: 1649: 1643: 1642: 1614: 1608: 1607: 1589: 1567: 1561: 1560: 1524: 1518: 1517: 1489: 1483: 1482: 1472: 1447:(5758): 189–93. 1433: 1427: 1426: 1390: 1384: 1383: 1346: 1340: 1339: 1319: 1309: 1298: 1297: 1275: 1269: 1268: 1246: 1240: 1239: 1228:. p. 1–23. 1217: 1204: 1203: 1193: 1169: 1163: 1162: 1160: 1158: 1153: 1135: 1126: 1120: 1119: 1089: 1073: 1067:intrinsic losses 1059: 1043:Waves in plasmas 865: 858: 851: 838: 833: 832: 825: 821: 820: 441:Spin Hall effect 331:Phase transition 301:Luttinger liquid 238:States of matter 221:Phase transition 207: 193: 192: 155:plasma frequency 151:asymptotic limit 37:Surface plasmons 1719: 1718: 1714: 1713: 1712: 1710: 1709: 1708: 1689: 1688: 1687: 1650: 1646: 1615: 1611: 1568: 1564: 1535:(12): 4403–11. 1525: 1521: 1490: 1486: 1434: 1430: 1391: 1387: 1347: 1343: 1336: 1310: 1301: 1294: 1276: 1272: 1247: 1243: 1236: 1218: 1207: 1191:physics/0604227 1170: 1166: 1156: 1154: 1138:Materials Today 1133: 1127: 1123: 1095:Physical Review 1090: 1086: 1082: 1077: 1076: 1060: 1056: 1051: 979: 946:scattering and 910: 879: 869: 828: 815: 814: 807: 806: 805: 605: 597: 596: 595: 571:Amorphous solid 565: 555: 554: 553: 532: 514: 504: 503: 502: 491: 489:Antiferromagnet 482: 480:Superparamagnet 473: 460: 459:Magnetic phases 452: 451: 450: 430: 422: 421: 420: 350: 342: 341: 340: 326:Order parameter 320: 319:Phase phenomena 312: 311: 310: 240: 230: 191: 173: 167: 143: 125: 117: 111: 106: 100: 43:) are coherent 17: 12: 11: 5: 1717: 1707: 1706: 1701: 1699:Quasiparticles 1686: 1685: 1644: 1609: 1580:(24): 241904. 1562: 1519: 1500:(44): 444004. 1494:Nanotechnology 1484: 1428: 1401:(1): 245–255. 1385: 1341: 1334: 1299: 1292: 1270: 1241: 1234: 1205: 1164: 1121: 1102:(5): 874–881. 1083: 1081: 1078: 1075: 1074: 1053: 1052: 1050: 1047: 1046: 1045: 1040: 1035: 1033:Spinplasmonics 1030: 1025: 1023:Plasmonic lens 1020: 1015: 1010: 1005: 1000: 995: 990: 985: 978: 975: 909: 906: 875:Main article: 871: 870: 868: 867: 860: 853: 845: 842: 841: 840: 839: 826: 809: 808: 804: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 607: 606: 603: 602: 599: 598: 594: 593: 588: 586:Liquid crystal 583: 578: 573: 567: 566: 561: 560: 557: 556: 552: 551: 546: 541: 536: 527: 522: 516: 515: 512:Quasiparticles 510: 509: 506: 505: 501: 500: 495: 486: 477: 471:Superdiamagnet 468: 462: 461: 458: 457: 454: 453: 449: 448: 443: 438: 432: 431: 428: 427: 424: 423: 419: 418: 413: 408: 403: 398: 396:Thermoelectric 393: 391:Superconductor 388: 383: 378: 373: 371:Mott insulator 368: 363: 358: 352: 351: 348: 347: 344: 343: 339: 338: 333: 328: 322: 321: 318: 317: 314: 313: 309: 308: 303: 298: 293: 288: 283: 278: 273: 268: 263: 258: 253: 248: 242: 241: 236: 235: 232: 231: 229: 228: 223: 218: 212: 209: 208: 200: 199: 190: 187: 169:Main article: 166: 163: 139:Main article: 124: 121: 113:Main article: 110: 107: 102:Main article: 99: 96: 80:E. N. Economou 15: 9: 6: 4: 3: 2: 1716: 1705: 1702: 1700: 1697: 1696: 1694: 1680: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1640: 1636: 1632: 1628: 1624: 1620: 1613: 1605: 1601: 1597: 1593: 1588: 1583: 1579: 1575: 1574: 1566: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1523: 1515: 1511: 1507: 1503: 1499: 1495: 1488: 1480: 1476: 1471: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1432: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1389: 1381: 1377: 1373: 1369: 1365: 1361: 1358:(2): 023108. 1357: 1353: 1345: 1337: 1331: 1327: 1323: 1320:. Amsterdam: 1318: 1317: 1308: 1306: 1304: 1295: 1289: 1285: 1281: 1274: 1266: 1262: 1258: 1254: 1253: 1245: 1237: 1235:9780444595263 1231: 1227: 1224:. Amsterdam: 1223: 1216: 1214: 1212: 1210: 1201: 1197: 1192: 1187: 1183: 1179: 1175: 1174:Stockman M.I. 1168: 1152: 1147: 1143: 1139: 1132: 1125: 1117: 1113: 1109: 1105: 1101: 1097: 1096: 1088: 1084: 1072: 1068: 1064: 1058: 1054: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 980: 974: 972: 966: 964: 960: 955: 953: 949: 945: 940: 938: 932: 929: 927: 923: 919: 915: 905: 903: 899: 895: 890: 888: 884: 878: 866: 861: 859: 854: 852: 847: 846: 844: 843: 837: 827: 824: 819: 813: 812: 811: 810: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 611:Van der Waals 609: 608: 601: 600: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 568: 564: 559: 558: 550: 547: 545: 542: 540: 537: 535: 531: 528: 526: 523: 521: 518: 517: 513: 508: 507: 499: 496: 494: 490: 487: 485: 481: 478: 476: 472: 469: 467: 464: 463: 456: 455: 447: 444: 442: 439: 437: 434: 433: 426: 425: 417: 414: 412: 409: 407: 406:Ferroelectric 404: 402: 401:Piezoelectric 399: 397: 394: 392: 389: 387: 384: 382: 379: 377: 376:Semiconductor 374: 372: 369: 367: 364: 362: 359: 357: 354: 353: 346: 345: 337: 334: 332: 329: 327: 324: 323: 316: 315: 307: 304: 302: 299: 297: 296:Superfluidity 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 247: 244: 243: 239: 234: 233: 227: 224: 222: 219: 217: 214: 213: 211: 210: 206: 202: 201: 198: 195: 194: 186: 184: 179: 172: 162: 160: 156: 152: 148: 142: 134: 129: 120: 116: 105: 95: 93: 89: 85: 84:Heinz Raether 81: 75: 73: 69: 65: 60: 59:(or plasma). 58: 54: 50: 46: 42: 38: 30: 26: 21: 1661: 1657: 1647: 1622: 1618: 1612: 1577: 1571: 1565: 1532: 1529:Nano Letters 1528: 1522: 1497: 1493: 1487: 1444: 1440: 1431: 1398: 1394: 1388: 1355: 1351: 1344: 1315: 1282:. New York: 1279: 1273: 1256: 1250: 1244: 1221: 1181: 1178:Nano Letters 1177: 1167: 1155:. Retrieved 1141: 1137: 1124: 1099: 1093: 1087: 1057: 967: 956: 952:noble metals 941: 933: 930: 926:ellipsometry 911: 891: 880: 741:von Klitzing 446:Kondo effect 306:Time crystal 286:Fermi liquid 174: 153:called the " 144: 132: 118: 76: 63: 61: 57:electron gas 40: 36: 35: 1470:11693/38263 1157:January 26, 563:Soft matter 484:Ferromagnet 1704:Plasmonics 1693:Categories 1664:(4): 331. 1350:cathode". 1324:. p.  1080:References 918:wavelength 902:Mie theory 898:scattering 894:absorption 883:wavevector 706:Louis NĂ©el 696:Schrieffer 604:Scientists 498:Spin glass 493:Metamagnet 475:Paramagnet 291:Supersolid 178:skin depth 109:Excitation 92:plasmonics 25:dielectric 1587:1402.1730 1437:Ă–zbay, E. 1423:1432-0630 1380:0021-8979 983:Biosensor 922:nanometer 786:Abrikosov 701:Josephson 671:Van Vleck 661:Luttinger 534:Polariton 466:Diamagnet 386:Conductor 381:Semimetal 366:Insulator 281:Fermi gas 88:photonics 32:spectrum. 1639:22889193 1619:Langmuir 1557:19827771 1514:23080049 1479:16410515 1322:Elsevier 1226:Elsevier 1184:: 1113. 977:See also 836:Category 791:Ginzburg 766:Laughlin 726:Kadanoff 681:Shockley 666:Anderson 621:von Laue 271:Bose gas 53:plasmons 1666:Bibcode 1592:Bibcode 1537:Bibcode 1449:Bibcode 1441:Science 1403:Bibcode 1360:Bibcode 1104:Bibcode 1063:damping 796:Leggett 771:Störmer 756:Bednorz 716:Giaever 686:Bardeen 676:Hubbard 651:Peierls 641:Onsager 591:Polymer 576:Colloid 539:Polaron 530:Plasmon 525:Exciton 1637:  1555:  1512:  1477:  1421:  1378:  1332:  1328:–179. 1290:  1232:  1144:: 56. 971:casein 834:  801:Parisi 761:MĂĽller 751:Rohrer 746:Binnig 736:Wilson 731:Fisher 691:Cooper 656:Landau 544:Magnon 520:Phonon 361:Plasma 261:Plasma 251:Liquid 216:Phases 1582:arXiv 1186:arXiv 1134:(PDF) 1049:Notes 711:Esaki 636:Bloch 631:Debye 626:Bragg 616:Onnes 549:Roton 246:Solid 64:total 1635:PMID 1553:PMID 1510:PMID 1475:PMID 1419:ISSN 1376:ISSN 1330:ISBN 1288:ISBN 1230:ISBN 1159:2011 937:CMOS 896:and 781:Tsui 776:Yang 721:Kohn 646:Mott 1674:doi 1627:doi 1600:doi 1545:doi 1502:doi 1465:hdl 1457:doi 1445:311 1411:doi 1399:115 1368:doi 1356:123 1326:174 1261:doi 1196:doi 1146:doi 1112:doi 1100:106 957:In 336:QCP 256:Gas 226:QCP 41:SPs 1695:: 1672:. 1660:. 1656:. 1633:. 1623:28 1621:. 1598:. 1590:. 1578:98 1576:. 1551:. 1543:. 1531:. 1508:. 1498:23 1496:. 1473:. 1463:. 1455:. 1443:. 1417:. 1409:. 1397:. 1374:. 1366:. 1354:. 1302:^ 1286:. 1257:31 1255:. 1208:^ 1194:. 1180:. 1140:. 1136:. 1110:. 1098:. 904:. 185:. 161:. 94:. 82:, 1682:. 1676:: 1668:: 1662:8 1641:. 1629:: 1606:. 1602:: 1594:: 1584:: 1559:. 1547:: 1539:: 1533:9 1516:. 1504:: 1481:. 1467:: 1459:: 1451:: 1425:. 1413:: 1405:: 1382:. 1370:: 1362:: 1338:. 1296:. 1267:. 1263:: 1238:. 1202:. 1198:: 1188:: 1182:6 1161:. 1148:: 1142:8 1118:. 1114:: 1106:: 864:e 857:t 850:v 133:k 39:(

Index


dielectric
surface plasmon-polariton
delocalized electron
dielectric function
plasmons
electron gas
surface plasmon polariton
localized surface plasmon
E. N. Economou
Heinz Raether
photonics
plasmonics
Surface plasmon polariton
Surface plasmon polariton § Excitation

Surface plasmon polariton § Fields and dispersion relation
Sommerfeld-Zenneck wave
asymptotic limit
plasma frequency
surface plasmon polariton
Surface plasmon polariton § Propagation length and skin depth
skin depth
surface plasmon polariton
Condensed matter physics

Phases
Phase transition
QCP
States of matter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑