Knowledge

Laser capture microdissection

Source 📝

463: 393: 343: 161: 152:(LIFT). With cut-and-capture, a cap coated with an adhesive is positioned directly on the thinly cut (5-8 μm) tissue section, the section itself resting on a thin membrane (polyethylene naphthalene). An IR laser gently heats the adhesive on the cap fusing it to the underlying tissue and an UV laser cuts through tissue and underlying membrane. The membrane-tissue entity now adheres to the cap and the cells on the cap can be used in downstream applications (DNA, RNA, protein analysis). 1134: 236:
kinetic energy upon striking the coating, vaporizing it, instantly propelling selected tissue features into the collection tube. The energy transfer coated slides, commercialized under the trade name DIRECTOR slides by Expression Pathology Inc. (Rockville, MD), offer several advantages for proteomic work. They also do not autofluoresce, so they can be used for applications using fluorescent stains, DIC or polarized light.
133:
red or infrared (IR) laser onto a membrane stained with an absorbing dye. As this adheres the desired sample onto the membrane, as with any membrane that is put close to the histopathology sample surface, there might be some debris extracted. Another danger is the introduced heat: Some molecules like DNA, RNA, or protein don't allow to be heated too much or at all for the goal of being isolated as purely as possible.
205:
technique sometimes called Laser Micro-dissection Pressure Catapulting (LMPC). The dissected material is sent upward (up to several millimetres) to a microfuge tube cap or other collector which contains either a buffer or a specialized tacky material in the tube cap that the tissue will adhere to. This active catapulting process avoids some of the static problems when using membrane-coated slides.
201:/ etc.) and the types of holders and tissue preparation needed before the imaging and isolation. Most are primarily dedicated micro-dissection systems, and some can be used as research microscopes as well, only one technology (#2 here, Leica) uses an upright microscope, limiting some of the sample handling capabilities somewhat, especially for live cell work. 228:
which then fuses the film with the underlying cells of choice (see Arcturus systems); and/or by activating a UV laser to cut out the cell of interest. The cells are then lifted off the thin tissue section, leaving all unwanted cells behind. The cells of interest are then viewed and documented prior to extraction.
227:
When the cells (on a slide or special culture dish) of choice are in the center of the field of view, the operator selects the cells of interest using instrument software. The area to be isolated when a near-IR laser to activate transfer film on a cap placed on the tissue sample, melting the adhesive
235:
A fifth UV based technology uses standard glass slides coated with an inert energy transfer coating and a UV based laser microdissection system (typically a Leica LMD or PALM Zeiss machine). Tissue sections are mounted on top of the energy transfer coating. The energy from a UV laser is converted to
231:
The fourth UV based technology (used by Molecular Machines and Industries AG) offers a slight difference to the 3rd technology here by essentially creating a sandwich of sorts with slide>sample>and membrane overlying the sample by the use of a frame slide whose membrane surface is cut by the
172:
using a software interface, a tissue section (typically 5-50 micrometres thick) is viewed and individual cells or clusters of cells are identified either manually or in semi-automated or more fully automated ways allowing the imaging and then automatic selection of targets for isolation. Currently
132:
sample on it. Press a sticky surface onto the sample and tear out. This extracts the desired region, but can also remove particles or unwanted tissue on the surface, because the surface is not selective. Melt a plastic membrane onto the sample and tear out. The heat is introduced, for example, by a
223:
Another closely related LCM process (used by Leica) cuts the sample from above and the sample drops via gravity (gravity-assisted microdissection) into a capture device below the sample. The different point with upper one is, the laser beam here is moving to cut tissue by moving dichroic mirror.
177:
laser responsible for heating/melting a sticky polymer for cellular adhesion and isolation. IR laser provides a more gentle approach to microdissection. A fifth ultraviolet laser based technology uses special slides coated with an energy transfer coating which, when activated by the laser pulse,
204:
The first technology (used by Carl Zeiss PALM) cuts around the sample then collects it by a "catapulting" technology. The sample can be catapulted from a slide or special culture dish by a defocused U.V laser pulse which generates a photonic force to propel the material off the slide/dish, a
91:
Laser-capture microdissection (LCM) is a method to procure subpopulations of tissue cells under direct microscopic visualization. LCM technology can harvest the cells of interest directly or can isolate specific cells by cutting away unwanted cells to give histologically pure enriched cell
173:
six primary isolation/collection technologies exist using a microscope and device for cell isolation. Four of these typically use an ultraviolet pulsed laser (355 nm) for the cutting of the tissues directly or the membranes/film, and sometimes in combination with an
17: 181:
The laser cutting width is usually less than 1 μm, thus the target cells are not affected by the laser beam. Even live cells are not damaged by the laser cutting and are viable after cutting for cloning and reculturing as appropriate.
247:
The laser capture microdissection process does not alter or damage the morphology and chemistry of the sample collected, nor the surrounding cells. For this reason, LCM is a useful method of collecting selected cells for
125:, is then cut out and separated from the adjacent tissue. After the cutting process, an extraction process has to follow if an extraction process is desired. More recent technologies utilize non-contact microdissection. 120:
is coupled into a microscope and focuses onto the tissue on the slide. By movement of the laser by optics or the stage the focus follows a trajectory which is predefined by the user. This trajectory, also called
149: 212:
system, Jungwoo F&B). In case of this system, it moves the motorized stage to cut the cells of interests, keeping the laser beam fixed. And the system uses a 355 nm
716:"Application of laser capture microdissection to cytologic specimens for the detection of immunoglobulin heavy chain gene rearrangement in patients with malignant lymphoma" 507: 406:
Espina V, Wulfkhule JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin III EF, Liotta LA (2006-07-01). "Laser-capture microdissection".
525: 208:
Another process follows gravity-assisted microdissection method that turns on gravity to collect samples in tube cap under the slide used (used by
639: 194: 24:
epithelial cells. Left panel shows tissue section with selected cells removed. Right panel shows isolated epithelial cells on transfer film.
564: 239:
In addition to tissue sections, LCM can be performed on living cells/organisms, cell smears, chromosome preparations, and plant tissue.
288:
Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996). "Laser capture microdissection".
272:, cytologic preparations, cell cultures and aliquots of solid tissue. Frozen and paraffin embedded archival tissue may also be used. 1163: 1094: 805: 755:
Kihara AH, Moriscot AS, Ferreira PJ, Hamassaki DE (2005). "Protecting RNA in fixed tissue: an alternative method for LCM users".
16: 833: 700: 141: 108:
discovery and signal-pathway profiling. The total time required to carry out this protocol is typically 1–1.5 h.
1003: 511: 614: 1059: 863: 800: 478:"Optimized Protocol for Mounting Tissue Sections onto Metal-Framed PEN Membrane Slides (Protocol #9)" 198: 510:. Molecular Machines & Industries. Will the laser damage the surrounding tissue?. Archived from 462: 422: 392: 342: 310: 643: 269: 1168: 618: 593: 190: 186: 1033: 853: 568: 417: 305: 93: 356:
Espina V, Heiby M, Pierobon M, Liotta LA (2007). "Laser capture micro-dissection technology".
1158: 921: 1028: 911: 899: 826: 297: 714:
Orba Y, Tanaka S, Nishihara H, Kawamura N, Itoh T, Shimizu M, Sawa H, Nagashima K (2003).
8: 1079: 998: 938: 858: 550: 301: 780: 689: 451: 381: 331: 1099: 973: 948: 772: 737: 681: 443: 435: 373: 323: 213: 185:
The various technologies differ in the collection process, possible imaging methods (
784: 693: 385: 335: 1109: 1074: 1054: 1023: 768: 764: 727: 673: 455: 427: 365: 315: 265: 64: 21: 136:
For transport without contact. There are three different approaches. Transport by
1137: 1018: 1008: 819: 319: 261: 160: 1114: 1104: 1064: 1013: 931: 884: 868: 129: 97: 60: 589: 1152: 1069: 1049: 990: 916: 439: 369: 92:
populations. A variety of downstream applications exist: DNA genotyping and
1089: 958: 953: 894: 776: 741: 685: 447: 408: 377: 260:
analyses. LCM has also been used to isolate acellular structures, such as
101: 431: 327: 1119: 980: 963: 943: 220:) which is the safest way to cut the tissues without RNA or DNA damage. 128:
There are several ways to extract tissue from a microscope slide with a
968: 732: 715: 677: 477: 169: 76: 72: 232:
laser and ultimately picked up from above by a special adhesive cap.
1084: 926: 906: 889: 105: 174: 68: 257: 209: 137: 754: 405: 842: 287: 117: 80: 148:; the most recent generation utilizes a technology based on 713: 217: 811: 526:"Laser Microdissection & Pressure Catapulting (LMPC)" 355: 253: 249: 664:
Larochelle S (December 2015). "STOMPing at the bits".
617:. Molecular Machines and Industries AG. 9 May 2012. 178:propels the tissue or cells into a collection cap. 508:"General FAQs MMI CellCut Plus/MMI SmartCut Plus" 1150: 20:Laser capture micro-dissection transfer of pure 657: 827: 195:differential interference contrast microscopy 748: 707: 532:. University of Gothenburg. 25 November 2010 801:East Carolina University: LCM for "Dummies" 349: 834: 820: 663: 281: 731: 421: 309: 140:using an upright microscope (called GAM, 487:. Arcturus BioScience. PN 14191-00 Rev A 264:. LCM can be performed on a variety of 159: 63:of interest from microscopic regions of 15: 1095:Multiple-prism grating laser oscillator 808:employing Laser Capture Microdissection 806:Yale Rice Transcriptional Atlas Project 615:"Laser Microdissection with MMI System" 1151: 59:), is a method for isolating specific 815: 567:. KU Medical Center. Archived from 13: 14: 1180: 794: 530:Centre for Cellular Imaging (CCI) 505: 475: 1133: 1132: 461: 391: 341: 142:gravity-assisted microdissection 1164:Biological techniques and tools 632: 621:from the original on 2021-12-19 607: 596:from the original on 2021-12-19 242: 1004:Amplified spontaneous emission 769:10.1016/j.jneumeth.2005.04.019 582: 557: 543: 518: 499: 469: 399: 150:laser induced forward transfer 49:laser-assisted microdissection 1: 275: 164:Laser Capture Microdissection 111: 29:Laser capture microdissection 320:10.1126/science.274.5289.998 155: 86: 7: 1060:Chirped pulse amplification 592:. joepham004. 19 May 2008. 565:"Confocal Imaging Facility" 10: 1185: 864:List of laser applications 841: 640:"Thin Films Lift Methodes" 1128: 1042: 989: 877: 849: 642:. web.psi. Archived from 199:phase contrast microscopy 79:scale with the help of a 370:10.1586/14737159.7.5.647 551:"Why prescribe ACUVUE?" 191:bright field microscopy 187:fluorescence microscopy 146:laser pressure catapult 854:List of laser articles 358:Expert Rev. Mol. Diagn 165: 94:loss of heterozygosity 25: 701:registration required 432:10.1038/nprot.2006.85 163: 41:laser microdissection 19: 1029:Population inversion 514:on 12 February 2013. 1080:Laser beam profiler 999:Active laser medium 939:Free-electron laser 859:List of laser types 302:1996Sci...274..998E 757:J Neurosci Methods 733:10.1002/cncr.11331 678:10.1038/nmeth.3679 296:(5289): 998–1001. 268:samples including 166: 144:) or transport by 26: 1146: 1145: 1100:Optical amplifier 949:Solid-state laser 646:on April 25, 2012 214:Solid-state laser 1176: 1136: 1135: 1110:Optical isolator 1075:Injection seeder 1055:Beam homogenizer 1034:Ultrashort pulse 1024:Lasing threshold 836: 829: 822: 813: 812: 789: 788: 752: 746: 745: 735: 711: 705: 704: 697: 661: 655: 654: 652: 651: 636: 630: 629: 627: 626: 611: 605: 604: 602: 601: 586: 580: 579: 577: 576: 571:on July 11, 2011 561: 555: 554: 547: 541: 540: 538: 537: 522: 516: 515: 503: 497: 496: 494: 492: 482: 473: 467: 466: 465: 459: 425: 409:Nature Protocols 403: 397: 396: 395: 389: 353: 347: 346: 345: 339: 313: 285: 96:(LOH) analysis, 1184: 1183: 1179: 1178: 1177: 1175: 1174: 1173: 1149: 1148: 1147: 1142: 1124: 1038: 1019:Laser linewidth 1009:Continuous wave 985: 878:Types of lasers 873: 845: 840: 797: 792: 753: 749: 712: 708: 698: 662: 658: 649: 647: 638: 637: 633: 624: 622: 613: 612: 608: 599: 597: 588: 587: 583: 574: 572: 563: 562: 558: 553:. 23 June 2017. 549: 548: 544: 535: 533: 524: 523: 519: 504: 500: 490: 488: 480: 474: 470: 460: 423:10.1.1.462.2914 404: 400: 390: 354: 350: 340: 311:10.1.1.462.2914 286: 282: 278: 262:amyloid plaques 245: 158: 114: 89: 37:microdissection 35:), also called 12: 11: 5: 1182: 1172: 1171: 1169:Laser medicine 1166: 1161: 1144: 1143: 1141: 1140: 1129: 1126: 1125: 1123: 1122: 1117: 1115:Output coupler 1112: 1107: 1105:Optical cavity 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1065:Gain-switching 1062: 1057: 1052: 1046: 1044: 1040: 1039: 1037: 1036: 1031: 1026: 1021: 1016: 1014:Laser ablation 1011: 1006: 1001: 995: 993: 987: 986: 984: 983: 978: 977: 976: 971: 966: 961: 956: 946: 941: 936: 935: 934: 929: 924: 919: 914: 912:Carbon dioxide 904: 903: 902: 900:Liquid-crystal 897: 887: 885:Chemical laser 881: 879: 875: 874: 872: 871: 869:Laser acronyms 866: 861: 856: 850: 847: 846: 839: 838: 831: 824: 816: 810: 809: 803: 796: 795:External links 793: 791: 790: 747: 726:(4): 198–204. 706: 666:Nature Methods 656: 631: 606: 581: 556: 542: 517: 498: 468: 416:(2): 586–603. 398: 348: 279: 277: 274: 244: 241: 157: 154: 130:histopathology 113: 110: 98:RNA transcript 88: 85: 9: 6: 4: 3: 2: 1181: 1170: 1167: 1165: 1162: 1160: 1157: 1156: 1154: 1139: 1131: 1130: 1127: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1070:Gaussian beam 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1050:Beam expander 1048: 1047: 1045: 1041: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 996: 994: 992: 991:Laser physics 988: 982: 979: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 951: 950: 947: 945: 942: 940: 937: 933: 930: 928: 925: 923: 920: 918: 915: 913: 910: 909: 908: 905: 901: 898: 896: 893: 892: 891: 888: 886: 883: 882: 880: 876: 870: 867: 865: 862: 860: 857: 855: 852: 851: 848: 844: 837: 832: 830: 825: 823: 818: 817: 814: 807: 804: 802: 799: 798: 786: 782: 778: 774: 770: 766: 762: 758: 751: 743: 739: 734: 729: 725: 721: 717: 710: 702: 695: 691: 687: 683: 679: 675: 671: 667: 660: 645: 641: 635: 620: 616: 610: 595: 591: 585: 570: 566: 560: 552: 546: 531: 527: 521: 513: 509: 502: 486: 479: 472: 464: 457: 453: 449: 445: 441: 437: 433: 429: 424: 419: 415: 411: 410: 402: 394: 387: 383: 379: 375: 371: 367: 364:(5): 647–57. 363: 359: 352: 344: 337: 333: 329: 325: 321: 317: 312: 307: 303: 299: 295: 291: 284: 280: 273: 271: 267: 263: 259: 255: 251: 240: 237: 233: 229: 225: 221: 219: 215: 211: 206: 202: 200: 196: 192: 188: 183: 179: 176: 171: 162: 153: 151: 147: 143: 139: 134: 131: 126: 124: 119: 109: 107: 103: 99: 95: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 23: 18: 1159:Cell imaging 1090:Mode locking 1043:Laser optics 763:(2): 103–7. 760: 756: 750: 723: 719: 709: 672:(12): 1114. 669: 665: 659: 648:. Retrieved 644:the original 634: 623:. Retrieved 609: 598:. Retrieved 584: 573:. Retrieved 569:the original 559: 545: 534:. Retrieved 529: 520: 512:the original 501: 489:. Retrieved 485:BM Equipment 484: 471: 413: 407: 401: 361: 357: 351: 293: 289: 283: 270:blood smears 246: 243:Applications 238: 234: 230: 226: 222: 207: 203: 184: 180: 167: 145: 135: 127: 122: 115: 104:generation, 102:cDNA library 90: 56: 52: 48: 44: 40: 36: 32: 28: 27: 1120:Q-switching 981:X-ray laser 974:Ti-sapphire 944:Laser diode 922:Helium–neon 491:19 February 100:profiling, 77:microscopic 22:breast duct 1153:Categories 650:2012-06-27 625:2012-06-27 600:2012-06-27 575:2011-10-28 536:2011-10-27 276:References 170:microscope 112:Extraction 106:proteomics 73:dissection 1085:M squared 907:Gas laser 890:Dye laser 440:1754-2189 418:CiteSeerX 306:CiteSeerX 156:Procedure 87:Principle 69:organisms 1138:Category 932:Nitrogen 785:20606196 777:16026852 742:12925980 694:42051029 686:26962581 619:Archived 594:Archived 448:17406286 386:46548538 378:17892370 336:32921237 168:Under a 917:Excimer 506:Staff. 476:Staff. 456:1134441 328:8875945 298:Bibcode 290:Science 258:protein 256:and/or 210:ION LMD 138:gravity 123:element 67:/cells/ 959:Nd:YAG 954:Er:YAG 895:Bubble 843:Lasers 783:  775:  740:  720:Cancer 692:  684:  454:  446:  438:  420:  384:  376:  334:  326:  308:  266:tissue 65:tissue 47:), or 964:Raman 781:S2CID 690:S2CID 590:"LCM" 481:(PDF) 452:S2CID 382:S2CID 332:S2CID 118:laser 81:laser 75:on a 61:cells 969:Ruby 773:PMID 738:PMID 682:PMID 493:2016 444:PMID 436:ISSN 374:PMID 324:PMID 218:UV-A 927:Ion 765:doi 761:148 728:doi 674:doi 428:doi 366:doi 316:doi 294:274 254:RNA 250:DNA 83:). 57:LAM 55:or 53:LMD 45:LMD 33:LCM 1155:: 779:. 771:. 759:. 736:. 724:99 722:. 718:. 688:. 680:. 670:12 668:. 528:. 483:. 450:. 442:. 434:. 426:. 412:. 380:. 372:. 360:. 330:. 322:. 314:. 304:. 292:. 252:, 175:IR 116:A 39:, 835:e 828:t 821:v 787:. 767:: 744:. 730:: 703:) 699:( 696:. 676:: 653:. 628:. 603:. 578:. 539:. 495:. 458:. 430:: 414:1 388:. 368:: 362:7 338:. 318:: 300:: 216:( 197:/ 193:/ 189:/ 71:( 51:( 43:( 31:(

Index


breast duct
cells
tissue
organisms
dissection
microscopic
laser
loss of heterozygosity
RNA transcript
cDNA library
proteomics
laser
histopathology
gravity
gravity-assisted microdissection
laser induced forward transfer

microscope
IR
fluorescence microscopy
bright field microscopy
differential interference contrast microscopy
phase contrast microscopy
ION LMD
Solid-state laser
UV-A
DNA
RNA
protein

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.