Knowledge

Atmosphere of Jupiter

Source 📝

1803:
orbits around Jupiter. The northern pole has eight cyclones moving around a central cyclone (NPC) while the southern pole only has five cyclones around a central cyclone (SPC), with a gap between the first and second cyclones. The cyclones look like the hurricanes on Earth with trailing spiral arms and a denser center, although there are differences between the centers depending on the individual cyclone. Northern CPCs generally maintain their shape and position compared to the southern CPCs and this could be due to the faster wind speeds that are experienced in the south, where the maximum wind velocities are around 80 m/s to 90 m/s. Although there is more movement among the southern CPCs they tend to retain the pentagonal structure relative to the pole. It has also been observed that the angular wind velocity increases as the center is approached and radius becomes smaller, except for one cyclone in the north, which may have rotation in the opposite direction. The difference in the number of cyclones in the north compared to the south is probably due to the size of the cyclones. The southern CPCs tend to be bigger with radii ranging from 5,600 km to 7,000 km while northern CPCs range from 4,000 km to 4,600 km.
1603:
or even white. The higher temperature of the reddest central region is the first evidence that the Spot's color is affected by environmental factors. The spot occasionally disappears from the visible spectrum, becoming evident only through the Red Spot Hollow, which is its niche in the South Equatorial Belt (SEB). The visibility of GRS is apparently coupled to the appearance of the SEB; when the belt is bright white, the spot tends to be dark, and when it is dark, the spot is usually light. The periods when the spot is dark or light occur at irregular intervals; in the 50 years from 1947 to 1997, the spot was darkest in the periods 1961–1966, 1968–1975, 1989–1990, and 1992–1993. In November 2014, an analysis of data from NASA's Cassini mission revealed that the red color is likely a product of simple chemicals being broken apart by solar ultraviolet irradiation in the planet's upper atmosphere.
1839:
each perijove (53 days), but JIRAM is able to collect enough data to understand the northern CPCs. The limited illumination makes it difficult to see the northern central cyclone, but by making four orbits, the NPC can be partially seen and the octagonal structure of the cyclones can be identified. Limited illumination also makes it difficult to view the motion of the cyclones, but early observations show that the NPC is offset from the pole by about 0.5˚ and the CPCs generally maintained their position around the center. Despite data being harder to obtain, it has been observed that the northern CPCs have a drift rate of about 1˚ to 2.5˚ per perijove to the west. The seventh cyclone in the north (n7) drifts a little more than the others and this is due to an anticyclonic white oval (AWO) that pulls it farther from the NPC, which causes the octagonal shape to be slightly distorted.
1474:, but stay at approximately the same latitude as they are unable to escape from the confining zone. The wind speeds at their periphery are about 100 m/s. Different anticyclones located in one zone tend to merge when they approach each other. However Jupiter has two anticyclones that are somewhat different from all others. They are the Great Red Spot (GRS) and the Oval BA; the latter formed only in 2000. In contrast to white ovals, these structures are red, arguably due to dredging up of red material from the planet's depths. On Jupiter the anticyclones usually form through merges of smaller structures including convective storms (see below), although large ovals can result from the instability of jets. The latter was observed in 1938–1940, when a few white ovals appeared as a result of instability of the southern temperate zone; they later merged to form Oval BA. 1242: 1230: 1283:, which is in turn maintained by moist convection in the outer layer of the atmosphere (above the water clouds). The moist convection is a phenomenon related to the condensation and evaporation of water and is one of the major drivers of terrestrial weather. The production of the jets in this model is related to a well-known property of two dimensional turbulence—the so-called inverse cascade, in which small turbulent structures (vortices) merge to form larger ones. The finite size of the planet means that the cascade can not produce structures larger than some characteristic scale, which for Jupiter is called the Rhines scale. Its existence is connected to production of 1591:, however, is subject to constant variation. Because Jupiter's visible features do not rotate uniformly at all latitudes, astronomers have defined three different systems for defining the longitude. System II is used for latitudes of more than 10°, and was originally based on the average rotation rate of the Great Red Spot of 9h 55m 42s. Despite this, the spot has "lapped" the planet in System II at least 10 times since the early 19th century. Its drift rate has changed dramatically over the years and has been linked to the brightness of the South Equatorial Belt, and the presence or absence of a South Tropical Disturbance. 1714:. The Baby Red Spot encountered the GRS in late June to early July 2008, and in the course of a collision, the smaller red spot was shredded into pieces. The remnants of the Baby Red Spot first orbited, then were later consumed by the GRS. The last of the remnants with a reddish color to have been identified by astronomers had disappeared by mid-July, and the remaining pieces again collided with the GRS, then finally merged with the bigger storm. The remaining pieces of the Baby Red Spot had completely disappeared by August 2008. During this encounter Oval BA was present nearby, but played no apparent role in the destruction of the Baby Red Spot. 1731: 1514: 1850:. The locations over time were revealed to form an oscillatory motion of each of the 6 cyclones, with periods of approximately one (Earth) year and radii of about 400 km. These oscillations around the CPCs' mean positions were explained to be a result of imbalances between the beta-drift, pulling the CPCs toward the pole and the rejection forces that develop due to the interactions between the cyclones, similar to a 6-body spring system. In addition to this periodic motion, the south polar cyclones were observed to drift westward by 7.5±0.7˚ per year. The reason for this drift is still unknown. 1151: 1580:(prograde) to its south and a very strong westward (retrograde) one to its north. Though winds around the edge of the spot peak at about 120 m/s (432 km/h), currents inside it seem stagnant, with little inflow or outflow. The rotation period of the spot has decreased with time, perhaps as a direct result of its steady reduction in size. In 2010, astronomers imaged the GRS in the far infrared (from 8.5 to 24 μm) with a spatial resolution higher than ever before and found that its central, reddest region is warmer than its surroundings by between 3–4  2113: 1443: 31: 8638: 1663: 9163: 1435:, anticyclones predominate over cyclones on Jupiter—more than 90% of vortices larger than 2000 km in diameter are anticyclones. The lifetime of Jovian vortices varies from several days to hundreds of years, depending on their size. For instance, the average lifetime of an anticyclone between 1000 and 6000 km in diameter is 1–3 years. Vortices have never been observed in the equatorial region of Jupiter (within 10° of latitude), where they are unstable. As on any rapidly rotating planet, Jupiter's anticyclones are high 1595: 8508: 1180:
and erupts dark brownish material which is stretched into a new belt by Jupiter's winds. The belt most recently disappeared in May 2010. Another characteristic of the SEB is a long train of cyclonic disturbances following the Great Red Spot. Like the NTropZ, the STropZ is one of the most prominent zones on the planet; not only does it contain the GRS, but it is occasionally rent by a South Tropical Disturbance (STropD), a division of the zone that can be very long-lived; the most famous one lasted from 1901 to 1939.
216: 2065: 1942: 1325: 1858: 1005:. The EZ is an exception to this rule, showing a strong eastward (prograde) jet and has a local minimum of the wind speed exactly at the equator. The jet speeds are high on Jupiter, reaching more than 100 m/s. These speeds correspond to ammonia clouds located in the pressure range 0.7–1 bar. The prograde jets are generally more powerful than the retrograde jets. The jets extend thousands of kilometers into the interior, as measured by the gravitometer instrument onboard of the 1155:
the planet. The Great Red Spot is at the southern margin of the SEB. Strings of small storms rotate around northern-hemisphere ovals. Small, very bright features, possible lightning storms, appear quickly and randomly in turbulent regions. The smallest features visible at the equator are about 600 kilometers across. This 14-frame animation spans 24 Jovian days, or about 10 Earth days. The passage of time is accelerated by a factor of 600,000. The occasional black spots in the image are
1795: 1082:
motion in the deeper atmosphere. Juno's microwave measurements probe the atmosphere down to ~240 bar. These measurements confirmed the existence of these motions as a part of mid-latitudes large circulation cells with upward motion in the belts and downward motions in the zones, extending from ~1 bar down to at least ~240 bar. So far, 8 cells have been identified at each of Jupiter's hemispheres along latitudes 20°-60° N\S. The mid-latitude cells are driven by breaking of
1451: 1029: 8520: 1099: 9077: 1655: 1184: 1550: 1723: 1854:
the edge with a dark inner portion. There are four "filled" cyclones and four "chaotic" cyclones in the north. The southern cyclones all have an extensive fine-scale spiral structure on their outside but they all differ in size and shape. There is very little observation of the cyclones due to low sun angles and a haze that is typically over the atmosphere but what little has been observed shows the cyclones to be a reddish color.
8484: 296:. The latter is about 2.5 times stronger than on Earth, but the average molecular weight is about 15 times less.) In the stratosphere, the temperatures rise to about 200 K at the transition into the thermosphere, at an altitude and pressure of around 320 km and 1 μbar. In the thermosphere, temperatures continue to rise, eventually reaching 1000 K at about 1000 km, where pressure is about 1 nbar. 1295:, the Rhines scale in the direction parallel to the equator is larger than in the direction orthogonal to it. The ultimate result of the process described above is production of large scale elongated structures, which are parallel to the equator. The meridional extent of them appears to match the actual width of jets. Therefore, in shallow models vortices actually feed the jets and should disappear by merging into them. 934: 157: 9088: 8496: 2194: 8472: 8532: 2140: 1635: 1561:, between 1996 and 2006 the spot lost 15 percent of its diameter along its major axis. Xylar Asay-Davis, who was on the team that conducted the study, noted that the spot is not disappearing because "velocity is a more robust measurement because the clouds associated with the Red Spot are also strongly influenced by numerous other phenomena in the surrounding atmosphere." 357:. The high temperatures prevalent in the thermosphere (800–1000 K) have not been explained yet; existing models predict a temperature no higher than about 400 K. They may be caused by absorption of high-energy solar radiation (UV or X-ray), by heating from the charged particles precipitating from the Jovian magnetosphere, or by dissipation of upward-propagating 1119:, and the general diffuseness of features. However, the North-North Temperate Belt (NNTB) is the northernmost distinct belt, though it occasionally disappears. Disturbances tend to be minor and short-lived. The North-North Temperate Zone (NNTZ) is perhaps more prominent, but also generally quiet. Other minor belts and zones in the region are occasionally observed. 273:, is commonly treated as the base of the troposphere. In scientific literature, the 1 bar pressure level is usually chosen as a zero point for altitudes—a "surface" of Jupiter. As is generally the case, the top atmospheric layer, the exosphere, does not have a specific upper boundary. The density gradually decreases until it smoothly transitions into the 1399: 338:, which are generated in the upper stratosphere (1–100 μbar) from methane under the influence of the solar ultraviolet radiation (UV). The methane abundance relative to molecular hydrogen in the stratosphere is about 10, while the abundance ratio of other light hydrocarbons, like ethane and acetylene, to molecular hydrogen is about 10. 153:. Zones, which are colder than belts, correspond to upwellings, while belts mark descending gas. The zones' lighter color is believed to result from ammonia ice; what gives the belts their darker colors is uncertain. The origins of the banded structure and jets are not well understood, though a "shallow model" and a "deep model" exist. 288:, which is the boundary between the troposphere and stratosphere. On Jupiter, the tropopause is approximately 50 km above the visible clouds (or 1 bar level). The pressure and temperature at the tropopause are about 0.1 bar and 110 K. (This gives a drop of 340−110=230 °C over 90+50=140 km. The adiabatic 1750:), which bring the wet air from the depths to the upper part of the troposphere, where it condenses in clouds. A typical vertical extent of Jovian storms is about 100 km; as they extend from a pressure level of about 5–7 bar, where the base of a hypothetical water cloud layer is located, to as high as 0.2–0.5 bar. 1299:
to observations. In addition, the jets tend to be unstable and can disappear over time. Shallow models cannot explain how the observed atmospheric flows on Jupiter violate stability criteria. More elaborated multilayer versions of weather–layer models produce more stable circulation, but many problems persist. Meanwhile, the
1919:
substances are found in today's Jupiter atmosphere. Jupiter's atmosphere has a strong vertical air flow that carries these compounds into lower regions. But there are higher temperatures inside Jupiter, which will decompose these chemicals and hinder the formation of life similar to Earth. This was speculated by
1838:
The northern cyclones tend to maintain an octagonal structure with the NPC as a center point. Northern cyclones have less data than southern cyclones because of limited illumination in the north-polar winter, making it difficult for JunoCam to obtain accurate measurements of northern CPC positions at
1834:
where the circumpolar cyclones are positioned (~84°) fits, in calculations, the hypothesis that the poleward beta-drift force balances the equatorward rejection of the polar cyclone on the circumpolar cyclones, assuming they have an anticyclonic ring around them, consistent with model simulations and
1642:
Oval BA is a red storm in Jupiter's southern hemisphere similar in form to, though smaller than, the Great Red Spot (it is often affectionately referred to as "Red Spot Jr.", "Red Jr." or "The Little Red Spot"). A feature in the South Temperate Belt, Oval BA was first seen in 2000 after the collision
1546:
40,000 km in diameter. At the present rate of reduction, it could potentially become circular by 2040, although this is unlikely because of the distortion effect of the neighboring jet streams. It is not known how long the spot will last, or whether the change is a result of normal fluctuations.
1490:
The deep structure of vortices is not completely clear. They are thought to be relatively thin, as any thickness greater than about 500 km will lead to instability. The large anticyclones are known to extend only a few tens of kilometers above the visible clouds. As of 2008, the early hypothesis
1266:
The theories regarding the dynamics of the Jovian atmosphere can be broadly divided into two classes: shallow and deep. The former hold that the observed circulation is largely confined to a thin outer (weather) layer of the planet, which overlays the stable interior. The latter hypothesis postulates
320:
S, between 1–2 bar) and water (3–7 bar) are thought to exist. There are no methane clouds as the temperatures are too high for it to condense. The water clouds form the densest layer of clouds and have the strongest influence on the dynamics of the atmosphere. This is a result of the higher
193:
tend to be white. Vortices are thought to be relatively shallow structures with depths not exceeding several hundred kilometers. Located in the southern hemisphere, the GRS is the largest known vortex in the Solar System. It could engulf two or three Earths and has existed for at least three hundred
1786:
longitude. They significantly disturbed the belt. The dark material that was shed by the storms mixed with clouds and changed the belt's color. The storms moved with a speed as high as 170 m/s, slightly faster than the jet itself, hinting at the existence of strong winds deep in the atmosphere.
1785:
Every 15–17 years Jupiter is marked by especially powerful storms. They appear at 23°N latitude, where the strongest eastward jet, that can reach 150 m/s, is located. The last time such an event was observed was in March–June 2007. Two storms appeared in the northern temperate belt 55° apart in
1745:
on Earth. They reveal themselves via bright clumpy clouds about 1000 km in size, which appear from time to time in the belts' cyclonic regions, especially within the strong westward (retrograde) jets. In contrast to vortices, storms are short-lived phenomena; the strongest of them may exist for
1709:
Oval BA should not be confused with another major storm on Jupiter, the South Tropical Little Red Spot (LRS) (nicknamed "the Baby Red Spot" by NASA), which was destroyed by the GRS. The new storm, previously a white spot in Hubble images, turned red in May 2008. The observations were led by Imke de
1602:
It is not known exactly what causes the Great Red Spot's reddish color. Theories supported by laboratory experiments suppose that the color may be caused by complex organic molecules, red phosphorus, or yet another sulfur compound. The GRS varies greatly in hue, from almost brick-red to pale salmon,
1320:
ideal liquid, the flows are organized in a series of cylinders parallel to the rotational axis. The conditions of the theorem are probably met in the fluid Jovian interior. Therefore, the planet's molecular hydrogen mantle may be divided into cylinders, each cylinder having a circulation independent
1298:
While these weather–layer models can successfully explain the existence of a dozen narrow jets, they have serious problems. A glaring failure of the model is the prograde (super-rotating) equatorial jet: with some rare exceptions shallow models produce a strong retrograde (subrotating) jet, contrary
1262:
may occur throughout the planet's outer molecular envelope. As of 2008, a comprehensive theory of the dynamics of the Jovian atmosphere has not been developed. Any such theory needs to explain the following facts: the existence of narrow stable bands and jets that are symmetric relative to Jupiter's
1191:
The South Temperate Region, or South Temperate Belt (STB), is yet another dark, prominent belt, more so than the NTB; until March 2000, its most famous features were the long-lived white ovals BC, DE, and FA, which have since merged to form Oval BA ("Red Jr."). The ovals were part of South Temperate
961:
of approximately 7°S to 7°N. Above and below the EZ, the North and South Equatorial belts (NEB and SEB) extend to 18°N and 18°S, respectively. Farther from the equator lie the North and South Tropical zones (NtrZ and STrZ). The alternating pattern of belts and zones continues until the polar regions
2342:
atmospheric probe failed to measure the deep abundance of oxygen, because the water concentration continued to increase down to the pressure level of 22 bar, when it ceased operating. While the actually measured oxygen abundances are much lower than the solar value, the observed rapid increase
1883:
Some of the most mysterious features in the atmosphere of Jupiter are hot spots. In them, the air is relatively free of clouds and heat can escape from the depths without much absorption. The spots look like bright spots in the infrared images obtained at the wavelength of about 5 μm. They are
1853:
The circumpolar cyclones have different morphologies, especially in the north, where cyclones have a "filled" or "chaotic" structure. The inner part of the "chaotic" cyclones have small-scale cloud streaks and flecks. The "filled" cyclones have a sharply-bound, lobate area that is bright white near
1802:
Other notable features of Jupiter are its cyclones near the northern and southern poles of the planet. These are called circumpolar cyclones (CPCs) and they have been observed by the Juno Spacecraft using JunoCam and JIRAM. The cyclones have now been observed for about 5 years, as Juno completed 39
1545:
days. Its dimensions are 24,000–40,000 km east-to-west and 12,000–14,000 km north-to-south. The spot is large enough to contain two or three planets the size of Earth. At the start of 2004, the Great Red Spot had approximately half the longitudinal extent it had a century ago, when it was
1537:
in 1635, Leander Bandtius, whom Riccioli identified as the Abbot of Dunisburgh who possessed an "extraordinary telescope", observed a large spot that he described as "oval, equaling one seventh of Jupiter's diameter at its longest." According to Riccioli, "these features are seldom able to be seen,
1340:
within Jupiter. One model published in 2004 successfully reproduced the Jovian band-jet structure. It assumed that the molecular hydrogen mantle is thinner than in all other models; occupying only the outer 10% of Jupiter's radius. In standard models of the Jovian interior, the mantle comprises the
1195:
There are other features on Jupiter that are either temporary or difficult to observe from Earth. The South South Temperate Region is harder to discern even than the NNTR; its detail is subtle and can only be studied well by large telescopes or spacecraft. Many zones and belts are more transient in
1179:
jet stream. The SEB is usually the broadest, darkest belt on Jupiter; it is sometimes split by a zone (the SEBZ), and can fade entirely every 3 to 15 years before reappearing in what is known as an SEB Revival cycle. A period of weeks or months following the belt's disappearance, a white spot forms
965:
The difference in the appearance between zones and belts is caused by differences in the opacity of the clouds. Ammonia concentration is higher in zones, which leads to the appearance of denser clouds of ammonia ice at higher altitudes, which in turn leads to their lighter color. On the other hand,
1955:
Early modern astronomers, using small telescopes, recorded the changing appearance of Jupiter's atmosphere. Their descriptive terms—belts and zones, brown spots and red spots, plumes, barges, festoons, and streamers—are still used. Other terms such as vorticity, vertical motion, cloud heights have
1477:
In contrast to anticyclones, the Jovian cyclones tend to be small, dark and irregular structures. Some of the darker and more regular features are known as brown ovals (or badges). However the existence of a few long–lived large cyclones has been suggested. In addition to compact cyclones, Jupiter
1154:
Zones, belts and vortices on Jupiter. The wide equatorial zone is visible in the center surrounded by two dark equatorial belts (SEB and NEB). The large grayish-blue irregular "hot spots" at the northern edge of the white Equatorial Zone change over the course of time as they march eastward across
1056:
on Earth, and white ammonia clouds evaporate, revealing lower, darker clouds. The location and width of bands, speed and location of jets on Jupiter are remarkably stable, having changed only slightly between 1980 and 2000. One example of change is a decrease of the speed of the strongest eastward
754:
at depths of more than 10,000 km, helium separates from it forming droplets which, being denser than the metallic hydrogen, descend towards the core. This can also explain the severe depletion of neon (see Table), an element that easily dissolves in helium droplets and would be transported in
197:
Jupiter has powerful storms, often accompanied by lightning strikes. The storms are a result of moist convection in the atmosphere connected to the evaporation and condensation of water. They are sites of strong upward motion of the air, which leads to the formation of bright and dense clouds. The
1989:
Today, astronomers have access to a continuous record of Jupiter's atmospheric activity thanks to telescopes such as Hubble Space Telescope. These show that the atmosphere is occasionally wracked by massive disturbances, but that, overall, it is remarkably stable. The vertical motion of Jupiter's
1697:
Why Oval BA turned red is not well understood. According to a 2008 study by Dr. Santiago Pérez-Hoyos of the University of the Basque Country, the most likely mechanism is "an upward and inward diffusion of either a colored compound or a coating vapor that may interact later with high energy solar
2108:
The present GRS was first seen only after 1830 and well-studied only after a prominent apparition in 1879. A 118-year gap separates the observations made after 1830 from its 17th-century discovery; whether the original spot dissipated and re-formed, whether it faded, or even if the observational
1870:
The normal pattern of bands and zones is sometimes disrupted for periods of time. One particular class of disruption are long-lived darkenings of the South Tropical Zone, normally referred to as "South Tropical Disturbances" (STD). The longest lived STD in recorded history was followed from 1901
1146:
The NEB is one of the most active belts on the planet. It is characterized by anticyclonic white ovals and cyclonic "barges" (also known as "brown ovals"), with the former usually forming farther north than the latter; as in the NTropZ, most of these features are relatively short-lived. Like the
1081:
cells. On Jupiter, the visible cloud bands gave indication for upward motion in the zones and downward motion in the belts, indicative only for the upper few bars. However, higher frequency of lightning flashes in the belts, indicative of upward atmospheric motion, gave indication for a reversed
1646:
The formation of the three white oval storms that later merged into Oval BA can be traced to 1939, when the South Temperate Zone was torn by dark features that effectively split the zone into three long sections. Jovian observer Elmer J. Reese labeled the dark sections AB, CD, and EF. The rifts
1341:
outer 20–30%. The driving of deep circulation is another problem. The deep flows can be caused both by shallow forces (moist convection, for instance) or by deep planet-wide convection that transports heat out of the Jovian interior. Which of these mechanisms is more important is not clear yet.
1335:
The deep model easily explains the strong prograde jet observed at the equator of Jupiter; the jets it produces are stable and do not obey the 2D stability criterion. However it has major difficulties; it produces a very small number of broad jets, and realistic simulations of 3D flows are not
1136:
The North Tropical Region is composed of the NTropZ and the North Equatorial Belt (NEB). The NTropZ is generally stable in coloration, changing in tint only in tandem with activity on the NTB's southern jet stream. Like the NTZ, it too is sometimes divided by a narrow band, the NTropB. On rare
160: 2159:
shortly after their formation, but contracted rapidly during their first decade; their length stabilized at 10 degrees or less after 1965. Although they originated as segments of the STZ, they evolved to become completely embedded in the South Temperate Belt, suggesting that they moved north,
1918:
proved that the combination of lightning and compounds existing in the primitive Earth's atmosphere can form organic matter (including amino acids), which can be used as the cornerstone of life. The simulated atmosphere consists of water, methane, ammonia and hydrogen molecules; all of these
1376:
may be important for the dynamics of the Jovian atmosphere. While Jupiter has a small obliquity of about 3°, and its poles receive much less solar radiation than its equator, the tropospheric temperatures do not change appreciably from the equator to poles. One explanation is that Jupiter's
159: 165: 163: 158: 1267:
that the observed atmospheric flows are only a surface manifestation of deeply rooted circulation in the outer molecular envelope of Jupiter. As both theories have their own successes and failures, many planetary scientists think that the true theory will include elements of both models.
2130:
spacecraft was 9.2 million kilometers from Jupiter it transmitted the first detailed image of the Great Red Spot back to Earth. Cloud details as small as 160 km across were visible. The colorful, wavy cloud pattern seen to the west (left) of the GRS is the spot's wake region, where
1701:
Oval BA is getting stronger according to observations made with the Hubble Space Telescope in 2007. The wind speeds have reached 618 km/h; about the same as in the Great Red Spot and far stronger than any of the progenitor storms. As of July 2008, its size is about the diameter of
1698:
photons at the upper levels of Oval BA." Some believe that small storms (and their corresponding white spots) on Jupiter turn red when the winds become powerful enough to draw certain gases from deeper within the atmosphere which change color when those gases are exposed to sunlight.
164: 1769:
spacecraft revealed regular light flashes in Jovian belts and near the locations of the westward jets, particularly at 51°N, 56°S and 14°S latitudes. On Jupiter lightning strikes are on average a few times more powerful than those on Earth. However, they are less frequent; the light
2377:
reported that storms on Jupiter are similar to those on Earth, which form close to the equator, then move towards the poles. However, Jupiter's storms do not experience any friction from the land or oceans; hence, they drift until they reach the poles, which generate the so-called
1168:) features known as festoons (hot spots). Though the southern boundary of the EZ is usually quiescent, observations from the late 19th into the early 20th century show that this pattern was then reversed relative to today. The EZ varies considerably in coloration, from pale to an 1192:
Zone, but they extended into STB partially blocking it. The STB has occasionally faded, apparently due to complex interactions between the white ovals and the GRS. The appearance of the South Temperate Zone (STZ)—the zone in which the white ovals originated—is highly variable.
5255:
Tabataba-Vakili, F.; Rogers, J.H.; Eichstädt, G.; Orton, G.S.; Hansen, C.J.; Momary, T.W.; Sinclair, J.A.; Giles, R.S.; Caplinger, M.A.; Ravine, M.A.; Bolton, S.J. (January 2020). "Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam".
1068:
are a large-scale atmospheric motion where gas rises at a certain latitude, travel in the north-south (meridional) direction, descends, and get back to the origin in a closed cell circulation. On Earth, the meridional circulation is composed of 3 cells in each hemisphere:
1571:
of the GRS are about 8 km above the surrounding clouds. Furthermore, careful tracking of atmospheric features revealed the spot's counterclockwise circulation as far back as 1966 – observations dramatically confirmed by the first time-lapse movies from the
1137:
occasions, the southern NTropZ plays host to "Little Red Spots". As the name suggests, these are northern equivalents of the Great Red Spot. Unlike the GRS, they tend to occur in pairs and are always short-lived, lasting a year on average; one was present during the
1369:. The latter value is approximately equal to one billionth of the total power radiated by the Sun. This excess heat is mainly the primordial heat from the early phases of Jupiter's formation, but may result in part from the precipitation of helium into the core. 1107:
The belts and zones that divide Jupiter's atmosphere each have their own names and unique characteristics. They begin below the North and South Polar Regions, which extend from the poles to roughly 40–48° N/S. These bluish-gray regions are usually featureless.
966:
in belts clouds are thinner and are located at lower altitudes. The upper troposphere is colder in zones and warmer in belts. The exact nature of chemicals that make Jovian zones and bands so colorful is not known, but they may include complicated compounds of
162: 1102:
Idealized illustration of Jupiter's cloud bands, labeled with their official abbreviations. Lighter zones are indicated to the right, darker belts to the left. The Great Red Spot and Oval BA are shown in the South Tropical Zone and South Temperate Belt,
1287:. This process works as follows: when the largest turbulent structures reach a certain size, the energy begins to flow into Rossby waves instead of larger structures, and the inverse cascade stops. Since on the spherical rapidly rotating planet the 6610:
Baines, Kevin H.; Simon-Miller, Amy A; Orton, Glenn S.; Weaver, Harold A.; Lunsford, Allen; Momary, Thomas W.; Spencer, John; Cheng, Andrew F.; Reuter, Dennis C. (12 October 2007). "Polar Lightning and Decadal-Scale Cloud Variability on Jupiter".
1057:
jet located at the boundary between the North Tropical zone and North Temperate belts at 23°N. However bands vary in coloration and intensity over time (see "specific band"). These variations were first observed in the early seventeenth century.
2663:
Smith, Bradford A.; Soderblom, Laurence A.; Johnson, Torrence V.; Ingersoll, Andrew P.; Collins, Stewart A.; Shoemaker, Eugene M.; Hunt, G. E.; Masursky, Harold; Carr, Michael H. (1979-06-01). "The Jupiter System Through the Eyes of Voyager 1".
329:
chemical element than either nitrogen or sulfur). Various tropospheric (at 200–500 mbar) and stratospheric (at 10–100 mbar) haze layers reside above the main cloud layers. The stratospheric haze layers are made from condensed heavy
2086:, who described a spot on the planet in May 1664; however, it is likely that Hooke's spot was in the wrong belt altogether (the North Equatorial Belt, versus the current location in the South Equatorial Belt). Much more convincing is 1303:
found that the winds on Jupiter extend well below the water clouds at 5–7 bar and do not show any evidence of decay down to 22 bar pressure level, which implies that circulation in the Jovian atmosphere may in fact be deep.
1377:
convective interior acts like a thermostat, releasing more heat near the poles than in the equatorial region. This leads to a uniform temperature in the troposphere. While heat is transported from the equator to the poles mainly
1163:
The Equatorial Region (EZ) is one of the most stable regions of the planet, in latitude and in activity. The northern edge of the EZ hosts spectacular plumes that trail southwest from the NEB, which are bounded by dark, warm (in
254:. Jupiter does not have a solid surface, and the lowest atmospheric layer, the troposphere, smoothly transitions into the planet's fluid interior. This is a result of having temperatures and the pressures well above those of the 202:
observations suggest Jovian lightning strikes occur above the altitude of water clouds (3-7 bars). A charge separation between falling liquid ammonia-water droplets and water ice particles may generate higher-altitude lightning.
749:
value. The reason for this low abundance is not entirely understood, but some of the helium may have condensed into the core of Jupiter. This condensation is likely to be in the form of helium rain: as hydrogen turns into the
6027:
Mura, A.; Adriani, A.; Bracco, A.; Moriconi, M. L.; Grassi, D.; Plainaki, C.; Ingersoll, A.; Bolton, S.; Sordini, R.; Altieri, F.; Ciarravano, A.; Cicchetti, A.; Dinelli, B. M.; Filacchione, G.; Migliorini, A. (2021-07-28).
2799:
Giles, Rohini S.; Greathouse, Thomas K.; Bonfond, Bertrand; Gladstone, G. Randall; Kammer, Joshua A.; Hue, Vincent; Grodent, Denis C.; Gérard, Jean-Claude; Versteeg, Maarten H.; Wong, Michael H.; Bolton, Scott J. (2020).
2328:
is the gravitational acceleration at the surface of Jupiter. As the temperature varies from 110 K in the tropopause up to 1000 K in the thermosphere, the scale height can assume values from 15 to 150 km.
5788:
Mura, A.; Scarica, P.; Grassi, D.; Adriani, A.; Bracco, A.; Piccioni, G.; Sindoni, G.; Moriconi, M. L.; Plainaki, C.; Ingersoll, A.; Altieri, F.; Cicchetti, A.; Dinelli, B. M.; Filacchione, G.; Migliorini, A. (2022).
5197:
Mura, A.; Scarica, P.; Grassi, D.; Adriani, A.; Bracco, A.; Piccioni, G.; Sindoni, G.; Moriconi, M. L.; Plainaki, C.; Ingersoll, A.; Altieri, F.; Cicchetti, A.; Dinelli, B. M.; Filacchione, G.; Migliorini, A. (2022).
2729:; Alexander, James W.; Atreya, Sushil K.; Bolton, Scott J.; Brennan, Martin J.; Brown, Shannon T.; Guillaume, Alexandre; Guillot, Tristan; Ingersoll, Andrew P.; Levin, Steven M.; Lunine, Jonathan I. (5 August 2020). 1584:. The warm airmass is located in the upper troposphere in the pressure range of 200–500 mbar. This warm central spot slowly counter-rotates and may be caused by a weak subsidence of air in the center of GRS. 1349:
As has been known since 1966, Jupiter radiates much more heat than it receives from the Sun. It is estimated that the ratio of the thermal power emitted by the planet to the thermal power absorbed from the Sun is
2056:, as it plunged into Jupiter, measured the wind, temperature, composition, clouds, and radiation levels down to 22 bar. However, below 1 bar elsewhere on Jupiter there is uncertainty in the quantities. 1674:
amateur astronomer Christopher Go discovered the color change, noting that it had reached the same shade as the GRS. As a result, NASA writer Dr. Tony Phillips suggested it be called "Red Spot Jr." or "Red Jr."
1321:
of the others. Those latitudes where the cylinders' outer and inner boundaries intersect with the visible surface of the planet correspond to the jets; the cylinders themselves are observed as zones and belts.
6452:
Atreya, Sushil K.; Mahaffy, P. R.; Niemann, H. B.; Wong, M. H.; Owen, T. C. (February 2003). "Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets".
1486:
region) in the southern equatorial belt. These patches are called cyclonic regions (CR). The cyclones are always located in the belts and tend to merge when they encounter each other, much like anticyclones.
299:
Jupiter's troposphere contains a complicated cloud structure. The upper clouds, located in the pressure range 0.6–0.9 bar, are made of ammonia ice. Below these ammonia ice clouds, denser clouds made of
1553:
An infrared image of GRS (top) and Oval BA (lower left) showing its cool center, taken by the ground based Very Large Telescope. An image made by the Hubble Space Telescope (bottom) is shown for comparison.
3691:
Duer, Keren; Gavriel, Nimrod; Galanti, Eli; Kaspi, Yohai; Fletcher, Leigh N.; Guillot, Tristan; Bolton, Scott J.; Levin, Steven M.; Atreya, Sushil K.; Grassi, Davide; Ingersoll, Andrew P. (2021-12-16).
2175:), and their proximity to the GRS (they accelerated when within 50 degrees of the Spot). The overall trend of the white oval drift rate was deceleration, with a decrease by half between 1940 and 1990. 1647:
expanded, shrinking the remaining segments of the STZ into the white ovals FA, BC, and DE. Ovals BC and DE merged in 1998, forming Oval BE. Then, in March 2000, BE and FA joined, forming Oval BA. (see
993:) jets mark the transition from belts to zones. Such flow velocity patterns mean that the jets' eastward momentum decreases in belts and increases in zones from the equator to the pole. Therefore, 161: 7401:
Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A. (March 1990). "The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data".
1133:
encounters), making the North Temperate Zone (NTZ) apparently merge into the North Tropical Zone (NTropZ). Other times, the NTZ is divided by a narrow belt into northern and southern components.
198:
storms form mainly in belt regions. The lightning strikes on Jupiter are hundreds of times more powerful than those seen on Earth, and are assumed to be associated with the water clouds. Recent
1875:
on February 28, 1901. It took the form of darkening over part of the normally bright South Tropical zone. Several similar disturbances in the South Tropical Zone have been recorded since then.
1746:
several months, while the average lifetime is only 3–4 days. They are believed to be due mainly to moist convection within Jupiter's troposphere. Storms are actually tall convective columns (
1982:. The two spacecraft were able to image details at a resolution as low as 5 km in size in various spectra, and also able to create "approach movies" of the atmosphere in motion. The 1774:
emitted from a given area is similar to that on Earth. A few flashes have been detected in polar regions, making Jupiter the second known planet after Earth to exhibit polar lightning. A
2101:. It is a part of a series of panels in which different (magnified) heavenly bodies serve as backdrops for various Italian scenes, the creation of all of them overseen by the astronomer 2343:
of water content of the atmosphere with depth makes it highly likely that the deep abundance of oxygen indeed exceeds the solar value by a factor of about 3—much like other elements.
365:
in 1983. The energetic particles coming from Jupiter's magnetosphere create bright auroral ovals, which encircle the poles. Unlike their terrestrial analogs, which appear only during
385:) was discovered. This ion emits strongly in the mid-infrared part of the spectrum, at wavelengths between 3 and 5 μm; this is the main cooling mechanism of the thermosphere. 1175:
The South Tropical Region includes the South Equatorial Belt (SEB) and the South Tropical Zone. It is by far the most active region on the planet, as it is home to its strongest
1025:
above the clouds, while below the cloud level, winds increase slightly and then remain constant down to at least 22 bar—the maximum operational depth reached by the probe.
1263:
equator, the strong prograde jet observed at the equator, the difference between zones and belts, and the origin and persistence of large vortices such as the Great Red Spot.
2182:
fly-bys, the ovals extended roughly 9000 km from east to west, 5000 km from north to south, and rotated every five days (compared to six for the GRS at the time).
2352:
Various explanations of the overabundance of carbon, oxygen, nitrogen and other elements have been proposed. The leading one is that Jupiter captured a large number of icy
3631:
Janssen, M. A.; Oswald, J. E.; Brown, S. T.; Gulkis, S.; Levin, S. M.; Bolton, S. J.; Allison, M. D.; Atreya, S. K.; Gautier, D.; Ingersoll, A. P.; Lunine, J. I. (2017).
2109:
record was simply poor are unknown. The older spots had a short observational history and slower motion than that of the modern spot, which make their identity unlikely.
1906:
heated and dried or, alternatively, they can be a manifestation of planetary scale waves. The latter hypotheses explains the periodical pattern of the equatorial spots.
3282:
Galanti, Eli; Kaspi, Yohai; Duer, Keren; Fletcher, Leigh; Ingersoll, Andrew P.; Li, Cheng; Orton, Glenn S.; Guillot, Tristan; Levin, Steven M.; Bolton, Scott J. (2021).
1129:
on the planet—a westerly current that forms the southern boundary of the North Temperate Belt (NTB). The NTB fades roughly once a decade (this was the case during the
7702:
Seiff, A.; Kirk, D.B.; Knight, T.C.D.; et al. (1998). "Thermal structure of Jupiter's atmosphere near the edge of a 5-μm hot spot in the north equatorial belt".
7356:
Noll, K.S.; McGrath, M.A.; Weaver, H.A.; Yelle, R.V.; et al. (1995). "HST Spectroscopic Observations of Jupiter Following the Impact of Comet Shoemaker-Levy 9".
5307:
Grassi, D.; Adriani, A.; Moriconi, M. L.; Mura, A.; Tabataba-Vakili, F.; Ingersoll, A.; Orton, G.; Hansen, C.; Altieri, F.; Filacchione, G.; Sindoni, G. (June 2018).
3209:
Kaspi, Y.; Galanti, E.; Hubbard, W. B.; Stevenson, D. J.; Bolton, S. J.; Iess, L.; Guillot, T.; Bloxham, J.; Connerney, J. E. P.; Cao, H.; Durante, D. (2018-03-08).
1122:
The North Temperate Region is part of a latitudinal region easily observable from Earth, and thus has a superb record of observation. It also features the strongest
687:
The composition of Jupiter's atmosphere is similar to that of the planet as a whole. Jupiter's atmosphere is the most comprehensively understood of those of all the
5439:
Adriani, A.; Mura, A.; Orton, G.; Hansen, C.; Altieri, F.; Moriconi, M. L.; Rogers, J.; Eichstädt, G.; Momary, T.; Ingersoll, A. P.; Filacchione, G. (March 2018).
4603:"Interim reports on STB (Oval BA passing GRS), STropB, GRS (internal rotation measured), EZ(S. Eq. Disturbance; dramatic darkening; NEB interactions), & NNTB" 5085: 4725: 6405:(October–November 1999). "A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin". 1626:
in 1989, may have been an atmospheric hole rather than a storm. It was no longer present in 1994, although a similar spot had appeared farther to the north.
1172:, or even coppery hue; it is occasionally divided by an Equatorial Band (EB). Features in the EZ move roughly 390 km/h relative to the other latitudes. 2105:
for accuracy. Creti's painting is the first known to depict the GRS as red. No Jovian feature was officially described as red before the late 19th century.
1525:, 22° south of Jupiter's equator; observations from Earth establish a minimum storm lifetime of 350 years. A storm was described as a "permanent spot" by 7194: 5032: 4532: 9434: 1048:. When air enriched in ammonia rises in zones, it expands and cools, forming high and dense white clouds. In belts, however, the air descends, warming 6886:
Graney, C. M. (2010). "Changes in the Cloud Belts of Jupiter, 1630–1664, as reported in the 1665 Astronomia Reformata of Giovanni Battista Riccioli".
105:
lacks a clear lower boundary and gradually transitions into the liquid interior of the planet. From lowest to highest, the atmospheric layers are the
7319:
Miller, Steve; Aylward, Alan; Millward, George (January 2005). "Giant Planet Ionospheres and Thermospheres: The Importance of Ion-Neutral Coupling".
1895:
located to the west of it and reaching up to 10,000 km in size. Hot spots generally have round shapes, although they do not resemble vortices.
7984: 7605: 7575: 7545: 7298: 1690:, predicted the storms would have their closest passing on July 4, 2006. On July 20, the two storms were photographed passing each other by the 1538:
and then only by a telescope of exceptional quality and magnification". The Great Spot has been continually observed since the 1870s, however.
4398: 6308: 4366: 6865: 6863:
Go, C.Y.; de Pater, I.; Wong, M.; Lockwood, S.; Marcus, P.; Asay-Davis, X.; Shetty, S. (2006). "Evolution Of The Oval Ba During 2004–2005".
5001: 4951: 2090:'s description of a "permanent spot" in the following year. With fluctuations in visibility, Cassini's spot was observed from 1665 to 1713. 1021:
measured the vertical profile of a jet along its descent trajectory into Jupiter's atmosphere, finding the winds to decay over two to three
698:
when it entered the Jovian atmosphere on December 7, 1995. Other sources of information about Jupiter's atmospheric composition include the
7857: 1567:
data have long indicated that the Great Red Spot is colder (and thus, higher in altitude) than most of the other clouds on the planet; the
4428: 4897: 4778: 3114: 1986:, which suffered an antenna problem, saw less of Jupiter's atmosphere but at a better average resolution and a wider spectral bandwidth. 1606:
The Great Red Spot should not be confused with the Great Dark Spot, a feature observed near Jupiter's north pole (bottom) in 2000 by the
922: 2373:
recorded on 25 August 2020, a storm traveling around the planet at 350 miles per hour (560 km/h). In addition, researches from the
6988:
Hammel, H.B.; Lockwood, G.W.; Mills, J.R.; Barnet, C.D. (1995). "Hubble Space Telescope Imaging of Neptune's Cloud Structure in 1994".
1884:
preferentially located in the belts, although there is a train of prominent hot spots at the northern edge of the Equatorial Zone. The
1587:
The Great Red Spot's latitude has been stable for the duration of good observational records, typically varying by about a degree. Its
1147:
South Equatorial Belt (SEB), the NEB has sometimes dramatically faded and "revived". The timescale of these changes is about 25 years.
7626:
Sanchez-Lavega, A.; Orton, G.S.; Morales R.; et al. (2001). "The Merger of Two Giant Anticyclones in the Atmosphere of Jupiter".
4868: 1678:
In April 2006, a team of astronomers, believing that Oval BA might converge with the GRS that year, observed the storms through the
1336:
possible as of 2008, meaning that the simplified models used to justify deep circulation may fail to catch important aspects of the
945:
The visible surface of Jupiter is divided into several bands parallel to the equator. There are two types of bands: lightly colored
9162: 1810:, a known effect causing cyclones to move poleward and anti-cyclones to move equatorward due to the conservation of momentum along 1208:(SEBZ). Belts are also occasionally split by a sudden disturbance. When a disturbance divides a normally singular belt or zone, an 1086:, similar to the Ferrel cells on Earth. While on Earth, the return flow in the cells' lower branch is balanced by friction in the 219:
Vertical structure of the atmosphere of Jupiter. Note that the temperature drops together with altitude above the tropopause. The
181:), storms and lightning. The vortices reveal themselves as large red, white or brown spots (ovals). The largest two spots are the 17: 1959:
The first observations of the Jovian atmosphere at higher resolution than possible with Earth-based telescopes were taken by the
1811: 794:). Their abundances in the deep (below 10 bar) troposphere imply that the atmosphere of Jupiter is enriched in the elements 1466:
The anticyclones in Jupiter's atmosphere are always confined within zones, where the wind speed increases in direction from the
1279:, which had become well developed by that time. Those shallow models assumed that the jets on Jupiter are driven by small scale 1036:
The origin of Jupiter's colored banded structure is not completely clear, though it may resemble the cloud structure of Earth's
8782: 3110: 194:
years. Oval BA, south of GRS, is a red spot a third the size of GRS that formed in 2000 from the merging of three white ovals.
6659: 1312:
The deep model was first proposed by Busse in 1976. His model was based on another well-known feature of fluid mechanics, the
9125: 8810: 8140: 7961: 7927: 7518: 7495: 7202: 7137: 7099: 6709: 4460: 3430: 1682:. The storms pass each other about every two years, but the passings of 2002 and 2004 did not produce anything exciting. Dr. 1818:. Thus, cyclones forming in the polar regions may congregate at the pole and form a polar cyclone such as those observed on 8805: 2164:
on their northern and southern boundaries, with an eastward jet to their north and a retrograde westward one to the south.
369:, aurorae are permanent features of Jupiter's atmosphere. The thermosphere was the first place outside the Earth where the 7786: 7156: 2216: 1382: 258:
for hydrogen and helium, meaning that there is no sharp boundary between gas and liquid phases. Hydrogen is considered a
1275:
The first attempts to explain Jovian atmospheric dynamics date back to the 1960s. They were partly based on terrestrial
292:
on Earth is around 9.8 °C per km. The adiabatic lapse rate is proportional to the average molecular weight and the
2374: 1711: 1558: 326: 5107: 4742:
Loeffer, Mark J.; Hudson, Reggie L. (2018). "Coloring Jupiter's clouds: Radiolysis of ammonium hydrosulfide (NH4SH)".
8564: 7733:
Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; et al. (1979). "The Jupiter system through the eyes of Voyager 1".
6340:"Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft" 5723:"Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft" 5081: 4722: 8445: 8455: 1329: 86:. Although water is thought to reside deep in the atmosphere, its directly-measured concentration is very low. The 6493: 5504:"A Series Solution for the Barotropic Vorticity Equation and its Application in the Study of Atmospheric Vortices" 1090:, the balance in Jupiter in yet unknown, but one possibility is that the friction is maintained by magnetic drag. 8637: 7704: 7091: 1241: 1229: 361:. The thermosphere and exosphere at the poles and at low latitudes emit X-rays, which were first observed by the 331: 255: 125:. The lowest layer, the troposphere, has a complicated system of clouds and hazes composed of layers of ammonia, 9266: 8252: 8216: 8100: 6828: 8354: 8288: 7819: 7808: 7781: 7177: 5028: 4528: 7296:
McKim, R.J. (1997). "P. B. Molesworth's discovery of the great South Tropical Disturbance on Jupiter, 1901".
2408: 2356:
during the later stages of its accretion. The volatiles like noble gases are thought to have been trapped as
4710: 2160:"digging" a niche into the STB. Indeed, much like the GRS, their circulations were confined by two opposing 9305: 9300: 6555: 1176: 1010: 990: 7999:
Youssef, Ashraf; Marcus, Philip S. (2003). "The dynamics of jovian white ovals from formation to merger".
7438:
Reese, E.J.; Solberg, H.G. (1966). "Recent measures of the latitude and longitude of Jupiter's red spot".
7118: 4923: 1666:
Oval BA (bottom), Great Red Spot (top) and "Baby Red Spot" (middle) during a brief encounter in June, 2008
9394: 6941: 6563: 6455: 6407: 6401:
Atreya, Sushil K.; Wong, M. H.; Owen, T. C.; Mahaffy, P. R.; Niemann, H. B.; de Pater, I.; Drossart, P.;
2167:
The longitudinal movement of the ovals seemed to be influenced by two factors: Jupiter's position in its
1775: 1687: 1313: 341:
Jupiter's thermosphere is located at pressures lower than 1 μbar and demonstrates such phenomena as
204: 9410:
Atmospheres in boldface are significant atmospheres; atmospheres in italics are unconfirmed atmospheres.
7817:
Vasavada, A.R.; Showman, A. (2005). "Jovian atmospheric dynamics: An update after Galileo and Cassini".
989:) jets are found at the transition from zones to belts (going away from the equator), whereas westward ( 9360: 8983: 8828: 8462: 8452:
of Jupiter's atmospheric activity from 19 December 2014 to 31 March 2015 from amateur astronomer images
7980: 7902: 7868: 7510: 7129: 2801: 2207: 1995: 1915: 1598:
Approximate size comparison of Earth superimposed on this Dec 29, 2000 image showing the Great Red Spot
1534: 699: 142: 9246: 1891:
descended into one of those equatorial spots. Each equatorial spot is associated with a bright cloudy
842:) are present only in trace amounts. The upper atmosphere of Jupiter contains small amounts of simple 325:
of water and higher water abundance as compared to the ammonia and hydrogen sulfide (oxygen is a more
173:
The Jovian atmosphere shows a wide range of active phenomena, including band instabilities, vortices (
9118: 8843: 8838: 8833: 8787: 2243: 2238: 1991: 1216:
is added to indicate whether the component is the northern or southern one; e.g., NEB(N) and NEB(S).
8345: 6829:"Thermal structure and composition of Jupiter's Great Red Spot from high-resolution thermal imaging" 6585: 5848: 4394: 3943: 921:(3.5 × 10). The latter discovery is especially significant since the previous theories of 8820: 8612: 6316: 1990:
atmosphere was largely determined by the identification of trace gases by ground-based telescopes.
1730: 1415:—circular rotating structures that, as in the Earth's atmosphere, can be divided into two classes: 938: 8225: 1513: 962:
at approximately 50 degrees latitude, where their visible appearance becomes somewhat muted.
8627: 8622: 8401: 8363: 8317: 8297: 8261: 8189: 8151: 8109: 8073: 8029: 5005: 4976: 4947: 4424: 3530: 1385:
heat. The convection in the Jovian interior is thought to be driven mainly by the internal heat.
1378: 1255: 1065: 1014: 7872: 3356: 9285: 8857: 8340: 6580: 4420: 3568:
Ingersoll, A. P.; Gierasch, P. J.; Banfield, D.; Vasavada, A. R.; Galileo Imaging Team (2000).
2412: 2370: 1936: 1806:
The mechanism for the stability of these two symmetric structures of cyclones is an outcome of
1679: 879: 39: 6337: 4901: 4782: 1807: 1150: 909:
that gave birth to the Solar System. The ratio of nitrogen isotopes in the Jovian atmosphere,
9179: 8557: 7567: 7214:"Jupiter's Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment" 6795: 6733: 6402: 4367:"Release 14-135 - NASA's Hubble Shows Jupiter's Great Red Spot is Smaller than Ever Measured" 1892: 1842:
The instantaneous locations of the south polar cyclones have been tracked for 5 years by the
1747: 1526: 1432: 918: 859: 301: 284:. The temperature of the troposphere decreases with height until it reaches a minimum at the 274: 247: 126: 7597: 6964: 6811: 6677: 6576: 6468: 6420: 4450: 269:, at an altitude of about 90 km below 1 bar with a temperature of around 340  189:, which is also red. These two and most of the other large spots are anticyclonic. Smaller 129:, and water. The upper ammonia clouds visible at Jupiter's surface are organized in a dozen 9384: 9333: 9220: 9111: 9015: 8945: 8908: 8416: 8378: 8332: 8276: 8240: 8204: 8166: 8120: 8088: 8074:"Planetary Circulations: 1. Barotropic representation of Jovian and terrestrial turbulence" 8044: 8008: 7828: 7795: 7744: 7713: 7672: 7637: 7614: 7584: 7554: 7449: 7410: 7365: 7328: 7307: 7276: 7267: 7227: 7190: 7165: 7148: 7050: 6999: 6960: 6907: 6874: 6843: 6807: 6775: 6742: 6673: 6622: 6572: 6508: 6464: 6416: 6351: 6109: 6097: 6041: 5985: 5963: 5920: 5898: 5861: 5802: 5734: 5679: 5658:"The number and location of Jupiter's circumpolar cyclones explained by vorticity dynamics" 5609: 5515: 5452: 5397: 5376:"The number and location of Jupiter's circumpolar cyclones explained by vorticity dynamics" 5320: 5265: 5211: 4872: 4751: 3788: 3715: 3693: 3644: 3581: 3542: 3477: 3368: 3305: 3283: 3222: 2823: 2742: 2673: 2248: 2014:) was recorded—the first detection of either in Jupiter, and only the second detection of S 1765: 1759: 894: 710: 704: 362: 322: 130: 122: 51: 6798:(February 2003). "ISO observations of the giant planets and Titan: what have we learnt?". 3570:"Moist convection as an energy source for the large-scale motions in Jupiter's atmosphere" 2112: 8: 9326: 9252: 9192: 9185: 9092: 9062: 9022: 8896: 8500: 7945: 7891: 3766: 3172: 2199: 2117: 2019: 1976:
spacecraft. The first truly detailed images of Jupiter's atmosphere were provided by the
1941: 1872: 1819: 1608: 1288: 1187:
This image from the HST reveals a rare wave structure just north of the planet's equator.
1111:
The North North Temperate Region rarely shows more detail than the polar regions, due to
1013:
rather than in a radial direction (toward the center of the planet), consistent with the
281: 265:
Since the lower boundary of the atmosphere is ill-defined, the pressure level of 10 
259: 9295: 8420: 8382: 8336: 8280: 8244: 8208: 8170: 8124: 8092: 8048: 8012: 7981:"Researcher predicts global climate change on Jupiter as giant planet's spots disappear" 7832: 7799: 7748: 7717: 7676: 7641: 7618: 7588: 7558: 7453: 7414: 7369: 7332: 7311: 7280: 7231: 7169: 7054: 7003: 6911: 6878: 6847: 6827:
Fletcher, Leigh N.; Orton, G.S.; Mousis, O.; Yanamandra-Fisher, P.; et al. (2010).
6779: 6746: 6626: 6512: 6355: 6113: 6045: 5989: 5924: 5865: 5806: 5738: 5683: 5613: 5519: 5503: 5456: 5401: 5324: 5269: 5215: 4755: 3792: 3719: 3648: 3585: 3546: 3481: 3372: 3309: 3226: 2827: 2746: 2677: 1442: 280:
The vertical temperature gradients in the Jovian atmosphere are similar to those of the
30: 9399: 9199: 9151: 9057: 9035: 8584: 8536: 8488: 8060: 7844: 7768: 7389: 7344: 7253: 7074: 7037:"Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model" 7023: 6976: 6950: 6923: 6897: 6646: 6542: 6374: 6339: 6067: 6009: 5975: 5944: 5910: 5879: 5846:
Rogers, John; Eichstädt, Gerald; Hansen, Candice; Orton, Glenn; Momary, Thomas (2021).
5828: 5765: 5722: 5721:
Li, Cheng; Ingersoll, Andrew P.; Klipfel, Alexandra P.; Brettle, Harriet (2020-09-08).
5703: 5669: 5578: 5527: 5484: 5421: 5387: 5356: 5289: 5237: 5112: 3812: 3778: 3747: 3705: 3668: 3613: 3506: 3467: 3337: 3295: 3264: 2855: 2813: 2774: 2705: 2357: 2222: 2102: 1815: 1691: 1662: 1522: 1431:
in the southern); anticyclones rotate in the reverse direction. However, unlike in the
906: 746: 718: 370: 346: 59: 9315: 8132: 8020: 6972: 6819: 6476: 6428: 925:
considered the terrestrial value for the ratio of nitrogen isotopes to be primordial.
230:
The atmosphere of Jupiter is classified into four layers, by increasing altitude: the
9277: 8878: 8442: 8136: 7967: 7957: 7933: 7923: 7840: 7760: 7735: 7690: 7537: 7524: 7514: 7491: 7461: 7426: 7422: 7381: 7348: 7245: 7218: 7198: 7133: 7105: 7095: 7066: 7015: 6990: 6927: 6787: 6715: 6705: 6701: 6664: 6638: 6613: 6598: 6534: 6480: 6440: 6432: 6379: 6133: 6125: 6071: 6059: 6013: 6001: 5948: 5936: 5883: 5832: 5820: 5770: 5752: 5707: 5695: 5657: 5635: 5570: 5531: 5476: 5468: 5425: 5413: 5375: 5360: 5348: 5293: 5281: 5241: 5229: 4456: 3804: 3751: 3739: 3672: 3660: 3632: 3605: 3597: 3511: 3493: 3436: 3426: 3380: 3341: 3329: 3256: 3248: 2859: 2847: 2778: 2766: 2758: 2697: 2689: 2232: 2212: 1924: 1496: 1479: 1458: 1049: 1006: 751: 199: 9320: 8064: 7848: 7772: 7659:"Depth of the strong Jovian jet from a planetary scale disturbance driven by storms" 7393: 7257: 7027: 6980: 6650: 6546: 5964:"The Oscillatory Motion of Jupiter's Polar Cyclones Results From Vorticity Dynamics" 5899:"The Oscillatory Motion of Jupiter's Polar Cyclones Results From Vorticity Dynamics" 5059: 4602: 3118: 2730: 2709: 1998:
gave a glimpse of the Jupiter's composition beneath the cloud tops. The presence of
1541:
The GRS rotates counter-clockwise, with a period of about six Earth days or 14 
1398: 893:
Earth- and spacecraft-based measurements have led to improved knowledge of the
353:
emissions. Within it lie layers of increased electron and ion density that form the
226:
stopped transmitting at a depth of 132 km below the 1 bar "surface" of Jupiter.
35: 9429: 9367: 9290: 9080: 8646: 8617: 8550: 8476: 8424: 8386: 8350: 8284: 8248: 8212: 8174: 8128: 8096: 8052: 8016: 7836: 7803: 7752: 7721: 7680: 7663: 7645: 7628: 7465: 7457: 7440: 7418: 7373: 7336: 7284: 7235: 7173: 7078: 7058: 7041: 7007: 6968: 6915: 6888: 6851: 6815: 6783: 6766: 6750: 6681: 6630: 6590: 6524: 6516: 6472: 6424: 6369: 6359: 6117: 6049: 5993: 5928: 5869: 5810: 5760: 5742: 5687: 5625: 5617: 5582: 5562: 5523: 5488: 5460: 5405: 5338: 5328: 5309:"First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM-Juno Images" 5273: 5219: 4759: 3816: 3796: 3731: 3723: 3652: 3617: 3589: 3550: 3501: 3485: 3454:
Fletcher, Leigh N.; Kaspi, Yohai; Guillot, Tristan; Showman, Adam P. (2020-03-12).
3376: 3321: 3313: 3268: 3238: 3230: 2839: 2831: 2750: 2681: 2151:
The white ovals that were to become Oval BA formed in 1939. They covered almost 90
2087: 2031: 2007: 1827: 1530: 1424: 1156: 1053: 771: 309: 98:
abundances in Jupiter's atmosphere exceed solar values by a factor of about three.
79: 8507: 7950: 7011: 5550: 3456:"How Well Do We Understand the Belt/Zone Circulation of Giant Planet Atmospheres?" 1470:
to the poles. They are usually bright and appear as white ovals. They can move in
1009:. The direction at which the jets extend into the planet is parallel to Jupiter's 874:
and water present in the upper atmosphere are thought to originate from impacting
9389: 8951: 8923: 8902: 8740: 8730: 8709: 8704: 8671: 8666: 7756: 6855: 6554:
Atreya, Sushil K.; Wong, Ah-San; Baines, K. H.; Wong, M. H.; Owen, T. C. (2005).
6494:"Coupled Clouds and Chemistry of the Giant Planets — A Case for Multiprobes" 6121: 5566: 5277: 4763: 4729: 3554: 2726: 2685: 2144: 1999: 1978: 1961: 1771: 1671: 1617: 1594: 1337: 871: 293: 215: 9353: 9310: 8402:"Equatorial Superrotation and Barotropic Instability: Static Stability Variants" 2400: 2064: 741:
relative to molecular hydrogen by number of molecules, and its mass fraction is
8990: 8797: 8755: 8686: 8605: 8524: 8512: 7484: 5691: 5409: 4316: 3976: 2152: 2043: 1508: 1483: 1116: 1112: 867: 863: 366: 262:
when the temperature is above 33 K and the pressure is above 13 bar.
9259: 8449: 7340: 6594: 6520: 3656: 3489: 2754: 1857: 1324: 9423: 8725: 8699: 7528: 7430: 6764:
Busse, F.H. (1976). "A simple model of convection in the Jovian atmosphere".
6719: 6602: 6538: 6484: 6436: 6338:
Cheng Li; Andrew P. Ingersoll; Alexandra P. Klipfel; Harriet Brettle (2020).
6129: 6063: 6005: 5940: 5824: 5756: 5699: 5639: 5574: 5535: 5472: 5440: 5417: 5352: 5285: 5233: 3808: 3743: 3664: 3601: 3497: 3440: 3333: 3252: 3210: 2851: 2762: 2693: 2226: 2050: 1983: 1885: 1581: 1373: 1300: 1123: 1018: 986: 692: 220: 9227: 7937: 7918:(1999). Beatty, Kelly J.; Peterson, Carolyn Collins; Chaiki, Andrew (eds.). 7470: 7377: 7240: 7213: 7109: 7036: 6919: 6634: 6364: 5747: 5598:"Polar vortex formation in giant-planet atmospheres due to moist convection" 3455: 2462: 2460: 2458: 2456: 2454: 2452: 2450: 1794: 9238: 8917: 8745: 8735: 8676: 8661: 7971: 7764: 7694: 7649: 7249: 7070: 7019: 6642: 6444: 6383: 6137: 5774: 5480: 3609: 3515: 3260: 2802:"Possible Transient Luminous Events Observed in Jupiter's Upper Atmosphere" 2770: 2701: 2448: 2446: 2444: 2442: 2440: 2438: 2436: 2434: 2432: 2430: 2353: 2306: 2098: 2094: 2093:
A minor mystery concerns a Jovian spot depicted around 1700 on a canvas by
2083: 1742: 1403: 1258:. The interior of Jupiter is fluid and lacks any solid surface. Therefore, 1022: 887: 688: 358: 239: 235: 114: 110: 55: 9213: 7385: 7187:
Giant Planets of Our Solar System. Atmospheres, Composition, and Structure
5343: 5178: 3977:"Hubble's planetary portrait captures changes in Jupiter's Great Red Spot" 3800: 3735: 3569: 3325: 1423:. Cyclones rotate in the direction similar to the rotation of the planet ( 8750: 7265:
Low, F.J. (1966). "Observations of Venus, Jupiter, and Saturn at λ20 μ".
6955: 6755: 6728: 6529: 6054: 6029: 5997: 5932: 5815: 5790: 5630: 5333: 5308: 5224: 5199: 3727: 3317: 3243: 2835: 1450: 1420: 1292: 1284: 1276: 1087: 1083: 1078: 1074: 1070: 1045: 1037: 1028: 1002: 914: 910: 855: 843: 601: 597: 231: 190: 178: 106: 70:; other chemical compounds are present only in small amounts and include 8391: 7685: 7658: 7062: 5874: 5464: 3234: 2972: 2970: 2968: 2427: 1726:
Lightning on Jupiter's night side, imaged by the Galileo orbiter in 1997
981:
The Jovian bands are bounded by zonal atmospheric flows (winds), called
9134: 8936: 8929: 8226:"Jovian Dynamics.Part II: The genesis and equilibration of vortex sets" 7897:. In Bagenal, Fran.; Dowling, Timothy E.; McKinnon, William B. (eds.). 6098:"A Production of Amino Acids Under Possible Primitive Earth Conditions" 3211:"Jupiter's atmospheric jet streams extend thousands of kilometres deep" 3092: 3090: 2843: 2161: 1972: 1966: 1920: 1670:
Oval BA slowly began to turn red in August 2005. On February 24, 2006,
1577: 1492: 1317: 1280: 1259: 1139: 1126: 994: 982: 971: 886:
acts like a cold trap, effectively preventing water from rising to the
883: 672: 534: 354: 289: 285: 266: 251: 8519: 8428: 8179: 7863:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 7725: 7124:. In Bagenal, Fran; Dowling, Timothy E.; McKinnon, William B. (eds.). 5597: 4421:"The Solar System – The Planet Jupiter – The Great Red Spot" 4249: 2987: 2985: 1822:. The polar cyclone (the central cyclone in the polygons) also emit a 1549: 1183: 1098: 9344: 9028: 9008: 8964: 8957: 8694: 8262:"Jovian Dynamics, Part III: Multiple, migrating, and equatorial jets" 8056: 5621: 5596:
O'Neill, Morgan E; Emanuel, Kerry A.; Flierl, Glenn R. (2015-06-15).
3593: 2965: 2257: 2253: 2156: 2126: 2070: 1947: 1903: 1899: 1823: 1754: 1722: 1683: 1622: 1588: 1471: 1428: 1355: 1041: 1040:. The simplest interpretation is that zones are sites of atmospheric 898: 897:
in Jupiter's atmosphere. As of July 2003, the accepted value for the
851: 822:
also appear in abundance relative to solar levels (see table), while
787: 668: 584: 580: 335: 243: 137:
and are bounded by powerful zonal atmospheric flows (winds) known as
118: 95: 67: 7117:
Ingersoll, A.P.; Dowling, T.E.; Gierasch, P.J.; et al. (2004).
6936: 3531:"Dynamical implications of Jupiter's tropospheric ammonia abundance" 3087: 2906: 2904: 2902: 2900: 2898: 2896: 1254:
Circulation in Jupiter's atmosphere is markedly different from that
8190:"Jovian Dynamics. Part I: Vortex stability, structure, and genesis" 7288: 5980: 5915: 5791:"Five Years of Observations of the Circumpolar Cyclones of Jupiter" 5674: 5392: 5254: 5200:"Five Years of Observations of the Circumpolar Cyclones of Jupiter" 3710: 3472: 3300: 2982: 2818: 2731:"Small lightning flashes from shallow electrical storms on Jupiter" 2172: 1831: 1654: 1564: 1529:
after observing the feature in July 1665 with his instrument-maker
1478:
has several large irregular filamentary patches, which demonstrate
1436: 1365: 1165: 958: 799: 655: 651: 621: 617: 500: 417: 87: 6902: 3783: 8573: 7487: 5060:"The collision of the Little Red Spot and Great Red Spot: Part 2" 3567: 2893: 2379: 2131:
extraordinarily complex and variable cloud motions are observed.
2023: 1847: 1735: 1613: 1542: 1467: 1416: 998: 954: 933: 835: 815: 779: 763: 638: 634: 458: 342: 174: 134: 102: 75: 71: 7998: 7657:
Sanchez-Lavega, A.; Orton, G.S.; Hueso, S.; et al. (2008).
9171: 7212:
Kunde, V.G.; Flasar, F.M.; Jennings, D.E.; et al. (2004).
5108:"NASA's Jupiter Mission Reveals the "Brand-New and Unexpected"" 3284:"Constraints on the Latitudinal Profile of Jupiter's Deep Jets" 2798: 2068:
A narrower view of Jupiter and the Great Red Spot as seen from
2039: 1412: 975: 967: 847: 827: 807: 803: 795: 734: 548: 517: 486: 413: 270: 91: 63: 9103: 7856:
West, R.A.; Baines, K.H.; Friedson, A.J.; et al. (2004).
4365:
Harrington, J.D.; Weaver, Donna; Villard, Ray (May 15, 2014).
2662: 882:. The water cannot come from the troposphere because the cold 6451: 4977:"On Jupiter, a Battle of the Red Spots, With the Baby Losing" 2466: 2168: 2139: 1843: 1703: 1643:
of three small white storms, and has intensified since then.
1568: 1169: 875: 819: 811: 759: 472: 444: 350: 83: 3208: 3173:"Helium rain on Jupiter explains lack of neon in atmosphere" 1634: 1576:
flybys. The spot is spatially confined by a modest eastward
9142: 8253:
10.1175/1520-0469(2002)059<1356:JDPITG>2.0.CO;2
8217:
10.1175/1520-0469(1996)053<2685:JDPVSS>2.0.CO;2
8119:. Advances in Geophysics. Vol. 28A. pp. 381–429. 8101:
10.1175/1520-0469(1978)035<1399:PCBROJ>2.0.CO;2
7922:(4th ed.). Massachusetts: Sky Publishing Corporation. 4371: 3633:"MWR: Microwave Radiometer for the Juno Mission to Jupiter" 3453: 2725: 941:
of Jupiter's atmosphere centered about Jupiter's south pole
858:, which form from methane under the influence of the solar 823: 430: 8542: 8355:
10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2
8289:
10.1175/1520-0469(2003)60<1270:JDPIMM>2.0.CO;2
7917: 7809:
10.1175/1520-0469(1974)031<1471:OJROR>2.0.CO;2
7598:"The accelerating circulation of Jupiter's Great Red Spot" 7178:
10.1175/1520-0469(1969)026<0981:DOJCB>2.0.CO;2
6609: 6030:"Oscillations and Stability of the Jupiter Polar Cyclones" 5845: 5184: 5149: 5147: 5145: 5004:. Johns Hopkins Applied Physics Laboratory. Archived from 207:
has also been observed 260 km above the 1 bar level.
145:. The bands alternate in color: the dark bands are called 6553: 6026: 5720: 5306: 3425:(4th ed.). Burlington, MA: Elsevier Academic Press. 2976: 2143:
The white ovals that later formed Oval BA, imaged by the
1898:
The origin of hot spots is not clear. They can be either
1757:. The imaging of the night–side hemisphere of Jupiter by 1495:(or convective columns) is not shared by the majority of 758:
The atmosphere contains various simple compounds such as
5787: 5595: 5196: 4948:"Diffusion Caused Jupiter's Red Spot Junior To Color Up" 4924:"Gemini Captures Close Encounter of Jupiter's Red Spots" 3630: 3281: 1517:
The Great Red Spot is decreasing in size (May 15, 2014).
1482:. One of them is located to the west of the GRS (in its 917:, is 2.3 × 10, a third lower than that in the 905:, which probably represents the primordial value in the 810:
by a factor of 2–4 relative to the Sun. The noble gases
6400: 5142: 4817: 4815: 4364: 3690: 3357:"A simple model of convection in the Jovian atmosphere" 3139: 3137: 3135: 2991: 717:
The two main constituents of the Jovian atmosphere are
7088:
Galileo's Planet: Observing Jupiter Before Photography
5438: 8460: 8448:(2017-05-09) by Peter Rosén describing assembly of a 8318:"Barotropic instability and equatorial superrotation" 8152:"Planetary vortices and Jupiter's vertical structure" 7956:(Revised ed.). London: Faber and Faber Limited. 7318: 6937:"A comparison of the interiors of Jupiter and Saturn" 2910: 2518: 1196:
nature and are not always visible. These include the
8110:"Jovian and Comparative Atmospheric Modeling Gareth" 7400: 5849:"Behaviour of Jupiter's polar polygons over 4 years" 4812: 4255: 3694:"Evidence for Multiple Ferrel-Like Cells on Jupiter" 3132: 2316:
is the average molar mass in the Jovian atmosphere,
2189: 1706:—approximately half the size of the Great Red Spot. 8399: 8361: 8315: 8295: 8259: 8223: 8187: 8149: 8107: 8071: 8027: 6556:"Jupiter's ammonia clouds—localized or ubiquitous?" 4723:
Jupiter's Red Spot is Likely a Sunburn, Not a Blush
2046:were not detected, to the surprise of astronomers. 7949: 5847: 3767:"Mechanisms of Jet Formation on the Giant Planets" 745:, which is slightly lower than the Solar System's 7899:Jupiter: The Planet, Satellites and Magnetosphere 7865:Jupiter: The Planet, Satellites and Magnetosphere 7126:Jupiter: The Planet, Satellites and Magnetosphere 6726: 5441:"Clusters of cyclones encircling Jupiter's poles" 5026: 4216: 4214: 4212: 3096: 1411:The atmosphere of Jupiter is home to hundreds of 277:approximately 5,000 km above the "surface". 9421: 7568:"Jupiter in 1999/2000. II: Infrared wavelengths" 5168: 5166: 5132: 5130: 2225:(a mission that included both an orbiter and an 8305:Bulletin of the American Meteorological Society 7606:Journal of the British Astronomical Association 7576:Journal of the British Astronomical Association 7546:Journal of the British Astronomical Association 7299:Journal of the British Astronomical Association 5727:Proceedings of the National Academy of Sciences 5057: 5002:"Storm Winds Blow in Jupiter's Little Red Spot" 4621: 4619: 4299: 4297: 4295: 4293: 4291: 4278: 4276: 4152: 4150: 4113: 4111: 4109: 4107: 4105: 4103: 4056: 4054: 3889: 3887: 3885: 3883: 3881: 3528: 3420: 3021: 3019: 2646: 2644: 2642: 2640: 2627: 2625: 2623: 2621: 2608: 2606: 2604: 1060: 8371:Journal of the Meteorological Society of Japan 6727:Bhardwaj, Anil; Gladstone, G. Randall (2000). 5555:Geophysical & Astrophysical Fluid Dynamics 5053: 5051: 5049: 4866: 4209: 4071: 4069: 3941: 2591: 2589: 2587: 2585: 2572: 2570: 2568: 2120:took the GRS region at its smallest size ever. 1032:Zonal wind speeds in the atmosphere of Jupiter 9119: 8558: 6866:Bulletin of the American Astronomical Society 6197: 6195: 5854:European Planetary Science Congress Abstracts 5656:Gavriel, Nimrod; Kaspi, Yohai (August 2021). 5374:Gavriel, Nimrod; Kaspi, Yohai (August 2021). 5163: 5127: 5099: 4741: 4358: 4084: 3392: 3390: 3050: 3048: 3046: 3044: 3042: 3040: 3038: 3036: 3034: 2940: 2938: 2936: 2923: 2921: 2919: 2871: 2869: 2555: 2553: 2481: 2479: 2477: 2475: 1753:Storms on Jupiter are always associated with 826:is scarcer. Other chemical compounds such as 27:Layer of gases surrounding the planet Jupiter 6180: 6144: 5962:Gavriel, Nimrod; Kaspi, Yohai (2022-08-16). 5961: 5897:Gavriel, Nimrod; Kaspi, Yohai (2022-08-16). 5896: 5655: 5373: 5029:"Jupiter's Little Red Spot Growing Stronger" 4616: 4346: 4288: 4273: 4226: 4186: 4174: 4162: 4147: 4100: 4051: 3878: 3765:Liu, Junjun; Schneider, Tapio (2010-11-01). 3764: 3016: 2637: 2618: 2601: 2551: 2549: 2547: 2545: 2543: 2541: 2539: 2537: 2535: 2533: 8117:Jovian and comparative atmospheric modeling 7952:The Planet Jupiter: The Observer's Handbook 7035:Heimpel, M.; Aurnou, J.; Wicht, J. (2005). 6243: 6241: 6212: 6210: 5046: 4999: 4970: 4968: 4735: 4066: 3164: 3115:Harvard-Smithsonian Center for Astrophysics 2582: 2565: 2505: 2503: 2501: 2499: 2497: 2495: 2493: 2401:"Hubble takes close-up portrait of Jupiter" 1956:entered in use later, in the 20th century. 1861:False color image of an equatorial hot spot 1658:Formation of Oval BA from three white ovals 1612:spacecraft. A feature in the atmosphere of 9126: 9112: 8565: 8551: 7481:Norton's Star Atlas and Reference Handbook 6491: 6192: 5551:"Polar accumulation of cyclonic vorticity" 4942: 4940: 4694: 4692: 4261: 4135: 4123: 4029: 4014: 3844: 3842: 3840: 3838: 3387: 3192: 3190: 3031: 2933: 2916: 2866: 2524: 2472: 1909: 1826:field which can repel other cyclones (see 1557:According to a study by scientists at the 1439:centers, while cyclones are low pressure. 395:Elemental abundances relative to hydrogen 9435:Planetary atmospheres of the Solar System 8390: 8344: 8178: 7807: 7684: 7469: 7239: 6954: 6901: 6754: 6584: 6528: 6373: 6363: 6156: 6053: 5979: 5914: 5873: 5814: 5764: 5746: 5673: 5629: 5391: 5342: 5332: 5223: 4455:. Cambridge University Press. p. 6. 4418: 4198: 3782: 3709: 3529:Showman, Adam P.; de Pater, Imke (2005). 3505: 3471: 3299: 3242: 3149: 3065: 3063: 3002: 3000: 2955: 2953: 2817: 2530: 2059: 1945:Time-lapse sequence from the approach of 1712:University of California, at Berkeley, US 1521:The Great Red Spot (GRS) is a persistent 1204:(NEBZ, a white zone within the belt) and 6794: 6729:"Auroral emissions of the giant planets" 6492:Atreya, Sushil K.; Wong, Ah-San (2005). 6238: 6207: 5795:Journal of Geophysical Research: Planets 5313:Journal of Geophysical Research: Planets 5204:Journal of Geophysical Research: Planets 4974: 4965: 4895: 4891: 4889: 4776: 4497: 3143: 3108: 2806:Journal of Geophysical Research: Planets 2490: 2138: 2111: 2063: 2022:— together with other molecules such as 1940: 1930: 1856: 1793: 1729: 1721: 1661: 1653: 1633: 1593: 1548: 1512: 1449: 1441: 1397: 1323: 1182: 1149: 1097: 1027: 932: 928: 714:orbiters, and Earth-based observations. 691:because it was observed directly by the 214: 155: 29: 7892:"Jupiter's Thermosphere and Ionosphere" 4937: 4921: 4689: 4529:"Jupiter's Great Red Spot Is Shrinking" 4423:. Dept. Physics & Astronomy – 4317:"Great Cold Spot discovered on Jupiter" 3835: 3187: 3170: 1789: 1717: 388: 14: 9422: 6095: 5651: 5649: 5027:Steigerwald, Bill (October 10, 2006). 4954:from the original on 30 September 2008 4847: 4845: 4711:Is Jupiter's Great Red Spot a Sunburn? 4600: 4448: 3423:An introduction to dynamic meteorology 3075: 3060: 2997: 2950: 2881: 1871:until 1939, having been first seen by 1044:, whereas belts are manifestations of 526:0.033 ± 0.015 (12 bar) 9107: 8546: 7147:Ingersoll, A.P.; Cuzzi, J.N. (1969). 5548: 5105: 5079: 4886: 4526: 4395:"Jupiter Data Sheet – SPACE.com" 4392: 3686: 3684: 3682: 3354: 2721: 2719: 1814:in a vortex, under the change of the 1741:The storms on Jupiter are similar to 1381:on Earth, on Jupiter deep convection 1362:, whereas the total emitted power is 1328:Thermal image of Jupiter obtained by 1316:. It holds that in any fast-rotating 680:2.25 ± 0.35 × 10 663:1.66 ± 0.05 × 10 210: 7978: 7944: 5501: 5035:from the original on 1 November 2008 4950:. ScienceDaily. September 26, 2008. 1388: 511:3.2 ± 1.4 (9–12 bar) 8409:Journal of the Atmospheric Sciences 8325:Journal of the Atmospheric Sciences 8269:Journal of the Atmospheric Sciences 8233:Journal of the Atmospheric Sciences 8197:Journal of the Atmospheric Sciences 8081:Journal of the Atmospheric Sciences 8030:"Jupiter's atmospheric circulation" 7787:Journal of the Atmospheric Sciences 7157:Journal of the Atmospheric Sciences 7149:"Dynamics of Jupiter's cloud bands" 6315:. 17 September 2020. Archived from 5646: 4842: 4238: 3771:Journal of the Atmospheric Sciences 2079: 677:3.0 ± 0.17 × 10 609:2.3 ± 0.3 × 10 564:Isotopic ratios in Jupiter and Sun 182: 24: 7911: 7536:Rogers, J.H.; Metig, H.J. (2001). 7146: 7119:"Dynamics of Jupiter's Atmosphere" 5528:10.1111/j.2153-3490.1956.tb01234.x 5082:"Third red spot erupts on Jupiter" 5062:. British Astronomical Association 5058:Rogers, John H. (August 8, 2008). 4605:. British Astronomical Association 4535:from the original on 11 March 2009 4091: 3679: 3111:"Jonathan's Space Report, No. 267" 2716: 2467:Atreya Mahaffy Niemann et al. 2003 2375:California Institute of Technology 2363: 2346: 2332: 2270: 1830:) similar to the beta-effect. The 1559:University of California, Berkeley 862:and charged particles coming from 660:1.5 ± 0.3 × 10 25: 9446: 8436: 6826: 6096:Miller, Stanley L. (1953-05-15). 4975:Fountain, Henry (July 22, 2008). 4781:. Science at NASA. Archived from 4777:Phillips, Tony (March 12, 2003). 4625: 3171:Sanders, Robert (22 March 2010). 3109:McDowell, Jonathan (1995-12-08). 1502: 1270: 1093: 509:3.6 ± 0.5 (8 bar) 141:exhibiting a phenomenon known as 121:. Each layer has characteristic 9161: 9086: 9076: 9075: 8636: 8530: 8518: 8506: 8494: 8482: 8470: 7987:from the original on 9 June 2007 7890:Yelle, R.V.; Miller, S. (2004). 7656: 7625: 7595: 7034: 6393: 6331: 6309:"A New View of Jupiter's Storms" 6301: 6289: 6277: 6265: 6253: 6222: 6186: 6168: 6089: 6078: 6020: 5955: 5890: 5839: 5781: 5714: 5589: 5542: 5495: 5432: 5367: 5300: 5248: 5190: 5153: 5088:from the original on 5 July 2008 5073: 5020: 4993: 4922:Michaud, Peter (July 20, 2006). 4915: 4867:Phillips, Tony (March 3, 2006). 4860: 4830: 4821: 4796: 4770: 4716: 4704: 4677: 4665: 4654: 4527:Britt, Robert Roy (2009-03-09). 4431:from the original on 7 June 2008 4401:from the original on 11 May 2008 4075: 2192: 1648: 1620:. The latter feature, imaged by 1344: 1330:NASA Infrared Telescope Facility 1240: 1228: 890:(see Vertical structure above). 332:polycyclic aromatic hydrocarbons 34:Jupiter's swirling clouds, in a 9133: 8159:Journal of Geophysical Research 7782:"On Jupiter's Rate of Rotation" 7705:Journal of Geophysical Research 7565: 7535: 7092:Institute of Physics Publishing 7085: 6216: 5185:Baines Simon-Miller et al. 2007 5106:Chang, Kenneth (May 25, 2017). 4896:Phillips, Tony (June 5, 2006). 4642: 4631: 4594: 4582: 4570: 4558: 4546: 4520: 4509: 4481: 4469: 4442: 4412: 4386: 4334: 4309: 4040: 4035: 4020: 4002: 3990: 3969: 3957: 3935: 3923: 3911: 3899: 3866: 3854: 3823: 3758: 3624: 3561: 3522: 3447: 3414: 3402: 3348: 3275: 3202: 3102: 2792: 2656: 2124:On February 25, 1979, when the 1994:studies after the collision of 1865: 1427:in the northern hemisphere and 1407:IR view of Jupiter's atmosphere 1159:getting into the field of view. 755:them towards the core as well. 8783:Jupiter-crossing minor planets 7979:Yang, Sarah (April 21, 2004). 7820:Reports on Progress in Physics 7184: 7116: 6660:"Jupiter's Shrinking Red Spot" 6150: 4900:. Science@NASA. Archived from 4503: 4267: 4141: 4129: 3396: 3054: 2977:Atreya Wong Baines et al. 2005 2944: 2927: 2875: 2559: 2393: 2364: 2347: 2333: 2271: 2134: 1902:, where the descending air is 1307: 149:, while light ones are called 13: 1: 8133:10.1016/S0065-2687(08)60231-9 8021:10.1016/S0019-1035(02)00060-X 7816: 7355: 7012:10.1126/science.268.5218.1740 6973:10.1016/S0032-0633(99)00043-4 6820:10.1016/S0032-0633(02)00145-9 6477:10.1016/S0032-0633(02)00144-7 6429:10.1016/S0032-0633(99)00047-1 6162: 5172: 5136: 5080:Shiga, David (May 22, 2008). 5031:. NASA Goddard Space Center. 4601:Rogers, John (30 July 2006). 4419:Anonymous (August 10, 2000). 4352: 4340: 4303: 4282: 4232: 4220: 4192: 4180: 4168: 4156: 4117: 4060: 3893: 3421:James R. Holton, ed. (2004). 3097:Bhardwaj & Gladstone 2000 3025: 2650: 2631: 2612: 2595: 2576: 2387: 8400:Williams, Gareth P. (2006). 8362:Williams, Gareth P. (2003). 8316:Williams, Gareth P. (2003). 8296:Williams, Gareth P. (2003). 8260:Williams, Gareth P. (2003). 8224:Williams, Gareth P. (2002). 8188:Williams, Gareth P. (1996). 8150:Williams, Gareth P. (1997). 8108:Williams, Gareth P. (1985). 8072:Williams, Gareth P. (1978). 8028:Williams, Gareth P. (1975). 7757:10.1126/science.204.4396.951 7478: 7462:10.1016/0019-1035(66)90036-4 7423:10.1016/0019-1035(90)90155-3 6934: 6856:10.1016/j.icarus.2010.01.005 6788:10.1016/0019-1035(76)90053-1 6700:(2nd ed.). Washington: 6122:10.1126/science.117.3046.528 6034:Geophysical Research Letters 5968:Geophysical Research Letters 5903:Geophysical Research Letters 5567:10.1080/03091929.2010.509927 5502:ADEM, JULIÁN (August 1956). 5278:10.1016/j.icarus.2019.113405 5000:Buckley, M. (May 20, 2008). 4764:10.1016/j.icarus.2017.10.041 4449:Rogers, John Hubert (1995). 4046: 3999:, pp. 219–221, 223, 228–229. 3698:Geophysical Research Letters 3555:10.1016/j.icarus.2004.10.004 3381:10.1016/0019-1035(76)90053-1 3288:Geophysical Research Letters 2992:Atreya Wong Owen et al. 1999 2686:10.1126/science.204.4396.951 2485: 2097:, which is exhibited in the 1878: 1798:JIRAM image of southern CPCs 1782:detected many more in 2018. 1734:Jupiter – southern storms – 1533:. According to a report by 1066:Meridional circulation cells 1061:Meridional circulation cells 903:(2.25 ± 0.35) × 10 186: 7: 9395:Extraterrestrial atmosphere 8572: 7504: 6987: 6942:Planetary and Space Science 6885: 6800:Planetary and Space Science 6657: 6564:Planetary and Space Science 6456:Planetary and Space Science 6408:Planetary and Space Science 6283: 6271: 6259: 6247: 6201: 6174: 4836: 4802: 4732:NASA.com, November 11, 2014 4683: 4671: 4648: 4588: 4564: 4552: 4515: 4475: 4008: 3996: 3963: 3944:"Jupiter, It Is A-Changing" 3917: 3905: 3872: 3860: 3848: 3829: 3408: 3196: 2185: 2042:-bearing molecules such as 1688:Goddard Space Flight Center 1491:that the vortices are deep 1393: 1219: 205:Upper-atmospheric lightning 10: 9451: 8984:Jupiter Icy Moons Explorer 7903:Cambridge University Press 7889: 7869:Cambridge University Press 7841:10.1088/0034-4885/68/8/R06 7779: 7743:(4396): 951–957, 960–972. 7732: 7701: 7511:Cambridge University Press 7437: 7295: 7211: 7130:Cambridge University Press 6763: 6695: 6295: 6228: 6084: 5692:10.1038/s41561-021-00781-6 5549:Scott, R.K. (2010-09-15). 5410:10.1038/s41561-021-00781-6 4713:NASA.com November 28, 2014 4698: 4660: 4637: 4576: 4487: 4204: 3929: 3155: 3081: 3069: 2959: 2911:Miller Aylward et al. 2005 2887: 2509: 2078:The first sighting of the 1934: 1629: 1535:Giovanni Battista Riccioli 1506: 1446:Great Cold Spot on Jupiter 1256:in the atmosphere of Earth 1206:South Equatorial belt zone 1202:North Equatorial belt zone 737:. The helium abundance is 700:Infrared Space Observatory 592:0.0108 ± 0.0005 143:atmospheric super-rotation 9408: 9377: 9343: 9276: 9237: 9170: 9159: 9141: 9071: 9050: 9001: 8976: 8888: 8870: 8856: 8844:2016 Jupiter impact event 8839:2010 Jupiter impact event 8834:2009 Jupiter impact event 8819: 8796: 8775: 8768: 8718: 8685: 8654: 8645: 8634: 8593: 8580: 7855: 7483:(19th ed.). Harlow: 7341:10.1007/s11214-005-1960-4 7090:. Bristol, Philadelphia: 6595:10.1016/j.pss.2004.04.002 6521:10.1007/s11214-005-1951-5 4256:Pearl Conrath et al. 1990 3657:10.1007/s11214-017-0349-5 3490:10.1007/s11214-019-0631-9 3006: 2755:10.1038/s41586-020-2532-1 2244:2010 Jupiter impact event 2239:2009 Jupiter impact event 18:Jupiter's atmosphere 7858:"Jovian Clouds and Haze" 7507:The Giant Planet Jupiter 7264: 6698:Jupiter the Giant Planet 4869:"Jupiter's New Red Spot" 4452:The Giant Planet Jupiter 4244: 3175:. University of Berkeley 2263: 939:stereographic projection 528:0.19–0.58 (19 bar) 9093:Solar System portal 7378:10.1126/science.7871428 7241:10.1126/science.1100240 6965:1999P&SS...47.1183G 6920:10.1515/astro-2017-0425 6862: 6812:2003P&SS...51...89E 6678:2002S&T...103d..24B 6635:10.1126/science.1147912 6577:2005P&SS...53..498A 6469:2003P&SS...51..105A 6421:1999P&SS...47.1243A 6365:10.1073/pnas.2008440117 5748:10.1073/pnas.2008440117 4851: 4701:, pp. 38–41. 4638:Reese and Gordon (1966) 4425:University of Tennessee 4036:Rogers and Metig (2001) 3942:Nancy Atkinson (2010). 2227:atmospheric-entry probe 2171:(they became faster at 1910:The possibility of life 1314:Taylor–Proudman theorem 1291:of the Rossby waves is 1015:Taylor-Proudman theorem 1001:, while in zones it is 864:Jupiter's magnetosphere 425:0.807 ± 0.02 58:. It is mostly made of 8829:Comet Shoemaker–Levy 9 7650:10.1006/icar.2000.6548 4898:"Huge Storms Converge" 4871:. NASA. Archived from 2525:Atreya & Wong 2005 2371:Hubble Space Telescope 2268: 2208:Comet Shoemaker–Levy 9 2148: 2121: 2075: 2060:Great Red Spot studies 1996:Comet Shoemaker–Levy 9 1952: 1937:Exploration of Jupiter 1916:Miller–Urey experiment 1862: 1799: 1776:Microwave Radiometer ( 1738: 1727: 1680:Hubble Space Telescope 1667: 1659: 1639: 1599: 1554: 1518: 1463: 1447: 1433:terrestrial atmosphere 1408: 1332: 1188: 1160: 1104: 1033: 942: 923:Solar System formation 643:13.81 ± 0.08 606:<2.8 × 10 439:0.10 ± 0.01 227: 170: 133:bands parallel to the 43: 40:Hubble Space Telescope 7596:Rogers, J.H. (2008). 7566:Rogers, J.H. (2003). 7505:Rogers, J.H. (1995). 7321:Space Science Reviews 6734:Reviews of Geophysics 6658:Beatty, J.K. (2002). 6501:Space Science Reviews 5139:, pp. 1982, 1985–1987 4779:"The Great Dark Spot" 3801:10.1175/2010JAS3492.1 3637:Space Science Reviews 3460:Space Science Reviews 2812:(11): e2020JE006659. 2142: 2115: 2082:is often credited to 2067: 1944: 1931:Observational history 1860: 1797: 1733: 1725: 1665: 1657: 1637: 1597: 1552: 1527:Gian Domenico Cassini 1516: 1453: 1445: 1401: 1327: 1186: 1153: 1101: 1031: 957:(EZ) extends between 936: 929:Zones, belts and jets 860:ultraviolet radiation 629:5.6 ± 0.25 626:5.77 ± 0.08 557:2.5 ± 0.15 302:ammonium hydrosulfide 275:interplanetary medium 218: 168: 127:ammonium hydrosulfide 123:temperature gradients 48:atmosphere of Jupiter 33: 9385:Prebiotic atmosphere 8628:Jupiter's South Pole 8623:Jupiter's North Pole 8298:"Super Circulations" 7983:. UC Berkeley News. 7920:The New Solar System 7780:Stone, P.H. (1974). 7712:(E10): 22857–22889. 7538:"Jupiter in 1998/99" 7479:Ridpath, I. (1998). 7268:Astronomical Journal 6949:(10–11): 1183–1200. 6935:Guillot, T. (1999). 6756:10.1029/1998RG000046 6415:(10–11): 1243–1262. 6055:10.1029/2021GL094235 5998:10.1029/2022GL098708 5933:10.1029/2022GL098708 5816:10.1029/2022JE007241 5334:10.1029/2018JE005555 5225:10.1029/2022JE007241 4926:. Gemini Observatory 4478:(2010), p. 266. 3728:10.1029/2021GL095651 3355:Busse, F.H. (1976). 3318:10.1029/2021GL092912 2836:10.1029/2020JE006659 2249:Ulysses (spacecraft) 1790:Circumpolar cyclones 1718:Storms and lightning 1694:without converging. 1616:was also called the 1497:planetary scientists 949:and relatively dark 611:(0.08–2.8 bar) 523:8.51 × 10 506:1.12 × 10 495:2.9 ± 0.5 481:2.6 ± 0.5 467:2.7 ± 0.5 453:2.5 ± 0.5 389:Chemical composition 363:Einstein Observatory 250:, Jupiter's lacks a 52:planetary atmosphere 9023:Io Volcano Observer 8421:2006JAtS...63.1548W 8392:10.2151/jmsj.81.439 8383:2003JMeSJ..81..439W 8337:2003JAtS...60.2136W 8281:2003JAtS...60.1270W 8245:2002JAtS...59.1356W 8209:1996JAtS...53.2685W 8171:1997JGR...102.9303W 8125:1985AdGeo..28..381W 8093:1978JAtS...35.1399W 8049:1975Natur.257..778W 8013:2003Icar..162...74Y 7833:2005RPPh...68.1935V 7800:1974JAtS...31.1471S 7749:1979Sci...204..951S 7718:1998JGR...10322857S 7686:10.1038/nature06533 7677:2008Natur.451..437S 7642:2001Icar..149..491S 7619:2008JBAA..118...14R 7589:2003JBAA..113..136R 7559:2001JBAA..111..321R 7454:1966Icar....5..266R 7415:1990Icar...84...12P 7370:1995Sci...267.1307N 7364:(5202): 1307–1313. 7333:2005SSRv..116..319M 7312:1997JBAA..107..239M 7281:1966AJ.....71R.391L 7232:2004Sci...305.1582K 7226:(5690): 1582–1586. 7170:1969JAtS...26..981I 7086:Hockey, T. (1999). 7063:10.1038/nature04208 7055:2005Natur.438..193H 7004:1995Sci...268.1740H 6998:(5218): 1740–1742. 6912:2010BaltA..19..265G 6879:2006DPS....38.1102G 6848:2010Icar..208..306F 6780:1976Icar...29..255B 6747:2000RvGeo..38..295B 6627:2007Sci...318..226B 6513:2005SSRv..116..121A 6356:2020PNAS..11724082L 6350:(39): 24082–24087. 6114:1953Sci...117..528M 6046:2021GeoRL..4894235M 5990:2022GeoRL..4998708G 5925:2022GeoRL..4998708G 5875:10.5194/epsc2021-57 5866:2021EPSC...15...57R 5807:2022JGRE..12707241M 5739:2020PNAS..11724082L 5733:(39): 24082–24087. 5684:2021NatGe..14..559G 5614:2015NatGe...8..523O 5520:1956Tell....8..364A 5465:10.1038/nature25491 5457:2018Natur.555..216A 5402:2021NatGe..14..559G 5325:2018JGRE..123.1511G 5270:2020Icar..33513405T 5216:2022JGRE..12707241M 4756:2018Icar..302..418L 4674:, pp. 48, 193. 4567:, pp. 194–196. 4506:, 2003, p. 171 3908:, pp. 133, 145–147. 3793:2010JAtS...67.3652L 3720:2021GeoRL..4895651D 3649:2017SSRv..213..139J 3586:2000Natur.403..630I 3547:2005Icar..174..192S 3482:2020SSRv..216...30F 3373:1976Icar...29..255B 3310:2021GeoRL..4892912G 3235:10.1038/nature25793 3227:2018Natur.555..223K 3099:, pp. 299–302. 2828:2020JGRE..12506659G 2747:2020Natur.584...55B 2678:1979Sci...204..951S 2320:is temperature and 2217:larger than Jupiter 2200:Solar System portal 2118:Wide Field Camera 3 2020:astronomical object 1873:Percy B. Molesworth 1289:dispersion relation 565: 554:1.62 × 10 540:3.73 × 10 492:3.62 × 10 478:1.68 × 10 464:1.61 × 10 450:3.62 × 10 436:1.23 × 10 398: 397:in Jupiter and Sun 294:gravitational force 282:atmosphere of Earth 260:supercritical fluid 9400:Stellar atmosphere 9278:Natural satellites 8585:Outline of Jupiter 7185:Irwin, P. (2003). 6696:Beebe, R. (1997). 5113:The New York Times 4981:The New York Times 4904:on 2 February 2007 4875:on 19 October 2008 4728:2016-07-06 at the 4258:, pp. 12, 26. 2405:spacetelescope.org 2358:clathrate hydrates 2223:Galileo Spacecraft 2149: 2122: 2103:Eustachio Manfredi 2076: 1953: 1863: 1846:instrument and by 1816:Coriolis parameter 1800: 1739: 1728: 1692:Gemini Observatory 1668: 1660: 1640: 1600: 1555: 1523:anticyclonic storm 1519: 1464: 1448: 1409: 1379:via the atmosphere 1333: 1189: 1161: 1105: 1034: 943: 919:Earth's atmosphere 719:molecular hydrogen 563: 394: 371:trihydrogen cation 248:Earth's atmosphere 228: 211:Vertical structure 171: 101:The atmosphere of 60:molecular hydrogen 44: 9415: 9414: 9101: 9100: 9046: 9045: 8852: 8851: 8764: 8763: 8443:Planetary Society 8429:10.1175/JAS3711.1 8331:(17): 2136–2152. 8275:(10): 1270–1296. 8203:(18): 2685–2734. 8180:10.1029/97JE00520 8165:(E4): 9303–9308. 8142:978-0-12-018828-4 7963:978-0-571-18026-4 7946:Peek, Bertrand M. 7929:978-0-933346-86-4 7726:10.1029/98JE01766 7671:(7177): 437–440. 7520:978-0-521-41008-3 7497:978-0-582-35655-9 7204:978-3-540-00681-7 7139:978-0-521-81808-7 7101:978-0-7503-0448-1 7049:(7065): 193–196. 6796:Encrenaz, Thérèse 6711:978-1-56098-685-0 6702:Smithsonian Books 6665:Sky and Telescope 6621:(5848): 226–229. 6108:(3046): 528–529. 5662:Nature Geoscience 5602:Nature Geoscience 5451:(7695): 216–219. 5380:Nature Geoscience 5084:. New Scientist. 5008:on March 25, 2012 4462:978-0-521-41008-3 3777:(11): 3652–3672. 3580:(6770): 630–632. 3432:978-0-08-047021-4 3221:(7695): 223–226. 3013:, pp. 9–10, 20–23 2672:(4396): 951–972. 2276:The scale height 2213:Extrasolar planet 2054:atmospheric probe 1925:Edwin E. Salpeter 1493:convective plumes 1480:cyclonic rotation 1389:Discrete features 1084:atmospheric waves 907:protosolar nebula 696:atmospheric probe 684: 683: 646:13 ± 2 561: 560: 323:condensation heat 224:atmospheric probe 166: 68:solar proportions 16:(Redirected from 9442: 9165: 9128: 9121: 9114: 9105: 9104: 9091: 9090: 9089: 9079: 9078: 8986:(2023, en route) 8868: 8867: 8773: 8772: 8652: 8651: 8640: 8567: 8560: 8553: 8544: 8543: 8535: 8534: 8533: 8523: 8522: 8511: 8510: 8499: 8498: 8497: 8487: 8486: 8485: 8475: 8474: 8473: 8466: 8432: 8415:(5): 1548–1557. 8406: 8396: 8394: 8368: 8358: 8348: 8322: 8312: 8302: 8292: 8266: 8256: 8239:(8): 1356–1370. 8230: 8220: 8194: 8184: 8182: 8156: 8146: 8114: 8104: 8087:(8): 1399–1426. 8078: 8068: 8057:10.1038/257778a0 8034: 8024: 7995: 7993: 7992: 7975: 7955: 7941: 7906: 7896: 7886: 7884: 7883: 7877: 7871:. Archived from 7862: 7852: 7827:(8): 1935–1996. 7813: 7811: 7794:(5): 1471–1472. 7776: 7729: 7698: 7688: 7653: 7622: 7602: 7592: 7572: 7562: 7542: 7532: 7501: 7475: 7473: 7471:2060/19650022425 7448:(1–6): 266–273. 7434: 7397: 7352: 7327:(1–2): 319–343. 7315: 7292: 7261: 7243: 7208: 7181: 7153: 7143: 7123: 7113: 7082: 7031: 6984: 6958: 6956:astro-ph/9907402 6931: 6905: 6889:Baltic Astronomy 6882: 6859: 6833: 6823: 6791: 6760: 6758: 6723: 6692: 6690: 6689: 6680:. Archived from 6654: 6606: 6588: 6560: 6550: 6532: 6507:(1–2): 121–136. 6498: 6488: 6448: 6388: 6387: 6377: 6367: 6335: 6329: 6328: 6326: 6324: 6319:on 29 March 2023 6305: 6299: 6293: 6287: 6281: 6275: 6269: 6263: 6257: 6251: 6245: 6236: 6226: 6220: 6214: 6205: 6199: 6190: 6184: 6178: 6172: 6166: 6160: 6154: 6151:Ingersoll (2004) 6148: 6142: 6141: 6093: 6087: 6082: 6076: 6075: 6057: 6024: 6018: 6017: 5983: 5959: 5953: 5952: 5918: 5894: 5888: 5887: 5877: 5851: 5843: 5837: 5836: 5818: 5785: 5779: 5778: 5768: 5750: 5718: 5712: 5711: 5677: 5653: 5644: 5643: 5633: 5622:10.1038/ngeo2459 5593: 5587: 5586: 5561:(4–5): 409–420. 5546: 5540: 5539: 5499: 5493: 5492: 5436: 5430: 5429: 5395: 5371: 5365: 5364: 5346: 5336: 5319:(6): 1511–1524. 5304: 5298: 5297: 5252: 5246: 5245: 5227: 5194: 5188: 5182: 5176: 5170: 5161: 5151: 5140: 5134: 5125: 5124: 5122: 5120: 5103: 5097: 5096: 5094: 5093: 5077: 5071: 5070: 5068: 5067: 5055: 5044: 5043: 5041: 5040: 5024: 5018: 5017: 5015: 5013: 4997: 4991: 4990: 4988: 4987: 4972: 4963: 4962: 4960: 4959: 4944: 4935: 4934: 4932: 4931: 4919: 4913: 4912: 4910: 4909: 4893: 4884: 4883: 4881: 4880: 4864: 4858: 4849: 4840: 4834: 4828: 4819: 4810: 4800: 4794: 4793: 4791: 4790: 4774: 4768: 4767: 4739: 4733: 4720: 4714: 4708: 4702: 4696: 4687: 4681: 4675: 4669: 4663: 4658: 4652: 4646: 4640: 4635: 4629: 4623: 4614: 4613: 4611: 4610: 4598: 4592: 4586: 4580: 4574: 4568: 4562: 4556: 4550: 4544: 4543: 4541: 4540: 4524: 4518: 4513: 4507: 4501: 4495: 4485: 4479: 4473: 4467: 4466: 4446: 4440: 4439: 4437: 4436: 4416: 4410: 4409: 4407: 4406: 4390: 4384: 4383: 4381: 4379: 4362: 4356: 4350: 4344: 4338: 4332: 4331: 4329: 4327: 4313: 4307: 4301: 4286: 4280: 4271: 4268:Ingersoll (2004) 4265: 4259: 4253: 4247: 4242: 4236: 4230: 4224: 4218: 4207: 4202: 4196: 4190: 4184: 4178: 4172: 4166: 4160: 4154: 4145: 4142:Ingersoll (2004) 4139: 4133: 4130:Ingersoll (2004) 4127: 4121: 4115: 4098: 4088: 4082: 4073: 4064: 4058: 4049: 4044: 4038: 4033: 4027: 4018: 4012: 4006: 4000: 3994: 3988: 3987: 3985: 3983: 3973: 3967: 3961: 3955: 3954: 3952: 3951: 3946:. Universe Today 3939: 3933: 3927: 3921: 3915: 3909: 3903: 3897: 3891: 3876: 3870: 3864: 3858: 3852: 3846: 3833: 3827: 3821: 3820: 3786: 3762: 3756: 3755: 3713: 3688: 3677: 3676: 3643:(1–4): 139–185. 3628: 3622: 3621: 3594:10.1038/35001021 3565: 3559: 3558: 3526: 3520: 3519: 3509: 3475: 3451: 3445: 3444: 3418: 3412: 3406: 3400: 3397:Ingersoll (2004) 3394: 3385: 3384: 3352: 3346: 3345: 3303: 3279: 3273: 3272: 3246: 3206: 3200: 3194: 3185: 3184: 3182: 3180: 3168: 3162: 3153: 3147: 3141: 3130: 3129: 3127: 3126: 3117:. Archived from 3106: 3100: 3094: 3085: 3079: 3073: 3067: 3058: 3055:Ingersoll (2004) 3052: 3029: 3023: 3014: 3004: 2995: 2989: 2980: 2974: 2963: 2957: 2948: 2945:Ingersoll (2004) 2942: 2931: 2928:Ingersoll (2004) 2925: 2914: 2908: 2891: 2885: 2879: 2876:Ingersoll (2004) 2873: 2864: 2863: 2821: 2796: 2790: 2789: 2787: 2785: 2727:Becker, Heidi N. 2723: 2714: 2713: 2660: 2654: 2648: 2635: 2629: 2616: 2610: 2599: 2593: 2580: 2574: 2563: 2560:Ingersoll (2004) 2557: 2528: 2522: 2516: 2507: 2488: 2483: 2470: 2464: 2425: 2424: 2422: 2420: 2397: 2368: 2351: 2337: 2327: 2315: 2304: 2297: 2275: 2202: 2197: 2196: 2195: 2088:Giovanni Cassini 2032:hydrogen sulfide 2008:carbon disulfide 1828:Fujiwhara effect 1686:-Miller, of the 1531:Eustachio Divini 1425:counterclockwise 1368: 1361: 1358:from Jupiter is 1353: 1244: 1232: 1157:moons of Jupiter 1054:convergence zone 1011:axis of rotation 985:. The eastward ( 904: 880:Shoemaker-Levy 9 772:hydrogen sulfide 744: 740: 732: 731: 730: 566: 562: 399: 393: 384: 383: 382: 310:ammonium sulfide 169:Clouds in motion 167: 80:hydrogen sulfide 36:true-color image 21: 9450: 9449: 9445: 9444: 9443: 9441: 9440: 9439: 9420: 9419: 9416: 9411: 9404: 9373: 9339: 9272: 9233: 9166: 9157: 9137: 9132: 9102: 9097: 9087: 9085: 9067: 9042: 8997: 8972: 8952:Voyager program 8924:Pioneer program 8903:Galileo project 8897:Cassini–Huygens 8884: 8863: 8861: 8848: 8815: 8792: 8760: 8714: 8681: 8641: 8632: 8589: 8576: 8571: 8541: 8531: 8529: 8517: 8505: 8495: 8493: 8483: 8481: 8471: 8469: 8461: 8439: 8404: 8366: 8346:10.1.1.144.5975 8320: 8300: 8264: 8228: 8192: 8154: 8143: 8112: 8076: 8032: 7990: 7988: 7964: 7930: 7914: 7912:Further reading 7909: 7894: 7881: 7879: 7875: 7860: 7600: 7570: 7540: 7521: 7498: 7490:. p. 107. 7205: 7151: 7140: 7121: 7102: 6831: 6712: 6687: 6685: 6586:10.1.1.553.8220 6558: 6496: 6396: 6391: 6336: 6332: 6322: 6320: 6307: 6306: 6302: 6294: 6290: 6282: 6278: 6270: 6266: 6258: 6254: 6246: 6239: 6227: 6223: 6215: 6208: 6200: 6193: 6185: 6181: 6173: 6169: 6161: 6157: 6149: 6145: 6094: 6090: 6083: 6079: 6025: 6021: 5960: 5956: 5895: 5891: 5844: 5840: 5786: 5782: 5719: 5715: 5654: 5647: 5594: 5590: 5547: 5543: 5500: 5496: 5437: 5433: 5372: 5368: 5305: 5301: 5253: 5249: 5195: 5191: 5183: 5179: 5175:, pp. 1983–1985 5173:Vasavada (2005) 5171: 5164: 5154:Sanchez-Lavega 5152: 5143: 5137:Vasavada (2005) 5135: 5128: 5118: 5116: 5104: 5100: 5091: 5089: 5078: 5074: 5065: 5063: 5056: 5047: 5038: 5036: 5025: 5021: 5011: 5009: 4998: 4994: 4985: 4983: 4973: 4966: 4957: 4955: 4946: 4945: 4938: 4929: 4927: 4920: 4916: 4907: 4905: 4894: 4887: 4878: 4876: 4865: 4861: 4850: 4843: 4835: 4831: 4822:Sanchez-Lavega 4820: 4813: 4801: 4797: 4788: 4786: 4785:on 15 June 2007 4775: 4771: 4740: 4736: 4730:Wayback Machine 4721: 4717: 4709: 4705: 4697: 4690: 4682: 4678: 4670: 4666: 4659: 4655: 4647: 4643: 4636: 4632: 4626:Fletcher (2010) 4624: 4617: 4608: 4606: 4599: 4595: 4587: 4583: 4575: 4571: 4563: 4559: 4551: 4547: 4538: 4536: 4525: 4521: 4514: 4510: 4502: 4498: 4486: 4482: 4474: 4470: 4463: 4447: 4443: 4434: 4432: 4417: 4413: 4404: 4402: 4391: 4387: 4377: 4375: 4363: 4359: 4353:Vasavada (2005) 4351: 4347: 4341:Vasavada (2005) 4339: 4335: 4325: 4323: 4315: 4314: 4310: 4304:Vasavada (2005) 4302: 4289: 4283:Vasavada (2005) 4281: 4274: 4270:, pp. 11, 17–18 4266: 4262: 4254: 4250: 4243: 4239: 4233:Vasavada (2005) 4231: 4227: 4223:, pp. 1966–1972 4221:Vasavada (2005) 4219: 4210: 4203: 4199: 4193:Vasavada (2005) 4191: 4187: 4183:, pp. 1962–1966 4181:Vasavada (2005) 4179: 4175: 4171:, pp. 1945–1947 4169:Vasavada (2005) 4167: 4163: 4157:Vasavada (2005) 4155: 4148: 4140: 4136: 4128: 4124: 4120:, pp. 1947–1958 4118:Vasavada (2005) 4116: 4101: 4089: 4085: 4074: 4067: 4063:, pp. 1943–1945 4061:Vasavada (2005) 4059: 4052: 4045: 4041: 4034: 4030: 4019: 4015: 4007: 4003: 3995: 3991: 3981: 3979: 3975: 3974: 3970: 3962: 3958: 3949: 3947: 3940: 3936: 3928: 3924: 3916: 3912: 3904: 3900: 3896:, pp. 1987–1989 3894:Vasavada (2005) 3892: 3879: 3871: 3867: 3859: 3855: 3847: 3836: 3832:, pp. 85, 91–4. 3828: 3824: 3763: 3759: 3689: 3680: 3629: 3625: 3566: 3562: 3527: 3523: 3452: 3448: 3433: 3419: 3415: 3407: 3403: 3395: 3388: 3353: 3349: 3280: 3276: 3207: 3203: 3195: 3188: 3178: 3176: 3169: 3165: 3154: 3150: 3142: 3133: 3124: 3122: 3107: 3103: 3095: 3088: 3080: 3076: 3068: 3061: 3053: 3032: 3026:Vasavada (2005) 3024: 3017: 3005: 2998: 2990: 2983: 2975: 2966: 2958: 2951: 2943: 2934: 2926: 2917: 2909: 2894: 2886: 2882: 2874: 2867: 2797: 2793: 2783: 2781: 2741:(7819): 55–58. 2724: 2717: 2661: 2657: 2651:Vasavada (2005) 2649: 2638: 2634:, pp. 1980–1982 2632:Vasavada (2005) 2630: 2619: 2615:, pp. 1978–1980 2613:Vasavada (2005) 2611: 2602: 2596:Vasavada (2005) 2594: 2583: 2577:Vasavada (2005) 2575: 2566: 2558: 2531: 2523: 2519: 2508: 2491: 2484: 2473: 2465: 2428: 2418: 2416: 2399: 2398: 2394: 2390: 2385: 2325: 2321: 2314:≈ 0.0023 kg/mol 2310: 2299: 2294: 2281: 2266: 2198: 2193: 2191: 2188: 2145:Galileo orbiter 2137: 2062: 2037: 2029: 2017: 2013: 2005: 2000:diatomic sulfur 1939: 1933: 1912: 1881: 1868: 1792: 1720: 1632: 1618:Great Dark Spot 1609:Cassini–Huygens 1511: 1505: 1462:; October 2017) 1455: 1396: 1391: 1363: 1360:5.44 ± 0.43 W/m 1359: 1354:. The internal 1351: 1347: 1310: 1273: 1252: 1251: 1250: 1249: 1248: 1245: 1237: 1236: 1233: 1222: 1198:Equatorial band 1096: 1063: 1007:Juno spacecraft 955:Equatorial Zone 931: 902: 895:isotopic ratios 872:carbon monoxide 841: 833: 793: 785: 777: 769: 742: 738: 729: 726: 725: 724: 722: 685: 396: 391: 381: 378: 377: 376: 374: 367:magnetic storms 319: 315: 307: 256:critical points 213: 156: 50:is the largest 28: 23: 22: 15: 12: 11: 5: 9448: 9438: 9437: 9432: 9413: 9412: 9409: 9406: 9405: 9403: 9402: 9397: 9392: 9387: 9381: 9379: 9375: 9374: 9372: 9371: 9364: 9357: 9349: 9347: 9341: 9340: 9338: 9337: 9330: 9323: 9318: 9313: 9308: 9303: 9298: 9293: 9288: 9282: 9280: 9274: 9273: 9271: 9270: 9263: 9256: 9249: 9243: 9241: 9235: 9234: 9232: 9231: 9224: 9217: 9210: 9203: 9196: 9189: 9182: 9176: 9174: 9168: 9167: 9160: 9158: 9156: 9155: 9147: 9145: 9139: 9138: 9131: 9130: 9123: 9116: 9108: 9099: 9098: 9096: 9095: 9083: 9072: 9069: 9068: 9066: 9065: 9060: 9054: 9052: 9048: 9047: 9044: 9043: 9041: 9040: 9032: 9026: 9020: 9012: 9005: 9003: 8999: 8998: 8996: 8995: 8991:Europa Clipper 8987: 8980: 8978: 8974: 8973: 8971: 8970: 8969: 8968: 8961: 8949: 8942: 8941: 8940: 8933: 8921: 8914: 8913: 8912: 8900: 8892: 8890: 8886: 8885: 8883: 8882: 8874: 8872: 8865: 8854: 8853: 8850: 8849: 8847: 8846: 8841: 8836: 8831: 8825: 8823: 8817: 8816: 8814: 8813: 8808: 8802: 8800: 8794: 8793: 8791: 8790: 8788:Solar eclipses 8785: 8779: 8777: 8770: 8766: 8765: 8762: 8761: 8759: 8758: 8756:Pasiphae group 8753: 8748: 8743: 8738: 8733: 8728: 8722: 8720: 8716: 8715: 8713: 8712: 8707: 8702: 8697: 8691: 8689: 8683: 8682: 8680: 8679: 8674: 8669: 8664: 8658: 8656: 8649: 8643: 8642: 8635: 8633: 8631: 8630: 8625: 8620: 8615: 8610: 8609: 8608: 8606:Great Red Spot 8597: 8595: 8591: 8590: 8588: 8587: 8581: 8578: 8577: 8570: 8569: 8562: 8555: 8547: 8540: 8539: 8527: 8515: 8503: 8491: 8479: 8459: 8458: 8456:The Atmosphere 8453: 8438: 8437:External links 8435: 8434: 8433: 8397: 8377:(3): 439–476. 8359: 8313: 8293: 8257: 8221: 8185: 8147: 8141: 8105: 8069: 8025: 7996: 7976: 7962: 7942: 7928: 7913: 7910: 7908: 7907: 7887: 7853: 7814: 7777: 7730: 7699: 7654: 7636:(2): 491–495. 7623: 7593: 7583:(3): 136–140. 7563: 7553:(6): 321–332. 7533: 7519: 7502: 7496: 7485:Addison Wesley 7476: 7435: 7398: 7353: 7316: 7306:(5): 239–245. 7293: 7289:10.1086/110110 7262: 7209: 7203: 7182: 7164:(5): 981–985. 7144: 7138: 7114: 7100: 7083: 7032: 6985: 6932: 6883: 6860: 6842:(1): 306–328. 6824: 6792: 6774:(2): 255–260. 6761: 6741:(3): 295–353. 6724: 6710: 6693: 6655: 6607: 6571:(5): 498–507. 6551: 6489: 6463:(2): 105–112. 6449: 6397: 6395: 6392: 6390: 6389: 6330: 6300: 6288: 6276: 6264: 6252: 6237: 6235:, pp. 951–972. 6221: 6206: 6191: 6179: 6167: 6155: 6143: 6088: 6077: 6019: 5954: 5889: 5838: 5780: 5713: 5668:(8): 559–563. 5645: 5608:(7): 523–526. 5588: 5541: 5514:(3): 364–372. 5494: 5431: 5386:(8): 559–563. 5366: 5344:2027.42/145242 5299: 5247: 5189: 5187:, p. 226. 5177: 5162: 5141: 5126: 5098: 5072: 5045: 5019: 4992: 4964: 4936: 4914: 4885: 4859: 4841: 4829: 4811: 4795: 4769: 4734: 4715: 4703: 4688: 4686:, p. 193. 4676: 4664: 4653: 4641: 4630: 4615: 4593: 4591:, p. 195. 4581: 4569: 4557: 4555:, p. 191. 4545: 4519: 4508: 4496: 4494:, p. 954. 4480: 4468: 4461: 4441: 4411: 4393:Staff (2007). 4385: 4357: 4345: 4333: 4308: 4287: 4272: 4260: 4248: 4237: 4225: 4208: 4197: 4185: 4173: 4161: 4146: 4134: 4122: 4099: 4083: 4065: 4050: 4047:Ridpath (1998) 4039: 4028: 4013: 4001: 3989: 3968: 3956: 3934: 3922: 3910: 3898: 3877: 3875:, pp. 125–130. 3865: 3853: 3851:, pp. 101–105. 3834: 3822: 3757: 3736:2027.42/170953 3678: 3623: 3560: 3541:(1): 192–204. 3521: 3446: 3431: 3413: 3401: 3386: 3367:(2): 255–260. 3347: 3326:2027.42/167748 3274: 3201: 3186: 3163: 3148: 3131: 3101: 3086: 3074: 3059: 3030: 3015: 2996: 2981: 2964: 2949: 2932: 2915: 2892: 2880: 2865: 2791: 2715: 2655: 2636: 2617: 2600: 2581: 2579:, p. 1942–1974 2564: 2529: 2517: 2489: 2486:Guillot (1999) 2471: 2426: 2415:. 6 April 2017 2391: 2389: 2386: 2384: 2383: 2361: 2360:in water ice. 2344: 2330: 2323: 2303:= 8.31 J/mol/K 2292: 2280:is defined as 2267: 2265: 2262: 2261: 2260: 2251: 2246: 2241: 2236: 2230: 2220: 2210: 2204: 2203: 2187: 2184: 2136: 2133: 2061: 2058: 2044:sulfur dioxide 2035: 2027: 2015: 2011: 2003: 1935:Main article: 1932: 1929: 1911: 1908: 1880: 1877: 1867: 1864: 1835:observations. 1820:Saturn's poles 1791: 1788: 1719: 1716: 1638:Oval BA (left) 1631: 1628: 1509:Great Red Spot 1507:Main article: 1504: 1503:Great Red Spot 1501: 1454:Jupiter clouds 1395: 1392: 1390: 1387: 1346: 1343: 1338:fluid dynamics 1309: 1306: 1272: 1271:Shallow models 1269: 1246: 1239: 1238: 1234: 1227: 1226: 1225: 1224: 1223: 1221: 1218: 1117:foreshortening 1113:limb darkening 1095: 1094:Specific bands 1092: 1062: 1059: 930: 927: 868:carbon dioxide 839: 831: 791: 783: 775: 767: 752:metallic state 727: 682: 681: 678: 675: 665: 664: 661: 658: 648: 647: 644: 641: 631: 630: 627: 624: 614: 613: 607: 604: 594: 593: 590: 587: 577: 576: 573: 570: 559: 558: 555: 552: 545: 544: 541: 538: 531: 530: 524: 521: 514: 513: 507: 504: 497: 496: 493: 490: 483: 482: 479: 476: 469: 468: 465: 462: 455: 454: 451: 448: 441: 440: 437: 434: 427: 426: 423: 420: 410: 409: 406: 403: 392: 390: 387: 379: 317: 313: 305: 212: 209: 183:Great Red Spot 26: 9: 6: 4: 3: 2: 9447: 9436: 9433: 9431: 9428: 9427: 9425: 9418: 9407: 9401: 9398: 9396: 9393: 9391: 9388: 9386: 9383: 9382: 9380: 9376: 9370: 9369: 9365: 9363: 9362: 9358: 9356: 9355: 9351: 9350: 9348: 9346: 9342: 9336: 9335: 9331: 9329: 9328: 9324: 9322: 9319: 9317: 9314: 9312: 9309: 9307: 9304: 9302: 9299: 9297: 9294: 9292: 9289: 9287: 9284: 9283: 9281: 9279: 9275: 9269: 9268: 9264: 9262: 9261: 9257: 9255: 9254: 9250: 9248: 9245: 9244: 9242: 9240: 9239:Dwarf planets 9236: 9230: 9229: 9225: 9223: 9222: 9218: 9216: 9215: 9211: 9209: 9208: 9204: 9202: 9201: 9197: 9195: 9194: 9190: 9188: 9187: 9183: 9181: 9178: 9177: 9175: 9173: 9169: 9164: 9154: 9153: 9149: 9148: 9146: 9144: 9140: 9136: 9129: 9124: 9122: 9117: 9115: 9110: 9109: 9106: 9094: 9084: 9082: 9074: 9073: 9070: 9064: 9061: 9059: 9056: 9055: 9053: 9049: 9038: 9037: 9033: 9030: 9027: 9024: 9021: 9018: 9017: 9013: 9010: 9007: 9006: 9004: 9000: 8993: 8992: 8988: 8985: 8982: 8981: 8979: 8975: 8967: 8966: 8962: 8960: 8959: 8955: 8954: 8953: 8950: 8948: 8947: 8943: 8939: 8938: 8934: 8932: 8931: 8927: 8926: 8925: 8922: 8920: 8919: 8915: 8911: 8910: 8906: 8905: 8904: 8901: 8899: 8898: 8894: 8893: 8891: 8887: 8881: 8880: 8876: 8875: 8873: 8869: 8866: 8859: 8855: 8845: 8842: 8840: 8837: 8835: 8832: 8830: 8827: 8826: 8824: 8822: 8818: 8812: 8809: 8807: 8804: 8803: 8801: 8799: 8795: 8789: 8786: 8784: 8781: 8780: 8778: 8774: 8771: 8767: 8757: 8754: 8752: 8749: 8747: 8744: 8742: 8739: 8737: 8734: 8732: 8729: 8727: 8726:Himalia group 8724: 8723: 8721: 8717: 8711: 8708: 8706: 8703: 8701: 8698: 8696: 8693: 8692: 8690: 8688: 8684: 8678: 8675: 8673: 8670: 8668: 8665: 8663: 8660: 8659: 8657: 8653: 8650: 8648: 8644: 8639: 8629: 8626: 8624: 8621: 8619: 8616: 8614: 8613:Magnetosphere 8611: 8607: 8604: 8603: 8602: 8599: 8598: 8596: 8592: 8586: 8583: 8582: 8579: 8575: 8568: 8563: 8561: 8556: 8554: 8549: 8548: 8545: 8538: 8528: 8526: 8521: 8516: 8514: 8509: 8504: 8502: 8492: 8490: 8480: 8478: 8468: 8467: 8464: 8457: 8454: 8451: 8447: 8444: 8441: 8440: 8430: 8426: 8422: 8418: 8414: 8410: 8403: 8398: 8393: 8388: 8384: 8380: 8376: 8372: 8365: 8360: 8356: 8352: 8347: 8342: 8338: 8334: 8330: 8326: 8319: 8314: 8310: 8306: 8299: 8294: 8290: 8286: 8282: 8278: 8274: 8270: 8263: 8258: 8254: 8250: 8246: 8242: 8238: 8234: 8227: 8222: 8218: 8214: 8210: 8206: 8202: 8198: 8191: 8186: 8181: 8176: 8172: 8168: 8164: 8160: 8153: 8148: 8144: 8138: 8134: 8130: 8126: 8122: 8118: 8111: 8106: 8102: 8098: 8094: 8090: 8086: 8082: 8075: 8070: 8066: 8062: 8058: 8054: 8050: 8046: 8043:(5529): 778. 8042: 8038: 8031: 8026: 8022: 8018: 8014: 8010: 8006: 8002: 7997: 7986: 7982: 7977: 7973: 7969: 7965: 7959: 7954: 7953: 7947: 7943: 7939: 7935: 7931: 7925: 7921: 7916: 7915: 7904: 7901:. Cambridge: 7900: 7893: 7888: 7878:on 2014-08-23 7874: 7870: 7867:. Cambridge: 7866: 7859: 7854: 7850: 7846: 7842: 7838: 7834: 7830: 7826: 7822: 7821: 7815: 7810: 7805: 7801: 7797: 7793: 7789: 7788: 7783: 7778: 7774: 7770: 7766: 7762: 7758: 7754: 7750: 7746: 7742: 7738: 7737: 7731: 7727: 7723: 7719: 7715: 7711: 7707: 7706: 7700: 7696: 7692: 7687: 7682: 7678: 7674: 7670: 7666: 7665: 7660: 7655: 7651: 7647: 7643: 7639: 7635: 7631: 7630: 7624: 7620: 7616: 7612: 7608: 7607: 7599: 7594: 7590: 7586: 7582: 7578: 7577: 7569: 7564: 7560: 7556: 7552: 7548: 7547: 7539: 7534: 7530: 7526: 7522: 7516: 7512: 7509:. Cambridge: 7508: 7503: 7499: 7493: 7489: 7486: 7482: 7477: 7472: 7467: 7463: 7459: 7455: 7451: 7447: 7443: 7442: 7436: 7432: 7428: 7424: 7420: 7416: 7412: 7408: 7404: 7399: 7395: 7391: 7387: 7383: 7379: 7375: 7371: 7367: 7363: 7359: 7354: 7350: 7346: 7342: 7338: 7334: 7330: 7326: 7322: 7317: 7313: 7309: 7305: 7301: 7300: 7294: 7290: 7286: 7282: 7278: 7274: 7270: 7269: 7263: 7259: 7255: 7251: 7247: 7242: 7237: 7233: 7229: 7225: 7221: 7220: 7215: 7210: 7206: 7200: 7196: 7192: 7188: 7183: 7179: 7175: 7171: 7167: 7163: 7159: 7158: 7150: 7145: 7141: 7135: 7131: 7128:. Cambridge: 7127: 7120: 7115: 7111: 7107: 7103: 7097: 7093: 7089: 7084: 7080: 7076: 7072: 7068: 7064: 7060: 7056: 7052: 7048: 7044: 7043: 7038: 7033: 7029: 7025: 7021: 7017: 7013: 7009: 7005: 7001: 6997: 6993: 6992: 6986: 6982: 6978: 6974: 6970: 6966: 6962: 6957: 6952: 6948: 6944: 6943: 6938: 6933: 6929: 6925: 6921: 6917: 6913: 6909: 6904: 6899: 6895: 6891: 6890: 6884: 6880: 6876: 6872: 6868: 6867: 6861: 6857: 6853: 6849: 6845: 6841: 6837: 6830: 6825: 6821: 6817: 6813: 6809: 6806:(2): 89–103. 6805: 6801: 6797: 6793: 6789: 6785: 6781: 6777: 6773: 6769: 6768: 6762: 6757: 6752: 6748: 6744: 6740: 6736: 6735: 6730: 6725: 6721: 6717: 6713: 6707: 6703: 6699: 6694: 6684:on 2011-05-27 6683: 6679: 6675: 6671: 6667: 6666: 6661: 6656: 6652: 6648: 6644: 6640: 6636: 6632: 6628: 6624: 6620: 6616: 6615: 6608: 6604: 6600: 6596: 6592: 6587: 6582: 6578: 6574: 6570: 6566: 6565: 6557: 6552: 6548: 6544: 6540: 6536: 6531: 6530:2027.42/43766 6526: 6522: 6518: 6514: 6510: 6506: 6502: 6495: 6490: 6486: 6482: 6478: 6474: 6470: 6466: 6462: 6458: 6457: 6450: 6446: 6442: 6438: 6434: 6430: 6426: 6422: 6418: 6414: 6410: 6409: 6404: 6399: 6398: 6394:Cited sources 6385: 6381: 6376: 6371: 6366: 6361: 6357: 6353: 6349: 6345: 6341: 6334: 6318: 6314: 6310: 6304: 6297: 6292: 6285: 6284:Rogers (1995) 6280: 6273: 6272:Rogers (1995) 6268: 6262:, p. 226–227. 6261: 6260:Rogers (1995) 6256: 6249: 6248:Rogers (1995) 6244: 6242: 6234: 6232: 6225: 6218: 6213: 6211: 6203: 6202:Rogers (1995) 6198: 6196: 6188: 6187:Rogers (2008) 6183: 6176: 6175:Rogers (1995) 6171: 6164: 6159: 6152: 6147: 6139: 6135: 6131: 6127: 6123: 6119: 6115: 6111: 6107: 6103: 6099: 6092: 6086: 6081: 6073: 6069: 6065: 6061: 6056: 6051: 6047: 6043: 6039: 6035: 6031: 6023: 6015: 6011: 6007: 6003: 5999: 5995: 5991: 5987: 5982: 5977: 5973: 5969: 5965: 5958: 5950: 5946: 5942: 5938: 5934: 5930: 5926: 5922: 5917: 5912: 5908: 5904: 5900: 5893: 5885: 5881: 5876: 5871: 5867: 5863: 5859: 5855: 5850: 5842: 5834: 5830: 5826: 5822: 5817: 5812: 5808: 5804: 5800: 5796: 5792: 5784: 5776: 5772: 5767: 5762: 5758: 5754: 5749: 5744: 5740: 5736: 5732: 5728: 5724: 5717: 5709: 5705: 5701: 5697: 5693: 5689: 5685: 5681: 5676: 5671: 5667: 5663: 5659: 5652: 5650: 5641: 5637: 5632: 5631:1721.1/100773 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5599: 5592: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5556: 5552: 5545: 5537: 5533: 5529: 5525: 5521: 5517: 5513: 5509: 5505: 5498: 5490: 5486: 5482: 5478: 5474: 5470: 5466: 5462: 5458: 5454: 5450: 5446: 5442: 5435: 5427: 5423: 5419: 5415: 5411: 5407: 5403: 5399: 5394: 5389: 5385: 5381: 5377: 5370: 5362: 5358: 5354: 5350: 5345: 5340: 5335: 5330: 5326: 5322: 5318: 5314: 5310: 5303: 5295: 5291: 5287: 5283: 5279: 5275: 5271: 5267: 5263: 5259: 5251: 5243: 5239: 5235: 5231: 5226: 5221: 5217: 5213: 5209: 5205: 5201: 5193: 5186: 5181: 5174: 5169: 5167: 5160:, pp. 437–438 5159: 5157: 5150: 5148: 5146: 5138: 5133: 5131: 5115: 5114: 5109: 5102: 5087: 5083: 5076: 5061: 5054: 5052: 5050: 5034: 5030: 5023: 5007: 5003: 4996: 4982: 4978: 4971: 4969: 4953: 4949: 4943: 4941: 4925: 4918: 4903: 4899: 4892: 4890: 4874: 4870: 4863: 4857: 4855: 4848: 4846: 4838: 4837:Rogers (1995) 4833: 4827: 4825: 4818: 4816: 4808: 4806: 4799: 4784: 4780: 4773: 4765: 4761: 4757: 4753: 4749: 4745: 4738: 4731: 4727: 4724: 4719: 4712: 4707: 4700: 4695: 4693: 4685: 4684:Rogers (1995) 4680: 4673: 4672:Rogers (1995) 4668: 4662: 4657: 4650: 4649:Rogers (1995) 4645: 4639: 4634: 4628:, p. 306 4627: 4622: 4620: 4604: 4597: 4590: 4589:Rogers (1995) 4585: 4579:, p. 35. 4578: 4573: 4566: 4565:Rogers (1995) 4561: 4554: 4553:Rogers (1995) 4549: 4534: 4531:. Space.com. 4530: 4523: 4517: 4516:Beatty (2002) 4512: 4505: 4500: 4493: 4491: 4484: 4477: 4472: 4464: 4458: 4454: 4453: 4445: 4430: 4426: 4422: 4415: 4400: 4397:. Imaginova. 4396: 4389: 4374: 4373: 4368: 4361: 4354: 4349: 4342: 4337: 4322: 4318: 4312: 4305: 4300: 4298: 4296: 4294: 4292: 4284: 4279: 4277: 4269: 4264: 4257: 4252: 4246: 4241: 4234: 4229: 4222: 4217: 4215: 4213: 4206: 4201: 4194: 4189: 4182: 4177: 4170: 4165: 4158: 4153: 4151: 4143: 4138: 4131: 4126: 4119: 4114: 4112: 4110: 4108: 4106: 4104: 4097: 4095: 4087: 4081: 4079: 4072: 4070: 4062: 4057: 4055: 4048: 4043: 4037: 4032: 4026: 4024: 4017: 4010: 4009:Rogers (1995) 4005: 3998: 3997:Rogers (1995) 3993: 3978: 3972: 3966:, pp. 159–160 3965: 3964:Rogers (1995) 3960: 3945: 3938: 3931: 3926: 3919: 3918:Rogers (1995) 3914: 3907: 3906:Rogers (1995) 3902: 3895: 3890: 3888: 3886: 3884: 3882: 3874: 3873:Rogers (1995) 3869: 3863:, pp.113–117. 3862: 3861:Rogers (1995) 3857: 3850: 3849:Rogers (1995) 3845: 3843: 3841: 3839: 3831: 3830:Rogers (1995) 3826: 3818: 3814: 3810: 3806: 3802: 3798: 3794: 3790: 3785: 3780: 3776: 3772: 3768: 3761: 3753: 3749: 3745: 3741: 3737: 3733: 3729: 3725: 3721: 3717: 3712: 3707: 3703: 3699: 3695: 3687: 3685: 3683: 3674: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3627: 3619: 3615: 3611: 3607: 3603: 3599: 3595: 3591: 3587: 3583: 3579: 3575: 3571: 3564: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3525: 3517: 3513: 3508: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3474: 3469: 3465: 3461: 3457: 3450: 3442: 3438: 3434: 3428: 3424: 3417: 3410: 3405: 3398: 3393: 3391: 3382: 3378: 3374: 3370: 3366: 3362: 3358: 3351: 3343: 3339: 3335: 3331: 3327: 3323: 3319: 3315: 3311: 3307: 3302: 3297: 3293: 3289: 3285: 3278: 3270: 3266: 3262: 3258: 3254: 3250: 3245: 3244:11573/1091959 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3212: 3205: 3198: 3197:Rogers (1995) 3193: 3191: 3174: 3167: 3161: 3159: 3152: 3145: 3144:Encrenaz 2003 3140: 3138: 3136: 3121:on 2011-08-10 3120: 3116: 3112: 3105: 3098: 3093: 3091: 3083: 3078: 3071: 3066: 3064: 3056: 3051: 3049: 3047: 3045: 3043: 3041: 3039: 3037: 3035: 3027: 3022: 3020: 3012: 3010: 3003: 3001: 2993: 2988: 2986: 2978: 2973: 2971: 2969: 2961: 2956: 2954: 2946: 2941: 2939: 2937: 2929: 2924: 2922: 2920: 2912: 2907: 2905: 2903: 2901: 2899: 2897: 2889: 2884: 2877: 2872: 2870: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2820: 2815: 2811: 2807: 2803: 2795: 2780: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2722: 2720: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2659: 2652: 2647: 2645: 2643: 2641: 2633: 2628: 2626: 2624: 2622: 2614: 2609: 2607: 2605: 2597: 2592: 2590: 2588: 2586: 2578: 2573: 2571: 2569: 2561: 2556: 2554: 2552: 2550: 2548: 2546: 2544: 2542: 2540: 2538: 2536: 2534: 2526: 2521: 2515: 2513: 2506: 2504: 2502: 2500: 2498: 2496: 2494: 2487: 2482: 2480: 2478: 2476: 2468: 2463: 2461: 2459: 2457: 2455: 2453: 2451: 2449: 2447: 2445: 2443: 2441: 2439: 2437: 2435: 2433: 2431: 2414: 2410: 2406: 2402: 2396: 2392: 2381: 2376: 2372: 2367: 2366: 2362: 2359: 2355: 2354:planetesimals 2350: 2349: 2345: 2341: 2336: 2335: 2331: 2319: 2313: 2308: 2302: 2295: 2288: 2284: 2279: 2274: 2273: 2269: 2259: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2234: 2231: 2228: 2224: 2221: 2218: 2214: 2211: 2209: 2206: 2205: 2201: 2190: 2183: 2181: 2176: 2174: 2170: 2165: 2163: 2158: 2154: 2146: 2141: 2132: 2129: 2128: 2119: 2114: 2110: 2106: 2104: 2100: 2096: 2091: 2089: 2085: 2081: 2073: 2072: 2066: 2057: 2055: 2053: 2047: 2045: 2041: 2033: 2025: 2021: 2009: 2001: 1997: 1993: 1992:Spectroscopic 1987: 1985: 1984:Galileo Probe 1981: 1980: 1975: 1974: 1969: 1968: 1964: 1963: 1957: 1950: 1949: 1943: 1938: 1928: 1926: 1922: 1917: 1914:In 1953, the 1907: 1905: 1904:adiabatically 1901: 1896: 1894: 1890: 1888: 1876: 1874: 1859: 1855: 1851: 1849: 1845: 1840: 1836: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1804: 1796: 1787: 1783: 1781: 1779: 1773: 1768: 1767: 1762: 1761: 1756: 1751: 1749: 1744: 1743:thunderstorms 1737: 1732: 1724: 1715: 1713: 1710:Pater of the 1707: 1705: 1699: 1695: 1693: 1689: 1685: 1681: 1676: 1673: 1664: 1656: 1652: 1650: 1644: 1636: 1627: 1625: 1624: 1619: 1615: 1611: 1610: 1604: 1596: 1592: 1590: 1585: 1583: 1579: 1575: 1570: 1566: 1562: 1560: 1551: 1547: 1544: 1539: 1536: 1532: 1528: 1524: 1515: 1510: 1500: 1498: 1494: 1488: 1485: 1481: 1475: 1473: 1469: 1461: 1460: 1452: 1444: 1440: 1438: 1434: 1430: 1426: 1422: 1418: 1414: 1406: 1405: 1400: 1386: 1384: 1380: 1375: 1374:internal heat 1370: 1367: 1357: 1345:Internal heat 1342: 1339: 1331: 1326: 1322: 1319: 1315: 1305: 1302: 1301:Galileo Probe 1296: 1294: 1290: 1286: 1282: 1278: 1268: 1264: 1261: 1257: 1243: 1231: 1217: 1215: 1211: 1207: 1203: 1199: 1193: 1185: 1181: 1178: 1173: 1171: 1167: 1158: 1152: 1148: 1144: 1142: 1141: 1134: 1132: 1128: 1125: 1120: 1118: 1114: 1109: 1103:respectively. 1100: 1091: 1089: 1085: 1080: 1076: 1072: 1067: 1058: 1055: 1051: 1050:adiabatically 1047: 1043: 1039: 1030: 1026: 1024: 1023:scale heights 1020: 1019:Galileo Probe 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 979: 977: 973: 969: 963: 960: 956: 952: 948: 940: 935: 926: 924: 920: 916: 912: 908: 901:abundance is 900: 896: 891: 889: 885: 881: 877: 873: 869: 865: 861: 857: 853: 849: 845: 837: 829: 825: 821: 817: 813: 809: 806:and possibly 805: 801: 797: 789: 781: 773: 765: 761: 756: 753: 748: 743:0.234 ± 0.005 739:0.157 ± 0.004 736: 720: 715: 713: 712: 707: 706: 701: 697: 695: 690: 689:giant planets 679: 676: 674: 670: 667: 666: 662: 659: 657: 653: 650: 649: 645: 642: 640: 636: 633: 632: 628: 625: 623: 619: 616: 615: 612: 608: 605: 603: 599: 596: 595: 591: 588: 586: 582: 579: 578: 574: 571: 568: 567: 556: 553: 550: 547: 546: 542: 539: 536: 533: 532: 529: 525: 522: 519: 516: 515: 512: 508: 505: 502: 499: 498: 494: 491: 488: 485: 484: 480: 477: 474: 471: 470: 466: 463: 460: 457: 456: 452: 449: 446: 443: 442: 438: 435: 432: 429: 428: 424: 421: 419: 415: 412: 411: 407: 404: 401: 400: 386: 372: 368: 364: 360: 359:gravity waves 356: 352: 348: 344: 339: 337: 333: 328: 324: 311: 303: 297: 295: 291: 287: 283: 278: 276: 272: 268: 263: 261: 257: 253: 249: 246:. Unlike the 245: 241: 237: 233: 225: 223: 217: 208: 206: 201: 195: 192: 188: 184: 180: 176: 154: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 99: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 42:in April 2017 41: 38:taken by the 37: 32: 19: 9417: 9366: 9359: 9352: 9332: 9325: 9265: 9258: 9251: 9226: 9219: 9212: 9206: 9205: 9198: 9191: 9184: 9150: 9034: 9014: 8989: 8963: 8956: 8944: 8935: 8928: 8918:New Horizons 8916: 8907: 8895: 8877: 8746:Ananke group 8600: 8501:Solar System 8412: 8408: 8374: 8370: 8328: 8324: 8308: 8304: 8272: 8268: 8236: 8232: 8200: 8196: 8162: 8158: 8116: 8084: 8080: 8040: 8036: 8007:(1): 74–93. 8004: 8000: 7989:. Retrieved 7951: 7919: 7898: 7880:. Retrieved 7873:the original 7864: 7824: 7818: 7791: 7785: 7740: 7734: 7709: 7703: 7668: 7662: 7633: 7627: 7613:(1): 14–20. 7610: 7604: 7580: 7574: 7550: 7544: 7506: 7480: 7445: 7439: 7409:(1): 12–28. 7406: 7402: 7361: 7357: 7324: 7320: 7303: 7297: 7272: 7266: 7223: 7217: 7186: 7161: 7155: 7125: 7087: 7046: 7040: 6995: 6989: 6946: 6940: 6896:(3–4): 266. 6893: 6887: 6870: 6864: 6839: 6835: 6803: 6799: 6771: 6765: 6738: 6732: 6697: 6686:. Retrieved 6682:the original 6669: 6663: 6618: 6612: 6568: 6562: 6504: 6500: 6460: 6454: 6412: 6406: 6403:Encrenaz, T. 6347: 6343: 6333: 6323:25 September 6321:. Retrieved 6317:the original 6312: 6303: 6296:Beebe (1997) 6291: 6279: 6267: 6255: 6250:, pp. 224–5. 6230: 6224: 6219:, pp. 40–41. 6217:Hockey, 1999 6189:, pp.111–112 6182: 6170: 6158: 6146: 6105: 6101: 6091: 6085:McKim (1997) 6080: 6037: 6033: 6022: 5971: 5967: 5957: 5906: 5902: 5892: 5857: 5853: 5841: 5798: 5794: 5783: 5730: 5726: 5716: 5665: 5661: 5605: 5601: 5591: 5558: 5554: 5544: 5511: 5507: 5497: 5448: 5444: 5434: 5383: 5379: 5369: 5316: 5312: 5302: 5261: 5257: 5250: 5207: 5203: 5192: 5180: 5155: 5117:. Retrieved 5111: 5101: 5090:. Retrieved 5075: 5064:. Retrieved 5037:. Retrieved 5022: 5010:. Retrieved 5006:the original 4995: 4984:. Retrieved 4980: 4956:. Retrieved 4928:. Retrieved 4917: 4906:. Retrieved 4902:the original 4877:. Retrieved 4873:the original 4862: 4853: 4832: 4823: 4804: 4798: 4787:. Retrieved 4783:the original 4772: 4747: 4743: 4737: 4718: 4706: 4699:Beebe (1997) 4679: 4667: 4661:Stone (1974) 4656: 4644: 4633: 4607:. Retrieved 4596: 4584: 4577:Beebe (1997) 4572: 4560: 4548: 4537:. Retrieved 4522: 4511: 4499: 4489: 4483: 4471: 4451: 4444: 4433:. Retrieved 4414: 4403:. Retrieved 4388: 4376:. Retrieved 4370: 4360: 4348: 4336: 4324:. Retrieved 4320: 4311: 4263: 4251: 4240: 4228: 4205:Busse (1976) 4200: 4188: 4176: 4164: 4137: 4125: 4093: 4090:See, e. g., 4086: 4077: 4042: 4031: 4022: 4016: 4004: 3992: 3980:. Retrieved 3971: 3959: 3948:. Retrieved 3937: 3930:Beebe (1997) 3925: 3913: 3901: 3868: 3856: 3825: 3774: 3770: 3760: 3701: 3697: 3640: 3636: 3626: 3577: 3573: 3563: 3538: 3534: 3524: 3463: 3459: 3449: 3422: 3416: 3404: 3364: 3360: 3350: 3291: 3287: 3277: 3218: 3214: 3204: 3177:. Retrieved 3166: 3157: 3151: 3123:. Retrieved 3119:the original 3104: 3082:Yelle (2004) 3077: 3070:Yelle (2004) 3008: 2960:Yelle (2004) 2888:Yelle (2004) 2883: 2809: 2805: 2794: 2782:. Retrieved 2738: 2734: 2669: 2665: 2658: 2520: 2511: 2417:. Retrieved 2413:Hubble Media 2404: 2395: 2365: 2348: 2339: 2334: 2317: 2311: 2307:gas constant 2300: 2290: 2286: 2282: 2277: 2272: 2179: 2177: 2166: 2150: 2125: 2123: 2107: 2095:Donato Creti 2092: 2084:Robert Hooke 2077: 2069: 2051: 2048: 1988: 1977: 1971: 1965: 1960: 1958: 1954: 1946: 1913: 1897: 1886: 1882: 1869: 1866:Disturbances 1852: 1841: 1837: 1805: 1801: 1784: 1777: 1764: 1758: 1752: 1740: 1708: 1700: 1696: 1677: 1669: 1645: 1641: 1621: 1607: 1605: 1601: 1586: 1573: 1563: 1556: 1540: 1520: 1489: 1476: 1465: 1457: 1421:anticyclones 1410: 1404:New Horizons 1402: 1383:equilibrates 1371: 1348: 1334: 1311: 1297: 1285:Rossby waves 1274: 1265: 1253: 1213: 1209: 1205: 1201: 1197: 1194: 1190: 1174: 1162: 1145: 1138: 1135: 1130: 1121: 1110: 1106: 1064: 1038:Hadley cells 1035: 1003:anticyclonic 997:in belts is 980: 964: 950: 946: 944: 892: 888:stratosphere 844:hydrocarbons 757: 716: 709: 703: 693: 686: 610: 527: 510: 408:Jupiter/Sun 340: 298: 279: 264: 240:thermosphere 236:stratosphere 229: 221: 196: 191:anticyclones 179:anticyclones 172: 150: 146: 138: 115:thermosphere 111:stratosphere 100: 56:Solar System 47: 45: 9361:HD 209458 b 9135:Atmospheres 8858:Exploration 8811:Trojan camp 8751:Carme group 8537:Outer space 8489:Spaceflight 6163:Noll (1995) 5012:October 16, 4750:: 418–425. 4321:www.eso.org 4144:, pp. 14–15 4132:, pp. 16–17 3084:, pp. 22–27 2962:, pp. 15–16 2878:, pp. 13–14 2844:2268/252816 2178:During the 2162:jet streams 2135:White ovals 1812:streamlines 1649:White ovals 1352:1.67 ± 0.09 1308:Deep models 1293:anisotropic 1277:meteorology 1143:encounter. 1088:Ekman layer 1046:downwelling 856:diacetylene 702:(ISO), the 232:troposphere 107:troposphere 66:in roughly 9424:Categories 9345:Exoplanets 8937:Pioneer 11 8930:Pioneer 10 8806:Greek camp 8601:Atmosphere 8364:"Jet sets" 8311:(9): 1190. 7991:2007-06-14 7882:2010-08-21 6688:2008-08-10 5981:2209.00309 5916:2209.00309 5675:2110.09422 5393:2110.09422 5264:: 113405. 5092:2008-05-23 5066:2008-11-29 5039:2008-10-16 4986:2010-06-18 4958:2008-10-16 4930:2007-06-15 4908:2007-01-08 4879:2008-10-16 4789:2007-06-20 4651:, 192–193. 4609:2007-06-15 4539:2009-02-04 4435:2008-06-03 4405:2008-06-03 4245:Low (1966) 4092:Ingersoll 3982:15 October 3950:2010-12-24 3711:2110.07255 3473:1907.01822 3301:2102.10595 3125:2007-05-06 3072:, pp. 1–12 2819:2010.13740 2784:17 January 2388:References 2038:S), while 1951:to Jupiter 1921:Carl Sagan 1900:downdrafts 1808:Beta-drift 1578:jet stream 1318:barotropic 1281:turbulence 1260:convection 1177:retrograde 1140:Pioneer 10 1127:jet stream 995:wind shear 991:retrograde 972:phosphorus 953:The wider 884:tropopause 878:, such as 747:primordial 355:ionosphere 290:lapse rate 286:tropopause 252:mesosphere 185:(GRS) and 9368:Kepler-7b 9354:GJ 1132 b 9311:Enceladus 9063:Mythology 9029:Tianwen-4 9009:Laplace-P 8965:Voyager 2 8958:Voyager 1 8769:Astronomy 8719:Irregular 8594:Geography 8477:Astronomy 8446:blog post 8341:CiteSeerX 7529:219591510 7431:0019-1035 7349:119906560 6928:117677021 6903:1008.0566 6720:224014042 6672:(4): 24. 6603:0032-0633 6581:CiteSeerX 6539:0032-0633 6485:0032-0633 6437:0032-0633 6286:, p. 225. 6274:, p. 226. 6165:, p. 1307 6130:0036-8075 6072:237698857 6064:0094-8276 6014:249810436 6006:0094-8276 5949:249810436 5941:0094-8276 5884:241446672 5833:252099924 5825:2169-9097 5757:0027-8424 5708:236096014 5700:1752-0908 5640:1752-0894 5575:0309-1929 5536:0040-2826 5473:0028-0836 5426:236096014 5418:1752-0894 5361:133852380 5353:2169-9097 5294:202132980 5286:0019-1035 5242:252099924 5234:2169-9097 4839:, p. 223. 4809:, p. 1740 4355:, p. 1979 4343:, p. 1975 4306:, p. 1977 4285:, p. 1978 4235:, p. 1970 4195:, p. 1966 4159:, p. 1949 4011:, p. 235. 3920:, p. 133. 3809:1520-0469 3784:0910.3682 3752:238856819 3744:0094-8276 3673:125905820 3665:0038-6308 3602:0028-0836 3498:1572-9672 3466:(2): 30. 3441:162572802 3342:231985747 3334:0094-8276 3253:0028-0836 3028:, p. 1937 2930:, pp. 5–7 2860:225075904 2852:2169-9100 2779:220980694 2763:1476-4687 2694:0036-8075 2653:, p. 1976 2598:, p. 1974 2562:, pp. 2–5 2258:Voyager 2 2254:Voyager 1 2157:longitude 2127:Voyager 1 2116:Hubble's 2071:Voyager 1 1948:Voyager 1 1879:Hot spots 1824:vorticity 1755:lightning 1684:Amy Simon 1651:, below) 1623:Voyager 2 1589:longitude 1569:cloudtops 1472:longitude 1429:clockwise 1366:petawatts 1364:335 ± 26 1356:heat flux 1042:upwelling 959:latitudes 899:deuterium 852:acetylene 788:phosphine 336:hydrazine 308:)SH) or 244:exosphere 119:exosphere 96:noble gas 9378:See also 9306:Callisto 9301:Ganymede 9260:Makemake 9081:Category 9002:Proposed 8864:missions 8741:Valetudo 8731:Themisto 8710:Callisto 8705:Ganymede 8687:Galilean 8672:Amalthea 8667:Adrastea 8065:43539227 7985:Archived 7948:(1981). 7938:39464951 7849:53596671 7773:33147728 7765:17800430 7695:18216848 7394:37686143 7258:45296656 7250:15319491 7191:Springer 7110:39733730 7071:16281029 7028:11688794 7020:17834994 6981:19024073 6651:28540751 6643:17932285 6547:31037195 6445:11543193 6384:32900956 6298:, p. 43. 6204:, p. 188 6138:13056598 5775:32900956 5481:29516997 5086:Archived 5033:Archived 4952:Archived 4726:Archived 4533:Archived 4429:Archived 4399:Archived 4326:17 April 4076:Heimpel 3932:, p. 24. 3610:10688192 3516:32214508 3261:29516995 3199:, p. 81. 2771:32760043 2710:33147728 2702:17800430 2419:10 April 2382:storms. 2326:≈ 25 m/s 2298:, where 2186:See also 2173:aphelion 1979:Voyagers 1832:latitude 1672:Filipino 1565:Infrared 1437:pressure 1417:cyclones 1413:vortices 1394:Vortices 1220:Dynamics 1166:infrared 1124:prograde 1052:as in a 999:cyclonic 987:prograde 937:A polar 846:such as 800:nitrogen 575:Jupiter 345:, polar 327:abundant 175:cyclones 88:nitrogen 9430:Jupiter 9228:Neptune 9207:Jupiter 9180:Mercury 9172:Planets 9058:Fiction 9051:Related 9016:Shensuo 8946:Ulysses 8909:Galileo 8871:Current 8862:orbital 8821:Impacts 8798:Trojans 8776:General 8574:Jupiter 8525:Science 8513:Weather 8463:Portals 8417:Bibcode 8379:Bibcode 8333:Bibcode 8277:Bibcode 8241:Bibcode 8205:Bibcode 8167:Bibcode 8121:Bibcode 8089:Bibcode 8045:Bibcode 8009:Bibcode 7972:8318939 7829:Bibcode 7796:Bibcode 7745:Bibcode 7736:Science 7714:Bibcode 7673:Bibcode 7638:Bibcode 7615:Bibcode 7585:Bibcode 7555:Bibcode 7488:Longman 7450:Bibcode 7411:Bibcode 7386:7871428 7366:Bibcode 7358:Science 7329:Bibcode 7308:Bibcode 7277:Bibcode 7275:: 391. 7228:Bibcode 7219:Science 7166:Bibcode 7079:4414668 7051:Bibcode 7000:Bibcode 6991:Science 6961:Bibcode 6908:Bibcode 6875:Bibcode 6873:: 495. 6844:Bibcode 6808:Bibcode 6776:Bibcode 6743:Bibcode 6674:Bibcode 6623:Bibcode 6614:Science 6573:Bibcode 6509:Bibcode 6465:Bibcode 6417:Bibcode 6375:7533696 6352:Bibcode 6177:, p. 6. 6110:Bibcode 6102:Science 6042:Bibcode 5986:Bibcode 5921:Bibcode 5862:Bibcode 5803:Bibcode 5766:7533696 5735:Bibcode 5680:Bibcode 5610:Bibcode 5583:2050846 5516:Bibcode 5489:4438233 5453:Bibcode 5398:Bibcode 5321:Bibcode 5266:Bibcode 5212:Bibcode 5119:May 27, 4803:Hammel 4752:Bibcode 4378:May 16, 4021:Rogers 3817:9416783 3789:Bibcode 3716:Bibcode 3645:Bibcode 3618:4381087 3582:Bibcode 3543:Bibcode 3507:7067733 3478:Bibcode 3369:Bibcode 3306:Bibcode 3269:4120368 3223:Bibcode 3179:24 July 2947:, p. 12 2824:Bibcode 2743:Bibcode 2674:Bibcode 2666:Science 2380:polygon 2369:NASA's 2340:Galileo 2305:is the 2180:Voyager 2153:degrees 2147:in 1997 2099:Vatican 2074:in 1979 2052:Galileo 2024:ammonia 2018:in any 1962:Pioneer 1887:Galileo 1848:JunoCam 1766:Cassini 1760:Galileo 1736:JunoCam 1630:Oval BA 1614:Neptune 1574:Voyager 1468:equator 1131:Voyager 836:germane 816:krypton 780:ammonia 764:methane 711:Cassini 705:Galileo 694:Galileo 402:Element 347:aurorae 343:airglow 222:Galileo 187:Oval BA 135:equator 103:Jupiter 76:ammonia 72:methane 54:in the 9334:Triton 9296:Europa 9221:Uranus 9214:Saturn 9039:(2030) 9031:(2029) 9025:(2026) 9019:(2024) 9011:(2023) 8994:(2024) 8977:Future 8700:Europa 8343:  8139:  8063:  8037:Nature 8001:Icarus 7970:  7960:  7936:  7926:  7847:  7771:  7763:  7693:  7664:Nature 7629:Icarus 7527:  7517:  7494:  7441:Icarus 7429:  7403:Icarus 7392:  7384:  7347:  7256:  7248:  7201:  7195:Praxis 7136:  7108:  7098:  7077:  7069:  7042:Nature 7026:  7018:  6979:  6926:  6836:Icarus 6767:Icarus 6718:  6708:  6649:  6641:  6601:  6583:  6545:  6537:  6483:  6443:  6435:  6382:  6372:  6233:(1979) 6231:et al. 6229:Smith 6153:, p. 2 6136:  6128:  6070:  6062:  6040:(14). 6012:  6004:  5974:(15). 5947:  5939:  5909:(15). 5882:  5831:  5823:  5773:  5763:  5755:  5706:  5698:  5638:  5581:  5573:  5534:  5508:Tellus 5487:  5479:  5471:  5445:Nature 5424:  5416:  5359:  5351:  5292:  5284:  5258:Icarus 5240:  5232:  5158:(2008) 5156:et al. 4856:(2006) 4854:et al. 4826:(2001) 4824:et al. 4807:(1995) 4805:et al. 4744:Icarus 4492:(1979) 4490:et al. 4488:Smith 4476:Graney 4459:  4096:(1969) 4094:et al. 4080:(2005) 4078:et al. 4025:(2003) 4023:et al. 3815:  3807:  3750:  3742:  3704:(23). 3671:  3663:  3616:  3608:  3600:  3574:Nature 3535:Icarus 3514:  3504:  3496:  3439:  3429:  3411:(2010) 3409:Graney 3399:, p. 5 3361:Icarus 3340:  3332:  3267:  3259:  3251:  3215:Nature 3160:(2004) 3158:et al. 3156:Kunde 3057:, p. 8 3011:(2004) 3009:et al. 2890:, p. 1 2858:  2850:  2777:  2769:  2761:  2735:Nature 2708:  2700:  2692:  2514:(1998) 2512:et al. 2510:Sieff 2215:(many 2040:oxygen 2030:) and 2006:) and 1748:plumes 1543:Jovian 1212:or an 1200:(EB), 1075:Ferrel 1071:Hadley 1017:. The 976:carbon 968:sulfur 951:belts. 876:comets 866:. The 854:, and 848:ethane 834:) and 828:arsine 808:oxygen 804:sulfur 796:carbon 786:) and 735:helium 733:) and 422:0.0975 94:, and 92:sulfur 82:, and 64:helium 9327:Titan 9316:Dione 9253:Pluto 9247:Ceres 9193:Earth 9186:Venus 9143:Stars 9036:SMARA 8736:Carpo 8677:Thebe 8662:Metis 8655:Inner 8647:Moons 8618:Rings 8450:video 8405:(PDF) 8367:(PDF) 8321:(PDF) 8301:(PDF) 8265:(PDF) 8229:(PDF) 8193:(PDF) 8155:(PDF) 8113:(PDF) 8077:(PDF) 8061:S2CID 8033:(PDF) 7895:(PDF) 7876:(PDF) 7861:(PDF) 7845:S2CID 7769:S2CID 7601:(PDF) 7571:(PDF) 7541:(PDF) 7390:S2CID 7345:S2CID 7254:S2CID 7152:(PDF) 7122:(PDF) 7075:S2CID 7024:S2CID 6977:S2CID 6951:arXiv 6924:S2CID 6898:arXiv 6832:(PDF) 6647:S2CID 6559:(PDF) 6543:S2CID 6497:(PDF) 6068:S2CID 6010:S2CID 5976:arXiv 5945:S2CID 5911:arXiv 5880:S2CID 5829:S2CID 5801:(9). 5704:S2CID 5670:arXiv 5579:S2CID 5485:S2CID 5422:S2CID 5388:arXiv 5357:S2CID 5290:S2CID 5238:S2CID 5210:(9). 4504:Irwin 3813:S2CID 3779:arXiv 3748:S2CID 3706:arXiv 3669:S2CID 3614:S2CID 3468:arXiv 3338:S2CID 3296:arXiv 3294:(9). 3265:S2CID 3007:West 2856:S2CID 2814:arXiv 2775:S2CID 2706:S2CID 2264:Notes 2235:probe 2169:orbit 1893:plume 1889:Probe 1844:JIRAM 1772:power 1704:Earth 1170:ochre 1079:Polar 947:zones 820:xenon 812:argon 760:water 589:0.011 569:Ratio 543:0.82 351:X-ray 151:zones 147:belts 139:jets, 131:zonal 84:water 9390:Coma 9321:Rhea 9286:Moon 9267:Eris 9200:Mars 8889:Past 8879:Juno 8137:ISBN 7968:OCLC 7958:ISBN 7934:OCLC 7924:ISBN 7761:PMID 7691:PMID 7525:OCLC 7515:ISBN 7492:ISBN 7427:ISSN 7382:PMID 7246:PMID 7199:ISBN 7193:and 7134:ISBN 7106:OCLC 7096:ISBN 7067:PMID 7016:PMID 6716:OCLC 6706:ISBN 6639:PMID 6599:ISSN 6535:ISSN 6481:ISSN 6441:PMID 6433:ISSN 6380:PMID 6344:PNAS 6325:2020 6313:NASA 6134:PMID 6126:ISSN 6060:ISSN 6002:ISSN 5937:ISSN 5821:ISSN 5771:PMID 5753:ISSN 5696:ISSN 5636:ISSN 5571:ISSN 5532:ISSN 5477:PMID 5469:ISSN 5414:ISSN 5349:ISSN 5282:ISSN 5230:ISSN 5121:2017 5014:2008 4457:ISBN 4380:2014 4372:NASA 4328:2017 3984:2015 3805:ISSN 3740:ISSN 3661:ISSN 3606:PMID 3598:ISSN 3512:PMID 3494:ISSN 3437:OCLC 3427:ISBN 3330:ISSN 3257:PMID 3249:ISSN 3181:2012 2848:ISSN 2786:2021 2767:PMID 2759:ISSN 2698:PMID 2690:ISSN 2421:2017 2338:The 2233:Juno 2049:The 1970:and 1923:and 1778:Juno 1763:and 1484:wake 1459:Juno 1419:and 1372:The 1247:2010 1235:2009 1077:and 983:jets 974:and 838:(GeH 830:(AsH 824:neon 818:and 778:S), 708:and 349:and 312:((NH 304:((NH 267:bars 242:and 200:Juno 177:and 117:and 62:and 46:The 9152:Sun 8425:doi 8387:doi 8351:doi 8285:doi 8249:doi 8213:doi 8175:doi 8163:102 8129:doi 8097:doi 8053:doi 8041:257 8017:doi 8005:162 7837:doi 7804:doi 7753:doi 7741:204 7722:doi 7710:103 7681:doi 7669:451 7646:doi 7634:149 7611:118 7581:113 7551:111 7466:hdl 7458:doi 7419:doi 7374:doi 7362:267 7337:doi 7325:116 7304:107 7285:doi 7236:doi 7224:305 7174:doi 7059:doi 7047:438 7008:doi 6996:268 6969:doi 6916:doi 6852:doi 6840:208 6816:doi 6784:doi 6751:doi 6670:103 6631:doi 6619:318 6591:doi 6525:hdl 6517:doi 6505:116 6473:doi 6425:doi 6370:PMC 6360:doi 6348:117 6118:doi 6106:117 6050:doi 5994:doi 5929:doi 5870:doi 5811:doi 5799:127 5761:PMC 5743:doi 5731:117 5688:doi 5626:hdl 5618:doi 5563:doi 5559:105 5524:doi 5461:doi 5449:555 5406:doi 5339:hdl 5329:doi 5317:123 5274:doi 5262:335 5220:doi 5208:127 4852:Go 4760:doi 4748:302 3797:doi 3732:hdl 3724:doi 3653:doi 3641:213 3590:doi 3578:403 3551:doi 3539:174 3502:PMC 3486:doi 3464:216 3377:doi 3322:hdl 3314:doi 3239:hdl 3231:doi 3219:555 2840:hdl 2832:doi 2810:125 2751:doi 2739:584 2682:doi 2670:204 2409:ESO 2155:of 2080:GRS 2026:(NH 2010:(CS 913:to 790:(PH 782:(NH 770:), 766:(CH 572:Sun 405:Sun 334:or 9426:: 9291:Io 8695:Io 8423:. 8413:63 8411:. 8407:. 8385:. 8375:81 8373:. 8369:. 8349:. 8339:. 8329:60 8327:. 8323:. 8309:84 8307:. 8303:. 8283:. 8273:60 8271:. 8267:. 8247:. 8237:59 8235:. 8231:. 8211:. 8201:53 8199:. 8195:. 8173:. 8161:. 8157:. 8135:. 8127:. 8115:. 8095:. 8085:35 8083:. 8079:. 8059:. 8051:. 8039:. 8035:. 8015:. 8003:. 7966:. 7932:. 7843:. 7835:. 7825:68 7823:. 7802:. 7792:31 7790:. 7784:. 7767:. 7759:. 7751:. 7739:. 7720:. 7708:. 7689:. 7679:. 7667:. 7661:. 7644:. 7632:. 7609:. 7603:. 7579:. 7573:. 7549:. 7543:. 7523:. 7513:. 7464:. 7456:. 7444:. 7425:. 7417:. 7407:84 7405:. 7388:. 7380:. 7372:. 7360:. 7343:. 7335:. 7323:. 7302:. 7283:. 7273:71 7271:. 7252:. 7244:. 7234:. 7222:. 7216:. 7197:. 7189:. 7172:. 7162:26 7160:. 7154:. 7132:. 7104:. 7094:. 7073:. 7065:. 7057:. 7045:. 7039:. 7022:. 7014:. 7006:. 6994:. 6975:. 6967:. 6959:. 6947:47 6945:. 6939:. 6922:. 6914:. 6906:. 6894:19 6892:. 6871:38 6869:. 6850:. 6838:. 6834:. 6814:. 6804:51 6802:. 6782:. 6772:29 6770:. 6749:. 6739:38 6737:. 6731:. 6714:. 6704:. 6668:. 6662:. 6645:. 6637:. 6629:. 6617:. 6597:. 6589:. 6579:. 6569:53 6567:. 6561:. 6541:. 6533:. 6523:. 6515:. 6503:. 6499:. 6479:. 6471:. 6461:51 6459:. 6439:. 6431:. 6423:. 6413:47 6411:. 6378:. 6368:. 6358:. 6346:. 6342:. 6311:. 6240:^ 6209:^ 6194:^ 6132:. 6124:. 6116:. 6104:. 6100:. 6066:. 6058:. 6048:. 6038:48 6036:. 6032:. 6008:. 6000:. 5992:. 5984:. 5972:49 5970:. 5966:. 5943:. 5935:. 5927:. 5919:. 5907:49 5905:. 5901:. 5878:. 5868:. 5860:. 5858:15 5856:. 5852:. 5827:. 5819:. 5809:. 5797:. 5793:. 5769:. 5759:. 5751:. 5741:. 5729:. 5725:. 5702:. 5694:. 5686:. 5678:. 5666:14 5664:. 5660:. 5648:^ 5634:. 5624:. 5616:. 5604:. 5600:. 5577:. 5569:. 5557:. 5553:. 5530:. 5522:. 5510:. 5506:. 5483:. 5475:. 5467:. 5459:. 5447:. 5443:. 5420:. 5412:. 5404:. 5396:. 5384:14 5382:. 5378:. 5355:. 5347:. 5337:. 5327:. 5315:. 5311:. 5288:. 5280:. 5272:. 5260:. 5236:. 5228:. 5218:. 5206:. 5202:. 5165:^ 5144:^ 5129:^ 5110:. 5048:^ 4979:. 4967:^ 4939:^ 4888:^ 4844:^ 4814:^ 4758:. 4746:. 4691:^ 4618:^ 4427:. 4369:. 4319:. 4290:^ 4275:^ 4211:^ 4149:^ 4102:^ 4068:^ 4053:^ 3880:^ 3837:^ 3811:. 3803:. 3795:. 3787:. 3775:67 3773:. 3769:. 3746:. 3738:. 3730:. 3722:. 3714:. 3702:48 3700:. 3696:. 3681:^ 3667:. 3659:. 3651:. 3639:. 3635:. 3612:. 3604:. 3596:. 3588:. 3576:. 3572:. 3549:. 3537:. 3533:. 3510:. 3500:. 3492:. 3484:. 3476:. 3462:. 3458:. 3435:. 3389:^ 3375:. 3365:29 3363:. 3359:. 3336:. 3328:. 3320:. 3312:. 3304:. 3292:48 3290:. 3286:. 3263:. 3255:. 3247:. 3237:. 3229:. 3217:. 3213:. 3189:^ 3134:^ 3113:. 3089:^ 3062:^ 3033:^ 3018:^ 2999:^ 2984:^ 2967:^ 2952:^ 2935:^ 2918:^ 2895:^ 2868:^ 2854:. 2846:. 2838:. 2830:. 2822:. 2808:. 2804:. 2773:. 2765:. 2757:. 2749:. 2737:. 2733:. 2718:^ 2704:. 2696:. 2688:. 2680:. 2668:. 2639:^ 2620:^ 2603:^ 2584:^ 2567:^ 2532:^ 2492:^ 2474:^ 2429:^ 2407:. 2403:. 2309:, 2291:Mg 2289:/( 2287:RT 2285:= 2283:sh 2278:sh 2256:, 2034:(H 2002:(S 1973:11 1967:10 1927:. 1499:. 1115:, 1073:, 978:. 970:, 870:, 850:, 814:, 802:, 798:, 774:(H 762:, 656:He 652:He 639:Ne 635:Ne 622:Ar 618:Ar 551:/H 537:/H 520:/H 503:/H 489:/H 475:/H 473:Xe 461:/H 459:Kr 447:/H 445:Ar 433:/H 431:Ne 414:He 238:, 234:, 113:, 109:, 90:, 78:, 74:, 9127:e 9120:t 9113:v 8860:, 8566:e 8559:t 8552:v 8465:: 8431:. 8427:: 8419:: 8395:. 8389:: 8381:: 8357:. 8353:: 8335:: 8291:. 8287:: 8279:: 8255:. 8251:: 8243:: 8219:. 8215:: 8207:: 8183:. 8177:: 8169:: 8145:. 8131:: 8123:: 8103:. 8099:: 8091:: 8067:. 8055:: 8047:: 8023:. 8019:: 8011:: 7994:. 7974:. 7940:. 7905:. 7885:. 7851:. 7839:: 7831:: 7812:. 7806:: 7798:: 7775:. 7755:: 7747:: 7728:. 7724:: 7716:: 7697:. 7683:: 7675:: 7652:. 7648:: 7640:: 7621:. 7617:: 7591:. 7587:: 7561:. 7557:: 7531:. 7500:. 7474:. 7468:: 7460:: 7452:: 7446:5 7433:. 7421:: 7413:: 7396:. 7376:: 7368:: 7351:. 7339:: 7331:: 7314:. 7310:: 7291:. 7287:: 7279:: 7260:. 7238:: 7230:: 7207:. 7180:. 7176:: 7168:: 7142:. 7112:. 7081:. 7061:: 7053:: 7030:. 7010:: 7002:: 6983:. 6971:: 6963:: 6953:: 6930:. 6918:: 6910:: 6900:: 6881:. 6877:: 6858:. 6854:: 6846:: 6822:. 6818:: 6810:: 6790:. 6786:: 6778:: 6759:. 6753:: 6745:: 6722:. 6691:. 6676:: 6653:. 6633:: 6625:: 6605:. 6593:: 6575:: 6549:. 6527:: 6519:: 6511:: 6487:. 6475:: 6467:: 6447:. 6427:: 6419:: 6386:. 6362:: 6354:: 6327:. 6140:. 6120:: 6112:: 6074:. 6052:: 6044:: 6016:. 5996:: 5988:: 5978:: 5951:. 5931:: 5923:: 5913:: 5886:. 5872:: 5864:: 5835:. 5813:: 5805:: 5777:. 5745:: 5737:: 5710:. 5690:: 5682:: 5672:: 5642:. 5628:: 5620:: 5612:: 5606:8 5585:. 5565:: 5538:. 5526:: 5518:: 5512:8 5491:. 5463:: 5455:: 5428:. 5408:: 5400:: 5390:: 5363:. 5341:: 5331:: 5323:: 5296:. 5276:: 5268:: 5244:. 5222:: 5214:: 5123:. 5095:. 5069:. 5042:. 5016:. 4989:. 4961:. 4933:. 4911:. 4882:. 4792:. 4766:. 4762:: 4754:: 4612:. 4542:. 4465:. 4438:. 4408:. 4382:. 4330:. 3986:. 3953:. 3819:. 3799:: 3791:: 3781:: 3754:. 3734:: 3726:: 3718:: 3708:: 3675:. 3655:: 3647:: 3620:. 3592:: 3584:: 3557:. 3553:: 3545:: 3518:. 3488:: 3480:: 3470:: 3443:. 3383:. 3379:: 3371:: 3344:. 3324:: 3316:: 3308:: 3298:: 3271:. 3241:: 3233:: 3225:: 3183:. 3146:. 3128:. 2994:. 2979:. 2913:. 2862:. 2842:: 2834:: 2826:: 2816:: 2788:. 2753:: 2745:: 2712:. 2684:: 2676:: 2527:. 2469:. 2423:. 2411:/ 2324:j 2322:g 2318:T 2312:M 2301:R 2296:) 2293:j 2229:) 2219:) 2036:2 2028:3 2016:2 2012:2 2004:2 1780:) 1582:K 1456:( 1214:S 1210:N 915:N 911:N 840:4 832:3 792:3 784:3 776:2 768:4 728:2 723:H 721:( 673:H 671:/ 669:D 654:/ 637:/ 620:/ 602:N 600:/ 598:N 585:C 583:/ 581:C 549:S 535:P 518:O 501:N 487:C 418:H 416:/ 380:3 375:H 373:( 318:2 316:) 314:4 306:4 271:K 20:)

Index

Jupiter's atmosphere

true-color image
Hubble Space Telescope
planetary atmosphere
Solar System
molecular hydrogen
helium
solar proportions
methane
ammonia
hydrogen sulfide
water
nitrogen
sulfur
noble gas
Jupiter
troposphere
stratosphere
thermosphere
exosphere
temperature gradients
ammonium hydrosulfide
zonal
equator
atmospheric super-rotation
cyclones
anticyclones
Great Red Spot
Oval BA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.