Knowledge

Isotopologue

Source 📝

436:
thermodynamically stable, which will tend to produce a higher abundance of the doubly substituted (or “clumped”) species than predicted by the statistical abundance of each heavy isotope (known as a stochastic distribution of isotopes). This effect increases in magnitude with decreasing temperature, so the abundance of the clumped species is related to the temperature at which the gas was formed or equilibrated. By measuring the abundance of the clumped species in standard gases formed in equilibrium at known temperatures, the thermometer can be calibrated and applied to samples with unknown abundances.
395:(IRMS) of doubly substituted species requires larger volumes of sample gas and longer analysis times than traditional stable isotope measurements, thereby requiring extremely stable instrumentation. Also, the doubly-substituted isotopologues are often subject to isobaric interferences, as in the methane system where CH 176:
The atom(s) of the different isotope may be anywhere in a molecule, so the difference is in the net chemical formula. If a compound has several atoms of the same element, any one of them could be the altered one, and it would still be the same isotopologue. When considering the different locations of
844:
Young E. D., Kohl I. E., Sherwood Lollar B., Etiope G., Rumble D. III, Li S., Haghnegahdar M. A., Schauble E. A., McCain K. A., Foustoukos D. I., Sutclife C., Warr O., Ballentine C. J., Onstott T. C., Hosgormez H., Neubeck A., Marques J. M., Pérez-Rodríguez I., Rowe A. R., LaRowe D. E., Magnabosco
514:
or mass spectrometry experiments, where isotopologues are used to elucidate metabolic pathways in a qualitative (detect new pathways) or quantitative (detect quantitative share of a pathway) approach. A popular example in biochemistry is the use of uniform labelled glucose (U-C glucose), which is
415:
D species at mass 18. A measurement of such species requires either very high mass resolving power to separate one isobar from another, or modeling of the contributions of the interfering species to the abundance of the species of interest. These analytical challenges are significant: The first
435:
When a light isotope is replaced with a heavy isotope (e.g., C for C), the bond between the two atoms will vibrate more slowly, thereby lowering the zero-point energy of the bond and acting to stabilize the molecule. An isotopologue with a doubly substituted bond is therefore slightly more
444:
The abundances of multiply substituted isotopologues can also be affected by kinetic processes. As for singly substituted isotopologues, departures from thermodynamic equilibrium in a doubly-substituted species can implicate the presence of a particular reaction taking place.
552:
To expand the linear dynamic response range of the mass spectrometer by following multiple isotopologues, with an isotopologue of lower abundance still generating linear response even while the isotopologues of higher abundance giving saturated
543:
The relative mass spectral intensity of natural isotopologues, calculable from the fractional abundances of the constituent elements, is exploited by mass spectrometry practitioners in quantitative analysis and unknown compound identification:
772:
Seeman, Jeffrey I.; Secor, Henry V.; Disselkamp, R.; Bernstein, E. R. (1992). "Conformational analysis through selective isotopic substitution: supersonic jet spectroscopic determination of the minimum energy conformation of o-xylene".
330:(doubly substituted isotopologues) of gases has been used in the field of stable isotope geochemistry to trace equilibrium and kinetic processes in the environment inaccessible by analysis of singly substituted isotopologues alone. 173:. Altogether, there are 9 different stable water isotopologues, and 9 radioactive isotopologues involving tritium, for a total of 18. However only certain ratios are possible in mixture, due to prevalent hydrogen swapping. 548:
To identify the more likely molecular formulas for an unknown compound based on the matching between the observed isotope abundance pattern in an experiment and the expected isotope abundance patterns for given molecular
916:
Stolper, D. A.; Sessions, A. L.; Ferreira, A. A.; Neto, E. V. Santos; Schimmelmann, A.; Shusta, S. S.; Valentine, D. L.; Eiler, J. M. (2014). "Combined C–D and D–D clumping in methane: methods and preliminary results".
1039:
Magyar, P. M.; Orphan, V. J.; and Eiler, J. M. (2016) Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry. Rapid Commun. Mass Spectrom., 30: 1923–1940.
195:
of different elements in a structure. Depending on the formula and the symmetry of the structure, there might be several isotopomers of one isotopologue. For example, ethanol has the molecular formula
1327:
Liu, Hanghui (2011). "Expanding the linear dynamic range for multiple reaction monitoring in quantitative liquid chromatography–tandem mass spectrometry utilizing natural isotopologue transitions".
515:
metabolized by the organism under investigation (e. g. bacterium, plant, or animal) and whose signatures can later be detected in newly formed amino acid or metabolically cycled products.
1356:"Importance of Utilizing Natural Isotopologue Transitions in Expanding the Linear Dynamic Range of LC-MS/MS Assay for Small-Molecule Pharmacokinetic Sample Analysis – A mini-review" 416:
publication precisely measuring doubly substituted isotopologues did not appear until 2004, though singly substituted isotopologues had been measured for decades previously.
1454:
Stokvis, Ellen (2005). "Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not?".
423:
has also emerged as a method to measure doubly substituted species free from isobaric interferences, and has been applied to the methane isotopologue CH
618: 835:
Ghosh, Prosenjit, et al. "C–O bonds in carbonate minerals: A new kind of paleothermometer". Geochimica et Cosmochimica Acta 70.6 (2006): 1439–1456.
952:
Yeung, L. Y.; Young, E. D.; Schauble, E. A. (2012). "Measurements of OO and OO in the atmosphere and the role of isotope-exchange reactions".
420: 1128:
Wang, Z.; Schauble, E. A.; Eiler, J. M. (2004). "Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases".
306:, isotopologues of simple molecules containing rare heavy isotopes of carbon, oxygen, hydrogen, nitrogen, and sulfur are used to trace 562:
A compound tagged by replacing specific atoms with the corresponding isotopes can facilitate the following mass spectrometry methods:
857:
D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gas". Geochimica et Cosmochimica Acta 203, 235–264.
989:"A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O 584: 392: 1118:
Urey, H. C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. London 1947, 561–581.
1300:
Bluck, Les. "The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part I: The Theory".
511: 269: 1049:
Eiler, John M.; et al. (2013). "A high-resolution gas-source isotope ratio mass spectrometer".
579: 188: 311: 285: 845:
C., Yeung L. Y., Ash J. L., and Bryndzia L. T. (2017) "The relative abundances of resolved CH
273: 1180: 1137: 1093: 1058: 1012: 961: 926: 307: 303: 297: 162: 149:-related isotopologues of water include the commonly available form of heavy-oxygen water ( 8: 797: 1184: 1141: 1097: 1062: 1016: 965: 930: 1431: 1404: 1380: 1355: 1242: 1217: 478: 1508: 1471: 1436: 1385: 1309: 1282: 1247: 1198: 898: 532: 528: 474: 184: 1233: 628: 1463: 1426: 1416: 1375: 1367: 1336: 1274: 1237: 1229: 1188: 1145: 1101: 1066: 1020: 969: 934: 888: 880: 809: 778: 632: 623: 594: 327: 78: 47: 1340: 490: 192: 114: 867:
Ono, Shuhei (2014). "Measurement of a Doubly Substituted Methane Isotopologue,CH
1371: 1070: 1025: 988: 454: 446: 337: 1149: 1105: 938: 814: 1502: 494: 477:
in the formation of methane, as well as mixing and equilibration of multiple
379: 284:) do not interfere with the solutes' H signals, and in investigations of the 1193: 1164: 636: 1475: 1440: 1421: 1389: 1313: 1286: 1251: 1202: 902: 315: 973: 782: 599: 470: 94: 893: 569:
Stable isotopically labeled internal standards for quantitative analysis
1405:"Metabolic Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes" 589: 179: 161:
isotope. Both elements may be replaced by isotopes, for example in the
86: 20: 1278: 884: 627:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (1994) " 449:
occurring in the atmosphere has been shown to alter the abundance of O
1467: 391:
Because of the relative rarity of the heavy isotopes of C, H, and O,
82: 27: 1218:"SIRIUS: Decomposing isotope patterns for metabolite identification" 419:
As an alternative to more conventional gas source IRMS instruments,
370: 66: 39: 1265:
Wang, Yongdong (2010). "The Concept of Spectral Accuracy for MS".
485:
O isotopologues NNO and {{sup>15}}NNO can distinguish whether N
524: 343: 142: 55: 43: 1084:
Eiler, J. M.; Schauble, E. (2004). "OCO in Earth's atmosphere".
1492: 360: 146: 987:
Young, E. D.; Rumble, D. III; Freedman, P.; Mills, M. (2016).
871:
D, by Tunable Infrared Laser Direct Absorption Spectroscopy".
771: 333:
Currently measured doubly substituted isotopologues include:
62: 796:
Seeman, Jeffrey I.; Paine, III, John B. (December 7, 1992).
915: 51: 187:
and Paine in 1992, is used. Isotopomerism is analogous to
986: 775:
Journal of the Chemical Society, Chemical Communications
538: 141:, where some or all of the hydrogen is the radioactive 473:
and have been used to demonstrate the significance of
157:) and the more difficult to separate version with the 500: 481:. Variations in the relative abundances of the two N 263: 231:, is an isotopologue of it. The structural formulas 557: 510:Multiple substituted isotopologues may be used for 321: 258: 951: 798:"Letter to the Editor: 'Isotopomers, Isotopologs'" 69:-related isotopologues are: "light water" (HOH or 54:, but at least one atom has a different number of 16:Molecules which differ only in isotope composition 1493:Fractional abundance of atmospheric isotopologues 1127: 518: 268:Singly substituted isotopologues may be used for 1500: 795: 1165:"Biological signatures in clumped isotopes of O 1163:Yeung, L. Y.; Ash, J. L.; Young, E. D. (2015). 272:experiments, where deuterated solvents such as 1162: 1083: 430: 505: 421:tunable diode laser absorption spectroscopy 403:D ions interfere with measurement of the CH 291: 1051:International Journal of Mass Spectrometry 1005:International Journal of Mass Spectrometry 523:Resulting from either naturally occurring 386: 255:are two isotopomers of that isotopologue. 1456:Rapid Communications in Mass Spectrometry 1430: 1420: 1379: 1241: 1192: 1024: 892: 813: 314:processes in natural environments and in 439: 1453: 531:, isotopologues can be used in various 1501: 1215: 1048: 765: 715:The nine tritiated isotopologues are 539:Applications of natural isotopologues 1402: 1353: 1264: 1326: 866: 13: 1360:Journal of Pharmaceutical Sciences 647:The nine stable isotopologues are 624:Compendium of Chemical Terminology 501:Multiple substituted isotopologues 14: 1520: 1486: 1299: 489:O has been produced by bacterial 264:Analytical chemistry applications 808:(2). American Chemical Society. 558:Applications of isotope labeling 326:Measurement of the abundance of 322:Doubly substituted isotopologues 259:Singly substituted isotopologues 46:composition. They have the same 1447: 1396: 1347: 1320: 1293: 1258: 1209: 1156: 1121: 1112: 1086:Geochimica et Cosmochimica Acta 1077: 1042: 1033: 980: 954:Journal of Geophysical Research 945: 802:Chemical & Engineering News 585:Isotope-ratio mass spectrometry 471:microbial processing of methane 393:isotope-ratio mass spectrometry 85:isotope in equal proportion to 909: 860: 838: 829: 789: 709: 641: 612: 519:Mass spectrometry applications 113:); and "super-heavy water" or 1: 1341:10.1016/j.talanta.2011.09.063 1234:10.1093/bioinformatics/btn603 605: 566:Metabolic flux analysis (MFA) 97:" with two deuterium atoms ( 7: 573: 304:stable isotope geochemistry 207:. Mono-deuterated ethanol, 177:the same isotope, the term 50:and bonding arrangement of 10: 1525: 1372:10.1016/j.xphs.2021.12.012 1071:10.1016/j.ijms.2012.10.014 1026:10.1016/j.ijms.2016.01.006 512:nuclear magnetic resonance 295: 270:nuclear magnetic resonance 42:that differ only in their 18: 1150:10.1016/j.gca.2004.05.039 1106:10.1016/j.gca.2004.05.035 939:10.1016/j.gca.2013.10.045 815:10.1021/cen-v070n049.p002 453:from equilibrium, as has 431:Equilibrium fractionation 1130:Geochim. Cosmochim. Acta 919:Geochim. Cosmochim. Acta 580:Mass (mass spectrometry) 506:Biochemical applications 292:Geochemical applications 189:constitutional isomerism 19:Not to be confused with 1194:10.1126/science.aaa6284 637:10.1351/goldbook.I03351 387:Analytical requirements 1422:10.3390/metabo10110447 286:kinetic isotope effect 440:Kinetic fractionation 274:deuterated chloroform 1403:Wang, Yujue (2020). 1354:Bach, Thanh (2022). 974:10.1029/2012JD017992 873:Analytical Chemistry 783:10.1039/C39920000713 457:. Measurements of CH 298:Isotope geochemistry 183:, first proposed by 163:doubly labeled water 1216:Böcker, S. (2009). 1185:2015Sci...348..431Y 1142:2004GeCoA..68.4779W 1098:2004GeCoA..68.4767E 1063:2013IJMSp.335...45E 1017:2016IJMSp.401....1Y 966:2012JGRD..11718306Y 931:2014GeCoA.126..169S 1495:, SpectralCalc.com 479:methane reservoirs 1279:10.1021/ac100888b 1273:(17): 7055–7062. 1179:(6233): 431–434. 1136:(23): 4779–4797. 1092:(23): 4767–4777. 885:10.1021/ac5010579 879:(13): 6487–6494. 533:mass spectrometry 529:isotopic labeling 475:quantum tunneling 58:than the parent. 1516: 1480: 1479: 1468:10.1002/rcm.1790 1451: 1445: 1444: 1434: 1424: 1400: 1394: 1393: 1383: 1366:(5): 1245–1249. 1351: 1345: 1344: 1324: 1318: 1317: 1297: 1291: 1290: 1262: 1256: 1255: 1245: 1213: 1207: 1206: 1196: 1160: 1154: 1153: 1125: 1119: 1116: 1110: 1109: 1081: 1075: 1074: 1046: 1040: 1037: 1031: 1030: 1028: 1001:and other gases" 984: 978: 977: 949: 943: 942: 913: 907: 906: 896: 864: 858: 842: 836: 833: 827: 826: 824: 822: 817: 793: 787: 786: 769: 763: 762: 754: 750: 746: 738: 734: 730: 722: 718: 713: 707: 706: 698: 694: 686: 678: 674: 666: 658: 654: 645: 639: 616: 595:Clumped isotopes 493:or by bacterial 328:clumped isotopes 302:In the field of 254: 242: 230: 218: 206: 172: 160: 156: 140: 136: 132: 124: 112: 104: 92: 79:semi-heavy water 76: 48:chemical formula 1524: 1523: 1519: 1518: 1517: 1515: 1514: 1513: 1499: 1498: 1489: 1484: 1483: 1452: 1448: 1401: 1397: 1352: 1348: 1325: 1321: 1298: 1294: 1263: 1259: 1214: 1210: 1168: 1161: 1157: 1126: 1122: 1117: 1113: 1082: 1078: 1047: 1043: 1038: 1034: 1000: 996: 992: 985: 981: 960:(D18): D18306. 950: 946: 914: 910: 870: 865: 861: 856: 852: 848: 843: 839: 834: 830: 820: 818: 794: 790: 770: 766: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 714: 710: 704: 700: 696: 692: 688: 684: 680: 676: 672: 668: 664: 660: 656: 652: 648: 646: 642: 617: 613: 608: 576: 560: 541: 521: 508: 503: 491:denitrification 488: 484: 468: 464: 460: 452: 442: 433: 426: 414: 410: 406: 402: 398: 389: 376: 366: 357: 353: 349: 324: 300: 294: 283: 279: 266: 261: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 193:stereoisomerism 170: 166: 158: 154: 150: 138: 134: 130: 126: 122: 118: 115:tritiated water 110: 106: 102: 98: 90: 74: 70: 24: 17: 12: 11: 5: 1522: 1512: 1511: 1497: 1496: 1488: 1487:External links 1485: 1482: 1481: 1462:(3): 401–407. 1446: 1395: 1346: 1319: 1292: 1257: 1228:(2): 218–224. 1222:Bioinformatics 1208: 1166: 1155: 1120: 1111: 1076: 1041: 1032: 998: 994: 990: 979: 944: 908: 868: 859: 854: 850: 846: 837: 828: 788: 764: 758: 742: 726: 708: 702: 690: 682: 670: 662: 650: 640: 610: 609: 607: 604: 603: 602: 597: 592: 587: 582: 575: 572: 571: 570: 567: 559: 556: 555: 554: 550: 540: 537: 535:applications. 527:or artificial 520: 517: 507: 504: 502: 499: 486: 482: 466: 462: 458: 455:photosynthesis 450: 447:Photochemistry 441: 438: 432: 429: 424: 412: 408: 404: 400: 396: 388: 385: 384: 383: 377: 374: 368: 364: 358: 355: 351: 347: 341: 338:Carbon dioxide 323: 320: 296:Main article: 293: 290: 281: 277: 265: 262: 260: 257: 250: 246: 238: 234: 226: 222: 214: 210: 202: 198: 168: 152: 128: 120: 108: 100: 72: 61:An example is 34:(also spelled 15: 9: 6: 4: 3: 2: 1521: 1510: 1507: 1506: 1504: 1494: 1491: 1490: 1477: 1473: 1469: 1465: 1461: 1457: 1450: 1442: 1438: 1433: 1428: 1423: 1418: 1414: 1410: 1406: 1399: 1391: 1387: 1382: 1377: 1373: 1369: 1365: 1361: 1357: 1350: 1342: 1338: 1334: 1330: 1323: 1315: 1311: 1307: 1303: 1296: 1288: 1284: 1280: 1276: 1272: 1268: 1261: 1253: 1249: 1244: 1239: 1235: 1231: 1227: 1223: 1219: 1212: 1204: 1200: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1159: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1115: 1107: 1103: 1099: 1095: 1091: 1087: 1080: 1072: 1068: 1064: 1060: 1056: 1052: 1045: 1036: 1027: 1022: 1018: 1014: 1010: 1006: 1002: 983: 975: 971: 967: 963: 959: 955: 948: 940: 936: 932: 928: 924: 920: 912: 904: 900: 895: 890: 886: 882: 878: 874: 863: 841: 832: 816: 811: 807: 803: 799: 792: 784: 780: 776: 768: 712: 644: 638: 634: 630: 626: 625: 620: 615: 611: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 577: 568: 565: 564: 563: 551: 547: 546: 545: 536: 534: 530: 526: 516: 513: 498: 496: 495:nitrification 492: 480: 476: 472: 469:can identify 456: 448: 437: 428: 422: 417: 394: 382:: NNO and NNO 381: 380:Nitrous oxide 378: 372: 369: 362: 359: 345: 342: 339: 336: 335: 334: 331: 329: 319: 317: 313: 309: 305: 299: 289: 287: 275: 271: 256: 194: 190: 186: 182: 181: 174: 165:isotopologue 164: 148: 144: 139:DTO [HHO] 135:HTO [HHO] 133:, as well as 116: 96: 88: 84: 80: 68: 64: 59: 57: 53: 49: 45: 41: 37: 33: 32:isotopologues 29: 22: 1459: 1455: 1449: 1412: 1408: 1398: 1363: 1359: 1349: 1332: 1328: 1322: 1305: 1302:Spectroscopy 1301: 1295: 1270: 1266: 1260: 1225: 1221: 1211: 1176: 1172: 1158: 1133: 1129: 1123: 1114: 1089: 1085: 1079: 1054: 1050: 1044: 1035: 1008: 1004: 982: 957: 953: 947: 922: 918: 911: 894:1721.1/98875 876: 872: 862: 840: 831: 819:. Retrieved 805: 801: 791: 774: 767: 711: 643: 629:Isotopologue 622: 614: 561: 542: 522: 509: 443: 434: 418: 390: 332: 325: 316:Earth's past 301: 267: 178: 175: 60: 35: 31: 25: 1415:(11): 447. 1409:Metabolites 1335:: 307–310. 925:: 169–191. 600:Isotopocule 308:equilibrium 95:heavy water 81:" with the 36:isotopologs 1308:(10): 36. 1267:Anal. Chem 777:(9): 713. 606:References 590:Isotopomer 180:isotopomer 145:isotope). 21:isotopomer 1057:: 45–56. 821:28 August 549:formulas. 83:deuterium 40:molecules 28:chemistry 1509:Isotopes 1503:Category 1476:15645520 1441:33172051 1390:34919967 1314:23772100 1287:20684651 1252:19015140 1203:25908819 1011:: 1–10. 997:, and CH 903:24895840 574:See also 553:signals. 525:isotopes 461:D and CH 371:Nitrogen 350:D and CH 89:(HDO or 67:hydrogen 65:, whose 56:neutrons 44:isotopic 1432:7694648 1381:9018470 1329:Talanta 1243:2639009 1181:Bibcode 1173:Science 1138:Bibcode 1094:Bibcode 1059:Bibcode 1013:Bibcode 962:Bibcode 927:Bibcode 344:Methane 312:kinetic 280:or CHCl 143:tritium 87:protium 1474:  1439:  1429:  1388:  1378:  1312:  1285:  1250:  1240:  1201:  901:  853:and CH 411:and CH 399:and CH 367:and OO 361:Oxygen 185:Seeman 147:Oxygen 38:) are 619:IUPAC 340:: COO 276:(CDCl 63:water 52:atoms 1472:PMID 1437:PMID 1386:PMID 1310:PMID 1283:PMID 1248:PMID 1199:PMID 899:PMID 823:2020 346:: CH 310:and 253:−O−H 249:D−CH 243:and 241:−O−D 137:and 93:), " 77:), " 1464:doi 1427:PMC 1417:doi 1376:PMC 1368:doi 1364:111 1337:doi 1275:doi 1238:PMC 1230:doi 1189:doi 1177:348 1146:doi 1102:doi 1067:doi 1055:335 1021:doi 1009:401 993:, N 970:doi 958:117 935:doi 923:126 889:hdl 881:doi 810:doi 779:doi 753:DOT 749:HOT 737:DOT 733:HOT 721:DOT 717:HOT 697:HOD 677:HOD 657:HOD 633:doi 631:". 427:D. 373:: N 363:: O 237:−CH 219:or 191:or 125:or 105:or 91:HHO 26:In 1505:: 1470:. 1460:19 1458:. 1435:. 1425:. 1413:10 1411:. 1407:. 1384:. 1374:. 1362:. 1358:. 1333:87 1331:. 1306:23 1304:. 1281:. 1271:82 1269:. 1246:. 1236:. 1226:25 1224:. 1220:. 1197:. 1187:. 1175:. 1171:. 1144:. 1134:68 1132:. 1100:. 1090:68 1088:. 1065:. 1053:. 1019:. 1007:. 1003:. 968:. 956:. 933:. 921:. 897:. 887:. 877:86 875:. 806:70 804:. 800:. 755:, 751:, 747:, 739:, 735:, 731:, 723:, 719:, 699:, 695:, 687:, 679:, 675:, 667:, 659:, 655:, 621:, 497:. 318:. 288:. 245:CH 233:CH 229:HO 217:DO 30:, 1478:. 1466:: 1443:. 1419:: 1392:. 1370:: 1343:. 1339:: 1316:. 1289:. 1277:: 1254:. 1232:: 1205:. 1191:: 1183:: 1169:" 1167:2 1152:. 1148:: 1140:: 1108:. 1104:: 1096:: 1073:. 1069:: 1061:: 1029:. 1023:: 1015:: 999:4 995:2 991:2 976:. 972:: 964:: 941:. 937:: 929:: 905:. 891:: 883:: 869:3 855:3 851:2 849:D 847:2 825:. 812:: 785:. 781:: 761:O 759:2 757:T 745:O 743:2 741:T 729:O 727:2 725:T 705:O 703:2 701:D 693:O 691:2 689:H 685:O 683:2 681:D 673:O 671:2 669:H 665:O 663:2 661:D 653:O 651:2 649:H 635:: 487:2 483:2 467:2 465:D 463:2 459:3 451:2 425:3 413:3 409:2 407:D 405:2 401:3 397:5 375:2 365:2 356:2 354:D 352:2 348:3 282:3 278:3 251:2 247:2 239:2 235:3 227:5 225:H 223:2 221:C 215:5 213:H 211:2 209:C 205:O 203:6 201:H 199:2 197:C 171:O 169:2 167:D 159:O 155:O 153:2 151:H 131:O 129:2 127:H 123:O 121:2 119:T 117:( 111:O 109:2 107:H 103:O 101:2 99:D 75:O 73:2 71:H 23:.

Index

isotopomer
chemistry
molecules
isotopic
chemical formula
atoms
neutrons
water
hydrogen
semi-heavy water
deuterium
protium
heavy water
tritiated water
tritium
Oxygen
doubly labeled water
isotopomer
Seeman
constitutional isomerism
stereoisomerism
nuclear magnetic resonance
deuterated chloroform
kinetic isotope effect
Isotope geochemistry
stable isotope geochemistry
equilibrium
kinetic
Earth's past
clumped isotopes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.