Knowledge

Hansen solubility parameter

Source đź“ť

730:
available, 'Sphere' software for determining HSP values of polymers, inks, quantum dots etc. is available (or easy to implement in one's own software) and the new Stefanis-Panayiotou method for estimating HSP from Unifac groups is available in the literature and also automated in software. All these new capabilities are described in the e-book, software, datasets described in the external links but can be implemented independently of any commercial package.
682:): they cannot account for negative deviations from Raoult's law that result from effects such as solvation (often important in water-soluble polymers) or the formation of electron donor acceptor complexes. Like any simple predictive theory, HSP are best used for screening with data used to validate the predictions. Hansen parameters have been used to estimate Flory-Huggins Chi parameters, often with reasonable accuracy. 772:, which have the same Hildebrand parameter, are each incapable of dissolving typical epoxy polymers. Yet a 50:50 mix gives a good solvency for epoxies. This is easily explainable knowing the Hansen parameter of the two solvents and that the Hansen parameter for the 50:50 mix is close to the Hansen parameter of epoxies. 678:. All practical correlations of phase equilibrium involve certain assumptions that may or may not apply to a given system. In particular, all solubility parameter-based theories have a fundamental limitation that they apply only to associated solutions (i.e., they can only predict positive deviations from 158:
These three parameters can be treated as co-ordinates for a point in three dimensions also known as the Hansen space. The nearer two molecules are in this three-dimensional space, the more likely they are to dissolve into each other. To determine if the parameters of two molecules (usually a solvent
729:
2008 work by Abbott and Hansen has helped address some of the above issues. Temperature variations can be calculated, the role of molar volume ("kinetics versus thermodynamics") is clarified, new chromatographic ways to measure HSP are available, large datasets for chemicals and polymers are
733:
Sometimes Hildebrand solubility parameters are used for similar purposes. Hildebrand parameters are not suitable for use outside their original area which was non-polar, non-hydrogen-bonding solvents. The Hildebrand parameter for such non-polar solvents is usually close to the Hansen
877:
M. Belmares, M. Blanco, W. A. Goddard III, R. B. Ross, G. Caldwell, S.-H. Chou, J. Pham, P. M. Olofson, Cristina Thomas, Hildebrand and Hansen Solubility Parameters from Molecular Dynamics with Applications to Electronic Nose Polymer Sensors, J Comput. Chem. 25: 1814–1826,
392: 612:
Historically Hansen solubility parameters (HSP) have been used in industries such as paints and coatings where understanding and controlling solvent–polymer interactions was vital. Over the years their use has been extended widely to applications such as:
703:
It has been shown that it is possible to calculate HSP via molecular dynamics techniques, though currently the polar and hydrogen bonding parameters cannot reliably be partitioned in a manner that is compatible with Hansen's values.
719:
The parameters are an approximation. Bonding between molecules is more subtle than the three parameters suggest. Molecular shape is relevant, as are other types of bonding such as induced dipole, metallic and electrostatic
220: 483: 665:
Safer, cheaper, and faster solvent blends where an undesirable solvent can be rationally replaced by a mix of more desirable solvents whose combined HSP equals the HSP of the original solvent.
188:) is given to the substance being dissolved. This value determines the radius of the sphere in Hansen space and its center is the three Hansen parameters. To calculate the distance ( 424: 186: 762: 148: 112: 76: 601: 522: 563: 689:
has been the subject of debate. There is some theoretical basis for the factor of four (see Ch 2 of Ref 1 and also. However, there are clearly systems (e.g. Bottino
212: 900: 815:
The Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient and Their Importance in Surface Coating Formulation
849: 387:{\displaystyle \ (Ra)^{2}=4(\delta _{d2}-\delta _{d1})^{2}+(\delta _{p2}-\delta _{p1})^{2}+(\delta _{h2}-\delta _{h1})^{2}} 432: 927:
Stefanis, E.; Panayiotou, C. (2008). "Prediction of Hansen Solubility Parameters with a New Group-Contribution Method".
697:(4), 785-79, 1988) where the regions of solubility are far more eccentric than predicted by the standard Hansen theory. 723:
The size of the molecules also plays a significant role in whether two molecules actually dissolve in a given period.
864:
C. M. Hansen, "Polymer science applied to biological problems: Prediction of cytotoxic drug interactions with DNA",
788: 675: 700:
HSP effects can be over-ridden by size effects (small molecules such as methanol can give "anomalous results").
617: 989: 994: 887:
Patterson, D., Role of Free Volume Changes in Polymer Solution Thermodynamics, J. Polym. Sci. Part C,
400: 162: 999: 737: 123: 87: 51: 764:
value. A typical example showing why Hildebrand parameters can be unhelpful is that two solvents,
646:
Permeation of solvents and chemicals through plastics to understand issues such as glove safety,
79: 571: 492: 693:, "Solubility parameters of poly(vinylidene fluoride)" J. Polym. Sci. Part B: Polymer Physics 45:
Specifically, each molecule is given three Hansen parameters, each generally measured in MPa:
533: 936: 634: 115: 31: 191: 8: 940: 827: 656:
of solvents into polymers via understanding of surface concentration based on RED number
952: 956: 845: 23: 944: 679: 630: 662:
Artificial noses (where response depends on polymer solubility of the test odor)
647: 151: 948: 983: 973:
Interactive web app for finding solvents with matching solubility parameters
624: 214:) between Hansen parameters in Hansen space the following formula is used: 42:
is defined as being 'like' another if it bonds to itself in a similar way.
674:
HSP have been criticized for lacking the formal theoretical derivation of
769: 638: 27: 26:
in his Ph.D thesis in 1967 as a way of predicting if one material will
685:
The factor of 4 in front of the dispersion term in the calculation of
653: 525: 159:
and a polymer) are within range, a value called interaction radius (
974: 39: 785:(has a chart of Hansen solubility parameters for various solvents) 782: 765: 842:
Hansen Solubility Parameters: A user's handbook, Second Edition
793: 426:
gives the relative energy difference (RED) of the system:
451: 740: 629:
Understanding of solubility/dispersion properties of
574: 536: 495: 435: 403: 223: 194: 165: 126: 90: 54: 478:{\displaystyle \ RED=\textstyle {\frac {Ra}{R_{0}}}} 911: 712:The following are limitations according to Hansen: 926: 756: 595: 557: 516: 477: 418: 386: 206: 180: 142: 106: 70: 981: 830:(note that values given are not in SI units) 623:Controlled dispersion of pigments, such as 397:Combining this with the interaction radius 716:The parameters will vary with temperature 914:Hansen Solubility Parameters in Practice 982: 929:International Journal of Thermophysics 839: 812: 669: 650:barrier properties and skin permeation 817:. Copenhagen: Danish Technical Press. 659:Cytotoxicity via interaction with DNA 726:The parameters are hard to measure. 13: 565:the system will partially dissolve 34:. They are based on the idea that 14: 1011: 967: 524:the molecules are alike and will 676:Hildebrand solubility parameters 419:{\displaystyle R_{\mathrm {0} }} 181:{\displaystyle R_{\mathrm {0} }} 789:Hildebrand solubility parameter 920: 905: 894: 881: 871: 858: 844:. Boca Raton, Fla: CRC Press. 833: 821: 806: 707: 375: 342: 330: 297: 285: 252: 237: 227: 1: 799: 757:{\displaystyle \ \delta _{d}} 618:Environmental stress cracking 143:{\displaystyle \ \delta _{h}} 107:{\displaystyle \ \delta _{p}} 71:{\displaystyle \ \delta _{d}} 916:. www.hansen-solubility.com. 912:Abbott & Hansen (2008). 603:the system will not dissolve 20:Hansen solubility parameters 7: 776: 10: 1016: 596:{\displaystyle \ RED>1} 517:{\displaystyle \ RED<1} 949:10.1007/s10765-008-0415-z 866:European Polymer Journal 840:Hansen, Charles (2007). 813:Hansen, Charles (1967). 114:The energy from dipolar 607: 558:{\displaystyle \ RED=1} 758: 597: 559: 518: 479: 420: 388: 208: 182: 144: 108: 72: 30:in another and form a 759: 598: 560: 519: 480: 421: 389: 209: 183: 145: 116:intermolecular forces 109: 73: 738: 643:Adhesion to polymers 572: 534: 493: 433: 401: 221: 207:{\displaystyle \ Ra} 192: 163: 124: 88: 52: 16:Concept in chemistry 941:2008IJT....29..568S 868:44, 2008, 2741–2748 670:Theoretical context 36:like dissolves like 990:Physical chemistry 754: 593: 555: 514: 475: 474: 416: 384: 204: 178: 154:between molecules. 140: 104: 68: 22:were developed by 995:Polymer chemistry 891:, 3379–3389, 1968 851:978-0-8493-7248-3 743: 577: 539: 498: 472: 438: 226: 197: 129: 118:between molecules 93: 82:between molecules 80:dispersion forces 57: 24:Charles M. Hansen 1007: 961: 960: 924: 918: 917: 909: 903: 898: 892: 885: 879: 875: 869: 862: 856: 855: 837: 831: 825: 819: 818: 810: 763: 761: 760: 755: 753: 752: 741: 631:carbon nanotubes 602: 600: 599: 594: 575: 564: 562: 561: 556: 537: 523: 521: 520: 515: 496: 484: 482: 481: 476: 473: 471: 470: 461: 453: 436: 425: 423: 422: 417: 415: 414: 413: 393: 391: 390: 385: 383: 382: 373: 372: 357: 356: 338: 337: 328: 327: 312: 311: 293: 292: 283: 282: 267: 266: 245: 244: 224: 213: 211: 210: 205: 195: 187: 185: 184: 179: 177: 176: 175: 150:The energy from 149: 147: 146: 141: 139: 138: 127: 113: 111: 110: 105: 103: 102: 91: 78:The energy from 77: 75: 74: 69: 67: 66: 55: 1015: 1014: 1010: 1009: 1008: 1006: 1005: 1004: 1000:1967 in science 980: 979: 970: 965: 964: 925: 921: 910: 906: 899: 895: 886: 882: 876: 872: 863: 859: 852: 838: 834: 828:Hansen's thesis 826: 822: 811: 807: 802: 779: 748: 744: 739: 736: 735: 710: 672: 610: 573: 570: 569: 535: 532: 531: 494: 491: 490: 466: 462: 454: 452: 434: 431: 430: 409: 408: 404: 402: 399: 398: 378: 374: 365: 361: 349: 345: 333: 329: 320: 316: 304: 300: 288: 284: 275: 271: 259: 255: 240: 236: 222: 219: 218: 193: 190: 189: 171: 170: 166: 164: 161: 160: 134: 130: 125: 122: 121: 98: 94: 89: 86: 85: 62: 58: 53: 50: 49: 17: 12: 11: 5: 1013: 1003: 1002: 997: 992: 978: 977: 969: 968:External links 966: 963: 962: 919: 904: 893: 880: 870: 857: 850: 832: 820: 804: 803: 801: 798: 797: 796: 791: 786: 778: 775: 774: 773: 751: 747: 731: 727: 724: 721: 717: 709: 706: 671: 668: 667: 666: 663: 660: 657: 651: 648:food packaging 644: 641: 627: 621: 609: 606: 605: 604: 592: 589: 586: 583: 580: 566: 554: 551: 548: 545: 542: 528: 513: 510: 507: 504: 501: 486: 485: 469: 465: 460: 457: 450: 447: 444: 441: 412: 407: 395: 394: 381: 377: 371: 368: 364: 360: 355: 352: 348: 344: 341: 336: 332: 326: 323: 319: 315: 310: 307: 303: 299: 296: 291: 287: 281: 278: 274: 270: 265: 262: 258: 254: 251: 248: 243: 239: 235: 232: 229: 203: 200: 174: 169: 156: 155: 152:hydrogen bonds 137: 133: 119: 101: 97: 83: 65: 61: 15: 9: 6: 4: 3: 2: 1012: 1001: 998: 996: 993: 991: 988: 987: 985: 976: 972: 971: 958: 954: 950: 946: 942: 938: 934: 930: 923: 915: 908: 902: 897: 890: 884: 874: 867: 861: 853: 847: 843: 836: 829: 824: 816: 809: 805: 795: 792: 790: 787: 784: 781: 780: 771: 767: 749: 745: 732: 728: 725: 722: 720:interactions. 718: 715: 714: 713: 705: 701: 698: 696: 692: 688: 683: 681: 677: 664: 661: 658: 655: 652: 649: 645: 642: 640: 636: 632: 628: 626: 622: 619: 616: 615: 614: 590: 587: 584: 581: 578: 567: 552: 549: 546: 543: 540: 529: 527: 511: 508: 505: 502: 499: 488: 487: 467: 463: 458: 455: 448: 445: 442: 439: 429: 428: 427: 410: 405: 379: 369: 366: 362: 358: 353: 350: 346: 339: 334: 324: 321: 317: 313: 308: 305: 301: 294: 289: 279: 276: 272: 268: 263: 260: 256: 249: 246: 241: 233: 230: 217: 216: 215: 201: 198: 172: 167: 153: 135: 131: 120: 117: 99: 95: 84: 81: 63: 59: 48: 47: 46: 43: 41: 37: 33: 29: 25: 21: 932: 928: 922: 913: 907: 896: 888: 883: 873: 865: 860: 841: 835: 823: 814: 808: 711: 702: 699: 694: 690: 686: 684: 680:Raoult's law 673: 639:quantum dots 625:carbon black 611: 396: 157: 44: 35: 19: 18: 770:nitroethane 708:Limitations 620:of polymers 984:Categories 935:(2): 568. 800:References 635:Buckyballs 38:where one 957:121230634 746:δ 654:Diffusion 363:δ 359:− 347:δ 318:δ 314:− 302:δ 273:δ 269:− 257:δ 132:δ 96:δ 60:δ 777:See also 526:dissolve 40:molecule 32:solution 28:dissolve 937:Bibcode 901:587.pdf 783:Solvent 766:butanol 955:  848:  794:MOSCED 742:  691:et al. 637:, and 576:  538:  497:  437:  225:  196:  128:  92:  56:  953:S2CID 975:Link 878:2004 846:ISBN 768:and 608:Uses 588:> 509:< 945:doi 568:If 530:If 489:If 986:: 951:. 943:. 933:29 931:. 889:16 695:26 687:Ra 633:, 959:. 947:: 939:: 854:. 750:d 591:1 585:D 582:E 579:R 553:1 550:= 547:D 544:E 541:R 512:1 506:D 503:E 500:R 468:0 464:R 459:a 456:R 449:= 446:D 443:E 440:R 411:0 406:R 380:2 376:) 370:1 367:h 354:2 351:h 343:( 340:+ 335:2 331:) 325:1 322:p 309:2 306:p 298:( 295:+ 290:2 286:) 280:1 277:d 264:2 261:d 253:( 250:4 247:= 242:2 238:) 234:a 231:R 228:( 202:a 199:R 173:0 168:R 136:h 100:p 64:d

Index

Charles M. Hansen
dissolve
solution
molecule
dispersion forces
intermolecular forces
hydrogen bonds
dissolve
Environmental stress cracking
carbon black
carbon nanotubes
Buckyballs
quantum dots
food packaging
Diffusion
Hildebrand solubility parameters
Raoult's law
butanol
nitroethane
Solvent
Hildebrand solubility parameter
MOSCED
Hansen's thesis
ISBN
978-0-8493-7248-3
587.pdf
Bibcode
2008IJT....29..568S
doi
10.1007/s10765-008-0415-z

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑