Knowledge

Gel electrophoresis

Source đź“ť

463: 622:
4-chloro-2-2methylbenzenediazonium salt with 3-phospho-2-naphthoic acid-2'-4'-dimethyl aniline in Tris buffer. This stain is commercially sold as a kit for staining gels. If the protein is present, the mechanism of the reaction takes place in the following order: it starts with the de-phosphorylation of 3-phospho-2-naphthoic acid-2'-4'-dimethyl aniline by alkaline phosphatase (water is needed for the reaction). The phosphate group is released and replaced by an alcohol group from water. The electrophile 4- chloro-2-2 methylbenzenediazonium (Fast Red TR Diazonium salt) displaces the alcohol group forming the final product Red Azo dye. As its name implies, this is the final visible-red product of the reaction. In undergraduate academic experimentation of protein purification, the gel is usually run next to commercial purified samples to visualize the results and conclude whether or not purification was successful.
661:, which is rarely used, based on Pubmed citations (LB), isoelectric histidine, pK matched goods buffers, etc.; in most cases the purported rationale is lower current (less heat) matched ion mobilities, which leads to longer buffer life. Borate is problematic; Borate can polymerize, or interact with cis diols such as those found in RNA. TAE has the lowest buffering capacity but provides the best resolution for larger DNA. This means a lower voltage and more time, but a better product. LB is relatively new and is ineffective in resolving fragments larger than 5 kbp; However, with its low conductivity, a much higher voltage could be used (up to 35 V/cm), which means a shorter analysis time for routine electrophoresis. As low as one base pair size difference could be resolved in 3% agarose gel with an extremely low conductivity medium (1 mM Lithium borate). 311:
pH, but running for too long can exhaust the buffering capacity of the solution. There are also limitations in determining the molecular weight by SDS-PAGE, especially when trying to find the MW of an unknown protein. Certain biological variables are difficult or impossible to minimize and can affect electrophoretic migration. Such factors include protein structure, post-translational modifications, and amino acid composition. For example, tropomyosin is an acidic protein that migrates abnormally on SDS-PAGE gels. This is because the acidic residues are repelled by the negatively charged SDS, leading to an inaccurate mass-to-charge ratio and migration. Further, different preparations of genetic material may not migrate consistently with each other, for morphological or other reasons.
92: 559: 227:. The electric field consists of a negative charge at one end which pushes the molecules through the gel, and a positive charge at the other end that pulls the molecules through the gel. The molecules being sorted are dispensed into a well in the gel material. The gel is placed in an electrophoresis chamber, which is then connected to a power source. When the electric field is applied, the larger molecules move more slowly through the gel while the smaller molecules move faster. The different sized molecules form distinct bands on the gel. 286:(EMF) that is used to move the molecules through the gel matrix. By placing the molecules in wells in the gel and applying an electric field, the molecules will move through the matrix at different rates, determined largely by their mass when the charge-to-mass ratio (Z) of all species is uniform. However, when charges are not all uniform the electrical field generated by the electrophoresis procedure will cause the molecules to migrate differentially according to charge. Species that are net positively charged will migrate towards the 333: 955:(SDS) that coats the proteins with a negative charge. Generally, the amount of SDS bound is relative to the size of the protein (usually 1.4g SDS per gram of protein), so that the resulting denatured proteins have an overall negative charge, and all the proteins have a similar charge-to-mass ratio. Since denatured proteins act like long rods instead of having a complex tertiary shape, the rate at which the resulting SDS coated proteins migrate in the gel is relative only to their size and not their charge or shape. 29: 377:"Most agarose gels are made with between 0.7% (good separation or resolution of large 5–10kb DNA fragments) and 2% (good resolution for small 0.2–1kb fragments) agarose dissolved in electrophoresis buffer. Up to 3% can be used for separating very tiny fragments but a vertical polyacrylamide gel is more appropriate in this case. Low percentage gels are very weak and may break when you try to lift them. High percentage gels are often brittle and do not set evenly. 1% gels are common for many applications." 83: 3224: 209: 1013:
distribution), which then can be used in further products/processes (e.g. self-assembly processes). For the separation of nanoparticles within a gel, the key parameter is the ratio of the particle size to the mesh size, whereby two migration mechanisms were identified: the unrestricted mechanism, where the particle size << mesh size, and the restricted mechanism, where particle size is similar to mesh size.
3236: 829:. The results can be analyzed quantitatively by visualizing the gel with UV light and a gel imaging device. The image is recorded with a computer-operated camera, and the intensity of the band or spot of interest is measured and compared against standard or markers loaded on the same gel. The measurement and analysis are mostly done with specialized software. 927: 302:
separation of the components can lead to overlapping bands, or indistinguishable smears representing multiple unresolved components. Bands in different lanes that end up at the same distance from the top contain molecules that passed through the gel at the same speed, which usually means they are approximately the same size. There are
594:. Complexes remain—for the most part—associated and folded as they would be in the cell. One downside, however, is that complexes may not separate cleanly or predictably, as it is difficult to predict how the molecule's shape and size will affect its mobility. Addressing and solving this problem is a major aim of 877:, however, may show multiple bands, the speed of migration may depend on whether it is relaxed or supercoiled. Single-stranded DNA or RNA tends to fold up into molecules with complex shapes and migrate through the gel in a complicated manner based on their tertiary structure. Therefore, agents that disrupt the 911:
Electrophoresis of RNA samples can be used to check for genomic DNA contamination and also for RNA degradation. RNA from eukaryotic organisms shows distinct bands of 28s and 18s rRNA, the 28s band being approximately twice as intense as the 18s band. Degraded RNA has less sharply defined bands, has a
582:
Native gels are run in non-denaturing conditions so that the analyte's natural structure is maintained. This allows the physical size of the folded or assembled complex to affect the mobility, allowing for analysis of all four levels of the biomolecular structure. For biological samples, detergents
306:
available that contain a mixture of molecules of known sizes. If such a marker was run on one lane in the gel parallel to the unknown samples, the bands observed can be compared to those of the unknown to determine their size. The distance a band travels is approximately inversely proportional to the
617:
and intrinsic charge, but also the cross-sectional area, and thus experience different electrophoretic forces dependent on the shape of the overall structure. For proteins, since they remain in the native state they may be visualized not only by general protein staining reagents but also by specific
391:
Polyacrylamide gel electrophoresis (PAGE) is used for separating proteins ranging in size from 5 to 2,000 kDa due to the uniform pore size provided by the polyacrylamide gel. Pore size is controlled by modulating the concentrations of acrylamide and bis-acrylamide powder used in creating a gel. Care
365:
to several megabases (millions of bases), the largest of which require specialized apparatus. The distance between DNA bands of different lengths is influenced by the percent agarose in the gel, with higher percentages requiring longer run times, sometimes days. Instead high percentage agarose gels
310:
There are limits to electrophoretic techniques. Since passing a current through a gel causes heating, gels may melt during electrophoresis. Electrophoresis is performed in buffer solutions to reduce pH changes due to the electric field, which is important because the charge of DNA and RNA depends on
301:
If several samples have been loaded into adjacent wells in the gel, they will run parallel in individual lanes. Depending on the number of different molecules, each lane shows the separation of the components from the original mixture as one or more distinct bands, one band per component. Incomplete
648:
Buffers in gel electrophoresis are used to provide ions that carry a current and to maintain the pH at a relatively constant value. These buffers have plenty of ions in them, which is necessary for the passage of electricity through them. Something like distilled water or benzene contains few ions,
435:
are made in 6%, 8%, 10%, 12% or 15%. Stacking gel (5%) is poured on top of the resolving gel and a gel comb (which forms the wells and defines the lanes where proteins, sample buffer, and ladders will be placed) is inserted. The percentage chosen depends on the size of the protein that one wishes
319:
The types of gel most typically used are agarose and polyacrylamide gels. Each type of gel is well-suited to different types and sizes of the analyte. Polyacrylamide gels are usually used for proteins and have very high resolving power for small fragments of DNA (5-500 bp). Agarose gels, on the
1187:
A 1959 book on electrophoresis by Milan Bier cites references from the 1800s. However, Oliver Smithies made significant contributions. Bier states: "The method of Smithies ... is finding wide application because of its unique separatory power." Taken in context, Bier clearly implies that Smithies'
161:
or other substances. Shorter molecules move faster and migrate farther than longer ones because shorter molecules migrate more easily through the pores of the gel. This phenomenon is called sieving. Proteins are separated by the charge in agarose because the pores of the gel are too large to sieve
37:
is placed in this buffer-filled box and an electric current is applied via the power supply to the rear. The negative terminal is at the far end (black wire), so DNA migrates toward the positively charged anode(red wire). This occurs because phosphate groups found in the DNA fragments possess a
169:
Gel electrophoresis uses a gel as an anticonvective medium or sieving medium during electrophoresis, the movement of a charged particle in an electric current. Gels suppress the thermal convection caused by the application of the electric field, and can also act as a sieving medium, slowing the
448:
potato starch makes for another non-toxic medium for protein electrophoresis. The gels are slightly more opaque than acrylamide or agarose. Non-denatured proteins can be separated according to charge and size. They are visualised using Napthal Black or Amido Black staining. Typical starch gel
1012:
A novel application for gel electrophoresis is the separation or characterization of metal or metal oxide nanoparticles (e.g. Au, Ag, ZnO, SiO2) regarding the size, shape, or surface chemistry of the nanoparticles. The scope is to obtain a more homogeneous sample (e.g. narrower particle size
621:
A specific experiment example of an application of native gel electrophoresis is to check for enzymatic activity to verify the presence of the enzyme in the sample during protein purification. For example, for the protein alkaline phosphatase, the staining solution is a mixture of
407:
methods used polyacrylamide gels to separate DNA fragments differing by a single base-pair in length so the sequence could be read. Most modern DNA separation methods now use agarose gels, except for particularly small DNA fragments. It is currently most often used in the field of
324:(PFGE). Polyacrylamide gels are run in a vertical configuration while agarose gels are typically run horizontally in a submarine mode. They also differ in their casting methodology, as agarose sets thermally, while polyacrylamide forms in a chemical polymerization reaction. 357:. Agarose gels are easily cast and handled compared to other matrices because the gel setting is a physical rather than chemical change. Samples are also easily recovered. After the experiment is finished, the resulting gel can be stored in a plastic bag in a refrigerator. 668:
that significantly enhances the sharpness of the bands within the gel. During electrophoresis in a discontinuous gel system, an ion gradient is formed in the early stage of electrophoresis that causes all of the proteins to focus on a single sharp band in a process called
847: 86:
The image above shows how small DNA fragments will migrate through agarose quickly but large size DNA fragments move more slowly during electrophoresis. The graph to the right shows the nonlinear relationship between the size of the DNA fragment and the distance
274:
and must be handled using appropriate safety precautions to avoid poisoning. Agarose is composed of long unbranched chains of uncharged carbohydrates without cross-links resulting in a gel with large pores allowing for the separation of macromolecules and
673:. Separation of the proteins by size is achieved in the lower, "resolving" region of the gel. The resolving gel typically has a much smaller pore size, which leads to a sieving effect that now determines the electrophoretic mobility of the proteins. 298:), whereas species that are net negatively charged will migrate towards the positively charged anode. Mass remains a factor in the speed with which these non-uniformly charged molecules migrate through the matrix toward their respective electrodes. 170:
passage of molecules; gels can also simply serve to maintain the finished separation so that a post electrophoresis stain can be applied. DNA gel electrophoresis is usually performed for analytical purposes, often after amplification of DNA via
943:, unlike nucleic acids, can have varying charges and complex shapes, therefore they may not migrate into the polyacrylamide gel at similar rates, or all when placing a negative to positive EMF on the sample. Proteins, therefore, are usually 2094: 360:
Agarose gels do not have a uniform pore size, but are optimal for electrophoresis of proteins that are larger than 200 kDa. Agarose gel electrophoresis can also be used for the separation of DNA fragments ranging from 50
2356:
Barasinski, Matthäus; Garnweitner, Georg (12 February 2020). "Restricted and Unrestricted Migration Mechanisms of Silica Nanoparticles in Agarose Gels and Their Utilization for the Separation of Binary Mixtures".
436:
to identify or probe in the sample. The smaller the known weight, the higher the percentage that should be used. Changes in the buffer system of the gel can help to further resolve proteins of very small sizes.
320:
other hand, have lower resolving power for DNA but have a greater range of separation, and are therefore used for DNA fragments of usually 50–20,000 bp in size, but the resolution of over 6 Mb is possible with
832:
Depending on the type of analysis being performed, other techniques are often implemented in conjunction with the results of gel electrophoresis, providing a wide range of field-specific applications.
523:
Denaturing conditions are necessary for proper estimation of molecular weight of RNA. RNA is able to form more intramolecular interactions than DNA which may result in change of its
1984: 1900: 371: 2035: 466:
TTGE profiles representing the bifidobacterial diversity of fecal samples from two healthy volunteers (A and B) before and after AMC (Oral Amoxicillin-Clavulanic Acid) treatment
219:
is a process that enables the sorting of molecules based on charge, size, or shape. Using an electric field, molecules (such as DNA) can be made to move through a gel made of
904:" page for an example of a polyacrylamide DNA sequencing gel. Characterization through ligand interaction of nucleic acids or fragments may be performed by mobility shift 1541: 307:
logarithm of the size of the molecule (alternatively, this can be stated as the distance traveled is inversely proportional to the log of samples's molecular weight).
858:
In the case of nucleic acids, the direction of migration, from negative to positive electrodes, is due to the naturally occurring negative charge carried by their
2249: 2521: 2429: 2148: 95:
Gel electrophoresis is a process where an electric current is applied to DNA samples creating fragments that can be used for comparison between DNA samples.
869:
Double-stranded DNA fragments naturally behave as long rods, so their migration through the gel is relative to their size or, for cyclic fragments, their
2837: 755:. The gel will then be physically cut, and the protein complexes extracted from each portion separately. Each extract may then be analysed, such as by 473:
gels are run under conditions that disrupt the natural structure of the analyte, causing it to unfold into a linear chain. Thus, the mobility of each
2692: 462: 270:), the preferred matrix is purified agarose. In both cases, the gel forms a solid, yet porous matrix. Acrylamide, in contrast to polyacrylamide, is a 2687: 649:
which is not ideal for the use in electrophoresis. There are a number of buffers used for electrophoresis. The most common being, for nucleic acids
150:
to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.
432: 715:
dye. Other methods may also be used to visualize the separation of the mixture's components on the gel. If the molecules to be separated contain
2677: 2697: 563: 682: 2890: 3010: 2729: 238:
whose composition and porosity are chosen based on the specific weight and composition of the target to be analyzed. When separating
3131: 2977: 547: 179: 74: 1591:
Smisek, David L.; Hoagland, David A. (1989). "Agarose gel electrophoresis of high molecular weight, synthetic polyelectrolytes".
637: 665: 2972: 1530: 686: 266:, producing different sized mesh networks of polyacrylamide. When separating larger nucleic acids (greater than a few hundred 2284: 1795: 1461: 1428: 1395: 1362: 1324: 3162: 3091: 1203: 841: 2702: 1788:
Electrophoresis of Proteins in Polyacrylamide and Starch Gels: Laboratory Techniques in Biochemistry and Molecular Biology
1764: 3157: 3136: 2682: 1705: 1228: 477:
depends only on its linear length and its mass-to-charge ratio. Thus, the secondary, tertiary, and quaternary levels of
234:" in this instance refers to the matrix used to contain, then separate the target molecules. In most cases, the gel is a 70: 735:
system. Gels are then commonly labelled for presentation and scientific records on the popular figure-creation website,
3289: 3121: 2204: 1675: 1575: 493: 386: 66: 38:
negative charge which is repelled by the negatively charged cathode and are attracted to the positively charged anode.
2562: 2179: 788: 392:
must be used when creating this type of gel, as acrylamide is a potent neurotoxin in its liquid and powdered forms.
3240: 3126: 2827: 2807: 1218: 1146: 367: 321: 404: 3167: 3116: 3056: 2788: 1027: 921: 1965:"Enhanced full-length transcription of Sindbis virus RNA by effective denaturation with methylmercury hydroxide" 3279: 3071: 3172: 3076: 3003: 2817: 2722: 1056: 543:
hydroxide was often used in denaturing RNA electrophoresis, but it may be method of choice for some samples.
2847: 1168: 1157: 2865: 400: 303: 2601:
Minde, David P.; Maurice, Madelon M.; RĂĽdiger, Stefan G. D. (3 October 2012). Uversky, Vladimir N. (ed.).
2453:"The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis" 3051: 2964: 2870: 2798: 1081: 944: 756: 602: 470: 341: 34: 3274: 3030: 1198: 966: 760: 3209: 3061: 2822: 2812: 2802: 2764: 1253: 1248: 1223: 1140: 1067: 989: 851: 784: 171: 62: 2544: 1824:"Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults" 3284: 3269: 3228: 3046: 2996: 2842: 2715: 2059:"Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis" 985: 905: 901: 712: 558: 524: 276: 767:. This can provide a great deal of information about the identities of the proteins in a complex. 2006:
Fromin N; Hamelin J; Tarnawski S; Roesti D; Jourdain-Miserez K; Forestier N; et al. (2002).
1118: 517: 2309:
Hanauer, Matthias; Pierrat, Sebastien; Zins, Inga; Lotz, Alexander; Sönnichsen, Carsten (2007).
2913: 2875: 1276:"Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104" 1085: 952: 792: 508:, a method called reducing PAGE. Reducing conditions are usually maintained by the addition of 489: 478: 3101: 3086: 2832: 571: 539:
are the most often used denaturing agents to disrupt RNA structure. Originally, highly toxic
91: 3247: 3193: 2880: 2759: 2614: 2322: 1600: 1213: 1164: 1122: 748: 509: 505: 2603:"Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp" 142:
to separate proteins by charge or size (IEF agarose, essentially size independent) and in
8: 3188: 2793: 974: 496:
process. For full denaturation of proteins, it is also necessary to reduce the covalent
283: 235: 2618: 2326: 1604: 776:
Estimation of the size of DNA molecules following restriction enzyme digestion, e.g. in
546:
Denaturing gel electrophoresis is used in the DNA and RNA banding pattern-based methods
174:(PCR), but may be used as a preparative technique prior to use of other methods such as 2779: 2645: 2602: 2382: 2086: 1848: 1823: 1756: 1667: 1507: 1486: 1273: 1172: 870: 810: 777: 692: 532: 501: 139: 2469: 2452: 2008:"Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns" 1940: 1923: 1888: 889:, are used to denature the nucleic acids and cause them to behave as long rods again. 516:. For a general analysis of protein samples, reducing PAGE is the most common form of 3066: 2934: 2650: 2632: 2583: 2558: 2513: 2509: 2474: 2421: 2417: 2386: 2374: 2338: 2280: 2273: 2241: 2200: 2175: 2140: 2136: 2078: 2074: 2027: 2023: 1976: 1945: 1892: 1853: 1801: 1791: 1760: 1748: 1659: 1651: 1616: 1571: 1512: 1467: 1457: 1434: 1424: 1401: 1391: 1368: 1358: 1330: 1320: 1297: 1104: 814: 291: 175: 147: 2671: 1671: 936:– The indicated proteins are present in different concentrations in the two samples. 636:. However, native PAGE is also used to scan genes (DNA) for unknown mutations as in 3111: 2949: 2640: 2622: 2550: 2505: 2464: 2413: 2366: 2330: 2233: 2132: 2090: 2070: 2019: 1935: 1884: 1843: 1835: 1740: 1643: 1608: 1502: 1494: 1388:
Wilson and Walker's principles and techniques of biochemistry and molecular biology
1287: 1145:
1984 – pulsed-field gel electrophoresis enables separation of large DNA molecules (
1133: 993: 961:
are usually analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (
882: 764: 696: 670: 267: 2310: 332: 3081: 3019: 2918: 2742: 2707: 2627: 1647: 1176: 1045: 981: 932: 724: 255: 216: 203: 47: 2311:"Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape" 28: 2857: 2774: 1208: 1150: 1129: 1060: 1037:
1950 – introduction of "zone electrophoresis" (Tiselius); paper electrophoresis
720: 614: 591: 576: 513: 497: 417: 396: 347: 224: 187: 154: 1697: 1570:. Vol. 1 (3rd ed.). Cold Spring Harbor Laboratory. p. 5.2–5.3. 1566:
Tom Maniatis; E. F. Fritsch; Joseph Sambrook (1982). "Chapter 5, protocol 1".
424:
membrane to be probed with antibodies and corresponding markers, such as in a
3294: 3263: 3152: 3106: 2954: 2944: 2885: 2636: 2378: 2370: 2237: 2222:"History and principles of conductive media for standard DNA electrophoresis" 1655: 1620: 1405: 1031: 878: 802: 798: 716: 610: 601:
Unlike denaturing methods, native gel electrophoresis does not use a charged
587: 540: 474: 295: 191: 1635: 1471: 1438: 1372: 1334: 1319:(in Spanish). Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press. 747:
After separation, an additional separation method may then be used, such as
2939: 2908: 2769: 2654: 2587: 2342: 2245: 2221: 2031: 2007: 1924:"Synthesis of full length cDNAs from four partially purified oviduct mRNAs" 1857: 1752: 1728: 1663: 1516: 1301: 1292: 1275: 826: 822: 708: 700: 625: 425: 263: 243: 208: 163: 143: 138:, etc.) and their fragments, based on their size and charge. It is used in 2554: 2517: 2493: 2478: 2425: 2401: 2144: 2120: 1980: 1964: 1896: 1872: 2082: 2058: 1949: 1805: 1744: 1097: 1093: 704: 416:
of the same protein into separate bands. These can be transferred onto a
123: 2299:
Troubleshooting DNA agarose gel electrophoresis. Focus 19:3 p.66 (1997).
1612: 1565: 1059:); accurate control of parameters such as pore size and stability; and ( 2751: 1243: 1052: 728: 691:
After the electrophoresis is complete, the molecules in the gel can be
654: 650: 629: 445: 409: 271: 259: 2334: 2121:"Detection of glucose-6-phosphate dehydrogenase in malarial parasites" 1839: 1390:. Cambridge, United Kingdom New York, NY: Cambridge University Press. 1274:
Kryndushkin DS; Alexandrov IM; Ter-Avanesyan MD; Kushnirov VV (2003).
162:
proteins. Gel electrophoresis can also be used for the separation of
82: 1238: 1180: 970: 948: 886: 863: 658: 633: 595: 362: 2402:"Electrophoretic separation of polyoma virus DNA from host cell DNA" 2197:
fundamental laboratory approaches for biochemistry and biotechnology
2005: 1921: 1108: 962: 818: 752: 606: 413: 412:
and protein analysis, often used to separate different proteins or
2988: 481:
are disrupted, leaving only the primary structure to be analyzed.
2738: 1873:"A thin-layer starch gel method for enzyme typing of bloodstains" 1498: 1487:"Agarose gel electrophoresis for the separation of DNA fragments" 1233: 1089: 1023: 958: 940: 874: 732: 566: 536: 354: 350: 287: 239: 220: 183: 158: 135: 980:
Characterization through ligand interaction may be performed by
336:
Inserting the gel comb in an agarose gel electrophoresis chamber
2674:, from the University of Utah's Genetic Science Learning Center 2195:
Ninfa, Alexander J.; Ballou, David P.; Benore, Marilee (2009).
1484: 1041: 1001: 997: 912:
smeared appearance, and the intensity ratio is less than 2:1.
2900: 859: 584: 258:) the gel is usually composed of different concentrations of 157:
to move the negatively charged molecules through a matrix of
2546:
Electrophoresis Fundamentals: Essential Theory and Practice
1074: 550:(TGGE) and denaturing gradient gel electrophoresis (DGGE). 528: 485: 421: 2270: 926: 846: 1161: 900:
is usually done by agarose gel electrophoresis. See the "
897: 893: 683:
Gel electrophoresis of nucleic acids § Visualization
251: 247: 231: 131: 127: 2172:
Fundamental Approaches to Biochemistry and Biotechnology
664:
Most SDS-PAGE protein separations are performed using a
2698:
Step by step photos of running a gel and extracting DNA
583:
are used only to the extent that they are necessary to
2672:
Biotechniques Laboratory electrophoresis demonstration
2308: 1870: 2355: 2118: 736: 687:
Gel electrophoresis of proteins § Visualization
153:
Nucleic acid molecules are separated by applying an
2600: 2056: 1962: 1922:Buell GN; Wickens MP; Payvar F; Schimke RT (1978). 1531:"Molecular Weight Determination by SDS-PAGE, Rev B" 657:(TBE). Many other buffers have been proposed, e.g. 2737: 2580:Electrophoresis: theory, methods, and applications 2272: 1066:1965 – introduction of free-flow electrophoresis ( 695:to make them visible. DNA may be visualized using 488:in the buffer, while proteins are denatured using 16:Method for separation and analysis of biomolecules 2365:(9). American Chemical Society (ACS): 5157–5166. 2194: 1599:(5). American Chemical Society (ACS): 2270–2277. 1454:Biochemical techniques : theory and practice 1423:(in Estonian). San Francisco: Benjamin Cummings. 1139:1981 – introduction of capillary electrophoresis 3261: 2678:Discontinuous native protein gel electrophoresis 2613:(10). Public Library of Science (PLoS): e46147. 290:which is negatively charged (because this is an 2450: 2219: 1817: 1815: 1114:1972 – agarose gels with ethidium bromide stain 484:Nucleic acids are often denatured by including 2349: 1590: 1485:Lee PY; Costumbrado J; Hsu CY; Kim YH (2012). 996:and determination of structural features like 797:Separation of restricted genomic DNA prior to 605:agent. The molecules being separated (usually 3004: 2723: 2491: 969:, by preparative native gel electrophoresis ( 707:light, while protein may be visualised using 2693:Animation of gel analysis of DNA restriction 2213: 1999: 1812: 1720: 1698:"Agarose gel electrophoresis (basic method)" 1317:Molecular cloning : a laboratory manual 1308: 2485: 2444: 2393: 2169: 2112: 1956: 1864: 1478: 1267: 122:is a method for separation and analysis of 3011: 2997: 2730: 2716: 2542: 2279:(5th ed.). WH Freeman: New York, NY. 2174:. Bethesda, Md: Fitzgerald Science Press. 2050: 1915: 1821: 1779: 1726: 1584: 1379: 27: 2644: 2626: 2594: 2468: 2399: 1939: 1847: 1506: 1456:. Prospect Heights, Ill: Waveland Press. 1445: 1412: 1291: 628:gel electrophoresis is typically used in 3132:Temperature gradient gel electrophoresis 2571: 1348: 1346: 1344: 1314: 925: 845: 742: 557: 548:temperature gradient gel electrophoresis 461: 331: 207: 90: 81: 75:Temperature gradient gel electrophoresis 2271:Lodish H; Berk A; Matsudaira P (2004). 1568:Molecular Cloning - A Laboratory Manual 1357:(in Estonian). New York: W.H. Freeman. 666:"discontinuous" (or DISC) buffer system 638:single-strand conformation polymorphism 346:Agarose gels are made from the natural 3262: 2973:Photoactivated localization microscopy 2891:Protein–protein interaction prediction 2264: 1785: 1633: 1385: 1156:2004 – introduction of a standardized 2992: 2711: 1547:from the original on 17 November 2021 1451: 1418: 1341: 1055:gels; discontinuous electrophoresis ( 107:Electric current applied to the gel. 101:Isolation and amplification of DNA. 3235: 3163:Gel electrophoresis of nucleic acids 3092:Electrophoretic mobility shift assay 2577: 1790:. Amsterdam: North-Holland Pub. Co. 1708:from the original on 11 October 2018 1678:from the original on 2 February 2022 1352: 1204:Electrophoretic mobility shift assay 1022:1930s – first reports of the use of 842:Gel electrophoresis of nucleic acids 731:can be taken of gels, often using a 3158:DNA separation by silica adsorption 3137:Two-dimensional gel electrophoresis 3018: 2848:Freeze-fracture electron microscopy 2359:The Journal of Physical Chemistry C 2199:. Hoboken, NJ: Wiley. p. 161. 1229:Two-dimensional gel electrophoresis 699:which, when intercalated into DNA, 71:Two-dimensional gel electrophoresis 33:Gel electrophoresis apparatus – an 13: 3122:Polyacrylamide gel electrophoresis 2549:. De Gruyter, ISBN 9783110761627. 387:Polyacrylamide gel electrophoresis 14: 3306: 2703:A typical method from wikiversity 2665: 2524:from the original on 11 June 2022 2432:from the original on 11 June 2022 2252:from the original on 11 June 2022 2100:from the original on 11 June 2022 2038:from the original on 11 June 2022 1987:from the original on 11 June 2022 1903:from the original on 11 June 2022 1871:Wraxall BG; Culliford BJ (1968). 1767:from the original on 11 June 2022 854:product compared to a DNA ladder. 564:Glucose-6-Phosphate Dehydrogenase 562:Specific enzyme-linked staining: 452: 380: 197: 110:DNA bands are separated by size. 3234: 3223: 3222: 3127:Pulsed-field gel electrophoresis 2828:Isothermal titration calorimetry 2808:Dual-polarization interferometry 2494:"The gel electrophoresis of DNA" 2151:from the original on 6 July 2023 2119:Hempelmann E; Wilson RJ (1981). 2024:10.1046/j.1462-2920.2002.00358.x 1421:Modern experimental biochemistry 1219:Pulsed field gel electrophoresis 1007: 835: 676: 322:pulsed field gel electrophoresis 212:Overview of gel electrophoresis. 3168:Gel electrophoresis of proteins 3117:Moving-boundary electrophoresis 3057:Capillary electrochromatography 2582:. Academic Press. p. 225. 2536: 2302: 2293: 2188: 2163: 1690: 1640:Current Protocols in Immunology 1627: 1028:moving-boundary electrophoresis 922:Gel electrophoresis of proteins 809:Gel electrophoresis is used in 770: 613:) therefore differ not only in 372:field inversion electrophoresis 314: 3072:Difference gel electrophoresis 2683:Drinking straw electrophoresis 2057:Fischer SG; Lerman LS (1979). 1559: 1523: 1125:, then SDS gel electrophoresis 449:concentrations are 5% to 10%. 282:Electrophoresis refers to the 194:for further characterization. 1: 3173:Serum protein electrophoresis 3077:Discontinuous electrophoresis 2818:Chromatin immunoprecipitation 2470:10.1016/S0021-9258(18)94333-4 1941:10.1016/S0021-9258(17)38097-3 1889:10.1016/s0015-7368(68)70449-7 1642:. Chapter 10: 10.4.1–10.4.8. 1636:"Agarose gel electrophoresis" 1260: 892:Gel electrophoresis of large 727:can be recorded of the gel. 457: 304:molecular weight size markers 104:DNA added to the gel wells. 2881:Protein structural alignment 2866:Protein structure prediction 2628:10.1371/journal.pone.0046147 2510:10.1016/0005-2787(72)90426-1 2418:10.1016/0042-6822(66)90029-8 2170:Ninfa AJ, Ballou DP (1998). 2137:10.1016/0166-6851(81)90100-6 2075:10.1016/0092-8674(79)90200-9 1963:Schelp C, Kaaden OR (1989). 1648:10.1002/0471142735.im1004s02 1111:using a stacking gel and SDS 787:products, e.g. in molecular 368:pulsed field electrophoresis 7: 3052:Agarose gel electrophoresis 2965:Super-resolution microscopy 2871:Protein function prediction 2799:Peptide mass fingerprinting 2794:Protein immunoprecipitation 2688:How to run a DNA or RNA gel 1634:Voytas, Daniel (May 2001). 1191: 1117:1975 – 2-dimensional gels ( 1107:separated 28 components of 1044:gels, mediocre separation ( 915: 757:peptide mass fingerprinting 342:Agarose gel electrophoresis 10: 3311: 3031:History of electrophoresis 2451:Weber K; Osborn M (1969). 2220:Brody JR; Kern SE (2004). 1199:History of electrophoresis 1188:method is an improvement. 1016: 967:native gel electrophoresis 919: 839: 761:de novo peptide sequencing 680: 643: 384: 339: 327: 201: 3290:Polymerase chain reaction 3218: 3210:Electrophoresis (journal) 3202: 3181: 3145: 3062:Capillary electrophoresis 3039: 3026: 2963: 2927: 2899: 2856: 2823:Surface plasmon resonance 2813:Microscale thermophoresis 2803:Protein mass spectrometry 2765:Green fluorescent protein 2750: 1315:Sambrook, Joseph (2001). 1254:Free-flow electrophoresis 1249:Fast parallel proteolysis 1224:Nonlinear frictiophoresis 1026:for gel electrophoresis; 990:capillary electrophoresis 553: 492:, usually as part of the 439: 172:polymerase chain reaction 63:Capillary electrophoresis 58: 53: 43: 26: 3047:Affinity electrophoresis 2843:Cryo-electron microscopy 2492:Aaij C; Borst P (1972). 2371:10.1021/acs.jpcc.9b10644 2238:10.1016/j.ab.2004.05.054 986:affinity electrophoresis 906:affinity electrophoresis 902:chain termination method 713:Coomassie brilliant blue 618:enzyme-linked staining. 525:electrophoretic mobility 277:macromolecular complexes 113:DNA bands are stained. 2876:Protein–protein docking 2789:Protein electrophoresis 1080:1969 – introduction of 1051:1959 – introduction of 1040:1955 – introduction of 873:. Circular DNA such as 596:preparative native PAGE 518:protein electrophoresis 2775:Protein immunostaining 2275:Molecular Cell Biology 1419:Boyer, Rodney (2000). 1386:Wilson, Keith (2018). 1293:10.1074/jbc.M307996200 1141:(Jorgenson and Lukacs) 953:sodium dodecyl sulfate 937: 855: 793:genetic fingerprinting 579: 490:sodium dodecyl sulfate 479:biomolecular structure 467: 337: 213: 116: 88: 3280:Laboratory techniques 3102:Immunoelectrophoresis 3087:Electrochromatography 2833:X-ray crystallography 2555:10.1515/9783110761641 2125:Mol Biochem Parasitol 1786:Gordon, A.H. (1969). 1353:Berg, Jeremy (2002). 1061:Raymond and Weintraub 992:as for estimation of 947:in the presence of a 929: 849: 801:, or of RNA prior to 743:Downstream processing 681:Further information: 572:Plasmodium falciparum 561: 500:that stabilize their 465: 366:should be run with a 335: 211: 94: 85: 3248:Analytical Chemistry 3194:Isoelectric focusing 2760:Protein purification 2578:Bier, Milan (1959). 2498:Biochim Biophys Acta 1745:10.1038/nprot.2006.4 1702:Biological Protocols 1452:Robyt, John (1990). 1214:Isoelectric focusing 1123:isoelectric focusing 1073:1966 – first use of 850:An agarose gel of a 749:isoelectric focusing 510:beta-mercaptoethanol 506:quaternary structure 3189:Electrical mobility 3097:Gel electrophoresis 2785:Gel electrophoresis 2619:2012PLoSO...746147M 2543:Michov, B. (2022). 2327:2007NanoL...7.2881H 1822:Smithies O (1955). 1727:Schägger H (2006). 1613:10.1021/ma00195a048 1605:1989MaMol..22.2270S 1158:polymerization time 975:2-D electrophoresis 778:restriction mapping 719:, for example in a 399:techniques such as 284:electromotive force 236:crosslinked polymer 120:Gel electrophoresis 23: 22:Gel electrophoresis 2928:Display techniques 2780:Protein sequencing 2400:Thorne HV (1966). 1877:J Forensic Sci Soc 1729:"Tricine-SDS-PAGE" 1084:agents especially 1057:Ornstein and Davis 938: 871:radius of gyration 856: 580: 468: 338: 214: 140:clinical chemistry 117: 98:DNA is extracted. 89: 21: 3275:Molecular biology 3257: 3256: 3067:Dielectrophoresis 2986: 2985: 2935:Bacterial display 2335:10.1021/nl071615y 2286:978-0-7167-4366-8 2012:Environ Microbiol 1840:10.1042/bj0610629 1797:978-0-7204-4202-1 1463:978-0-88133-556-9 1430:978-0-8053-3111-0 1397:978-1-316-61476-1 1364:978-0-7167-4955-4 1326:978-0-87969-576-7 994:binding constants 988:in agarose or by 815:molecular biology 803:Northern transfer 799:Southern transfer 789:genetic diagnosis 651:Tris/Acetate/EDTA 192:Southern blotting 176:mass spectrometry 148:molecular biology 124:biomacromolecules 80: 79: 3302: 3238: 3237: 3226: 3225: 3112:Isotachophoresis 3013: 3006: 2999: 2990: 2989: 2950:Ribosome display 2886:Protein ontology 2732: 2725: 2718: 2709: 2708: 2659: 2658: 2648: 2630: 2598: 2592: 2591: 2575: 2569: 2568: 2540: 2534: 2533: 2531: 2529: 2489: 2483: 2482: 2472: 2448: 2442: 2441: 2439: 2437: 2397: 2391: 2390: 2353: 2347: 2346: 2321:(9): 2881–2885. 2306: 2300: 2297: 2291: 2290: 2278: 2268: 2262: 2261: 2259: 2257: 2217: 2211: 2210: 2192: 2186: 2185: 2167: 2161: 2160: 2158: 2156: 2131:(3–4): 197–204. 2116: 2110: 2109: 2107: 2105: 2099: 2054: 2048: 2047: 2045: 2043: 2003: 1997: 1996: 1994: 1992: 1960: 1954: 1953: 1943: 1919: 1913: 1912: 1910: 1908: 1868: 1862: 1861: 1851: 1819: 1810: 1809: 1783: 1777: 1776: 1774: 1772: 1724: 1718: 1717: 1715: 1713: 1694: 1688: 1687: 1685: 1683: 1631: 1625: 1624: 1588: 1582: 1581: 1563: 1557: 1556: 1554: 1552: 1546: 1535: 1527: 1521: 1520: 1510: 1482: 1476: 1475: 1449: 1443: 1442: 1416: 1410: 1409: 1383: 1377: 1376: 1350: 1339: 1338: 1312: 1306: 1305: 1295: 1286:(49): 49636–43. 1271: 1171:, in particular 1000:content through 883:sodium hydroxide 765:in-gel digestion 697:ethidium bromide 671:isotachophoresis 655:Tris/Borate/EDTA 256:oligonucleotides 54:Other techniques 31: 24: 20: 3310: 3309: 3305: 3304: 3303: 3301: 3300: 3299: 3285:Electrophoresis 3270:Protein methods 3260: 3259: 3258: 3253: 3214: 3198: 3177: 3141: 3082:Electroblotting 3035: 3022: 3020:Electrophoresis 3017: 2987: 2982: 2959: 2923: 2919:Secretion assay 2895: 2852: 2746: 2736: 2668: 2663: 2662: 2599: 2595: 2576: 2572: 2565: 2541: 2537: 2527: 2525: 2490: 2486: 2463:(16): 4406–12. 2449: 2445: 2435: 2433: 2398: 2394: 2354: 2350: 2307: 2303: 2298: 2294: 2287: 2269: 2265: 2255: 2253: 2218: 2214: 2207: 2193: 2189: 2182: 2168: 2164: 2154: 2152: 2117: 2113: 2103: 2101: 2097: 2055: 2051: 2041: 2039: 2004: 2000: 1990: 1988: 1961: 1957: 1920: 1916: 1906: 1904: 1869: 1865: 1820: 1813: 1798: 1784: 1780: 1770: 1768: 1725: 1721: 1711: 1709: 1696: 1695: 1691: 1681: 1679: 1632: 1628: 1589: 1585: 1578: 1564: 1560: 1550: 1548: 1544: 1538:www.bio-rad.com 1533: 1529: 1528: 1524: 1483: 1479: 1464: 1450: 1446: 1431: 1417: 1413: 1398: 1384: 1380: 1365: 1351: 1342: 1327: 1313: 1309: 1272: 1268: 1263: 1258: 1194: 1177:electrophoresis 1160:for acrylamide 1019: 1010: 982:electroblotting 933:autoradiography 924: 918: 844: 838: 773: 745: 689: 679: 646: 588:lipid membranes 577:Red blood cells 556: 498:disulfide bonds 460: 455: 442: 389: 383: 353:extracted from 344: 330: 317: 217:Electrophoresis 206: 204:Electrophoresis 200: 73: 69: 65: 48:Electrophoresis 39: 17: 12: 11: 5: 3308: 3298: 3297: 3292: 3287: 3282: 3277: 3272: 3255: 3254: 3252: 3251: 3244: 3232: 3219: 3216: 3215: 3213: 3212: 3206: 3204: 3200: 3199: 3197: 3196: 3191: 3185: 3183: 3179: 3178: 3176: 3175: 3170: 3165: 3160: 3155: 3149: 3147: 3143: 3142: 3140: 3139: 3134: 3129: 3124: 3119: 3114: 3109: 3104: 3099: 3094: 3089: 3084: 3079: 3074: 3069: 3064: 3059: 3054: 3049: 3043: 3041: 3037: 3036: 3034: 3033: 3027: 3024: 3023: 3016: 3015: 3008: 3001: 2993: 2984: 2983: 2981: 2980: 2975: 2969: 2967: 2961: 2960: 2958: 2957: 2952: 2947: 2942: 2937: 2931: 2929: 2925: 2924: 2922: 2921: 2916: 2911: 2905: 2903: 2897: 2896: 2894: 2893: 2888: 2883: 2878: 2873: 2868: 2862: 2860: 2858:Bioinformatics 2854: 2853: 2851: 2850: 2845: 2840: 2835: 2830: 2825: 2820: 2815: 2810: 2805: 2796: 2791: 2782: 2777: 2772: 2767: 2762: 2756: 2754: 2748: 2747: 2735: 2734: 2727: 2720: 2712: 2706: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2667: 2666:External links 2664: 2661: 2660: 2593: 2570: 2563: 2535: 2504:(2): 192–200. 2484: 2443: 2392: 2348: 2301: 2292: 2285: 2263: 2212: 2206:978-0470087664 2205: 2187: 2180: 2162: 2111: 2069:(1): 191–200. 2049: 2018:(11): 634–43. 1998: 1975:(3): 297–302. 1955: 1934:(7): 2471–82. 1914: 1863: 1811: 1796: 1778: 1719: 1689: 1626: 1593:Macromolecules 1583: 1577:978-0879691363 1576: 1558: 1522: 1477: 1462: 1444: 1429: 1411: 1396: 1378: 1363: 1340: 1325: 1307: 1265: 1264: 1262: 1259: 1257: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1209:Gel extraction 1206: 1201: 1195: 1193: 1190: 1185: 1184: 1169:gel properties 1154: 1143: 1137: 1126: 1115: 1112: 1101: 1088:separation of 1078: 1071: 1064: 1049: 1038: 1035: 1018: 1015: 1009: 1006: 920:Main article: 917: 914: 879:hydrogen bonds 840:Main article: 837: 834: 807: 806: 795: 781: 780:of cloned DNA. 772: 769: 744: 741: 721:DNA sequencing 678: 675: 659:lithium borate 645: 642: 615:molecular mass 555: 552: 514:dithiothreitol 459: 456: 454: 453:Gel conditions 451: 441: 438: 433:resolving gels 418:nitrocellulose 397:DNA sequencing 385:Main article: 382: 381:Polyacrylamide 379: 348:polysaccharide 340:Main article: 329: 326: 316: 313: 225:polyacrylamide 199: 198:Physical basis 196: 188:DNA sequencing 155:electric field 115: 114: 111: 108: 105: 102: 99: 78: 77: 60: 56: 55: 51: 50: 45: 44:Classification 41: 40: 32: 15: 9: 6: 4: 3: 2: 3307: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3267: 3265: 3250: 3249: 3245: 3243: 3242: 3233: 3231: 3230: 3221: 3220: 3217: 3211: 3208: 3207: 3205: 3201: 3195: 3192: 3190: 3187: 3186: 3184: 3180: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3153:DNA laddering 3151: 3150: 3148: 3144: 3138: 3135: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3113: 3110: 3108: 3107:Iontophoresis 3105: 3103: 3100: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3044: 3042: 3038: 3032: 3029: 3028: 3025: 3021: 3014: 3009: 3007: 3002: 3000: 2995: 2994: 2991: 2979: 2976: 2974: 2971: 2970: 2968: 2966: 2962: 2956: 2955:Yeast display 2953: 2951: 2948: 2946: 2945:Phage display 2943: 2941: 2938: 2936: 2933: 2932: 2930: 2926: 2920: 2917: 2915: 2914:Protein assay 2912: 2910: 2907: 2906: 2904: 2902: 2898: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2863: 2861: 2859: 2855: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2800: 2797: 2795: 2792: 2790: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2757: 2755: 2753: 2749: 2744: 2740: 2733: 2728: 2726: 2721: 2719: 2714: 2713: 2710: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2673: 2670: 2669: 2656: 2652: 2647: 2642: 2638: 2634: 2629: 2624: 2620: 2616: 2612: 2608: 2604: 2597: 2589: 2585: 2581: 2574: 2566: 2564:9783110761641 2560: 2556: 2552: 2548: 2547: 2539: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2495: 2488: 2480: 2476: 2471: 2466: 2462: 2458: 2454: 2447: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2396: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2352: 2344: 2340: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2305: 2296: 2288: 2282: 2277: 2276: 2267: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2216: 2208: 2202: 2198: 2191: 2183: 2181:9781891786006 2177: 2173: 2166: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2115: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2053: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2002: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1951: 1947: 1942: 1937: 1933: 1929: 1925: 1918: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1867: 1859: 1855: 1850: 1845: 1841: 1837: 1834:(4): 629–41. 1833: 1829: 1825: 1818: 1816: 1807: 1803: 1799: 1793: 1789: 1782: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1723: 1707: 1703: 1699: 1693: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1630: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1587: 1579: 1573: 1569: 1562: 1543: 1539: 1532: 1526: 1518: 1514: 1509: 1504: 1500: 1496: 1492: 1488: 1481: 1473: 1469: 1465: 1459: 1455: 1448: 1440: 1436: 1432: 1426: 1422: 1415: 1407: 1403: 1399: 1393: 1389: 1382: 1374: 1370: 1366: 1360: 1356: 1349: 1347: 1345: 1336: 1332: 1328: 1322: 1318: 1311: 1303: 1299: 1294: 1289: 1285: 1281: 1277: 1270: 1266: 1255: 1252: 1250: 1247: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1196: 1189: 1182: 1178: 1174: 1173:gel stability 1170: 1166: 1163: 1159: 1155: 1152: 1148: 1144: 1142: 1138: 1135: 1131: 1127: 1124: 1120: 1116: 1113: 1110: 1106: 1102: 1099: 1095: 1091: 1087: 1083: 1079: 1076: 1072: 1069: 1065: 1062: 1058: 1054: 1050: 1047: 1043: 1039: 1036: 1033: 1029: 1025: 1021: 1020: 1014: 1008:Nanoparticles 1005: 1003: 999: 995: 991: 987: 983: 978: 976: 972: 968: 964: 960: 956: 954: 950: 946: 942: 935: 934: 928: 923: 913: 909: 907: 903: 899: 895: 890: 888: 884: 880: 876: 872: 867: 865: 861: 853: 848: 843: 836:Nucleic acids 833: 830: 828: 824: 820: 816: 812: 804: 800: 796: 794: 790: 786: 782: 779: 775: 774: 768: 766: 762: 758: 754: 750: 740: 738: 734: 730: 726: 725:autoradiogram 722: 718: 717:radioactivity 714: 710: 706: 702: 698: 694: 688: 684: 677:Visualization 674: 672: 667: 662: 660: 656: 652: 641: 639: 635: 631: 627: 623: 619: 616: 612: 611:nucleic acids 608: 604: 599: 597: 593: 589: 586: 578: 574: 573: 568: 565: 560: 551: 549: 544: 542: 541:methylmercury 538: 534: 530: 526: 521: 519: 515: 511: 507: 503: 499: 495: 491: 487: 482: 480: 476: 475:macromolecule 472: 464: 450: 447: 437: 434: 429: 427: 423: 419: 415: 411: 406: 402: 401:Maxam-Gilbert 398: 393: 388: 378: 375: 373: 369: 364: 358: 356: 352: 349: 343: 334: 325: 323: 312: 308: 305: 299: 297: 296:galvanic cell 293: 289: 285: 280: 278: 273: 269: 265: 261: 257: 253: 249: 245: 244:nucleic acids 241: 237: 233: 228: 226: 222: 218: 210: 205: 195: 193: 189: 185: 181: 177: 173: 167: 165: 164:nanoparticles 160: 156: 151: 149: 145: 141: 137: 133: 129: 125: 121: 112: 109: 106: 103: 100: 97: 96: 93: 84: 76: 72: 68: 64: 61: 57: 52: 49: 46: 42: 36: 30: 25: 19: 3246: 3239: 3227: 3146:Applications 3096: 2940:mRNA display 2909:Enzyme assay 2784: 2770:Western blot 2752:Experimental 2610: 2606: 2596: 2579: 2573: 2545: 2538: 2526:. Retrieved 2501: 2497: 2487: 2460: 2456: 2446: 2434:. Retrieved 2412:(2): 234–9. 2409: 2405: 2395: 2362: 2358: 2351: 2318: 2315:Nano Letters 2314: 2304: 2295: 2274: 2266: 2254:. Retrieved 2229: 2226:Anal Biochem 2225: 2215: 2196: 2190: 2171: 2165: 2153:. Retrieved 2128: 2124: 2114: 2102:. Retrieved 2066: 2062: 2052: 2040:. Retrieved 2015: 2011: 2001: 1989:. Retrieved 1972: 1968: 1958: 1931: 1927: 1917: 1905:. Retrieved 1880: 1876: 1866: 1831: 1827: 1787: 1781: 1769:. Retrieved 1739:(1): 16–22. 1736: 1732: 1722: 1710:. Retrieved 1701: 1692: 1680:. Retrieved 1639: 1629: 1596: 1592: 1586: 1567: 1561: 1549:. Retrieved 1537: 1525: 1499:10.3791/3923 1490: 1480: 1453: 1447: 1420: 1414: 1387: 1381: 1355:Biochemistry 1354: 1316: 1310: 1283: 1279: 1269: 1186: 1167:to optimize 1011: 979: 957: 939: 930: 910: 891: 868: 857: 831: 827:biochemistry 823:microbiology 808: 783:Analysis of 771:Applications 746: 709:silver stain 690: 663: 647: 624: 620: 600: 581: 570: 545: 522: 483: 469: 443: 430: 426:western blot 395:Traditional 394: 390: 376: 359: 345: 318: 315:Types of gel 309: 300: 294:rather than 292:electrolytic 281: 264:cross-linker 229: 215: 168: 152: 144:biochemistry 119: 118: 18: 2978:Vertico SMI 2838:Protein NMR 2457:J Biol Chem 2232:(1): 1–13. 1928:J Biol Chem 1883:(2): 81–2. 1280:J Biol Chem 729:Photographs 705:ultraviolet 634:metallomics 35:agarose gel 3264:Categories 3040:Techniques 1969:Acta Virol 1733:Nat Protoc 1261:References 1244:Zymography 1181:Kastenholz 1130:sequencing 1082:denaturing 1053:acrylamide 881:, such as 866:backbone. 630:proteomics 603:denaturing 567:isoenzymes 471:Denaturing 458:Denaturing 446:hydrolysed 444:Partially 431:Typically 410:immunology 370:(PFE), or 272:neurotoxin 260:acrylamide 230:The term " 202:See also: 2637:1932-6203 2387:213566317 2379:1932-7447 1828:Biochem J 1761:209529082 1656:1934-368X 1621:0024-9297 1491:J Vis Exp 1406:998750377 1239:QPNC-PAGE 1175:, during 1165:solutions 1119:O’Farrell 1092:subunit ( 1004:binding. 973:), or by 971:QPNC-PAGE 949:detergent 945:denatured 931:SDS-PAGE 887:formamide 864:phosphate 811:forensics 701:fluoresce 575:infected 363:base pair 242:or small 87:migrated. 3229:Category 3203:Journals 2745:of study 2739:Proteins 2655:23056252 2607:PLOS ONE 2528:23 March 2522:Archived 2436:23 March 2430:Archived 2406:Virology 2343:17718532 2256:23 March 2250:Archived 2246:15351274 2155:23 March 2149:Archived 2104:23 March 2095:Archived 2042:23 March 2036:Archived 2032:12460271 1991:23 March 1985:Archived 1907:23 March 1901:Archived 1858:13276348 1771:23 March 1765:Archived 1753:17406207 1712:23 March 1706:Archived 1676:Archived 1672:39623776 1664:18432695 1551:23 March 1542:Archived 1517:22546956 1472:22549624 1439:44493241 1373:48055706 1335:45015638 1302:14507919 1192:See also 1147:Schwartz 1109:T4 phage 1046:Smithies 1032:Tiselius 963:SDS-PAGE 959:Proteins 951:such as 941:Proteins 916:Proteins 875:plasmids 819:genetics 753:SDS-PAGE 723:gel, an 607:proteins 502:tertiary 494:SDS-PAGE 414:isoforms 351:polymers 240:proteins 136:proteins 67:SDS-PAGE 3241:Commons 2743:methods 2646:3463568 2615:Bibcode 2588:1175404 2518:5063906 2479:5806584 2426:4287545 2323:Bibcode 2145:7012616 2091:9369012 1981:2570517 1897:5738223 1849:1215845 1682:1 March 1601:Bibcode 1508:4846332 1234:SDD-AGE 1128:1977 – 1103:1970 – 1090:protein 1024:sucrose 1017:History 733:Gel Doc 693:stained 653:(TAE), 644:Buffers 590:in the 537:glyoxal 355:seaweed 328:Agarose 288:cathode 221:agarose 184:cloning 182:, PCR, 159:agarose 59:Related 3182:Theory 2741:: key 2653:  2643:  2635:  2586:  2561:  2516:  2477:  2424:  2385:  2377:  2341:  2283:  2244:  2203:  2178:  2143:  2089:  2083:369706 2081:  2030:  1979:  1950:632280 1948:  1895:  1856:  1846:  1804:  1794:  1759:  1751:  1670:  1662:  1654:  1619:  1574:  1515:  1505:  1493:(62). 1470:  1460:  1437:  1427:  1404:  1394:  1371:  1361:  1333:  1323:  1300:  1151:Cantor 1134:Sanger 1132:gels ( 1105:Lämmli 1098:Osborn 1068:Hannig 1042:starch 1002:lectin 998:glycan 984:or by 965:), by 763:after 737:SciUGo 703:under 685:, and 626:Native 554:Native 440:Starch 405:Sanger 262:and a 2901:Assay 2383:S2CID 2098:(PDF) 2087:S2CID 1806:21766 1757:S2CID 1668:S2CID 1545:(PDF) 1534:(PDF) 1094:Weber 860:sugar 268:bases 254:, or 190:, or 3295:Gels 2651:PMID 2633:ISSN 2584:OCLC 2559:ISBN 2530:2022 2514:PMID 2475:PMID 2438:2022 2422:PMID 2375:ISSN 2339:PMID 2281:ISBN 2258:2022 2242:PMID 2201:ISBN 2176:ISBN 2157:2022 2141:PMID 2106:2022 2079:PMID 2063:Cell 2044:2022 2028:PMID 1993:2022 1977:PMID 1946:PMID 1909:2022 1893:PMID 1854:PMID 1802:OCLC 1792:ISBN 1773:2022 1749:PMID 1714:2022 1684:2023 1660:PMID 1652:ISSN 1617:ISSN 1572:ISBN 1553:2022 1513:PMID 1468:OCLC 1458:ISBN 1435:OCLC 1425:ISBN 1402:OCLC 1392:ISBN 1369:OCLC 1359:ISBN 1331:OCLC 1321:ISBN 1298:PMID 1149:and 1096:and 1077:gels 1075:agar 825:and 632:and 592:cell 585:lyse 535:and 533:DMSO 529:Urea 504:and 486:urea 422:PVDF 180:RFLP 146:and 2641:PMC 2623:doi 2551:doi 2506:doi 2502:269 2465:doi 2461:244 2414:doi 2367:doi 2363:124 2331:doi 2234:doi 2230:333 2133:doi 2071:doi 2020:doi 1936:doi 1932:253 1885:doi 1844:PMC 1836:doi 1741:doi 1644:doi 1609:doi 1503:PMC 1495:doi 1288:doi 1284:278 1162:gel 1121:); 1086:SDS 898:RNA 896:or 894:DNA 885:or 852:PCR 791:or 785:PCR 759:or 751:or 711:or 609:or 569:in 512:or 420:or 403:or 252:RNA 248:DNA 232:gel 223:or 132:RNA 128:DNA 3266:: 2649:. 2639:. 2631:. 2621:. 2609:. 2605:. 2557:. 2520:. 2512:. 2500:. 2496:. 2473:. 2459:. 2455:. 2428:. 2420:. 2410:29 2408:. 2404:. 2381:. 2373:. 2361:. 2337:. 2329:. 2317:. 2313:. 2248:. 2240:. 2228:. 2224:. 2147:. 2139:. 2127:. 2123:. 2093:. 2085:. 2077:. 2067:16 2065:. 2061:. 2034:. 2026:. 2014:. 2010:. 1983:. 1973:33 1971:. 1967:. 1944:. 1930:. 1926:. 1899:. 1891:. 1879:. 1875:. 1852:. 1842:. 1832:61 1830:. 1826:. 1814:^ 1800:. 1763:. 1755:. 1747:. 1735:. 1731:. 1704:. 1700:. 1674:. 1666:. 1658:. 1650:. 1638:. 1615:. 1607:. 1597:22 1595:. 1540:. 1536:. 1511:. 1501:. 1489:. 1466:. 1433:. 1400:. 1367:. 1343:^ 1329:. 1296:. 1282:. 1278:. 977:. 908:. 821:, 817:, 813:, 739:. 640:. 598:. 531:, 527:. 520:. 428:. 374:. 279:. 250:, 186:, 178:, 166:. 134:, 130:, 3012:e 3005:t 2998:v 2801:/ 2787:/ 2731:e 2724:t 2717:v 2657:. 2625:: 2617:: 2611:7 2590:. 2567:. 2553:: 2532:. 2508:: 2481:. 2467:: 2440:. 2416:: 2389:. 2369:: 2345:. 2333:: 2325:: 2319:7 2289:. 2260:. 2236:: 2209:. 2184:. 2159:. 2135:: 2129:2 2108:. 2073:: 2046:. 2022:: 2016:4 1995:. 1952:. 1938:: 1911:. 1887:: 1881:8 1860:. 1838:: 1808:. 1775:. 1743:: 1737:1 1716:. 1686:. 1646:: 1623:. 1611:: 1603:: 1580:. 1555:. 1519:. 1497:: 1474:. 1441:. 1408:. 1375:. 1337:. 1304:. 1290:: 1183:) 1179:( 1153:) 1136:) 1100:) 1070:) 1063:) 1048:) 1034:) 1030:( 862:- 805:. 246:( 126:(

Index


agarose gel
Electrophoresis
Capillary electrophoresis
SDS-PAGE
Two-dimensional gel electrophoresis
Temperature gradient gel electrophoresis


biomacromolecules
DNA
RNA
proteins
clinical chemistry
biochemistry
molecular biology
electric field
agarose
nanoparticles
polymerase chain reaction
mass spectrometry
RFLP
cloning
DNA sequencing
Southern blotting
Electrophoresis

Electrophoresis
agarose
polyacrylamide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑