Knowledge

Frank–Starling law

Source 📝

129:. As striated muscle is stretched, active tension is created by altering the overlap of thick and thin filaments. The greatest isometric active tension is developed when a muscle is at its optimal length. In most relaxed skeletal muscle fibers, passive elastic properties maintain the muscle fibers length near optimal, as determined usually by the fixed distance between the attachment points of tendons to the bones (or the exoskeleton of arthropods) at either end of the muscle. In contrast, the relaxed 109:), when all other factors remain constant. As a larger volume of blood flows into the ventricle, the blood stretches cardiac muscle, leading to an increase in the force of contraction. The Frank-Starling mechanism allows the cardiac output to be synchronized with the venous return, arterial blood supply and humoral length, without depending upon external regulation to make alterations. The physiological importance of the mechanism lies mainly in maintaining left and right ventricular output equality. 27: 134:
human heart, maximal force is generated with an initial sarcomere length of 2.2 micrometers, a length which is rarely exceeded in a normal heart. Initial lengths larger or smaller than this optimal value will decrease the force the muscle can achieve. For longer sarcomere lengths, this is the result of there being less overlap of the thin and thick filaments; for shorter sarcomere lengths, the cause is the decreased sensitivity for calcium by the
214:. Since the next ventricular contraction occurs at its regular time, the filling time for the LV increases, causing an increased LV end-diastolic volume. Due to the Frank–Starling mechanism, the next ventricular contraction is more forceful, leading to the ejection of the larger than normal volume of blood, and bringing the LV end-systolic volume back to baseline. 133:
length of cardiac muscle cells, in a resting ventricle, is lower than the optimal length for contraction. There is no bone to fix sarcomere length in the heart (of any animal) so sarcomere length is very variable and depends directly upon blood filling and thereby expanding the heart chambers. In the
189:
that is responsible for the Frank-Starling mechanism, the heart can automatically accommodate an increase in venous return, at any heart rate. The mechanism is of functional importance because it serves to adapt left ventricular output to right ventricular output. If this mechanism did not exist and
262:
of muscle contraction and the understanding of the relationship between active tension and sarcomere length, Starling hypothesized in 1914, "the mechanical energy set free in the passage from the resting to the active state is a function of the length of the fiber." Starling used a volume-pressure
253:
Otto Frank's contributions are derived from his 1895 experiments on frog hearts. In order to relate the work of the heart to skeletal muscle mechanics, Frank observed changes in diastolic pressure with varying volumes of the frog ventricle. His data was analyzed on a pressure-volume diagram, which
225:
is associated with a reduced compliance, or increased stiffness, of the ventricle wall. This reduced compliance results in an inadequate filling of the ventricle and a decrease in the end-diastolic volume. The decreased end-diastolic volume then leads to a reduction in stroke volume because of the
177:
to form. The force that any single cardiac muscle cell generates is related to the sarcomere length at the time of muscle cell activation by calcium. The stretch on the individual cell, caused by ventricular filling, determines the sarcomere length of the fibres. Therefore the force (pressure)
190:
the right and left cardiac outputs were not equivalent, blood would accumulate in the pulmonary circulation (were the right ventricle producing more output than the left) or the systemic circulation (were the left ventricle producing more output than the right).
257:
Starling experimented on intact mammalian hearts, such as from dogs, to understand why variations in arterial pressure, heart rate, and temperature do not affect the relatively constant cardiac output. More than 30 years before the development of the
173:, as shown by an increase in Ca spark rate upon axial stretch of single cardiac myocytes. Finally, there is thought to be a decrease in the spacing between thick and thin filaments, when a cardiac muscle is stretched, allowing an increased number of 1306: 242:. However, neither Frank nor Starling was the first to describe the relationship between the end-diastolic volume and the regulation of cardiac output. The first formulation of the law was theorized by the Italian physiologist 423:
West, J. M.; Humphris, D. C.; Stephenson, D. G. (1992). "Differences in maximal activation properties of skinned short- and long-sarcomere muscle fibres from the claw of the freshwater crustacean Cherax destructor".
263:
diagram to construct a length-tension diagram from his data. Starling's data and associated diagrams, provided evidence that the length of the muscle fibers, and resulting tension, altered the systolic pressure.
73:. A blood volume increase would cause a shift along the line to the right, which increases left ventricular end diastolic volume (x axis), and therefore also increases stroke volume (y axis). 371: 138:. An increase in filling of the ventricle increases the load experienced by each cardiac muscle cells, stretching their sarcomeres toward their optimal length. 1350: 640:
Huxley, H.; Hanson, J. (1954-05-22). "Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation".
409: 699:
Huxley, A. F.; Niedergerke, R. (1954-05-22). "Structural changes in muscle during contraction; interference microscopy of living muscle fibres".
857:
Iribe, G; Ward, CW; Camelliti, P; Bollensdorff, C; Mason, F; Burton, RAB; Garny, A; Morphew, MK; Hoenger, A; Lederer, WJ; Kohl, P (2009-03-27).
989: 957: 1573: 1003: 971: 1845: 1343: 483: 926: 351: 322: 539:"Dissociation of force from myofibrillar MgATPase and stiffness at short sarcomere lengths in rat and toad skeletal muscle" 101:. The law states that the stroke volume of the heart increases in response to an increase in the volume of blood in the 1942: 1336: 1316: 58: 203: 1947: 593:"Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat" 859:"Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate" 372:"Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions" 1486: 1863: 1618: 1596: 182:
of the left and right ventricles as determined by complexities of the force-sarcomere length relationship.
847:
Klabunde, Richard E. "Cardiovascular Physiology Concepts". Lippincott Williams & Wilkins, 2011, p. 74.
813:
Allen, D.G.; Kentish, J.C. (1985). "The cellular basis of the length-tension relation in cardiac muscle".
169:. In addition, stretch of cardiac myocytes increases the releasability of Ca from the internal store, the 1858: 1603: 277: 1684: 1888: 1835: 1711: 1691: 1655: 1578: 1538: 1359: 235: 1706: 1696: 1586: 70: 1893: 1825: 1770: 1671: 1591: 1475: 1453: 259: 222: 174: 1471: 1830: 1820: 1734: 1480: 1438: 254:
resulted in his description of peak isovolumic pressure and its effects on ventricular volume.
170: 166: 30: 246:, who on December 13, 1914, started the first of 19 experiments that led him to formulate the 1679: 403: 54: 1428: 1411: 708: 649: 179: 106: 98: 62: 50: 1328: 8: 1775: 1613: 1608: 1443: 1416: 1010: 343: 336: 712: 653: 1883: 1748: 1501: 983: 951: 891: 858: 740: 681: 617: 592: 563: 538: 500: 457: 142: 826: 1519: 1491: 1312: 1287: 1260: 1233: 1206: 1179: 1152: 1125: 1098: 1071: 1044: 922: 896: 878: 830: 792: 784: 732: 724: 673: 665: 622: 568: 505: 449: 441: 391: 387: 347: 318: 272: 102: 20: 513: 461: 1868: 1463: 886: 870: 822: 774: 744: 716: 685: 657: 612: 608: 604: 558: 554: 550: 495: 433: 383: 61:. The three curves illustrate that shifts along the same line indicate a change in 921:(13th ed.). Philadelphia, Pa.: Saunders/Elsevier. pp. 169–178 (Ch. 14). 874: 1718: 1448: 1308:
Medical Physiology, 2e Updated Edition E-Book: with STUDENT CONSULT Online Access
243: 239: 122: 1878: 1803: 1795: 1389: 1376: 207: 126: 46: 1936: 1496: 1406: 1399: 1384: 882: 788: 728: 669: 445: 94: 38: 1910: 1900: 1873: 1762: 1753: 1550: 1524: 1291: 1264: 1237: 1210: 1183: 1156: 1129: 1102: 1075: 1048: 900: 796: 736: 677: 509: 834: 626: 572: 453: 395: 165:
for binding Ca increases and there is an increased release of Ca from the
161:
cross-bridges to form within the muscle. Specifically, the sensitivity of
1915: 1905: 1633: 1628: 1623: 1534: 135: 82: 42: 779: 762: 26: 1853: 1638: 1528: 1511: 1394: 437: 186: 1785: 1556: 1423: 720: 661: 484:""Ernest Henry Starling, His Predecessors, and the "Law of the Heart" 150: 130: 66: 369: 1813: 1544: 162: 841: 1808: 146: 1648: 1643: 158: 856: 342:. Hagerstwon, MD: Lippincott Williams & Wilkins. pp.  1780: 1367: 234:
The Frank–Starling law is named after the two physiologists,
211: 154: 65:, while shifts from one line to another indicate a change in 1358: 16:
Relationship between stroke volume and end diastolic volume
315:
Vander's Human Physiology: The Mechanisms of Body Function
313:
Widmaier, E. P., Hershel, R., & Strang, K. T. (2016).
178:
generated by the cardiac muscle fibres is related to the
117:
The Frank-Starling mechanism occurs as the result of the
217: 536: 1169: 761:
Moss, Richard L.; Fitzsimons, Daniel P. (2002-01-11).
537:
Stephenson, D.G.; Stewart, A.W.; Wilson, G.J. (1989).
422: 996: 198: 1305:Boron, Walter F.; Boulpaep, Emile L. (2012-01-13). 1170:PENNACCHIO, L.; D. MAESTRINI (September 1952). "". 121:observed in striated muscle, including for example 590: 335: 333: 1271: 1244: 1217: 1190: 698: 317:(14th ed.). New York, NY: McGraw-Hill Education. 1934: 327: 919:Guyton and Hall textbook of medical physiology 760: 1344: 1304: 481: 370:Jacob R., Dierberger B., Kissling G. (1992). 1009:(in Italian). pp. 29–31. Archived from 815:Journal of Molecular and Cellular Cardiology 812: 639: 426:Journal of Muscle Research and Cell Motility 408:: CS1 maint: multiple names: authors list ( 141:The stretching sarcomeres augments cardiac 1351: 1337: 988:: CS1 maint: location missing publisher ( 956:: CS1 maint: location missing publisher ( 1277: 1250: 1223: 1196: 1142: 1115: 1088: 1061: 1034: 941: 890: 778: 616: 591:Stephenson, D.G.; Williams, D.A. (1982). 562: 499: 25: 1360:Physiology of the cardiovascular system 23:that describes transcapillary exchange. 1935: 93:) represents the relationship between 1332: 970: 942:Spadolini, Igino (1946). UTET (ed.). 912: 910: 808: 806: 756: 754: 218:Diastolic dysfunction – heart failure 916: 586: 584: 582: 532: 530: 477: 475: 473: 471: 365: 363: 309: 307: 305: 303: 301: 299: 297: 295: 293: 193: 1251:MAESTRINI, D. (February 1959). "". 1224:MAESTRINI, D. (December 1958). "". 1089:MAESTRINI, D. (November 1951). "". 1035:MAESTRINI, D. (February 1951). "". 13: 1278:MAESTRINI, D. (October 1959). "". 1197:MAESTRINI, D. (January 1958). "". 907: 803: 751: 501:10.1161/01.CIR.0000040594.96123.55 59:pulmonary capillary wedge pressure 14: 1959: 579: 527: 468: 360: 290: 204:Premature ventricular contraction 199:Premature ventricular contraction 185:Due to the intrinsic property of 37:, the y-axis often describes the 1298: 1163: 1136: 1116:MAESTRINI, D. (June 1952). "". 1109: 1082: 1062:MAESTRINI, D. (July 1951). "". 1055: 1028: 964: 935: 850: 35:Frank–Starling law of the heart 33:. In diagrams illustrating the 692: 633: 609:10.1113/jphysiol.1982.sp014473 555:10.1113/jphysiol.1989.sp017537 416: 388:10.1093/eurheartj/13.suppl_E.7 153:, causing a greater number of 1: 1487:Aortic valve area calculation 875:10.1161/CIRCRESAHA.108.193334 827:10.1016/S0022-2828(85)80097-3 763:"Frank-Starling Relationship" 283: 206:causes early emptying of the 112: 49:. The x-axis often describes 1311:. Elsevier Health Sciences. 19:Not to be confused with the 7: 1604:Effective refractory period 1483:) / End-diastolic dimension 334:Costanzo, Linda S. (2007). 278:Total peripheral resistance 266: 119:length-tension relationship 10: 1964: 1143:MAESTRINI, D. (1947). "". 974:(2004). Ambrosiana (ed.). 229: 226:Frank-Starling mechanism. 105:, before contraction (the 18: 1943:Cardiovascular physiology 1889:Tubuloglomerular feedback 1844: 1836:Critical closing pressure 1794: 1761: 1747: 1727: 1664: 1656:Hexaxial reference system 1579:Cardiac electrophysiology 1566: 1510: 1462: 1375: 1366: 1864:Renin–angiotensin system 91:Frank–Starling mechanism 1948:Mathematics in medicine 1894:Cerebral autoregulation 1859:Kinin–kallikrein system 1826:Jugular venous pressure 1476:End-diastolic dimension 1454:Pressure volume diagram 125:, arthropod muscle and 1831:Portal venous pressure 1821:Mean arterial pressure 1735:Ventricular remodeling 1481:End-systolic dimension 1439:Cardiac function curve 946:. Vol. 2. Torino. 944:Trattato di Fisiologia 482:Katz Arnold M (2002). 376:European Heart Journal 260:sliding filament model 171:sarcoplasmic reticulum 167:sarcoplasmic reticulum 127:cardiac (heart) muscle 74: 31:Cardiac function curve 1472:Fractional shortening 1205:(3–4): Varia, 28–36. 597:Journal of Physiology 543:Journal of Physiology 240:Ernest Henry Starling 223:Diastolic dysfunction 55:right atrial pressure 29: 1412:End-diastolic volume 1226:Minerva Cardioangiol 863:Circulation Research 767:Circulation Research 180:end-diastolic volume 107:end diastolic volume 99:end diastolic volume 51:end-diastolic volume 1776:Vascular resistance 1614:Electrocardiography 1609:Pacemaker potential 1539:Conduction velocity 1444:Venous return curve 1417:End-systolic volume 1004:"www.ancecardio.it" 917:Hall, John (2016). 780:10.1161/res.90.1.11 713:1954Natur.173..971H 654:1954Natur.173..973H 149:sensitivity of the 1884:Myogenic mechanism 1502:Left atrial volume 1434:Frank–Starling law 438:10.1007/BF01738256 248:"legge del cuore" 145:by increasing the 143:muscle contraction 79:Frank–Starling law 75: 1930: 1929: 1926: 1925: 1743: 1742: 1583:Action potential 1574:Conduction system 1520:Cardiac pacemaker 1492:Ejection fraction 928:978-1-4160-4574-8 707:(4412): 971–973. 648:(4412): 973–976. 494:(23): 2986–2992. 353:978-0-7817-7311-9 323:978-1-259-29409-9 273:Starling equation 194:Clinical examples 21:Starling equation 1955: 1869:Vasoconstrictors 1846:Regulation of BP 1759: 1758: 1692:pulmonary artery 1665:Chamber pressure 1373: 1372: 1353: 1346: 1339: 1330: 1329: 1323: 1322: 1302: 1296: 1295: 1280:Policlinico Prat 1275: 1269: 1268: 1253:Policlinico Prat 1248: 1242: 1241: 1221: 1215: 1214: 1194: 1188: 1187: 1172:Policlinico Prat 1167: 1161: 1160: 1140: 1134: 1133: 1118:Policlinico Prat 1113: 1107: 1106: 1086: 1080: 1079: 1064:Policlinico Prat 1059: 1053: 1052: 1037:Policlinico Prat 1032: 1026: 1025: 1023: 1021: 1015: 1008: 1000: 994: 993: 987: 979: 972:Berne, Robert M. 968: 962: 961: 955: 947: 939: 933: 932: 914: 905: 904: 894: 854: 848: 845: 839: 838: 810: 801: 800: 782: 758: 749: 748: 721:10.1038/173971a0 696: 690: 689: 662:10.1038/173973a0 637: 631: 630: 620: 588: 577: 576: 566: 534: 525: 524: 522: 521: 512:. Archived from 503: 479: 466: 465: 420: 414: 413: 407: 399: 367: 358: 357: 341: 331: 325: 311: 123:skeletal muscles 1963: 1962: 1958: 1957: 1956: 1954: 1953: 1952: 1933: 1932: 1931: 1922: 1840: 1790: 1752: 1749:Vascular system 1739: 1723: 1660: 1562: 1547:(Contractility) 1506: 1458: 1449:Wiggers diagram 1362: 1357: 1327: 1326: 1319: 1303: 1299: 1276: 1272: 1249: 1245: 1222: 1218: 1195: 1191: 1168: 1164: 1141: 1137: 1124:(24): 797–814. 1114: 1110: 1087: 1083: 1060: 1056: 1033: 1029: 1019: 1017: 1013: 1006: 1002: 1001: 997: 981: 980: 969: 965: 949: 948: 940: 936: 929: 915: 908: 855: 851: 846: 842: 811: 804: 759: 752: 697: 693: 638: 634: 589: 580: 535: 528: 519: 517: 480: 469: 421: 417: 401: 400: 368: 361: 354: 332: 328: 312: 291: 286: 269: 244:Dario Maestrini 232: 220: 201: 196: 115: 85:(also known as 24: 17: 12: 11: 5: 1961: 1951: 1950: 1945: 1928: 1927: 1924: 1923: 1921: 1920: 1919: 1918: 1913: 1908: 1898: 1897: 1896: 1891: 1886: 1879:Autoregulation 1876: 1871: 1866: 1861: 1856: 1850: 1848: 1842: 1841: 1839: 1838: 1833: 1828: 1823: 1818: 1817: 1816: 1811: 1804:Pulse pressure 1800: 1798: 1796:Blood pressure 1792: 1791: 1789: 1788: 1783: 1778: 1773: 1767: 1765: 1756: 1745: 1744: 1741: 1740: 1738: 1737: 1731: 1729: 1725: 1724: 1722: 1721: 1716: 1715: 1714: 1709: 1701: 1700: 1699: 1689: 1688: 1687: 1682: 1674: 1672:Central venous 1668: 1666: 1662: 1661: 1659: 1658: 1653: 1652: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1611: 1606: 1601: 1600: 1599: 1594: 1589: 1581: 1576: 1570: 1568: 1564: 1563: 1561: 1560: 1554: 1553:(Excitability) 1548: 1542: 1532: 1522: 1516: 1514: 1508: 1507: 1505: 1504: 1499: 1494: 1489: 1484: 1478: 1468: 1466: 1460: 1459: 1457: 1456: 1451: 1446: 1441: 1436: 1431: 1426: 1421: 1420: 1419: 1414: 1404: 1403: 1402: 1397: 1390:Cardiac output 1387: 1381: 1379: 1377:Cardiac output 1370: 1364: 1363: 1356: 1355: 1348: 1341: 1333: 1325: 1324: 1318:978-1455711819 1317: 1297: 1270: 1243: 1232:(12): 657–67. 1216: 1189: 1178:(37): 1223–4. 1162: 1135: 1108: 1097:(80): 857–64. 1081: 1070:(30): 933–45. 1054: 1027: 995: 963: 934: 927: 906: 869:(6): 787–795. 849: 840: 821:(9): 821–840. 802: 750: 691: 632: 578: 526: 467: 432:(6): 668–684. 415: 359: 352: 326: 288: 287: 285: 282: 281: 280: 275: 268: 265: 231: 228: 219: 216: 210:(LV) into the 208:left ventricle 200: 197: 195: 192: 114: 111: 87:Starling's law 47:cardiac output 15: 9: 6: 4: 3: 2: 1960: 1949: 1946: 1944: 1941: 1940: 1938: 1917: 1914: 1912: 1909: 1907: 1904: 1903: 1902: 1899: 1895: 1892: 1890: 1887: 1885: 1882: 1881: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1851: 1849: 1847: 1843: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1815: 1812: 1810: 1807: 1806: 1805: 1802: 1801: 1799: 1797: 1793: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1768: 1766: 1764: 1760: 1757: 1755: 1750: 1746: 1736: 1733: 1732: 1730: 1726: 1720: 1717: 1713: 1710: 1708: 1705: 1704: 1702: 1698: 1695: 1694: 1693: 1690: 1686: 1683: 1681: 1678: 1677: 1675: 1673: 1670: 1669: 1667: 1663: 1657: 1654: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1616: 1615: 1612: 1610: 1607: 1605: 1602: 1598: 1595: 1593: 1590: 1588: 1585: 1584: 1582: 1580: 1577: 1575: 1572: 1571: 1569: 1565: 1558: 1555: 1552: 1549: 1546: 1543: 1540: 1536: 1533: 1530: 1526: 1523: 1521: 1518: 1517: 1515: 1513: 1509: 1503: 1500: 1498: 1497:Cardiac index 1495: 1493: 1490: 1488: 1485: 1482: 1479: 1477: 1473: 1470: 1469: 1467: 1465: 1461: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1418: 1415: 1413: 1410: 1409: 1408: 1407:Stroke volume 1405: 1401: 1400:Stroke volume 1398: 1396: 1393: 1392: 1391: 1388: 1386: 1385:Cardiac cycle 1383: 1382: 1380: 1378: 1374: 1371: 1369: 1365: 1361: 1354: 1349: 1347: 1342: 1340: 1335: 1334: 1331: 1320: 1314: 1310: 1309: 1301: 1293: 1289: 1285: 1281: 1274: 1266: 1262: 1259:(7): 224–30. 1258: 1254: 1247: 1239: 1235: 1231: 1227: 1220: 1212: 1208: 1204: 1200: 1193: 1185: 1181: 1177: 1173: 1166: 1158: 1154: 1150: 1146: 1139: 1131: 1127: 1123: 1119: 1112: 1104: 1100: 1096: 1092: 1085: 1077: 1073: 1069: 1065: 1058: 1050: 1046: 1043:(9): 257–68. 1042: 1038: 1031: 1016:on 2013-11-09 1012: 1005: 999: 991: 985: 977: 973: 967: 959: 953: 945: 938: 930: 924: 920: 913: 911: 902: 898: 893: 888: 884: 880: 876: 872: 868: 864: 860: 853: 844: 836: 832: 828: 824: 820: 816: 809: 807: 798: 794: 790: 786: 781: 776: 772: 768: 764: 757: 755: 746: 742: 738: 734: 730: 726: 722: 718: 714: 710: 706: 702: 695: 687: 683: 679: 675: 671: 667: 663: 659: 655: 651: 647: 643: 636: 628: 624: 619: 614: 610: 606: 602: 598: 594: 587: 585: 583: 574: 570: 565: 560: 556: 552: 548: 544: 540: 533: 531: 516:on 2018-07-13 515: 511: 507: 502: 497: 493: 489: 485: 478: 476: 474: 472: 463: 459: 455: 451: 447: 443: 439: 435: 431: 427: 419: 411: 405: 397: 393: 389: 385: 381: 377: 373: 366: 364: 355: 349: 345: 340: 339: 330: 324: 320: 316: 310: 308: 306: 304: 302: 300: 298: 296: 294: 289: 279: 276: 274: 271: 270: 264: 261: 255: 251: 249: 245: 241: 237: 227: 224: 215: 213: 209: 205: 191: 188: 183: 181: 176: 175:cross-bridges 172: 168: 164: 160: 156: 152: 148: 144: 139: 137: 132: 128: 124: 120: 110: 108: 104: 100: 96: 95:stroke volume 92: 88: 84: 80: 72: 71:contractility 68: 64: 60: 56: 52: 48: 44: 40: 39:stroke volume 36: 32: 28: 22: 1911:Carotid body 1874:Vasodilators 1754:hemodynamics 1559:(Relaxation) 1551:Bathmotropic 1525:Chronotropic 1433: 1307: 1300: 1283: 1279: 1273: 1256: 1252: 1246: 1229: 1225: 1219: 1202: 1198: 1192: 1175: 1171: 1165: 1151:(5): 162–4. 1148: 1144: 1138: 1121: 1117: 1111: 1094: 1090: 1084: 1067: 1063: 1057: 1040: 1036: 1030: 1018:. Retrieved 1011:the original 998: 975: 966: 943: 937: 918: 866: 862: 852: 843: 818: 814: 773:(1): 11–13. 770: 766: 704: 700: 694: 645: 641: 635: 600: 596: 546: 542: 518:. Retrieved 514:the original 491: 487: 429: 425: 418: 404:cite journal 379: 375: 337: 329: 314: 256: 252: 247: 233: 221: 202: 184: 140: 136:myofilaments 118: 116: 90: 86: 78: 76: 34: 1916:Glomus cell 1906:Aortic body 1901:Paraganglia 1712:ventricular 1685:ventricular 1634:QT interval 1629:QRS complex 1624:PR interval 1597:ventricular 1535:Dromotropic 1286:: 1409–13. 1199:Minerva Med 1091:Minerva Med 603:: 637–653. 549:: 351–366. 488:Circulation 43:stroke work 1937:Categories 1854:Baroreflex 1771:Compliance 1763:Blood flow 1639:ST segment 1567:Conduction 1557:Lusitropic 1529:Heart rate 1512:Heart rate 1464:Ultrasound 1395:Heart rate 1145:Gazz Sanit 976:Fisiologia 520:2017-05-03 338:Physiology 284:References 236:Otto Frank 187:myocardium 151:myofibrils 113:Physiology 103:ventricles 1814:Diastolic 1786:Perfusion 1545:Inotropic 1424:Afterload 984:cite book 978:. Milano. 952:cite book 883:1524-4571 789:0009-7330 729:0028-0836 670:0028-0836 446:0142-4319 131:sarcomere 67:afterload 1809:Systolic 1587:cardiac 1292:13853750 1265:13645276 1238:13643787 1211:13516733 1184:13026471 1157:18859625 1130:14957592 1103:14919226 1076:14864102 1049:14833944 1020:6 August 901:19197074 797:11786511 737:13165697 678:13165698 510:12460884 462:21089844 382:: 7–14. 267:See also 163:troponin 89:and the 1429:Preload 892:3522525 835:3900426 745:4275495 709:Bibcode 686:4180166 650:Bibcode 627:7182478 618:1197268 573:2529371 564:1190483 454:1491074 396:1478214 230:History 147:calcium 81:of the 63:preload 1719:Aortic 1707:atrial 1680:atrial 1676:Right 1649:U wave 1644:T wave 1619:P wave 1592:atrial 1315:  1290:  1263:  1236:  1209:  1182:  1155:  1128:  1101:  1074:  1047:  925:  899:  889:  881:  833:  795:  787:  743:  735:  727:  701:Nature 684:  676:  668:  642:Nature 625:  615:  571:  561:  508:  460:  452:  444:  394:  350:  321:  159:myosin 1781:Pulse 1728:Other 1703:Left 1697:wedge 1368:Heart 1014:(PDF) 1007:(PDF) 741:S2CID 682:S2CID 458:S2CID 212:aorta 155:actin 83:heart 57:, or 45:, or 1313:ISBN 1288:PMID 1261:PMID 1234:PMID 1207:PMID 1180:PMID 1153:PMID 1126:PMID 1099:PMID 1072:PMID 1045:PMID 1022:2010 990:link 958:link 923:ISBN 897:PMID 879:ISSN 831:PMID 793:PMID 785:ISSN 733:PMID 725:ISSN 674:PMID 666:ISSN 623:PMID 569:PMID 506:PMID 450:PMID 442:ISSN 410:link 392:PMID 348:ISBN 319:ISBN 238:and 97:and 77:The 1474:= ( 887:PMC 871:doi 867:104 823:doi 775:doi 717:doi 705:173 658:doi 646:173 613:PMC 605:doi 601:333 559:PMC 551:doi 547:410 496:doi 492:106 434:doi 384:doi 69:or 1939:: 1284:66 1282:. 1257:66 1255:. 1228:. 1203:49 1201:. 1176:59 1174:. 1149:18 1147:. 1122:59 1120:. 1095:42 1093:. 1068:58 1066:. 1041:58 1039:. 986:}} 982:{{ 954:}} 950:{{ 909:^ 895:. 885:. 877:. 865:. 861:. 829:. 819:17 817:. 805:^ 791:. 783:. 771:90 769:. 765:. 753:^ 739:. 731:. 723:. 715:. 703:. 680:. 672:. 664:. 656:. 644:. 621:. 611:. 599:. 595:. 581:^ 567:. 557:. 545:. 541:. 529:^ 504:. 490:. 486:. 470:^ 456:. 448:. 440:. 430:13 428:. 406:}} 402:{{ 390:. 380:13 378:. 374:. 362:^ 346:. 344:81 292:^ 250:. 53:, 41:, 1751:/ 1541:) 1537:( 1531:) 1527:( 1352:e 1345:t 1338:v 1321:. 1294:. 1267:. 1240:. 1230:6 1213:. 1186:. 1159:. 1132:. 1105:. 1078:. 1051:. 1024:. 992:) 960:) 931:. 903:. 873:: 837:. 825:: 799:. 777:: 747:. 719:: 711:: 688:. 660:: 652:: 629:. 607:: 575:. 553:: 523:. 498:: 464:. 436:: 412:) 398:. 386:: 356:. 157:-

Index

Starling equation

Cardiac function curve
stroke volume
stroke work
cardiac output
end-diastolic volume
right atrial pressure
pulmonary capillary wedge pressure
preload
afterload
contractility
heart
stroke volume
end diastolic volume
ventricles
end diastolic volume
skeletal muscles
cardiac (heart) muscle
sarcomere
myofilaments
muscle contraction
calcium
myofibrils
actin
myosin
troponin
sarcoplasmic reticulum
sarcoplasmic reticulum
cross-bridges

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.