Knowledge

Extracellular polymeric substance

Source 📝

1472:(NPs) are one of novel promising techniques to target biofilms due to their high surface-area-to-volume ratio, their ability to penetrate to the deeper layers of biofilms and the capacity to releasing antimicrobial agents in a controlled way. Studying NP-EPS interactions could provide deeper understanding on how to develop more effective nanoparticles. "smart release" nanocarriers that can penetrate biofilms and be triggered by pathogenic microenvironments to deliver drugs or multifunctional compounds, such as catalytic nanoparticles to aptamers, dendrimers, and bioactive peptides) have been developed to disrupt the EPS and the viability or metabolic activity of the embedded bacteria. Some factors that would alter the potentials of the NP to transport antimicrobial agents into the biofilm include physicochemical interactions of the NPs with EPS components, the characteristics of the water spaces (pores) within the EPS matrix and the EPS matrix viscosity. Size and surface properties (charge and functional groups) of the NPs are the major determinants of the penetration in and the interaction with the EPS. Another potential antibiofilm strategy is phage therapy. Bacteriophages, viruses that invade specific bacterial host cells, were suggested to be effective agents in penetrating biofilms. In order to reach the maximum efficacy to eradicate biofilms, therapeutic strategies need to target both the biofilm matrix components as well as the embedded microorganisms to target the complex biofilm microenvironment. 987:
surface with hydrogen bonding. Replication of early colonizers will be facilitated by the presence of organic molecules in the matrix which will provide nutrients to the algal cells. As the colonizers are reproducing, the biofilm grows and becomes a 3-dimensional structure. Microalgal biofilms consist of 90% EPS and 10% algal cells. Algal EPS has similar components to the bacterial one; it is made up of proteins, phospholipids, polysaccharides, nucleic acids, humic substances, uronic acids and some functional groups, such as phosphoric, carboxylic, hydroxyl and amino groups. Algal cells consume EPS as their source of energy and carbon. Furthermore, EPS protects them from dehydration and reinforces the adhesion of the cells to the surface. In algal biofilms, EPS has two sub-categories; soluble EPS (sEPS) and the bounded EPS (bEPS) with former being distributed in the medium and the latter being attached to the algal cells. Bounded EPS can be further subdivided to tightly bounded EPS (TB-EPS) and loosely bounded EPS (LB-EPS). Several factors contribute to the composition of EPS including species, substrate type, nutrient availability, temperature, pH and light intensity.
384: 925:
recognition) to facilitate microbial aggregation and biofilm formation. In general, the EPS-based matrix mediates biofilm assembly as follows. First, the EPS formation takes place at the site of adhesion, it will be either produced on bacterial surfaces or secreted on the surface of attachment, and form an initial polymeric matrix promoting microbial colonization and cell clustering. Next, continuous production of EPS further expands the matrix in 3 dimensions while forming a core of bacterial cells. The bacterial core provides a supporting framework, and facilitates the development of 3D clusters and aggregation of microcolonies. Studies on
1511: 1213:
faces the big risk of growth inhibition. High volumes of spent media give rise to environmental pollution and cost of water and nutrition supply in cultivation when the media are discarded directly to the environment. Therefore the application of recycling methods motivated by the simultaneous generation of high value products from spent medium bears potential in commercial and environmental perspectives.
33: 1370:
as energy sources for heterotrophs in algal-bacterial symbiotic interactions. Excretions into the pericellular space determine, to a great degree, the course of allelopathic interactions between microalgae and other microorganisms. Some allelopathic compounds from microalgae are realized as environment-friendly herbicides or biocontrol agents with direct perspectives for their biotechnological use.
66:, and are considered the fundamental component that determines the physicochemical properties of a biofilm. EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals. 850:-nitrophenol, and naphthalenesulphonic acids. Though the metabolic degradation pathways are not fully understood, enzymes including phenoloxidase laccase (EC 1.10.3.2) and laccase-like enzymes are involved in the oxidation of aromatic substrates. These exoenzymes can be potentially applied in the environmental degradation of phenolic pollutants. 966:
charged agents will bind to negatively charged EPS contributing to the antimicrobial tolerance of biofilms, and enabling inactivation or degradation of antimicrobials by enzymes present in biofilm matrix. EPS also functions as local nutrient reservoir of various biomolecules, such as fermentable polysaccharides. A study on
1233:
are the most important species in commercialization as health foods and nutrition supplements with various health benefits including enhancing immune system activity, anti-tumor effects, and animal growth promotion, due to their abundant proteins, vitamins, active polysaccharides, and other important
986:
biofilms. The formation of biofilm and structure of EPS share a lot of similarities with bacterial ones. The formation of biofilm starts with reversible absorption of floating cells to the surface. Followed by production of EPS, the adsorption will get irreversible. EPS will colonize the cells at the
960:
Afterwards, as biofilm becomes established, EPS provides physical stability and resistance to mechanical removal, antimicrobials, and host immunity. Exopolysaccharides and environmental DNA (eDNA) contribute to viscoelasticity of mature biofilms so that detachment of biofilm from the substratum will
763:
etc. and can influence the growth of microorganisms, chemical signaling, and biogeochemical cycling in ecosystems. The study of these exoenzymes may help to optimize the nutrient supplement strategy in aquaculture. Nevertheless, only a few of the enzymes were isolated and purified. Selected prominent
207:
processes regulated by the environment or bacteria, are also essential components of the exopolysaccharides. They provide structural integrity to biofilm matrix and act as a scaffold to protect bacterial cells from shear forces and antimicrobial chemicals. The minerals in EPS were found to contribute
1369:
During the growth, microalgae produce and secrete metabolites such as acetate or glycerol into the medium. Extracellular metabolites (EM) from microalgae have important ecological significances. For instance, marine microalgae release a large amount of dissolved organic substances (DOS), which serve
1212:
Although the commercial cultivation of microalgae became increasingly popular, only algal biomass is processed to current products, while huge volumes of algae-free media are unexploited in flow through cultures and after biomass harvesting of batch cultures. Medium recycling to save culturing costs
1356:
in 2010, these EPS-producing bacteria were able to grow and multiply rapidly. It was later found that their EPS sugars dissolved the oil and formed oil aggregates on the ocean surface, which sped up the cleaning process. These oil aggregates also provided a valuable source of nutrients for other
924:
The first step in the formation of biofilms is adhesion. The initial bacterial adhesion to surfaces involves the adhesin–receptor interactions. Certain polysaccharides, lipids and proteins in the matrix function as the adhesive agents. EPS also promotes cell–cell cohesion (including interspecies
263:, which are homopolymers. Most EPS from cyanobacteria are also complex anionic heteropolymers containing six to ten different monosaccharides, one or more uronic acids, and various functional substituents such as methyl, acetate, pyruvate, sulfate groups, and proteins. For instance, the EPS from 965:
or high mechanical pressure. In addition to mechanical resistance, EPS also promotes protection against antimicrobials and enhanced drug tolerance. Antimicrobials cannot diffuse through the EPS barrier, resulting in limited drug access into the deeper layers of the biofilm. Moreover, positively
199:
properties, which lead to the development of promising pharmaceutical candidates. Since exopolysaccharides are released into the culture medium, they can be easily recovered and purified. Different strategies used for the economical extraction and other downstream processing were discussed in a
2898:
La Russa M., De Biasi M.G., Chiaiese P., Palomba F., Pollio A., Pinto G., Filippone E. Screening of green microalgae species for extracellular phenoloxidase activity useful for wastewater phycoremediation; Proceedings of the European Bioremediation Conference; Chania, Crete, Greece. September
326:
Although the EPS from microalgae have many potential applications, their low yield is one of the major limitations for scale-up in industry. The type and amount of EPS obtained from a certain microalgae-culture depends on several factors, such as culture system design, nutritional and culture
829:
Phenols are an important group of ecotoxins due to their toxicity and persistence. Many microorganisms can degrade aromatic pollutants and use them as a source of energy, and the ability of microalgae to degrade a multitude of aromatic compounds including phenolic compounds is increasingly
804:
Phycobiliproteins are water soluble light-capturing proteins, produced by cyanobacteria, and several algae. These pigments have been explored as fluorescent tags, food coloring agents, cosmetics, and immunological diagnostic agents. Most of these pigments are synthesized and accumulated
1344:
Production of oleaginous microalgae are becoming attractive as alternative sources of biofuels with potential to meet global demand for renewable bioenergy. The enhanced oil recovery (EOR) using extracellular biopolymers from microalgae may be an upcoming field of application.
1242:
are commercially produced in large scale processes. Microalgal derived products are currently successfully developed for uses in cosmetics and pharmaceutical products. Examples include the polysaccharides from cyanobacteria used in personal skin care products and extracts of
374:
It was suggested that co-cultures of microalgae and other microorganisms can be used more universally as a technology to increase the production of EPS, since microorganisms may respond to the interaction partners by secreting EPS as a strategy during unfavorable conditions.
896:
are of relatively low toxicity to the human body. The development of peptide inhibitors as drugs is thus an attractive research topic in current medicinal chemistry. Protease inhibitors are attractive agents in the treatment of specific diseases; for instance,
267:
are heteropolymer with protein (55%) moieties and a complex polysaccharide composition, containing seven neutral sugars: glucose, rhamnose, frucose, galactose, xylose, arabinose, and mannose, as well as two uronic acids, galacturonic acid and glucuronic acid.
4821:
Tohmola N, Ahtinen J, Pitkänen JP, Parviainen V, Joenväärä S, Hautamäki M, et al. (April 2011). "On-line high performance liquid chromatography measurements of extracellular metabolites in an aerobic batch yeast (Saccharomyces cerevisiae) culture".
5064:
Mota R, Rossi F, Andrenelli L, Pereira SB, De Philippis R, Tamagnini P (September 2016). "Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites".
2517:
Angelis S, Novak AC, Sydney EB, Soccol VT, Carvalho JC, Pandey A, et al. (July 2012). "Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization".
4181:
Kang HK, Salim HM, Akter N, Kim DW, Kim JH, Bang HT, et al. (March 2013). "Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens".
1331:
has gained interest for its probiotic properties due to its biofilm which allows it to effectively maintain a favorable microenvironment in the gastrointestinal tract. In order to survive the passage through the upper gastrointestinal tract,
1196:
bacteria, as the EPS matrix is able to act as a protective diffusion barrier. The physical and chemical characteristics of bacterial cells can be affected by EPS composition, influencing factors such as cellular recognition, aggregation, and
1247:
sp. which contain oligopeptides that can promote firmness of the skin. In the pharmaceutical industries drug candidates with anti-inflammatory, anticancer, and anti-infective activities have been identified. For instance, adenosine from
873:). These inhibitors are crucial in various biological processes and therapeutic applications, as proteases play key roles in numerous physiological functions, including digestion, immune response, blood coagulation, and cell signaling. 744:, to function outside their cells. These enzymes are crucial for breaking down large molecules in the environment into smaller ones that the microorganisms can absorb (transport into their cells) and use for growth and energy. 4533:
Krienitz L, Wirth M (September 2006). "The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology".
2298:
Trabelsi L., M’sakni N.H., Ben Ouada H., Bacha H., Roudesli S. Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol. Bioprocess Eng. 2009;14:27–31. doi:
1384:
Due to the growing need to find a more efficient and environmentally friendly alternative to conventional waste removal methods, industries are paying more attention to the function of bacteria and their EPS sugars in
2317:
Mishra A., Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour. Technol. 2009;100:3382–3386. doi: 10.1016/j.biortech.2009.02.006.
1255:
Moreover, some extracellular polysaccharides from microalgae have various bioactivities involving antitumor, anti-inflammatory, and antiviral activity, providing promising prospects for pharmaceutical applications.
1164:
within the biofilms and preventing the exploration of nematodes to feed on susceptible biofilms. This significantly reduced the ability of predator to feed and reproduce, thereby promoting the survival of biofilms.
2335:
Maksimova I.V., Bratkovskaya L.B., Plekhanov S.E. Extracellular carbohydrates and polysaccharides of the alga Chlorella pyrenoidosa chick S-39. Biol. Bull. 2004;31:175–181. doi: 10.1023/B:BIBU.0000022474.43555.ec.
2666:
Francoeur SN, Schaecher M, Neely RK, Kuehn KA (November 2006). "Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying typha litter".
4455:
De Philippis R, Colica G, Micheletti E (November 2011). "Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process".
2289:
De Philippis R., Sili C., Paperi R., Vincenzini M. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J. Appl. Phycol. 2001;13:293–299. doi: 10.1023/A:1017590425924.
2820:
Karseno, Harada K, Bamba T, Dwi S, Mahakhant A, Yoshikawa T, et al. (July 2009). "Extracellular phycoerythrin-like protein released by freshwater cyanobacteria Oscillatoria and Scytonema sp".
2326:
Mishra A., Kavita K., Jha B. Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr. Polym. 2011;83:852–857. doi: 10.1016/j.carbpol.2010.08.067.
2553:
Rier ST, Nawrocki KS, Whitley JC (July 2011). "Response of biofilm extracellular enzymes along a stream nutrient enrichment gradient in an agricultural region of north central Pennsylvania, USA".
2104:
Mahendran S, Saravanan S, Vijayabaskar P, Anandapandian KT, Shankar T (2013). "Antibacterial potential of microbial exopolysaccharide from Ganoderma lucidum and Lysinibacillus fusiformis".
1280:
have been long utilized in aquaculture as direct or indirect feed sources in hatchery to provide excellent nutritional conditions for early juveniles of farmed fish, shellfish, and shrimp.
327:
conditions, as well as the recovery and purification process. Therefore, the configuration and optimization of production systems are critical for the further development of applications.
1209:
So far, biomass-based production of industrial microalgae has been widely applied in the fields from food and feed to high-value chemicals for pharmaceutical and ecological applications.
792:
and is connected to the resistance of this alga against the effects of this bacterium. Some proteases are of functional importance in viral life cycles, thus being attractive targets for
747:
Several studies have demonstrated that the activity of extracellular enzymes in aquatic microbial ecology is of algal origin. These exoenzymes released from microalgae include alkaline
2280:
Raposo M.F., de Morais R.M., de Morais A.M.B. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs. 2013;11:233–252. doi: 10.3390/md11010233.
1460:, which are capable of degrading PAHs. The amount of PAH degradation depends on the concentration of EPSs added to the soil. This method proves to be low cost and highly efficient. 3983:
Harimawan A, Ting YP (October 2016). "Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion".
3021:
Zahra A., Hamid F., Shahla R., Amir H.M., Mohammad A.F. Removal of phenol and bisphenol—A catalyzed by laccase in aqueous solution. J. Environ. Health Sci. Eng. 2014;12:12.
4728:
Wu N, Li Y, Lan CQ (December 2011). "Production and rheological studies of microalgal extracellular biopolymer from lactose using the green alga Neochloris oleoabundans".
497: 1252:, can act as an anti-arrhythmic agent for the treatment of tachycardia and the green algal metabolite caulerpin is featured in studies of anti-tuberculos is activities. 4693:
Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (April 2018). "A review on sustainable microalgae based biofuel and bioenergy production: Recent developments".
888:. ECPI-2 contains 33.6% carbohydrate residues that may be responsible for the stability of the enzyme under neutral or acidic conditions. These inhibitor proteins from 3065:
Lendeckel U., Hooper N.M. In: Viral Proteases and Antiviral Protease Inhibitor Therapy. Lendeckel U., Hooper N.M., editors. Springer; Dordrecht, The Netherlands: 2009.
1871:"Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp" 4324:
Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A (July 2017). "Marine microorganisms as a promising and sustainable source of bioactive molecules".
2308:
Chen X.J., Wu M.J., Jiang Y., Yang Y., Yan Y.B. Dunaliella salina Hsp90 is halotolerant. Int. J. Biol. Macromol. 2015;75:418–425. doi: 10.1016/j.ijbiomac.2015.01.057.
952:
using host diet sugars as substrates. Gtfs even bind to the bacteria that do not synthesize Gtfs, and therefore, facilitate interspecies and interkingdom coadhesion.
1535:
Staudt C, Horn H, Hempel DC, Neu TR (December 2004). "Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms".
5113:
Jia C, Li P, Li X, Tai P, Liu W, Gong Z (August 2011). "Degradation of pyrene in soils by extracellular polymeric substances (EPS) extracted from liquid cultures".
284:. It is speculated that the release of complex mixtures of macromolecular polyelectrolytes with high polysaccharide content contributes to the survival strategy of 2417:"Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma" 941:
suggested that the transition from initial cell clustering to microcolony appears to be conserved among different biofilm-forming model organisms. As an example,
370:
and a novel mutagenesis tool (atmospheric and room temperature plasma, ARTP), leading to an increase of EPS production of up to 34% (volumetric yield of 1.02 g/L.
2623:
Strojsová A, Dyhrman ST (June 2008). "Cell-specific beta-N-acetylglucosaminidase activity in cultures and field populations of eukaryotic marine phytoplankton".
3031:
Ishihara M, Shiroma T, Taira T, Tawata S (2006). "Purification and characterization of extracellular cysteine protease inhibitor, ECPI-2, from Chlorella sp".
567: 4279:
Jaspars M, De Pascale D, Andersen JH, Reyes F, Crawford AD, Ianora A (February 2016). "The marine biodiscovery pipeline and ocean medicines of tomorrow".
3632:"Distribution, characteristics of extracellular polymeric substances of Phanerochaete chrysosporium under lead ion stress and the influence on Pb removal" 2345:
Maksimova IV, Bratkovskaya LB, Plekhanov SE (March 2004). "Extracellular carbohydrates and polysaccharides of the alga Chlorella pyrenoidosa Chick S-39".
98:
substances. EPSs are the construction material of bacterial settlements and either remain attached to the cell's outer surface, or are secreted into its
2979:
Otto B, Schlosser D (2014). "First laccase in green algae: Purification and characterization of an extracellular phenol oxidase from Tetracystis aeria".
5181: 180:, are producers of structurally diverse exopolysaccharides. Additionally, exopolysaccharides are involved in cell-to-cell interactions, adhesion, and 247:
A 2013 review described sulfated polysaccharides synthesized by 120 marine microalgae, most of which are EPS. These heteropolymers consist mainly of
683: 451: 1842:
Ruas-Madiedo P, Hugenholtz J, Zoon P (January 2002). "An overview of the functionality of exopolysaccharides produced by lactic acid bacteria".
1377:, the protein matrix component, TasA, and the exopolysaccharide have both been shown to be essential for effective plant-root colonization in 288:
in varying salt concentrations. Four monosaccharides (galactose, glucose, xylose, and fructose) were detected in the hydrolysate of EPS from
547: 974:
biofilms, the microbial colonies physically swell, therefore maximizing their contact with nutritious surfaces and thus, nutrient uptake.
673: 102:. These compounds are important in biofilm formation and cells' attachment to surfaces. EPSs constitute 50% to 90% of a biofilm's total 3872:"Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion" 3110:
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (August 2016). "Biofilms: an emergent form of bacterial life".
1336:
produces an extracellular matrix that protects it from stressful environments such as the highly acidic environment in the stomach.
905:, which motivates further investigation on microalgal protease inhibitors as valuable lead-structures in pharmaceutical development. 487: 3743:"Structure of Extracellular Polysaccharides (EPS) Produced by Rhizobia and their Functions in Legume–Bacteria Symbiosis: — A Review" 3207:"Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo" 2738:"Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium" 1381:
and tomato plants. It was also suggested that TasA plays an important role in mediating interspecies aggregation with streptococci.
191:
and gelling additives, which improve food quality and texture. Currently, exopolysaccharides have received much attention for their
397: 5002:"Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm" 4849:
Nalewajko C, Lee K, Fay P (September 1980). "Significance of algal extracellular products to bacteria in lakes and in cultures".
4414:"Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities" 3359:"Novel Broad-Spectrum Antimicrobial Photoinactivation of In Situ Oral Biofilms by Visible Light plus Water-Filtered Infrared A" 1317:), and these polysaccharides are also digestible. An example of the industrial use of exopolysaccharides is the application of 4628: 4603: 4578: 2804: 2128:
Bafana A (June 2013). "Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii".
788:
releases substantial amounts of proteases into the medium, this production is induced by the presence of the lytic bacterium
2854:
Jaromir M., Wirgiliusz D. Phenols transformation in the environment and living organisms. Curr. Top. Biophys. 2007;30:24–36.
1748:
Xiao R, Zheng Y (November 2016). "Overview of microalgal extracellular polymeric substances (EPS) and their applications".
3158:"Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers" 5215: 1922:"Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785" 4244:
Guerin M, Huntley ME, Olaizola M (May 2003). "Haematococcus astaxanthin: applications for human health and nutrition".
1586: 17: 1607:
Fulaz S, Vitale S, Quinn L, Casey E (November 2019). "Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix".
227:) contributes to the integrity of the matrix. The minerals also associate with medical conditions. In the biofilms of 5140:
Miller KP, Wang L, Benicewicz BC, Decho AW (November 2015). "Inorganic nanoparticles engineered to attack bacteria".
1087:. EPS may also bind to and trap particles in biofilm suspensions, which can restrict dispersion and element cycling. 813:
sp. release an extracellular phycoerythrin-like 250 kDa protein. This pigment inhibits the growth of the green algae
4764:"Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill" 3835:
Tourney J, Ngwenya BT (2014-10-29). "The role of bacterial extracellular polymeric substances in geomicrobiology".
2580:
Romaní AM, Sabater S (July 2000). "Influence of algal biomass on extracellular enzyme activity in river biofilms".
4493:"Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries" 1429: 2057:"A retrospective analysis of ketamine administration by critical care paramedics in a pre-hospital care setting" 892:
may be synthesized to protect cells from attacks by e.g., viruses or herbivores. Compared to organic compounds,
383: 168:
into the surrounding environment during their growth or propagation. They can either be loosely attached to the
4646:"Encapsulation of beneficial probiotic bacteria in extracellular matrix from biofilm-forming Bacillus subtilis" 3587:
Schnurr PJ, Allen DG (December 2015). "Factors affecting algae biofilm growth and lipid production: A review".
3465:"Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion" 2028:
Feldmane J, Semjonovs P, Ciprovica I (August 2013). "Potential of exopolysaccharides in yoghurt production".
1096: 4209:
Raja R, Hemaiswarya S, Rengasamy R (March 2007). "Exploitation of Dunaliella for beta-carotene production".
3075:
Singh S, Kate BN, Banerjee UC (2005). "Bioactive Compounds from Cyanobacteria and Microalgae: An Overview".
5178: 1785:"Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules" 125:
thereafter) are the sugar-based parts of EPS. Microorganisms synthesize a wide spectrum of multifunctional
4095:
Borowitzka MA (June 2013). "High-value products from microalgae—their development and commercialisation".
5200: 3310:"Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes" 1353: 1357:
marine microbial communities. This let scientists modify and optimize the use of EPS sugars to clean up
5225: 341:
an examination of the nutritional conditions including higher salinity and nitrogen concentration (for
5220: 1080: 4945:"Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats" 3520:
Seviour T, Derlon N, Dueholm MS, Flemming HC, Girbal-Neuhauser E, Horn H, et al. (March 2019).
5245: 996: 5000:
Duanis-Assaf D, Duanis-Assaf T, Zeng G, Meyer RL, Reches M, Steinberg D, et al. (June 2018).
4412:
Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, et al. (May 2016).
3521: 2944:
Zhang J, Liu X, Xu Z, Chen H, Yang Y (2008). "Degradation of chlorophenols catalyzed by laccase".
2864:
Zhang J, Liu X, Xu Z, Chen H, Yang Y (2008). "Degradation of chlorophenols catalyzed by laccase".
1067:
and metal specificity of EPSs varies, depending on polymer composition as well as factors such as
3870:
Atkinson S, Goldstone RJ, Joshua GW, Chang CY, Patrick HL, Cámara M, et al. (January 2011).
1310: 1136:, had been extensively studied. Via the production of sticky matrix and formation of aggregates, 4491:
Marchetti J, Bougaran G, Le Dean L, Megrier C, Lukomska E, Kaas R, et al. (January 2012).
1198: 1148: 1132: 696: 3781:"Microbial extracellular polymeric substances: central elements in heavy metal bioremediation" 876:
An extracellular cysteine protease inhibitor, ECPI-2, was purified from the culture medium of
5235: 5230: 5210: 4367:
Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (March 2016). "Marine natural products".
3357:
Karygianni L, Ruf S, Follo M, Hellwig E, Bucher M, Anderson AC, et al. (December 2014).
1574: 1173: 1064: 784:(a unicellular marine chlorophyte) were found to produce extracellular proteases. The diatom 523: 294: 4762:
Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, et al. (27 June 2013).
2713:
Kellam SJ, Walker JM (1987). "An extracellular protease from the alga Chlorella sphaerkii".
1412:. EPS sugars alone can physically interact with these heavy metals and take them in through 1111:
rates in both environmental and industrial contexts. These interactions between EPS and the
5013: 4956: 4894:"Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic sea" 4858: 4775: 4702: 4543: 4507: 4333: 4288: 4132:"Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential" 4104: 4054: 3934: 3844: 3643: 3596: 3533: 3476: 3370: 3258:"Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges" 2988: 2953: 2918: 2873: 2749: 2676: 2632: 2589: 2468:"Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential" 2354: 1984: 1796: 1481: 1292: 1185: 1116: 1108: 1092: 617: 2797:
Viral Proteases and Antiviral Protease Inhibitor Therapy: Proteases in Biology and Disease
1519: 1510: 8: 2366: 1973:"Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture" 1169: 858: 557: 208:
to morphogenesis of bacteria and the structural integrity of the matrix. For example, in
134: 5017: 4960: 4862: 4779: 4706: 4547: 4511: 4492: 4337: 4292: 4108: 3938: 3848: 3647: 3600: 3537: 3480: 3374: 2992: 2957: 2922: 2877: 2753: 2680: 2636: 2593: 2358: 1988: 1800: 1515: 5090: 5034: 5001: 4977: 4944: 4920: 4893: 4798: 4763: 4675: 4158: 4131: 4018:
Pulz O, Gross W (November 2004). "Valuable products from biotechnology of microalgae".
3955: 3922: 3898: 3871: 3805: 3780: 3713: 3688: 3664: 3631: 3569: 3497: 3464: 3440: 3415: 3391: 3358: 3334: 3309: 3282: 3257: 3233: 3206: 3182: 3157: 3135: 2772: 2737: 2494: 2467: 2443: 2416: 2263: 2204: 2179: 2081: 2056: 2005: 1972: 1948: 1921: 1897: 1870: 1819: 1784: 1676: 1651: 1632: 1425: 1416:. The efficiency of removal can be optimized by treating the EPS sugars with different 1349: 1297: 4519: 4257: 2909:
Lima SA, Castro PM, Morais R (2003). "Biodegradation of p-nitrophenol by microalgae".
1855: 1725: 1700: 5240: 5205: 5157: 5082: 5039: 4982: 4968: 4925: 4874: 4803: 4667: 4624: 4599: 4574: 4473: 4394: 4349: 4261: 4226: 4163: 4077: 4035: 4000: 3960: 3903: 3810: 3718: 3669: 3612: 3561: 3502: 3445: 3396: 3339: 3287: 3256:
Peterson BW, He Y, Ren Y, Zerdoum A, Libera MR, Sharma PK, et al. (March 2015).
3238: 3187: 3127: 3092: 3048: 3004: 2837: 2800: 2777: 2692: 2648: 2644: 2605: 2535: 2499: 2448: 2397: 2267: 2255: 2209: 2145: 2086: 2072: 2010: 1953: 1902: 1824: 1765: 1761: 1730: 1681: 1636: 1624: 1582: 1552: 1444: 1112: 272: 204: 5094: 4679: 4345: 3689:"Physiology of microalgal biofilm: a review on prediction of adhesion on substrates" 3573: 1783:
Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014).
318:; their release depends on the cell photosynthetic activity and reproductive state. 5149: 5122: 5074: 5029: 5021: 4972: 4964: 4915: 4905: 4866: 4831: 4793: 4783: 4737: 4710: 4657: 4551: 4515: 4465: 4435: 4425: 4384: 4376: 4341: 4304: 4296: 4253: 4218: 4191: 4153: 4143: 4112: 4069: 4027: 3996: 3992: 3950: 3942: 3893: 3883: 3852: 3800: 3792: 3754: 3708: 3700: 3659: 3651: 3604: 3551: 3541: 3522:"Extracellular polymeric substances of biofilms: Suffering from an identity crisis" 3492: 3484: 3435: 3427: 3386: 3378: 3329: 3321: 3277: 3269: 3228: 3218: 3177: 3169: 3139: 3119: 3084: 3040: 2996: 2961: 2926: 2881: 2829: 2767: 2757: 2718: 2684: 2640: 2597: 2562: 2527: 2489: 2479: 2438: 2428: 2389: 2362: 2245: 2199: 2191: 2137: 2076: 2068: 2037: 2000: 1992: 1943: 1933: 1892: 1882: 1851: 1814: 1804: 1757: 1720: 1712: 1671: 1663: 1616: 1544: 1421: 1288: 1284: 793: 389: 188: 5126: 4714: 4662: 4645: 4569:
Welman AD (2009). "Exploitation of Exopolysaccharides from lactic acid bacteria".
3856: 3704: 2141: 1716: 62:
into their environment. EPSs establish the functional and structural integrity of
5185: 4788: 3888: 3546: 3223: 2762: 2234:"Biofilm Matrixome: Extracellular Components in Structured Microbial Communities" 1497: 1138: 1076: 577: 4555: 2965: 2885: 5025: 3946: 3655: 3608: 3488: 1453: 1386: 1028: 1024: 1012: 902: 880:
sp. The inhibitor had an inhibitory effect against the proteolytic activity of
280:. Salt stress induces the secretion of extracellular polymeric substances from 138: 137:
polysaccharides or exopolysaccharides. Exopolysaccharides generally consist of
126: 103: 75: 55: 5078: 4835: 4741: 4469: 4300: 4222: 4116: 4073: 4031: 3796: 3759: 3742: 3205:
Hwang G, Liu Y, Kim D, Li Y, Krysan DJ, Koo H (June 2017). Mitchell TJ (ed.).
3088: 3000: 2930: 2833: 2688: 2566: 2531: 2250: 2233: 1938: 1887: 1620: 292:
under salt stress. In contrast, the water-soluble polysaccharides released by
5194: 4430: 4413: 3616: 3431: 1809: 1393: 1068: 945:
produces an exoenzymes, called glucosyltransferases (Gtfs), which synthesize
893: 663: 277: 192: 177: 130: 99: 83: 59: 4195: 3325: 3273: 3123: 2195: 5161: 5086: 5043: 4986: 4929: 4878: 4807: 4671: 4477: 4398: 4353: 4265: 4230: 4167: 4081: 4039: 4004: 3964: 3907: 3814: 3722: 3673: 3565: 3506: 3449: 3400: 3343: 3291: 3242: 3191: 3131: 3096: 3052: 3008: 2841: 2781: 2696: 2652: 2609: 2539: 2503: 2452: 2401: 2259: 2213: 2149: 2103: 2090: 2041: 2014: 1957: 1906: 1828: 1769: 1734: 1685: 1667: 1628: 1556: 1469: 1032: 962: 866: 756: 645: 172:
or excreted into the environment. Many microalgae, especially a variety of
142: 3173: 2601: 1782: 3556: 3382: 2433: 2178:
Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I (September 2017).
2055:
Cowley A, Williams J, Westhead P, Gray N, Watts A, Moore F (March 2018).
1996: 1413: 1124: 1004: 885: 748: 3044: 2177: 5153: 4870: 4440: 4389: 4380: 4309: 4148: 2722: 2484: 2393: 2380:
Kuhlisch C, Pohnert G (July 2015). "Metabolomics in chemical ecology".
1487: 1397: 1044: 1040: 1036: 983: 729: 196: 165: 95: 51: 4910: 2415:
Liu B, Sun Z, Ma X, Yang B, Jiang Y, Wei D, et al. (April 2015).
1548: 4943:
Gantar M, Berry JP, Thomas S, Wang M, Perez R, Rein KS (April 2008).
2799:. Dordrecht, The Netherlands: Springer Science & Business Media. 1701:"Biofilms: survival mechanisms of clinically relevant microorganisms" 1457: 1358: 1322: 1177: 1157: 1120: 1084: 1020: 1016: 1000: 752: 733: 417: 299: 248: 173: 169: 158: 154: 3156:
Wang C, Hou J, van der Mei HC, Busscher HJ, Ren Y (September 2019).
32: 3463:
Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL (August 2017).
3308:
Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (September 2015).
1869:
Trabelsi L, Chaieb O, Mnari A, Abid-Essafi S, Aleya L (July 2016).
1492: 1433: 1193: 1181: 1128: 1104: 1088: 1047:
systems, as biofilms are able to bind to and remove metals such as
1008: 898: 862: 846:
sp. are able to degrade various phenols such as pentachlorophenol,
760: 737: 635: 607: 427: 407: 348:
the addition of sulfate and magnesium salts in the culture medium (
315: 150: 4644:
Yahav S, Berkovich Z, Ostrov I, Reifen R, Shemesh M (2018-05-27).
4281:
Journal of the Marine Biological Association of the United Kingdom
3923:"Biofilm matrix disrupts nematode motility and predatory behavior" 1352:
have been found to speed up the cleanup of oil spills. During the
1003:
relationship. This is important for colonization of roots and the
239:, the minerals calcium and magnesium cause catheter encrustation. 4999: 4411: 4055:"Highly valuable microalgae: biochemical and topological aspects" 3109: 2180:"Architects of nature: growing buildings with bacterial biofilms" 1573:
Flemming HC, Wingender J, Griebe T, Mayer C (December 21, 2000).
1518: by Lu Liu, Georg Pohnert, and Dong Wei available under the 1405: 1318: 1306: 1283:
Furthermore, the EPS layer acts as a nutrient trap, facilitating
1189: 1100: 1060: 914: 870: 703: 597: 587: 469: 437: 303: 252: 181: 146: 79: 63: 37: 4891: 4820: 4621:
Bacterial Polysaccharides: Current Innovations and Future Trends
4571:
Bacterial Polysaccharides: Current Innovations and Future Trends
4323: 4052: 3307: 1448:, are efficient at removing these toxic compounds. EPSs contain 4692: 4490: 1449: 1440: 1401: 1056: 1048: 982:
EPS is found in the matrix of other microbial biofilms such as
946: 881: 741: 533: 311: 307: 256: 4761: 4278: 4053:
Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P (August 2013).
3413: 2344: 1868: 970:
in 2017 suggested that due to osmotic pressure differences in
164:
Exopolysaccharides are secreted from microorganisms including
2167:. Vol. 2. New Delhi, India: Springer India. p. 113. 1314: 713: 91: 4596:
Lactobacillus Molecular Biology: From Genomics to Probiotics
4454: 3869: 3519: 2665: 1572: 1417: 1409: 1052: 187:
Exopolysaccharides are widely used in the food industry as
5063: 4643: 3414:
Cugini C, Shanmugam M, Landge N, Ramasubbu N (July 2019).
3155: 3030: 2054: 2027: 1841: 1027:. Bacterial extracellular polymeric substances can aid in 27:
Gluey polymers secreted by microorganisms to form biofilms
5139: 3356: 2231: 1142:
biofilms can prevent feeding by obstructing the mouth of
87: 4208: 2516: 1234:
compounds. Microalgal carotenoids, with β-carotene from
764:
enzyme classes are highlighted in the cited literature.
36:
Extracellular polymeric substance matrix formation in a
4892:
Vidoudez C, Casotti R, Bastianini M, Pohnert G (2011).
2232:
Karygianni L, Ren Z, Koo H, Thurnheer T (August 2020).
2030:
International Journal of Nutrition and Food Engineering
1072: 4062:
Journal of Industrial Microbiology & Biotechnology
3462: 861:
are a class of compounds that inhibit the activity of
4942: 4366: 4243: 2819: 1606: 378: 330:
Examples of successful increase of EPS yield include
3255: 1579:
Biofilms: Recent Advances in their Study and Control
1463: 1115:
environment allow for EPS to have a large impact on
1091:
stability can be increased by EPS, as it influences
999:
to plant roots and soil particles, which mediates a
995:
Exopolysaccharides can facilitate the attachment of
805:
intracellularly. As an exception, the cyanobacteria
321: 2946:
International Biodeterioration & Biodegradation
2866:
International Biodeterioration & Biodegradation
2552: 2347:
Biology Bulletin of the Russian Academy of Sciences
1534: 1043:substances. This can be useful in the treatment of 2227: 2225: 2223: 1364: 4757: 4755: 4753: 4751: 4650:Artificial Cells, Nanomedicine, and Biotechnology 4180: 3978: 3976: 3974: 3921:Chan SY, Liu SY, Seng Z, Chua SL (January 2021). 3416:"The Role of Exopolysaccharides in Oral Biofilms" 3074: 1919: 1107:and metal-binding ability of EPS affects mineral 5192: 2908: 2622: 133:polysaccharides, structural polysaccharides and 4848: 4587: 3920: 3830: 3828: 3826: 3824: 2794: 2379: 2220: 1698: 1152:biofilms can impede the slithering motility of 824: 4748: 4593: 3971: 3834: 3303: 3301: 2943: 2863: 2708: 2706: 2123: 2121: 2119: 1970: 1920:Dertli E, Mayer MJ, Narbad A (February 2015). 1392:Researchers found that adding EPS sugars from 799: 4532: 4129: 3982: 3736: 3734: 3732: 3204: 2978: 2579: 2465: 1019:. It also allows for successful invasion and 5133: 5059: 5057: 5055: 5053: 4936: 4885: 4842: 4448: 4360: 4317: 4237: 4202: 4046: 4011: 3821: 3586: 3151: 3149: 2729: 2712: 2659: 2616: 2510: 2414: 2408: 2373: 2048: 1964: 1913: 1103:of the sediment. There is evidence that the 821:and can be potentially used as an algicide. 5108: 5106: 5104: 3774: 3772: 3770: 3629: 3298: 2735: 2703: 2421:International Journal of Molecular Sciences 2116: 1862: 1776: 1741: 1602: 1600: 1598: 1568: 1566: 1266:Isochrysis galbana, Nannochlor opsisoculata 1079:context, EPSs have been observed to affect 955: 901:is of critical importance in diseases like 276:is a unicellular green alga of outstanding 259:in different proportions except those from 5112: 4094: 3740: 3729: 3630:Li N, Liu J, Yang R, Wu L (October 2020). 2795:Lendeckel U, Hooper NM, eds. (June 2009). 1971:Ghafoor A, Hay ID, Rehm BH (August 2011). 1875:BMC Complementary and Alternative Medicine 961:be challenging even under sustained fluid 767: 5050: 5033: 4976: 4919: 4909: 4797: 4787: 4661: 4612: 4562: 4439: 4429: 4388: 4308: 4157: 4147: 4017: 3954: 3897: 3887: 3804: 3758: 3712: 3686: 3663: 3555: 3545: 3496: 3439: 3390: 3333: 3281: 3232: 3222: 3181: 3146: 2771: 2761: 2493: 2483: 2442: 2432: 2249: 2203: 2080: 2004: 1947: 1937: 1896: 1886: 1818: 1808: 1747: 1724: 1675: 1575:"Physico-Chemical Properties of Biofilms" 1325:and other breads in the bakery industry. 1216: 1192:are less vulnerable compared to drifting 977: 5101: 4824:Biotechnology and Bioprocess Engineering 4130:Liu L, Pohnert G, Wei D (October 2016). 3767: 3589:Renewable and Sustainable Energy Reviews 3033:Journal of Bioscience and Bioengineering 2466:Liu L, Pohnert G, Wei D (October 2016). 2162: 1595: 1563: 1168:Capsular exopolysaccharides can protect 412:Azotobacter vinelandii, Pseudomonas spp. 382: 31: 4730:Journal of Polymers and the Environment 4727: 4618: 3985:Colloids and Surfaces. B, Biointerfaces 3778: 1424:before adding them to wastewater. Some 14: 5193: 5067:Applied Microbiology and Biotechnology 4568: 4458:Applied Microbiology and Biotechnology 4211:Applied Microbiology and Biotechnology 4020:Applied Microbiology and Biotechnology 3363:Applied and Environmental Microbiology 2520:Applied Biochemistry and Biotechnology 2127: 1977:Applied and Environmental Microbiology 1699:Donlan RM, Costerton JW (April 2002). 1652:"Biofilms: microbial life on surfaces" 1649: 853: 830:recognized. Some microalgae including 109: 919: 4594:Ljungh A, Wadstrom T, eds. (2009). 4184:Journal of Applied Poultry Research 3687:Cheah YT, Chan DJ (December 2021). 1007:, which is a key component of soil 24: 2367:10.1023/B:BIBU.0000022474.43555.ec 1123:interactions between biofilms and 865:(enzymes responsible for cleaving 678:Pantoea stewartii subsp. stewartii 379:List of Exopolysaccharides (EPSes) 44:Extracellular polymeric substances 25: 5257: 5172: 4520:10.1016/j.aquaculture.2011.11.020 3747:Achievements in the Life Sciences 3077:Critical Reviews in Biotechnology 1464:New approaches to target biofilms 1348:In recent years, EPS sugars from 1287:. The exopolysaccharides of some 1188:bacteria fixed and aggregated in 322:Strategies for EPS Yield-Increase 4969:10.1111/j.1574-6941.2008.00439.x 2645:10.1111/j.1574-6941.2008.00479.x 2073:10.29045/14784726.2018.03.2.4.25 1762:10.1016/j.biotechadv.2016.08.004 1537:Biotechnology and Bioengineering 1514: This article incorporates 1509: 1432:(PAHs); EPSs from the bacterium 1430:polycyclic aromatic hydrocarbons 1259: 1201:in their natural environments. 200:chapter of the referenced book. 4993: 4814: 4721: 4686: 4637: 4526: 4484: 4405: 4346:10.1016/j.marenvres.2016.05.002 4272: 4174: 4123: 4088: 3914: 3863: 3680: 3623: 3580: 3513: 3456: 3407: 3350: 3249: 3198: 3103: 3068: 3059: 3024: 3015: 2972: 2937: 2902: 2892: 2857: 2848: 2813: 2788: 2573: 2546: 2459: 2338: 2329: 2320: 2311: 2302: 2292: 2283: 2274: 2171: 2156: 2097: 2021: 1365:Agriculture and decontamination 242: 3997:10.1016/j.colsurfb.2016.06.039 3785:Indian Journal of Microbiology 1835: 1692: 1643: 1528: 13: 1: 5127:10.1016/j.procbio.2011.05.005 4715:10.1016/j.jclepro.2018.01.125 4695:Journal of Cleaner Production 4663:10.1080/21691401.2018.1476373 4326:Marine Environmental Research 4258:10.1016/S0167-7799(03)00078-7 3857:10.1016/j.chemgeo.2014.08.011 3779:Pal A, Paul AK (March 2008). 3705:10.1080/21655979.2021.1980671 2142:10.1016/j.carbpol.2013.02.016 1856:10.1016/S0958-6946(01)00160-1 1717:10.1128/CMR.15.2.167-193.2002 1705:Clinical Microbiology Reviews 1503: 1400:removes heavy metals such as 1221:In nutraceutical industries, 1035:as they have the capacity to 724: 69: 4789:10.1371/journal.pone.0067717 4097:Journal of Applied Phycology 3889:10.1371/journal.ppat.1001250 3547:10.1016/j.watres.2018.11.020 3224:10.1371/journal.ppat.1006407 3112:Nature Reviews. Microbiology 2911:Journal of Applied Phycology 2763:10.1371/journal.pone.0057577 1656:Emerging Infectious Diseases 1650:Donlan RM (September 2002). 1160:', resulting in trapping of 1127:, such as the soil-dwelling 825:Extracellular Phenoloxidases 117:(also sometimes abbreviated 74:EPSs are mostly composed of 7: 4556:10.1016/j.limno.2006.05.002 4418:Frontiers in Marine Science 3741:Ghosh PK, Maiti TK (2016). 2966:10.1016/j.ibiod.2007.06.015 2886:10.1016/j.ibiod.2007.06.015 1844:International Dairy Journal 1484:in multi-cellular organisms 1475: 1354:Deepwater Horizon oil spill 1039:metal cations, among other 800:Phycoerythrin-like Proteins 736:by microorganisms, such as 498:galactoglucopolysaccharides 492:Acinetobacter calcoaceticus 10: 5262: 5216:Environmental soil science 5026:10.1038/s41598-018-27548-1 4623:. Caister Academic Press. 4598:. Caister Academic Press. 4573:. Caister Academic Press. 3947:10.1038/s41396-020-00779-9 3656:10.1038/s41598-020-74983-0 3609:10.1016/j.rser.2015.07.090 3489:10.1038/s41467-017-00401-1 3420:Journal of Dental Research 2736:Paul C, Pohnert G (2013). 2299:10.1007/s12257-008-0102-8. 1180:, and contribute to their 1083:of minerals, particularly 990: 912: 908: 562:Staphylococcus epidermidis 5079:10.1007/s00253-016-7602-9 4949:FEMS Microbiology Ecology 4836:10.1007/s12257-010-0147-3 4742:10.1007/s10924-011-0351-z 4470:10.1007/s00253-011-3601-z 4301:10.1017/S0025315415002106 4223:10.1007/s00253-006-0777-8 4117:10.1007/s10811-013-9983-9 4074:10.1007/s10295-013-1281-7 4032:10.1007/s00253-004-1647-x 3843:(Supplement C): 115–132. 3797:10.1007/s12088-008-0006-5 3760:10.1016/j.als.2016.11.003 3314:FEMS Microbiology Reviews 3262:FEMS Microbiology Reviews 3089:10.1080/07388550500248498 3001:10.1007/s00425-014-2144-9 2834:10.1007/s10529-009-9964-x 2689:10.1007/s00248-006-9084-2 2625:FEMS Microbiology Ecology 2567:10.1007/s10750-011-0654-z 2532:10.1007/s12010-012-9642-7 2251:10.1016/j.tim.2020.03.016 2061:British Paramedic Journal 1939:10.1186/s12866-015-0347-2 1888:10.1186/s12906-016-1198-6 1621:10.1016/j.tim.2019.07.004 1581:. CRC Press. p. 20. 1339: 1250:Phaeodactylum tricornutum 542:Sphingomonas paucimobilis 506:Agrobacterium radiobacter 474:Leuconostoc mesenteroides 336:Chlamydomonas reinhardtii 334:an optimized medium (for 203:The minerals, results of 78:(exopolysaccharides) and 5142:Chemical Society Reviews 4431:10.3389/fmars.2016.00068 3432:10.1177/0022034519845001 2717:. 520–521 (3): 520–521. 1810:10.3389/fchem.2014.00085 997:nitrogen-fixing bacteria 956:Significance in biofilms 4619:Ullrich M, ed. (2009). 4369:Natural Product Reports 4246:Trends in Biotechnology 4196:10.3382/japr.2012-00622 3124:10.1038/nrmicro.2016.94 2931:10.1023/A:1023877420364 2382:Natural Product Reports 2196:10.1111/1751-7915.12833 2184:Microbial Biotechnology 2106:Int. J. Recent Sci. Res 1428:contain high levels of 1311:fermented milk products 774:Chlamydomonas coccoides 768:Extracellular Proteases 640:Aureobasidium pullulans 602:Lactobacillus hilgardii 482:Lactobacillus hilgardii 478:Leuconostoc dextranicum 363:with the Basidiomycete 214:Mycobacterium smegmatis 2238:Trends in Microbiology 2042:10.5281/zenodo.1086547 1789:Frontiers in Chemistry 1750:Biotechnology Advances 1668:10.3201/eid0809.020063 1609:Trends in Microbiology 1217:Cosmetics and medicine 1204: 1156:, termed as 'quagmire 1149:Pseudomonas aeruginosa 1133:Caenorhabditis elegans 1117:biogeochemical cycling 978:In microalgal biofilms 708:Xanthomonas campestris 697:Sinorhizobium meliloti 552:Sinorhizobium meliloti 510:Pseudomonas marginalis 393: 390:Sinorhizobium meliloti 218:Pseudomonas aeruginosa 195:, anti-oxidative, and 145:substituents (such as 40: 3469:Nature Communications 3326:10.1093/femsre/fuv015 3274:10.1093/femsre/fuu008 3174:10.1128/mbio.01908-19 2822:Biotechnology Letters 2602:10.1007/s002480000041 2130:Carbohydrate Polymers 1577:. In Evans LV (ed.). 1238:and astaxanthin from 772:The green microalgae 668:Schizophyllum commune 658:Sclerotium glucanicum 524:galactosaminogalactan 386: 295:Chlorella pyrenoidosa 265:Arthrospira platensis 56:high molecular weight 35: 5115:Process Biochemistry 3383:10.1128/aem.02490-14 2434:10.3390/ijms16048201 2163:Angelina VS (2015). 1997:10.1128/AEM.00637-11 1482:Extracellular matrix 1293:lactic acid bacteria 1274:Chaetoceros gracilis 1270:Chaetoceros muelleri 688:Alcaligenes faecalis 622:Alcaligenes viscosus 442:Alcaligenes faecalis 343:Botryococcus braunii 261:Gyrodinium impudicum 237:Providencia rettgeri 82:, but include other 5018:2018NatSR...8.9350D 4961:2008FEMME..64...55G 4863:1980MicEc...6..199N 4780:2013PLoSO...867717G 4707:2018JCPro.181...42R 4548:2006Limng..36..204K 4512:2012Aquac.326..106M 4338:2017MarER.128...58R 4293:2016JMBUK..96..151J 4109:2013JAPco..25..743B 3939:2021ISMEJ..15..260C 3849:2014ChGeo.386..115T 3648:2020NatSR..1017633L 3601:2015RSERv..52..418S 3538:2019WatRe.151....1S 3481:2017NatCo...8..327Y 3375:2014ApEnM..80.7324K 3045:10.1263/jbb.101.166 2993:2014Plant.240.1225O 2958:2008IBiBi..61..351Z 2923:2003JAPco..15..137L 2878:2008IBiBi..61..351Z 2754:2013PLoSO...857577P 2715:Biochem. Soc. Trans 2681:2006MicEc..52..662F 2637:2008FEMME..64..351S 2594:2000MicEc..40...16R 2359:2004BioBu..31..175M 1989:2011ApEnM..77.5238G 1801:2014FrCh....2...85D 1468:The application of 1264:Microalgae such as 1170:pathogenic bacteria 859:Protease inhibitors 854:Protease Inhibitors 786:Chaetoceros didymus 654:Sclerotium delfinii 592:Beijerinckia indica 558:N-acetylglucosamine 422:Acetobacter xylinum 402:Acetobacter xylinum 387:Succinoglycan from 365:Trametes versicolor 298:contain galactose, 220:biofilms, calcite ( 5201:Microbiology terms 5184:2021-01-08 at the 5154:10.1039/c5cs00041f 5006:Scientific Reports 4871:10.1007/BF02010385 4381:10.1039/c5np00156k 4149:10.3390/md14100191 3636:Scientific Reports 2723:10.1042/bst0150520 2485:10.3390/md14100191 2394:10.1039/c5np00003c 1426:contaminated soils 1298:Lactococcus lactis 1077:geomicrobiological 782:hlorella sphaerkii 650:Sclerotium rolfsii 582:Streptococcus equi 568:N-acetyl-heparosan 394: 355:a co-culturing of 115:Exopolysaccharides 110:Exopolysaccharides 41: 18:Exopolysaccharides 5226:Biological matter 5073:(17): 7765–7775. 4911:10.3390/md9040500 4851:Microbial Ecology 4656:(sup2): 974–982. 4630:978-1-904455-45-5 4605:978-1-904455-41-7 4580:978-1-904455-45-5 3369:(23): 7324–7336. 2806:978-90-481-2347-6 2669:Microbial Ecology 2582:Microbial Ecology 2165:Microbial Factory 1983:(15): 5238–5246. 1549:10.1002/bit.20241 1445:Aspergillus niger 920:Biofilm formation 630:Bacillus subtilis 626:Zymomonas mobilis 538:Aureomonas elodea 273:Dunaliella salina 229:Proteus mirabilis 210:Bacillus subtilis 205:biomineralization 16:(Redirected from 5253: 5221:Membrane biology 5179:EPS, BioMineWiki 5166: 5165: 5148:(21): 7787–807. 5137: 5131: 5130: 5121:(8): 1627–1631. 5110: 5099: 5098: 5061: 5048: 5047: 5037: 4997: 4991: 4990: 4980: 4940: 4934: 4933: 4923: 4913: 4889: 4883: 4882: 4846: 4840: 4839: 4818: 4812: 4811: 4801: 4791: 4759: 4746: 4745: 4725: 4719: 4718: 4690: 4684: 4683: 4665: 4641: 4635: 4634: 4616: 4610: 4609: 4591: 4585: 4584: 4566: 4560: 4559: 4530: 4524: 4523: 4497: 4488: 4482: 4481: 4452: 4446: 4445: 4443: 4433: 4409: 4403: 4402: 4392: 4364: 4358: 4357: 4321: 4315: 4314: 4312: 4276: 4270: 4269: 4241: 4235: 4234: 4206: 4200: 4199: 4178: 4172: 4171: 4161: 4151: 4127: 4121: 4120: 4092: 4086: 4085: 4059: 4050: 4044: 4043: 4015: 4009: 4008: 3980: 3969: 3968: 3958: 3927:The ISME Journal 3918: 3912: 3911: 3901: 3891: 3867: 3861: 3860: 3837:Chemical Geology 3832: 3819: 3818: 3808: 3776: 3765: 3764: 3762: 3738: 3727: 3726: 3716: 3699:(1): 7577–7599. 3684: 3678: 3677: 3667: 3627: 3621: 3620: 3584: 3578: 3577: 3559: 3549: 3517: 3511: 3510: 3500: 3460: 3454: 3453: 3443: 3411: 3405: 3404: 3394: 3354: 3348: 3347: 3337: 3305: 3296: 3295: 3285: 3253: 3247: 3246: 3236: 3226: 3202: 3196: 3195: 3185: 3153: 3144: 3143: 3107: 3101: 3100: 3072: 3066: 3063: 3057: 3056: 3028: 3022: 3019: 3013: 3012: 2987:(6): 1225–1236. 2976: 2970: 2969: 2941: 2935: 2934: 2917:(2/3): 137–142. 2906: 2900: 2896: 2890: 2889: 2861: 2855: 2852: 2846: 2845: 2817: 2811: 2810: 2792: 2786: 2785: 2775: 2765: 2733: 2727: 2726: 2710: 2701: 2700: 2663: 2657: 2656: 2620: 2614: 2613: 2577: 2571: 2570: 2550: 2544: 2543: 2514: 2508: 2507: 2497: 2487: 2463: 2457: 2456: 2446: 2436: 2412: 2406: 2405: 2377: 2371: 2370: 2342: 2336: 2333: 2327: 2324: 2318: 2315: 2309: 2306: 2300: 2296: 2290: 2287: 2281: 2278: 2272: 2271: 2253: 2229: 2218: 2217: 2207: 2190:(5): 1157–1163. 2175: 2169: 2168: 2160: 2154: 2153: 2125: 2114: 2113: 2101: 2095: 2094: 2084: 2052: 2046: 2045: 2025: 2019: 2018: 2008: 1968: 1962: 1961: 1951: 1941: 1926:BMC Microbiology 1917: 1911: 1910: 1900: 1890: 1866: 1860: 1859: 1850:(2–3): 163–171. 1839: 1833: 1832: 1822: 1812: 1780: 1774: 1773: 1756:(7): 1225–1244. 1745: 1739: 1738: 1728: 1696: 1690: 1689: 1679: 1647: 1641: 1640: 1604: 1593: 1592: 1570: 1561: 1560: 1532: 1513: 1285:bacterial growth 1065:binding affinity 1013:nutrient cycling 794:drug development 757:β-d-glucosidases 572:Escherichia coli 233:Proteus vulgaris 226: 52:natural polymers 21: 5261: 5260: 5256: 5255: 5254: 5252: 5251: 5250: 5246:Water treatment 5191: 5190: 5186:Wayback Machine 5175: 5170: 5169: 5138: 5134: 5111: 5102: 5062: 5051: 4998: 4994: 4941: 4937: 4890: 4886: 4847: 4843: 4819: 4815: 4760: 4749: 4726: 4722: 4691: 4687: 4642: 4638: 4631: 4617: 4613: 4606: 4592: 4588: 4581: 4567: 4563: 4531: 4527: 4495: 4489: 4485: 4453: 4449: 4410: 4406: 4365: 4361: 4322: 4318: 4277: 4273: 4242: 4238: 4207: 4203: 4179: 4175: 4128: 4124: 4093: 4089: 4057: 4051: 4047: 4016: 4012: 3981: 3972: 3919: 3915: 3882:(1): e1001250. 3868: 3864: 3833: 3822: 3777: 3768: 3739: 3730: 3685: 3681: 3628: 3624: 3585: 3581: 3518: 3514: 3461: 3457: 3412: 3408: 3355: 3351: 3306: 3299: 3254: 3250: 3217:(6): e1006407. 3203: 3199: 3154: 3147: 3108: 3104: 3073: 3069: 3064: 3060: 3029: 3025: 3020: 3016: 2977: 2973: 2942: 2938: 2907: 2903: 2897: 2893: 2862: 2858: 2853: 2849: 2828:(7): 999–1003. 2818: 2814: 2807: 2793: 2789: 2734: 2730: 2711: 2704: 2664: 2660: 2621: 2617: 2578: 2574: 2551: 2547: 2526:(5): 1092–106. 2515: 2511: 2464: 2460: 2413: 2409: 2378: 2374: 2343: 2339: 2334: 2330: 2325: 2321: 2316: 2312: 2307: 2303: 2297: 2293: 2288: 2284: 2279: 2275: 2230: 2221: 2176: 2172: 2161: 2157: 2126: 2117: 2102: 2098: 2053: 2049: 2026: 2022: 1969: 1965: 1918: 1914: 1867: 1863: 1840: 1836: 1781: 1777: 1746: 1742: 1697: 1693: 1648: 1644: 1615:(11): 915–926. 1605: 1596: 1589: 1571: 1564: 1533: 1529: 1506: 1478: 1466: 1367: 1350:marine bacteria 1342: 1305:, contribute a 1262: 1219: 1207: 1139:Yersinia pestis 993: 980: 958: 922: 917: 911: 856: 827: 815:Chlorella fusca 802: 790:Kordia algicida 770: 727: 612:Lentinus elodes 578:hyaluronic acid 381: 324: 245: 225: 221: 139:monosaccharides 127:polysaccharides 112: 76:polysaccharides 72: 28: 23: 22: 15: 12: 11: 5: 5259: 5249: 5248: 5243: 5238: 5233: 5228: 5223: 5218: 5213: 5208: 5203: 5189: 5188: 5174: 5173:External links 5171: 5168: 5167: 5132: 5100: 5049: 4992: 4935: 4904:(4): 500–513. 4884: 4857:(3): 199–207. 4841: 4813: 4747: 4720: 4685: 4636: 4629: 4611: 4604: 4586: 4579: 4561: 4542:(3): 204–210. 4525: 4483: 4464:(4): 697–708. 4447: 4404: 4375:(3): 382–431. 4359: 4316: 4287:(1): 151–158. 4271: 4236: 4201: 4190:(1): 100–108. 4173: 4122: 4103:(3): 743–756. 4087: 4045: 4010: 3970: 3933:(1): 260–269. 3913: 3876:PLOS Pathogens 3862: 3820: 3766: 3753:(2): 136–143. 3728: 3679: 3622: 3579: 3526:Water Research 3512: 3455: 3426:(7): 739–745. 3406: 3349: 3320:(5): 649–669. 3297: 3268:(2): 234–245. 3248: 3211:PLOS Pathogens 3197: 3145: 3118:(9): 563–575. 3102: 3067: 3058: 3039:(2): 166–171. 3023: 3014: 2971: 2952:(4): 351–356. 2936: 2901: 2891: 2872:(4): 351–356. 2856: 2847: 2812: 2805: 2787: 2728: 2702: 2658: 2615: 2572: 2545: 2509: 2458: 2427:(4): 8201–12. 2407: 2372: 2353:(2): 175–181. 2337: 2328: 2319: 2310: 2301: 2291: 2282: 2273: 2244:(8): 668–681. 2219: 2170: 2155: 2115: 2096: 2047: 2036:(8): 767–770. 2020: 1963: 1912: 1861: 1834: 1775: 1740: 1711:(2): 167–193. 1691: 1662:(9): 881–890. 1642: 1594: 1588:978-9058230935 1587: 1562: 1543:(5): 585–592. 1526: 1525: 1505: 1502: 1501: 1500: 1495: 1490: 1485: 1477: 1474: 1465: 1462: 1454:oxidoreductase 1387:bioremediation 1366: 1363: 1341: 1338: 1278:P. tricornutum 1261: 1258: 1218: 1215: 1206: 1203: 1029:bioremediation 992: 989: 979: 976: 957: 954: 921: 918: 913:Main article: 910: 907: 903:lung emphysema 855: 852: 826: 823: 801: 798: 769: 766: 726: 723: 722: 721: 711: 701: 681: 671: 661: 643: 633: 615: 605: 595: 585: 575: 565: 555: 545: 531: 521: 495: 485: 467: 452:cyclosophorans 449: 435: 425: 415: 405: 380: 377: 372: 371: 368: 353: 346: 339: 323: 320: 244: 241: 223: 111: 108: 104:organic matter 84:macromolecules 71: 68: 60:microorganisms 26: 9: 6: 4: 3: 2: 5258: 5247: 5244: 5242: 5239: 5237: 5234: 5232: 5229: 5227: 5224: 5222: 5219: 5217: 5214: 5212: 5209: 5207: 5204: 5202: 5199: 5198: 5196: 5187: 5183: 5180: 5177: 5176: 5163: 5159: 5155: 5151: 5147: 5143: 5136: 5128: 5124: 5120: 5116: 5109: 5107: 5105: 5096: 5092: 5088: 5084: 5080: 5076: 5072: 5068: 5060: 5058: 5056: 5054: 5045: 5041: 5036: 5031: 5027: 5023: 5019: 5015: 5011: 5007: 5003: 4996: 4988: 4984: 4979: 4974: 4970: 4966: 4962: 4958: 4954: 4950: 4946: 4939: 4931: 4927: 4922: 4917: 4912: 4907: 4903: 4899: 4895: 4888: 4880: 4876: 4872: 4868: 4864: 4860: 4856: 4852: 4845: 4837: 4833: 4830:(2): 264–72. 4829: 4825: 4817: 4809: 4805: 4800: 4795: 4790: 4785: 4781: 4777: 4774:(6): e67717. 4773: 4769: 4765: 4758: 4756: 4754: 4752: 4743: 4739: 4736:(4): 935–42. 4735: 4731: 4724: 4716: 4712: 4708: 4704: 4700: 4696: 4689: 4681: 4677: 4673: 4669: 4664: 4659: 4655: 4651: 4647: 4640: 4632: 4626: 4622: 4615: 4607: 4601: 4597: 4590: 4582: 4576: 4572: 4565: 4557: 4553: 4549: 4545: 4541: 4537: 4529: 4521: 4517: 4513: 4509: 4505: 4501: 4494: 4487: 4479: 4475: 4471: 4467: 4463: 4459: 4451: 4442: 4437: 4432: 4427: 4423: 4419: 4415: 4408: 4400: 4396: 4391: 4386: 4382: 4378: 4374: 4370: 4363: 4355: 4351: 4347: 4343: 4339: 4335: 4331: 4327: 4320: 4311: 4306: 4302: 4298: 4294: 4290: 4286: 4282: 4275: 4267: 4263: 4259: 4255: 4251: 4247: 4240: 4232: 4228: 4224: 4220: 4217:(3): 517–23. 4216: 4212: 4205: 4197: 4193: 4189: 4185: 4177: 4169: 4165: 4160: 4155: 4150: 4145: 4141: 4137: 4133: 4126: 4118: 4114: 4110: 4106: 4102: 4098: 4091: 4083: 4079: 4075: 4071: 4068:(8): 781–96. 4067: 4063: 4056: 4049: 4041: 4037: 4033: 4029: 4026:(6): 635–48. 4025: 4021: 4014: 4006: 4002: 3998: 3994: 3990: 3986: 3979: 3977: 3975: 3966: 3962: 3957: 3952: 3948: 3944: 3940: 3936: 3932: 3928: 3924: 3917: 3909: 3905: 3900: 3895: 3890: 3885: 3881: 3877: 3873: 3866: 3858: 3854: 3850: 3846: 3842: 3838: 3831: 3829: 3827: 3825: 3816: 3812: 3807: 3802: 3798: 3794: 3790: 3786: 3782: 3775: 3773: 3771: 3761: 3756: 3752: 3748: 3744: 3737: 3735: 3733: 3724: 3720: 3715: 3710: 3706: 3702: 3698: 3694: 3693:Bioengineered 3690: 3683: 3675: 3671: 3666: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3626: 3618: 3614: 3610: 3606: 3602: 3598: 3594: 3590: 3583: 3575: 3571: 3567: 3563: 3558: 3557:11311/1071879 3553: 3548: 3543: 3539: 3535: 3531: 3527: 3523: 3516: 3508: 3504: 3499: 3494: 3490: 3486: 3482: 3478: 3474: 3470: 3466: 3459: 3451: 3447: 3442: 3437: 3433: 3429: 3425: 3421: 3417: 3410: 3402: 3398: 3393: 3388: 3384: 3380: 3376: 3372: 3368: 3364: 3360: 3353: 3345: 3341: 3336: 3331: 3327: 3323: 3319: 3315: 3311: 3304: 3302: 3293: 3289: 3284: 3279: 3275: 3271: 3267: 3263: 3259: 3252: 3244: 3240: 3235: 3230: 3225: 3220: 3216: 3212: 3208: 3201: 3193: 3189: 3184: 3179: 3175: 3171: 3167: 3163: 3159: 3152: 3150: 3141: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3106: 3098: 3094: 3090: 3086: 3082: 3078: 3071: 3062: 3054: 3050: 3046: 3042: 3038: 3034: 3027: 3018: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2982: 2975: 2967: 2963: 2959: 2955: 2951: 2947: 2940: 2932: 2928: 2924: 2920: 2916: 2912: 2905: 2895: 2887: 2883: 2879: 2875: 2871: 2867: 2860: 2851: 2843: 2839: 2835: 2831: 2827: 2823: 2816: 2808: 2802: 2798: 2791: 2783: 2779: 2774: 2769: 2764: 2759: 2755: 2751: 2748:(3): e57577. 2747: 2743: 2739: 2732: 2724: 2720: 2716: 2709: 2707: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2662: 2654: 2650: 2646: 2642: 2638: 2634: 2631:(3): 351–61. 2630: 2626: 2619: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2576: 2568: 2564: 2560: 2556: 2555:Hydrobiologia 2549: 2541: 2537: 2533: 2529: 2525: 2521: 2513: 2505: 2501: 2496: 2491: 2486: 2481: 2477: 2473: 2469: 2462: 2454: 2450: 2445: 2440: 2435: 2430: 2426: 2422: 2418: 2411: 2403: 2399: 2395: 2391: 2388:(7): 937–55. 2387: 2383: 2376: 2368: 2364: 2360: 2356: 2352: 2348: 2341: 2332: 2323: 2314: 2305: 2295: 2286: 2277: 2269: 2265: 2261: 2257: 2252: 2247: 2243: 2239: 2235: 2228: 2226: 2224: 2215: 2211: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2174: 2166: 2159: 2151: 2147: 2143: 2139: 2136:(2): 746–52. 2135: 2131: 2124: 2122: 2120: 2112:(5): 501–505. 2111: 2107: 2100: 2092: 2088: 2083: 2078: 2074: 2070: 2066: 2062: 2058: 2051: 2043: 2039: 2035: 2031: 2024: 2016: 2012: 2007: 2002: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1959: 1955: 1950: 1945: 1940: 1935: 1931: 1927: 1923: 1916: 1908: 1904: 1899: 1894: 1889: 1884: 1880: 1876: 1872: 1865: 1857: 1853: 1849: 1845: 1838: 1830: 1826: 1821: 1816: 1811: 1806: 1802: 1798: 1794: 1790: 1786: 1779: 1771: 1767: 1763: 1759: 1755: 1751: 1744: 1736: 1732: 1727: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1687: 1683: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1646: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1601: 1599: 1590: 1584: 1580: 1576: 1569: 1567: 1558: 1554: 1550: 1546: 1542: 1538: 1531: 1527: 1524: 1523: 1521: 1517: 1512: 1499: 1496: 1494: 1491: 1489: 1486: 1483: 1480: 1479: 1473: 1471: 1470:nanoparticles 1461: 1459: 1455: 1451: 1447: 1446: 1442: 1438: 1436: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1394:cyanobacteria 1390: 1388: 1382: 1380: 1376: 1371: 1362: 1360: 1355: 1351: 1346: 1337: 1335: 1330: 1326: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1299: 1294: 1290: 1286: 1281: 1279: 1275: 1271: 1267: 1260:Food and feed 1257: 1253: 1251: 1246: 1241: 1240:Haematococcus 1237: 1232: 1228: 1224: 1214: 1210: 1202: 1200: 1195: 1191: 1187: 1183: 1182:pathogenicity 1179: 1175: 1171: 1166: 1163: 1159: 1155: 1151: 1150: 1145: 1141: 1140: 1135: 1134: 1130: 1126: 1122: 1121:Predator-prey 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1081:precipitation 1078: 1074: 1070: 1069:concentration 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 988: 985: 975: 973: 969: 964: 953: 951: 948: 944: 940: 936: 932: 928: 927:P. aeruginosa 916: 906: 904: 900: 895: 894:peptide drugs 891: 887: 884:, ficin, and 883: 879: 874: 872: 868: 867:peptide bonds 864: 860: 851: 849: 845: 841: 837: 833: 832:Chlamydomonas 822: 820: 819:Chlamydomonas 816: 812: 808: 797: 795: 791: 787: 783: 779: 775: 765: 762: 758: 754: 750: 745: 743: 739: 735: 731: 719: 715: 712: 709: 705: 702: 699: 698: 693: 689: 685: 684:succinoglycan 682: 679: 675: 672: 669: 665: 664:schizophyllan 662: 659: 655: 651: 647: 644: 641: 637: 634: 631: 627: 623: 619: 616: 613: 609: 606: 603: 599: 596: 593: 589: 586: 583: 579: 576: 573: 569: 566: 563: 559: 556: 553: 549: 546: 543: 539: 535: 532: 529: 525: 522: 519: 515: 511: 507: 503: 502:Achromobacter 499: 496: 493: 489: 486: 483: 479: 475: 471: 468: 465: 461: 457: 456:Agrobacterium 453: 450: 447: 443: 439: 436: 433: 429: 426: 423: 419: 416: 413: 409: 406: 403: 399: 396: 395: 392: 391: 385: 376: 369: 366: 362: 358: 354: 351: 347: 344: 340: 337: 333: 332: 331: 328: 319: 317: 313: 309: 305: 301: 297: 296: 291: 287: 283: 279: 278:halotolerance 275: 274: 269: 266: 262: 258: 254: 250: 240: 238: 234: 230: 219: 215: 211: 206: 201: 198: 194: 193:antibacterial 190: 185: 183: 179: 178:cyanobacteria 175: 171: 167: 162: 160: 156: 152: 148: 144: 141:and some non- 140: 136: 135:extracellular 132: 131:intracellular 128: 124: 120: 116: 107: 105: 101: 100:growth medium 97: 93: 89: 85: 81: 77: 67: 65: 61: 57: 53: 49: 45: 39: 34: 30: 19: 5236:Biomolecules 5231:Microbiology 5211:Bacteriology 5145: 5141: 5135: 5118: 5114: 5070: 5066: 5009: 5005: 4995: 4955:(1): 55–64. 4952: 4948: 4938: 4901: 4898:Marine Drugs 4897: 4887: 4854: 4850: 4844: 4827: 4823: 4816: 4771: 4767: 4733: 4729: 4723: 4698: 4694: 4688: 4653: 4649: 4639: 4620: 4614: 4595: 4589: 4570: 4564: 4539: 4535: 4528: 4503: 4499: 4486: 4461: 4457: 4450: 4421: 4417: 4407: 4372: 4368: 4362: 4329: 4325: 4319: 4284: 4280: 4274: 4252:(5): 210–6. 4249: 4245: 4239: 4214: 4210: 4204: 4187: 4183: 4176: 4139: 4136:Marine Drugs 4135: 4125: 4100: 4096: 4090: 4065: 4061: 4048: 4023: 4019: 4013: 3988: 3984: 3930: 3926: 3916: 3879: 3875: 3865: 3840: 3836: 3791:(1): 49–64. 3788: 3784: 3750: 3746: 3696: 3692: 3682: 3642:(1): 17633. 3639: 3635: 3625: 3592: 3588: 3582: 3529: 3525: 3515: 3472: 3468: 3458: 3423: 3419: 3409: 3366: 3362: 3352: 3317: 3313: 3265: 3261: 3251: 3214: 3210: 3200: 3165: 3161: 3115: 3111: 3105: 3083:(3): 73–95. 3080: 3076: 3070: 3061: 3036: 3032: 3026: 3017: 2984: 2980: 2974: 2949: 2945: 2939: 2914: 2910: 2904: 2894: 2869: 2865: 2859: 2850: 2825: 2821: 2815: 2796: 2790: 2745: 2741: 2731: 2714: 2675:(4): 662–9. 2672: 2668: 2661: 2628: 2624: 2618: 2588:(1): 16–24. 2585: 2581: 2575: 2558: 2554: 2548: 2523: 2519: 2512: 2475: 2472:Marine Drugs 2471: 2461: 2424: 2420: 2410: 2385: 2381: 2375: 2350: 2346: 2340: 2331: 2322: 2313: 2304: 2294: 2285: 2276: 2241: 2237: 2187: 2183: 2173: 2164: 2158: 2133: 2129: 2109: 2105: 2099: 2067:(4): 25–31. 2064: 2060: 2050: 2033: 2029: 2023: 1980: 1976: 1966: 1929: 1925: 1915: 1878: 1874: 1864: 1847: 1843: 1837: 1792: 1788: 1778: 1753: 1749: 1743: 1708: 1704: 1694: 1659: 1655: 1645: 1612: 1608: 1578: 1540: 1536: 1530: 1508: 1507: 1467: 1443: 1434: 1391: 1383: 1378: 1374: 1372: 1368: 1347: 1343: 1333: 1328: 1327: 1302: 1296: 1282: 1277: 1273: 1269: 1265: 1263: 1254: 1249: 1244: 1239: 1235: 1230: 1226: 1222: 1220: 1211: 1208: 1167: 1161: 1153: 1147: 1146:. Moreover, 1143: 1137: 1131: 1125:bacterivores 1097:permeability 1033:heavy metals 994: 981: 971: 967: 963:shear stress 959: 949: 942: 938: 934: 930: 926: 923: 889: 877: 875: 857: 847: 843: 839: 835: 831: 828: 818: 814: 810: 807:Oscillatoria 806: 803: 789: 785: 781: 777: 773: 771: 749:phosphatases 746: 732:are enzymes 728: 717: 707: 695: 691: 687: 677: 667: 657: 653: 649: 646:scleroglucan 639: 629: 625: 621: 611: 601: 591: 581: 571: 561: 551: 541: 537: 527: 517: 513: 509: 505: 501: 491: 481: 477: 473: 463: 459: 455: 445: 441: 431: 421: 411: 401: 388: 373: 364: 360: 356: 349: 342: 335: 329: 325: 293: 289: 285: 281: 271: 270: 264: 260: 246: 243:Constituents 236: 232: 228: 217: 213: 209: 202: 186: 163: 143:carbohydrate 122: 118: 114: 113: 73: 58:secreted by 47: 43: 42: 29: 5012:(1): 9350. 4536:Limnologica 4506:: 106–115. 4500:Aquaculture 4441:10037/10627 4390:10289/10318 4310:10037/12947 4142:(10): 191. 3991:: 459–467. 3595:: 418–429. 2561:: 119–131. 2478:(10): 191. 1414:biosorption 1398:wastewaters 1379:Arabidopsis 1375:B. subtilis 1334:B. subtilis 1329:B. subtilis 1309:texture to 1223:Arthrospira 1174:desiccation 1005:rhizosphere 972:V. cholerae 968:V. cholerae 935:V. cholerae 931:B. subtilis 886:chymopapain 840:Scenedesmus 718:Alcaligenes 528:Aspergillus 464:Xanthomonas 350:P. cruentum 184:formation. 5195:Categories 3475:(1): 327. 1504:References 1488:Exopolymer 1439:. and the 1359:oil spills 1307:gelatinous 1236:Dunaliella 1194:planktonic 1162:C. elegans 1154:C. elegans 1144:C. elegans 1085:carbonates 1045:wastewater 1025:host plant 1017:ecosystems 984:microalgal 778:Dunaliella 753:chitinases 730:Exoenzymes 725:Exoenzymes 548:glucuronan 310:, xylose, 197:anticancer 189:thickeners 166:microalgae 129:including 123:EPS sugars 70:Components 4701:: 42–59. 4332:: 58–69. 3617:1364-0321 2268:219087510 1637:201042373 1520:CC BY 4.0 1458:hydrolase 1323:panettone 1245:Chlorella 1231:Chlorella 1227:Spirulina 1178:predation 1158:phenotype 1041:dissolved 1021:infection 1009:food webs 1001:symbiotic 943:S. mutans 939:S. mutans 890:Chlorella 878:Chlorella 863:proteases 836:Chlorella 811:Scytonema 780:sp. and c 761:proteases 692:myxogenes 674:stewartan 516:spp. and 514:Rhizobium 462:spp. and 460:Rhizobium 446:myxogenes 432:Mucorales 418:cellulose 361:Spirulina 357:Chlorella 300:arabinose 290:D. salina 286:D. salina 282:D. salina 249:galactose 174:red algae 170:cell wall 159:phosphate 155:succinate 5241:Polymers 5206:Bacteria 5182:Archived 5162:26190826 5095:15287887 5087:27188779 5044:29921978 4987:18266743 4930:21731545 4879:24227127 4808:23826336 4768:PLOS ONE 4680:44100145 4672:29806505 4478:21983706 4399:26837534 4354:27160988 4266:12727382 4231:17225103 4168:27775594 4082:23660999 4040:15300417 4005:27395039 3965:32958848 3908:21253572 3815:23100700 3723:34605338 3674:33077860 3574:56174167 3566:30557778 3507:28835649 3450:31009580 3401:25239897 3344:25907113 3292:25725015 3243:28617874 3192:31506311 3132:27510863 3097:16294828 3053:16569614 3009:25115562 2842:19271155 2782:23469204 2742:PLOS ONE 2697:17082997 2653:18430006 2610:10977873 2540:22415788 2504:27775594 2453:25872142 2402:25926134 2260:32663461 2214:28815998 2150:23648037 2091:33328798 2015:21666010 1958:25648083 1932:(1): 8. 1907:27405739 1829:25340049 1770:27576096 1735:11932229 1686:12194761 1629:31420126 1557:15470707 1522:license. 1498:Sea snot 1493:Integrin 1476:See also 1452:such as 1435:Zoogloea 1303:cremoris 1295:, e.g., 1199:adhesion 1190:biofilms 1172:against 1129:nematode 1109:leaching 1105:adhesion 1093:cohesion 1089:Sediment 899:elastase 871:proteins 844:Anabaena 842:sp. and 738:bacteria 734:secreted 636:pullulan 608:lentinan 428:chitosan 408:alginate 316:rhamnose 151:pyruvate 86:such as 80:proteins 64:biofilms 5035:6008451 5014:Bibcode 4978:2576510 4957:Bibcode 4921:3124968 4859:Bibcode 4799:3694863 4776:Bibcode 4703:Bibcode 4544:Bibcode 4508:Bibcode 4334:Bibcode 4289:Bibcode 4159:5082339 4105:Bibcode 3956:7852553 3935:Bibcode 3899:3017118 3845:Bibcode 3806:3450203 3714:8806711 3665:7572388 3644:Bibcode 3597:Bibcode 3534:Bibcode 3532:: 1–7. 3498:5569112 3477:Bibcode 3441:6589894 3392:4249165 3371:Bibcode 3335:4551309 3283:4398279 3234:5472321 3183:6737243 3140:4384131 2989:Bibcode 2954:Bibcode 2919:Bibcode 2874:Bibcode 2773:3587623 2750:Bibcode 2677:Bibcode 2633:Bibcode 2590:Bibcode 2495:5082339 2444:4425076 2355:Bibcode 2205:5609236 2082:7706763 2006:3147449 1985:Bibcode 1949:4326364 1898:4942953 1881:: 210. 1820:4189415 1797:Bibcode 1677:2732559 1450:enzymes 1406:cadmium 1319:dextran 1313:(e.g., 1301:subsp. 1289:strains 1186:Sessile 1113:abiotic 1101:erosion 1075:. In a 1061:cadmium 1023:of the 991:Ecology 950:in situ 947:glucans 915:Biofilm 909:Biofilm 704:xanthan 598:kefiran 588:indican 518:Zooglea 488:emulsan 470:dextran 438:curdlan 304:mannose 253:glucose 182:biofilm 147:acetate 38:biofilm 5160:  5093:  5085:  5042:  5032:  4985:  4975:  4928:  4918:  4877:  4806:  4796:  4678:  4670:  4627:  4602:  4577:  4476:  4424:: 68. 4397:  4352:  4264:  4229:  4166:  4156:  4080:  4038:  4003:  3963:  3953:  3906:  3896:  3813:  3803:  3721:  3711:  3672:  3662:  3615:  3572:  3564:  3505:  3495:  3448:  3438:  3399:  3389:  3342:  3332:  3290:  3280:  3241:  3231:  3190:  3180:  3138:  3130:  3095:  3051:  3007:  2981:Planta 2840:  2803:  2780:  2770:  2695:  2651:  2608:  2538:  2502:  2492:  2451:  2441:  2400:  2266:  2258:  2212:  2202:  2148:  2089:  2079:  2013:  2003:  1956:  1946:  1905:  1895:  1827:  1817:  1795:: 85. 1768:  1733:  1726:118068 1723:  1684:  1674:  1635:  1627:  1585:  1555:  1441:fungus 1402:copper 1340:Energy 1229:) and 1099:, and 1063:. The 1059:, and 1057:nickel 1049:copper 1037:adsorb 937:, and 882:papain 534:gellan 504:spp., 458:spp., 398:acetan 314:, and 312:fucose 308:ribose 257:xylose 255:, and 235:, and 216:, and 157:, and 92:lipids 50:) are 5091:S2CID 4676:S2CID 4496:(PDF) 4058:(PDF) 3570:S2CID 3168:(5). 3136:S2CID 2899:2008; 2264:S2CID 1633:S2CID 1422:bases 1418:acids 1315:Viili 838:sp., 834:sp., 742:fungi 720:spp.) 714:welan 690:var. 618:levan 530:spp.) 520:spp.) 466:spp.) 444:var. 434:spp.) 96:humic 5158:PMID 5083:PMID 5040:PMID 4983:PMID 4926:PMID 4875:PMID 4804:PMID 4668:PMID 4625:ISBN 4600:ISBN 4575:ISBN 4474:PMID 4395:PMID 4350:PMID 4262:PMID 4227:PMID 4164:PMID 4078:PMID 4036:PMID 4001:PMID 3961:PMID 3904:PMID 3811:PMID 3719:PMID 3670:PMID 3613:ISSN 3562:PMID 3503:PMID 3446:PMID 3397:PMID 3340:PMID 3288:PMID 3239:PMID 3188:PMID 3162:mBio 3128:PMID 3093:PMID 3049:PMID 3005:PMID 2838:PMID 2801:ISBN 2778:PMID 2693:PMID 2649:PMID 2606:PMID 2536:PMID 2500:PMID 2449:PMID 2398:PMID 2256:PMID 2210:PMID 2146:PMID 2087:PMID 2011:PMID 1954:PMID 1903:PMID 1825:PMID 1766:PMID 1731:PMID 1682:PMID 1625:PMID 1583:ISBN 1553:PMID 1516:text 1456:and 1410:lead 1408:and 1276:and 1176:and 1071:and 1053:lead 1011:and 817:and 809:and 776:and 740:and 656:and 540:and 480:and 359:and 222:CaCO 176:and 161:). 119:EPSs 94:and 48:EPSs 5150:doi 5123:doi 5075:doi 5071:100 5030:PMC 5022:doi 4973:PMC 4965:doi 4916:PMC 4906:doi 4867:doi 4832:doi 4794:PMC 4784:doi 4738:doi 4711:doi 4699:181 4658:doi 4552:doi 4516:doi 4504:326 4466:doi 4436:hdl 4426:doi 4385:hdl 4377:doi 4342:doi 4330:128 4305:hdl 4297:doi 4254:doi 4219:doi 4192:doi 4154:PMC 4144:doi 4113:doi 4070:doi 4028:doi 3993:doi 3989:146 3951:PMC 3943:doi 3894:PMC 3884:doi 3853:doi 3841:386 3801:PMC 3793:doi 3755:doi 3709:PMC 3701:doi 3660:PMC 3652:doi 3605:doi 3552:hdl 3542:doi 3530:151 3493:PMC 3485:doi 3436:PMC 3428:doi 3387:PMC 3379:doi 3330:PMC 3322:doi 3278:PMC 3270:doi 3229:PMC 3219:doi 3178:PMC 3170:doi 3120:doi 3085:doi 3041:doi 3037:101 2997:doi 2985:240 2962:doi 2927:doi 2882:doi 2830:doi 2768:PMC 2758:doi 2719:doi 2685:doi 2641:doi 2598:doi 2563:doi 2559:669 2528:doi 2524:167 2490:PMC 2480:doi 2439:PMC 2429:doi 2390:doi 2363:doi 2246:doi 2200:PMC 2192:doi 2138:doi 2077:PMC 2069:doi 2038:doi 2001:PMC 1993:doi 1944:PMC 1934:doi 1893:PMC 1883:doi 1852:doi 1815:PMC 1805:doi 1758:doi 1721:PMC 1713:doi 1672:PMC 1664:doi 1617:doi 1545:doi 1420:or 1396:to 1373:In 1321:in 1291:of 1205:Use 1031:of 1015:in 869:in 352:), 88:DNA 54:of 5197:: 5156:. 5146:44 5144:. 5119:46 5117:. 5103:^ 5089:. 5081:. 5069:. 5052:^ 5038:. 5028:. 5020:. 5008:. 5004:. 4981:. 4971:. 4963:. 4953:64 4951:. 4947:. 4924:. 4914:. 4900:. 4896:. 4873:. 4865:. 4853:. 4828:16 4826:. 4802:. 4792:. 4782:. 4770:. 4766:. 4750:^ 4734:19 4732:. 4709:. 4697:. 4674:. 4666:. 4654:46 4652:. 4648:. 4550:. 4540:36 4538:. 4514:. 4502:. 4498:. 4472:. 4462:92 4460:. 4434:. 4420:. 4416:. 4393:. 4383:. 4373:33 4371:. 4348:. 4340:. 4328:. 4303:. 4295:. 4285:96 4283:. 4260:. 4250:21 4248:. 4225:. 4215:74 4213:. 4188:22 4186:. 4162:. 4152:. 4140:14 4138:. 4134:. 4111:. 4101:25 4099:. 4076:. 4066:40 4064:. 4060:. 4034:. 4024:65 4022:. 3999:. 3987:. 3973:^ 3959:. 3949:. 3941:. 3931:15 3929:. 3925:. 3902:. 3892:. 3878:. 3874:. 3851:. 3839:. 3823:^ 3809:. 3799:. 3789:48 3787:. 3783:. 3769:^ 3751:10 3749:. 3745:. 3731:^ 3717:. 3707:. 3697:12 3695:. 3691:. 3668:. 3658:. 3650:. 3640:10 3638:. 3634:. 3611:. 3603:. 3593:52 3591:. 3568:. 3560:. 3550:. 3540:. 3528:. 3524:. 3501:. 3491:. 3483:. 3471:. 3467:. 3444:. 3434:. 3424:98 3422:. 3418:. 3395:. 3385:. 3377:. 3367:80 3365:. 3361:. 3338:. 3328:. 3318:39 3316:. 3312:. 3300:^ 3286:. 3276:. 3266:39 3264:. 3260:. 3237:. 3227:. 3215:13 3213:. 3209:. 3186:. 3176:. 3166:10 3164:. 3160:. 3148:^ 3134:. 3126:. 3116:14 3114:. 3091:. 3081:25 3079:. 3047:. 3035:. 3003:. 2995:. 2983:. 2960:. 2950:61 2948:. 2925:. 2915:15 2913:. 2880:. 2870:61 2868:. 2836:. 2826:31 2824:. 2776:. 2766:. 2756:. 2744:. 2740:. 2705:^ 2691:. 2683:. 2673:52 2671:. 2647:. 2639:. 2629:64 2627:. 2604:. 2596:. 2586:40 2584:. 2557:. 2534:. 2522:. 2498:. 2488:. 2476:14 2474:. 2470:. 2447:. 2437:. 2425:16 2423:. 2419:. 2396:. 2386:32 2384:. 2361:. 2351:31 2349:. 2262:. 2254:. 2242:28 2240:. 2236:. 2222:^ 2208:. 2198:. 2188:10 2186:. 2182:. 2144:. 2134:95 2132:. 2118:^ 2108:. 2085:. 2075:. 2063:. 2059:. 2032:. 2009:. 1999:. 1991:. 1981:77 1979:. 1975:. 1952:. 1942:. 1930:15 1928:. 1924:. 1901:. 1891:. 1879:16 1877:. 1873:. 1848:12 1846:. 1823:. 1813:. 1803:. 1791:. 1787:. 1764:. 1754:34 1752:. 1729:. 1719:. 1709:15 1707:. 1703:. 1680:. 1670:. 1658:. 1654:. 1631:. 1623:. 1613:27 1611:. 1597:^ 1565:^ 1551:. 1541:88 1539:. 1437:sp 1404:, 1389:. 1361:. 1272:, 1268:, 1184:. 1119:. 1095:, 1073:pH 1055:, 1051:, 933:, 929:, 796:. 759:, 755:, 751:, 694:, 652:, 628:, 624:, 512:, 508:, 476:, 345:), 338:), 306:, 302:, 251:, 231:, 212:, 153:, 149:, 121:; 106:. 90:, 5164:. 5152:: 5129:. 5125:: 5097:. 5077:: 5046:. 5024:: 5016:: 5010:8 4989:. 4967:: 4959:: 4932:. 4908:: 4902:9 4881:. 4869:: 4861:: 4855:6 4838:. 4834:: 4810:. 4786:: 4778:: 4772:8 4744:. 4740:: 4717:. 4713:: 4705:: 4682:. 4660:: 4633:. 4608:. 4583:. 4558:. 4554:: 4546:: 4522:. 4518:: 4510:: 4480:. 4468:: 4444:. 4438:: 4428:: 4422:3 4401:. 4387:: 4379:: 4356:. 4344:: 4336:: 4313:. 4307:: 4299:: 4291:: 4268:. 4256:: 4233:. 4221:: 4198:. 4194:: 4170:. 4146:: 4119:. 4115:: 4107:: 4084:. 4072:: 4042:. 4030:: 4007:. 3995:: 3967:. 3945:: 3937:: 3910:. 3886:: 3880:7 3859:. 3855:: 3847:: 3817:. 3795:: 3763:. 3757:: 3725:. 3703:: 3676:. 3654:: 3646:: 3619:. 3607:: 3599:: 3576:. 3554:: 3544:: 3536:: 3509:. 3487:: 3479:: 3473:8 3452:. 3430:: 3403:. 3381:: 3373:: 3346:. 3324:: 3294:. 3272:: 3245:. 3221:: 3194:. 3172:: 3142:. 3122:: 3099:. 3087:: 3055:. 3043:: 3011:. 2999:: 2991:: 2968:. 2964:: 2956:: 2933:. 2929:: 2921:: 2888:. 2884:: 2876:: 2844:. 2832:: 2809:. 2784:. 2760:: 2752:: 2746:8 2725:. 2721:: 2699:. 2687:: 2679:: 2655:. 2643:: 2635:: 2612:. 2600:: 2592:: 2569:. 2565:: 2542:. 2530:: 2506:. 2482:: 2455:. 2431:: 2404:. 2392:: 2369:. 2365:: 2357:: 2270:. 2248:: 2216:. 2194:: 2152:. 2140:: 2110:4 2093:. 2071:: 2065:2 2044:. 2040:: 2034:7 2017:. 1995:: 1987:: 1960:. 1936:: 1909:. 1885:: 1858:. 1854:: 1831:. 1807:: 1799:: 1793:2 1772:. 1760:: 1737:. 1715:: 1688:. 1666:: 1660:8 1639:. 1619:: 1591:. 1559:. 1547:: 1225:( 848:p 716:( 710:) 706:( 700:) 686:( 680:) 676:( 670:) 666:( 660:) 648:( 642:) 638:( 632:) 620:( 614:) 610:( 604:) 600:( 594:) 590:( 584:) 580:( 574:) 570:( 564:) 560:( 554:) 550:( 544:) 536:( 526:( 500:( 494:) 490:( 484:) 472:( 454:( 448:) 440:( 430:( 424:) 420:( 414:) 410:( 404:) 400:( 367:, 224:3 46:( 20:)

Index

Exopolysaccharides

biofilm
natural polymers
high molecular weight
microorganisms
biofilms
polysaccharides
proteins
macromolecules
DNA
lipids
humic
growth medium
organic matter
polysaccharides
intracellular
extracellular
monosaccharides
carbohydrate
acetate
pyruvate
succinate
phosphate
microalgae
cell wall
red algae
cyanobacteria
biofilm
thickeners

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.