Knowledge

Nannochloropsis

Source 📝

54: 1695: 33: 851:), and decreasing the overall productivity. Among these conditions, nitrogen deprivation has been one of the most vastly studied. Studies have examined the behaviour of the cultures in nitrogen stress in various culturing set-ups, as well as the physiological and molecular response of the cells to nitrogen deprivation. 846:
cultures must be increased. Fatty acid biosynthesis in N. oceanica was shown to be integrated with the regulation of the cholesterol biosynthetic pathway, suggesting new genetic engineering or chemical biology approaches for enhanced oil production in microalgae. On the other hand, various culturing
1216:
In 2017, a study jointly funded by ExxonMobil and Synthetic Genomics achieved a breakthrough in lipid percentages in Nannochloropsis gaditana through applications of the CRISPR-Cas9 reverse-genetics pipeline and nitrogen starving—improving partitioning of total carbon to lipids from 20% (wild type)
1063:
and that the metabolic reorganisation that follows nitrogen deprivation increases the flux of substrates through this pathway, which is in turn capable to sustain the increased metabolic flux. Corteggiani Carpinelli and coworkers (2013) advance the hypothesis that, in their experimental conditions,
991:
responsible for degradative processes that release ammonium are indeed up regulated. Moreover, the expression of genes coding for proteins involved in controlled degradation of proteins increase, together with others involved in the formation of cytosolic sequestering vesicles used for degradation
221:
was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either
1022:
cultures grown in normal conditions and nitrogen deprivation for 3 days and 6 days. Data on similar conditions were also collected by Radakovits et al. (2012) and Vieler et al. (2012). All of this data show that genes involved in
2150:
Rodolfi, L; Zittelli, Chini; et al. (2008). "Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor".
975:(L-glutamine + 2-oxoglutarate + NADPH + H ←→ 2 L-glutamate + NADP) are up-regulated . Their up-regulation increases the capability of the cells to assimilate minimal amount of 312:
and there has been evidence that some strains are able to perform homologous recombination. At the moment it is mainly used as an energy-rich food source for fish larvae and
2355:
Ajjawi, Imad; Verruto, John; Aqui, Moena; Soriaga, Leah B; Coppersmith, Jennifer; Kwok, Kathleen; Peach, Luke; Orchard, Elizabeth; Kalb, Ryan (2017). "Lipid production in
403: 393: 373: 1714:"The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina" 413: 383: 2202:
to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganisation of the photosynthetic apparatus"
423: 433: 1947:
Liang, C.; et al. (2012). "De Novo Sequencing and Global Transcriptome Analysis of Nannochloropsis sp. (Eustigmatophyceae) Following Nitrogen Starvation".
810:
synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day
1509:
Boussiba, S.; Vonshak, A.; Cohen, Z.; Avissar, Y.; Richmond, A. (1987). "Lipid and biomass production by the halotolerant microalga Nannochloropsis salina".
979:
eventually present in the medium and, more importantly, allows them to assimilate the intracellular ammonium that can be released by degradative processes.
847:
conditions were observed to increase the average oil content per cell, supporting however only slow growth rates of the cultures (see the related section
1436:
Kandilian, R.; Lee, E.; Pilon, L. (2013). "Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra".
154: 2563: 1273:
Hibberd, D. J. (1981). "Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae)".
1362:
Andersen, R. A.; Brett, R. W.; et al. (1998). "Phylogeny of the Eustigmatophyceae based upon 18s rDNA, with emphasis on Nannochloropsis".
1327:
Fawley (2007). "Observations on the Diversity and Ecology of Freshwater Nannochloropsis (Eustigmatophyceae), with Descriptions of New Taxa".
1300:
Hibberd (1981). "Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (Synonym Xanthophyceae)".
2196:
Simionato, Diana; Block, Maryse A.; Rocca, Nicoletta La; Jouhet, Juliette; Maréchal, Eric; Finazzi, Giovanni; Morosinotto, Tomas (2013).
1471:
Assaf Sukenik, Y. C. T. B. (1989). "Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp".
1635:
Sarker, Pallab K.; Kapuscinski, Anne R.; McKuin, Brandi; Fitzgerald, Devin S.; Nash, Hannah M.; Greenwood, Connor (12 November 2020).
1898:"Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779" 2537: 2097:"Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga 1712:
Huesemann, M.; Williams, P.; Edmundson, Scott J.; Chen, P.; Kruk, R.; Cullinan, V.; Crowe, B.; Lundquist, T. (September 2017).
963:
and redistribution are activated in the cells in nitrogen scarcity and allow survival through a partial reorganisation of the
823: 2450: 495: 955:
cultivated in normal growth condition and deprived of a nitrogen source continues growing for 4–5 days. The analysis of
1610: 2302:
Li, Jing; Han, Danxiang; Wang, Dongmei; Ning, Kang; Jia, Jing; Wei, Li; Jing, Xiaoyan; Huang, Shi; Chen, Jie (2014).
2589: 2434: 550:
and sulfated fucans and that they are able to store carbon in polymers of β-1,3- and β-1,6-linked glucose called
1780:"Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion" 744: 292:
is considered a promising alga for industrial applications because of its ability to accumulate high levels of
2426: 2028: 477: 473: 53: 2249:
Dong, HP; Williams, E; Wang, DZ; Xie, ZX; Hsia, RC; Jenck, A; Halden, R; Li, J; Chen, F; Place, AR (2013).
1236: 929:
decreases in the nitrogen depleted cells, but it is still sufficient to drive cell survival and growth. If
848: 325: 523:
content, short intergenic regions and very limited presence of repetitive sequences. The genes of the two
1202: 1190: 686: 353: 293: 337: 2617: 1984:"Identification of lipid and saccharide constituents of whole microalgal cells by 13C solid-state NMR" 1137:
IMET1 grown in nitrogen sufficient and nitrogen depleted media. According to their analysis it is the
2594: 2502: 1637:"Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable" 1254: 1249: 352:
was first isolated and still grows. A 2020 study suggests it could be used for a highly performant,
1198: 795: 605:
cultures. The comparisons indeed highlighted the presence of an expanded repertoire of some of the
218: 1830:"Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana" 1193:
that determines the final oil concentration. In other words, under nitrogen depletion, it is the
1178: 1115: 1073: 2516: 1118:. The authors advance the hypothesis that, in their experimental conditions, the degradation of 782:, and the other six from the eukaryotic host genome. In addition, a large proportion (15.3%) of 2464: 2442: 2406: 488: 2568: 802:. Therefore, multiple genome pooling and horizontal genetic exchange, together with selective 1133:
More recently Li and coworkers (2014) collected extensive experimental data from cultures of
1077: 960: 917:
accumulate and lipid droplets enlarge, other important morphological changes take place. The
763: 270:. In addition they are able to build up a high concentrations of a range of pigments such as 2581: 834:
cells have an oil content of about 30% of their dry weight. This oil can be used to produce
1841: 1650: 1206: 1069: 682:
A research community from Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT
357: 297: 8: 2622: 964: 227: 1845: 1654: 2384: 2332: 2303: 2279: 2250: 2226: 2197: 2175: 2127: 2096: 2072: 2045: 1964: 1924: 1897: 1862: 1829: 1679: 1641: 1636: 1564: 1538:"High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp" 1537: 1488: 1418: 1313: 1286: 48: 1375: 2576: 2524: 2376: 2337: 2284: 2231: 2167: 2132: 2077: 2005: 1968: 1929: 1867: 1801: 1743: 1735: 1684: 1666: 1611:"Research breakthrough achieves fish-free aquaculture feed that raises key standards" 1569: 1522: 1484: 1453: 1379: 1344: 1154: 1127: 855: 512: 453: 301: 2179: 2022:
Elisa Corteggiani Carpinelli e Nicola Vitulo Unpublished data available through the
1492: 766:, researchers proposed that among the 11 DGAT-2s, one gene might originate from the 720:(CCMP529). They found that the six genomes share key oleaginous traits, such as the 2529: 2388: 2368: 2327: 2319: 2274: 2266: 2221: 2213: 2159: 2122: 2112: 2067: 2057: 1995: 1956: 1919: 1909: 1857: 1849: 1791: 1725: 1674: 1658: 1559: 1549: 1518: 1480: 1449: 1445: 1410: 1371: 1336: 1309: 1282: 1231: 1111: 1085: 1060: 1052: 1044: 914: 907: 899: 891: 871: 676: 449: 223: 1422: 1106:
and deprived of nitrogen. Despite the different experimental conditions, also the
2062: 2032: 2000: 1983: 1914: 1340: 1210: 1048: 1036: 1032: 1028: 1015: 996: 980: 956: 887: 748: 551: 134: 1730: 1713: 1177:) that have to be claimed for increasing the supply of carbon precursors to the 683: 1699: 1662: 1100: 1065: 938: 930: 926: 657: 484: 321: 283: 91: 78: 1960: 1414: 1174: 1055:
accumulate. The general conclusion suggested by the experimental data is that
1014:
Corteggiani Carpinelli and coworkers (2013) report a complete analysis of the
700:
strains (IMET1 and CCMP531) and one strain from each of four other recognized
2611: 2487: 1739: 1670: 1194: 1186: 1181:. Nevertheless, the authors suggest that it isn't the increased synthesis of 1150: 1142: 1004: 942: 895: 879: 827: 333: 316:. Nevertheless, it has raised growing interest also for the investigation of 279: 266: 260: 254: 231: 144: 2359:
is doubled by decreasing expression of a single transcriptional regulator".
1554: 2415:. World-wide electronic publication, National University of Ireland, Galway 2380: 2341: 2323: 2288: 2235: 2171: 2136: 2117: 2081: 2009: 1933: 1871: 1805: 1688: 1573: 1457: 1383: 1348: 1119: 918: 783: 779: 771: 626: 622: 610: 483:
genome allows accessing much of the genomic information that concerns this
309: 177: 104: 2270: 2046:"Nannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits" 2550: 2496: 1185:
that leads to accumulation of oil inside the cells, but it is rather the
1081: 1000: 922: 883: 803: 775: 733: 638: 594: 590: 271: 2217: 1796: 1779: 336:
for human nutrition and it is also served at Restaurant "A Poniente" of
2542: 2044:
Wang, Dongmei; Ning, Kang; Li, Jing; et, al.; Xu, Jian (January 2014).
1853: 1226: 1182: 1166: 1158: 1138: 1123: 1107: 1091:
Dong et al. (2013) report a quantification of the abundance of various
1024: 921:
became smaller and the amount of lipids that are characteristic of the
559: 535: 275: 249: 124: 2555: 2163: 1747: 282:. They have a diameter of about 2 to 3 micrometers and a very simple 2511: 2411: 2372: 1170: 1072:
is determinant in increasing the amount of substrates that enter the
972: 839: 835: 767: 756: 740: 721: 668: 586: 567: 563: 547: 543: 487:, moreover dedicated web pages are also available for the genomes of 65: 2458: 894:
in nitrogen depletion is much larger than the decrease in the other
648:
Analysis of the genomic data suggested the presence in both the two
2481: 1162: 1146: 1092: 976: 968: 898:, supporting the hypothesis that the cells actively synthesise new 799: 571: 570:
and of mobile chrysolaminarin, probably accumulated in solution in
515:
were between 28.5 and 29 Mega bases long, they had high density of
235: 862:
were shown to accumulate up to 60–70% of their overall biomass as
671:
of known blue light sensing proteins were found in the genomes of
341: 2023: 1634: 1244: 988: 866:
in nitrogen limitation. In this condition not only the amount of
701: 693: 649: 618: 598: 531: 524: 505: 461: 317: 313: 210: 114: 1536:
Kilian, O.; Benemann, C. S. E.; Niyogi, K. K.; Vick, B. (2011).
286:
with reduced structural elements compared to neighbouring taxa.
1110:
study seems to support the hypothesis that the accumulation of
1035:
is not correlated with the amount of oil accumulated. Also the
946: 903: 875: 867: 863: 520: 1711: 817: 601:
provided some insights into the exemplary lipid production of
1694: 1088:
are produced and accumulated into the cells as oil droplets.
1040: 807: 787: 729: 725: 661: 630: 606: 578: 539: 345: 242: 214: 202: 32: 1508: 1126:
are responsible for the increase of substrates through the
516: 300:
aimed at the genetic improvement of the current oleaginous
206: 2195: 1068:
is the main energy source and the down-regulation of the
555: 2354: 1535: 1114:
is due to an increase of the metabolic flux through the
1031:
biosynthesis are always abundant in the cells and their
870:
changes, but also the composition. It was observed that
558:
analysis of whole algal cells which were cultivated in
296:. Moreover, it shows promising features that can allow 2308:
reveals the mechanisms of oil synthesis in microalgae"
1777: 967:. The genes responsible for the incorporation of free 2255:
IMET1 to long-term nitrogen starvation and recovery"
2248: 874:largely increase in nitrogen depletion while other 1988:Biochimica et Biophysica Acta (BBA) - Biomembranes 1591:sp. nov., a new Eustigmatophyceae marina strain". 2304:"Choreography of transcriptomes and lipidomes of 1435: 937:cells stop growing, indicating that they rely on 2609: 1778:Corteggiani Carpinelli, E.; et al. (2013). 2149: 1773: 1771: 1769: 1767: 1765: 1763: 1761: 1759: 1757: 1401:as source of commercially valuable pigments". 2301: 1823: 1821: 1819: 1817: 1815: 1470: 1361: 822:When cultured in normal growth conditions in 2191: 2189: 2043: 1529: 751:(TAG) synthesis. There are 13 DGAT genes in 1754: 1165:; the PDHC bypass, which yields additional 902:rather than just transforming the existing 818:Accumulation of oil in nitrogen deprivation 542:for the synthesis and incorporation in the 2404: 1827: 1812: 1504: 1502: 1084:are synthesised and as a consequence more 712:(CCMP526, which was previously reported), 448:The scientific community has obtained the 31: 2331: 2278: 2225: 2186: 2126: 2116: 2071: 2061: 1999: 1923: 1913: 1891: 1889: 1887: 1885: 1883: 1881: 1861: 1795: 1729: 1678: 1563: 1553: 1390: 747:(DGAT), which catalyzes the last step of 348:) close to the natural environment where 230:. The characterisation is mostly done by 1429: 1302:Botanical Journal of the Linnean Society 1275:Botanical Journal of the Linnean Society 2143: 1499: 1355: 1299: 1272: 1070:metabolic activity of the mitochondrion 2610: 2025:Nannochloropsis gaditana genome portal 2016: 1981: 1975: 1895: 1878: 1586: 1580: 1464: 1396: 1326: 1293: 992:and recycling of cellular components. 939:photosynthetic solar energy conversion 368:The species currently recognised are: 2463: 2462: 1946: 1940: 1320: 890:, slightly decrease. The increase in 2242: 1828:Radakovits, R.; et al. (2012). 1397:Lubian, L. M.; et al. (2000). " 562:reports evidence of the presence of 443: 1982:Arnold, A. A.; et al. (2014). 1399:Nannochloropsis (Eustigmatophyceae) 1011:in response to nitrogen depletion. 13: 2438:latest news and scientific reports 2295: 2094: 1314:10.1111/j.1095-8339.1981.tb00954.x 1287:10.1111/j.1095-8339.1981.tb00954.x 14: 2634: 2405:Guiry, M.D.; Guiry, G.M. (2008). 2398: 1047:degradation is not significantly 378:Fawley, Jameson & Fawley 2015 2152:Biotechnology and Bioengineering 1896:Vieler, A.; et al. (2012). 1693: 1485:10.1111/j.0022-3646.1989.00686.x 739:. The most prominent example of 52: 43:viewed under a light microscope 2348: 2088: 2037: 1705: 1628: 1603: 1179:fatty acid biosynthetic pathway 1116:fatty acid biosynthetic pathway 1074:fatty acid biosynthetic pathway 641:which seems to be exclusive of 633:remodeling, were identified in 1450:10.1016/j.biortech.2013.03.058 1266: 830:, supplemented with nitrogen, 745:Diacylglycerol acyltransferase 637:, many of them belonging to a 1: 1376:10.1016/S1434-4610(98)70010-0 1260: 1173:reactions with mitochondrial 1153:of genes assigned to various 689:, sequenced and compared six 2063:10.1371/journal.pgen.1004094 2001:10.1016/j.bbamem.2014.07.017 1915:10.1371/journal.pgen.1003064 1542:Proc. Natl. Acad. Sci. U.S.A 1523:10.1016/0144-4565(87)90006-0 1403:Journal of Applied Phycology 1341:10.1016/j.protis.2007.03.003 1209:, that leads to accelerated 1191:assembly of triacylglycerols 959:reveals that mechanisms for 849:Nannochloropsis and biofuels 326:Nannochloropsis and biofuels 7: 1731:10.1016/j.algal.2017.06.017 1220: 1099:grown with a supplement of 987:cultures show that various 826:, a standard algal culture 755:, representing the highest 687:Chinese Academy of Sciences 527:share extended similarity. 294:polyunsaturated fatty acids 10: 2639: 2105:Biotechnology for Biofuels 1663:10.1038/s41598-020-75289-x 1201:level of the key genes in 983:data of nitrogen-deprived 625:metabolism through either 363: 248:differ from other related 2471: 1961:10.1007/s12155-012-9269-0 1255:Energy content of biofuel 1250:Sustainable aviation fuel 1217:to 40-45% (mutant type). 1189:of genes involved in the 1122:and the up-regulation of 428:(Droop 1955) Hibberd 1981 418:Suda & Miyashita 2002 404:Nannochloropsis limnetica 398:Karlson & Potter 1996 394:Nannochloropsis granulata 374:Nannochloropsis australis 189:(Droop 1955) Hibberd 1981 183: 176: 49:Scientific classification 47: 39: 30: 23: 2452:Nannochloropsis oceanica 2444:Nannochloropsis gaditana 2428:Nannochloropsis gaditana 2357:Nannochloropsis gaditana 2253:Nannochloropsis oceanica 2200:Nannochloropsis gaditana 2099:Nannochloropsis oceanica 2095:Lu; et al. (2014). 1589:Nannochloropsis gaditana 1207:fatty acids biosynthesis 1203:triacylglycerol assembly 1161:pathway, which produces 1059:constitutively produces 925:decrease significantly. 923:photosynthetic membranes 796:horizontal gene transfer 762:Through a comprehensive 414:Nannochloropsis oceanica 384:Microchloropsis gaditana 350:Nannochloropsis gaditana 338:El Puerto de Santa María 322:photosynthetic organisms 219:taxonomic classification 1587:Lubian, L. M. (1982). " 1555:10.1073/pnas.1105861108 1415:10.1023/A:1008170915932 1205:, rather than those in 1135:Nannochloropsis oculata 577:Comparison between the 424:Nannochloropsis oculata 185:Nannochloropsis oculata 2324:10.1105/tpc.113.121418 2118:10.1186/1754-6834-7-81 1438:Bioresource Technology 1169:; and the coupling of 838:. In order to produce 724:expansion of selected 434:Nannochloropsis salina 332:is actually in use as 2271:10.1104/pp.113.214320 1007:is down regulated in 961:nitrogen assimilation 933:is inhibited indeed, 842:, the oil content of 786:biosynthesis related 764:phylogenetic analysis 304:. Various species of 209:comprising six known 2361:Nature Biotechnology 1473:Journal of Phycology 1080:are available, more 927:Photosynthetic yield 677:circadian regulation 675:suggesting possible 534:revealed that these 530:The analysis of the 408:Krienitz et al. 2000 358:feed for farmed fish 298:genetic manipulation 258:and completely lack 2218:10.1128/EC.00363-12 1994:(1 Pt B): 369–377. 1846:2012NatCo...3..686R 1655:2020NatSR..1019328S 1548:(52): 21265–21269. 965:cellular metabolism 621:, which can affect 581:metabolic genes of 238:sequence analysis. 228:electron microscopy 2031:2013-10-29 at the 1854:10.1038/ncomms1688 1642:Scientific Reports 1149:together with the 949:as energy source. 941:and not on stored 770:related secondary 759:in known genomes. 660:and in particular 560:autotrophic growth 252:in that they have 2618:Ochrophyte genera 2605: 2604: 2577:Open Tree of Life 2465:Taxon identifiers 2454:CCMP1779 web page 2407:"Nannochloropsis" 2198:"The response of 2164:10.1002/bit.22033 1797:10.1093/mp/sst120 995:The machinery of 790:were acquired by 696:that include two 574:inside the cell. 508:of the sequenced 460:belonging to two 444:Sequenced genomes 439: 429: 419: 409: 399: 389: 379: 241:The algae of the 194: 193: 172: 171:D.J.Hibberd, 1981 135:Eustigmatophyceae 2630: 2598: 2597: 2585: 2584: 2572: 2571: 2559: 2558: 2546: 2545: 2533: 2532: 2520: 2519: 2507: 2506: 2505: 2492: 2491: 2490: 2460: 2459: 2446:CCMP526 web page 2423: 2421: 2420: 2393: 2392: 2373:10.1038/nbt.3865 2352: 2346: 2345: 2335: 2318:(4): 1645–1665. 2299: 2293: 2292: 2282: 2265:(2): 1110–1126. 2259:Plant Physiology 2246: 2240: 2239: 2229: 2193: 2184: 2183: 2147: 2141: 2140: 2130: 2120: 2092: 2086: 2085: 2075: 2065: 2041: 2035: 2020: 2014: 2013: 2003: 1979: 1973: 1972: 1944: 1938: 1937: 1927: 1917: 1908:(11): e1003064. 1893: 1876: 1875: 1865: 1825: 1810: 1809: 1799: 1775: 1752: 1751: 1733: 1709: 1703: 1698:Available under 1697: 1692: 1682: 1632: 1626: 1625: 1623: 1621: 1607: 1601: 1600: 1584: 1578: 1577: 1567: 1557: 1533: 1527: 1526: 1506: 1497: 1496: 1468: 1462: 1461: 1433: 1427: 1426: 1409:(3/5): 249–255. 1394: 1388: 1387: 1359: 1353: 1352: 1324: 1318: 1317: 1297: 1291: 1290: 1270: 1232:Planktonic algae 1112:triacylglycerols 1086:triacylglycerols 1061:triacylglycerols 1053:triacylglycerols 1045:triacylglycerols 915:triacylglycerols 908:triacylglycerols 900:triacylglycerols 892:triacylglycerols 872:triacylglycerols 450:genomic sequence 437: 427: 417: 407: 397: 387: 377: 320:production from 170: 57: 56: 35: 21: 20: 2638: 2637: 2633: 2632: 2631: 2629: 2628: 2627: 2608: 2607: 2606: 2601: 2593: 2588: 2580: 2575: 2567: 2562: 2554: 2549: 2541: 2536: 2528: 2523: 2515: 2510: 2503:Nannochloropsis 2501: 2500: 2495: 2486: 2485: 2480: 2473:Nannochloropsis 2467: 2436:Nannochloropsis 2418: 2416: 2401: 2396: 2353: 2349: 2306:Nannochloropsis 2300: 2296: 2247: 2243: 2206:Eukaryotic Cell 2194: 2187: 2148: 2144: 2093: 2089: 2056:(1): e1004094. 2042: 2038: 2033:Wayback Machine 2021: 2017: 1980: 1976: 1945: 1941: 1894: 1879: 1826: 1813: 1784:Molecular Plant 1776: 1755: 1710: 1706: 1633: 1629: 1619: 1617: 1609: 1608: 1604: 1585: 1581: 1534: 1530: 1507: 1500: 1469: 1465: 1434: 1430: 1395: 1391: 1360: 1356: 1325: 1321: 1298: 1294: 1271: 1267: 1263: 1238:Nannochloropsis 1223: 1211:triacylglycerol 1157:(the cytosolic 1104: 1097:Nannochloropsis 1095:in cultures of 1057:Nannochloropsis 1029:triacylglycerol 1020:Nannochloropsis 1016:gene expression 1009:Nannochloropsis 997:gene expression 985:Nannochloropsis 957:gene expression 953:Nannochloropsis 935:Nannochloropsis 888:diacylglycerols 878:, mainly polar 860:Nannochloropsis 844:Nannochloropsis 832:Nannochloropsis 820: 812:Nannochloropsis 792:Nannochloropsis 753:Nannochloropsis 749:triacylglycerol 691:Nannochloropsis 673:Nannochloropsis 654:Nannochloropsis 643:Nannochloropsis 635:Nannochloropsis 629:degradation or 615:Nannochloropsis 603:Nannochloropsis 552:chrysolaminarin 510:Nannochloropsis 458:Nannochloropsis 446: 366: 330:Nannochloropsis 306:Nannochloropsis 290:Nannochloropsis 246:Nannochloropsis 217:in the current 198:Nannochloropsis 190: 187: 169: 166:Nannochloropsis 155:Monodopsidaceae 51: 41:Nannochloropsis 25:Nannochloropsis 17: 12: 11: 5: 2636: 2626: 2625: 2620: 2603: 2602: 2600: 2599: 2586: 2573: 2560: 2547: 2534: 2521: 2508: 2493: 2477: 2475: 2469: 2468: 2457: 2456: 2448: 2440: 2432: 2424: 2400: 2399:External links 2397: 2395: 2394: 2367:(7): 647–652. 2347: 2294: 2251:"Responses of 2241: 2212:(5): 665–676. 2185: 2142: 2087: 2036: 2015: 1974: 1955:(2): 494–505. 1939: 1877: 1811: 1790:(2): 323–335. 1753: 1718:Algal Research 1704: 1627: 1602: 1579: 1528: 1498: 1479:(4): 686–692. 1463: 1428: 1389: 1354: 1335:(3): 325–336. 1319: 1292: 1264: 1262: 1259: 1258: 1257: 1252: 1247: 1242: 1234: 1229: 1222: 1219: 1120:storage sugars 1102: 1066:photosynthesis 1049:down-regulated 981:Transcriptomic 931:photosynthesis 819: 816: 716:(CCMP525) and 658:regulatory RNA 485:micro-organism 445: 442: 441: 440: 430: 420: 410: 400: 390: 380: 365: 362: 284:ultrastructure 192: 191: 188: 181: 180: 174: 173: 162: 158: 157: 152: 148: 147: 142: 138: 137: 132: 128: 127: 122: 118: 117: 112: 108: 107: 102: 95: 94: 89: 82: 81: 79:Diaphoretickes 76: 69: 68: 63: 59: 58: 45: 44: 37: 36: 28: 27: 16:Genus of algae 15: 9: 6: 4: 3: 2: 2635: 2624: 2621: 2619: 2616: 2615: 2613: 2596: 2591: 2587: 2583: 2578: 2574: 2570: 2565: 2561: 2557: 2552: 2548: 2544: 2539: 2535: 2531: 2526: 2522: 2518: 2513: 2509: 2504: 2498: 2494: 2489: 2483: 2479: 2478: 2476: 2474: 2470: 2466: 2461: 2455: 2453: 2449: 2447: 2445: 2441: 2439: 2437: 2433: 2431: 2430:genome portal 2429: 2425: 2414: 2413: 2408: 2403: 2402: 2390: 2386: 2382: 2378: 2374: 2370: 2366: 2362: 2358: 2351: 2343: 2339: 2334: 2329: 2325: 2321: 2317: 2313: 2309: 2307: 2298: 2290: 2286: 2281: 2276: 2272: 2268: 2264: 2260: 2256: 2254: 2245: 2237: 2233: 2228: 2223: 2219: 2215: 2211: 2207: 2203: 2201: 2192: 2190: 2181: 2177: 2173: 2169: 2165: 2161: 2158:(1): 100–12. 2157: 2153: 2146: 2138: 2134: 2129: 2124: 2119: 2114: 2110: 2106: 2102: 2100: 2091: 2083: 2079: 2074: 2069: 2064: 2059: 2055: 2051: 2050:PLOS Genetics 2047: 2040: 2034: 2030: 2027: 2026: 2019: 2011: 2007: 2002: 1997: 1993: 1989: 1985: 1978: 1970: 1966: 1962: 1958: 1954: 1950: 1949:Bioenerg. Res 1943: 1935: 1931: 1926: 1921: 1916: 1911: 1907: 1903: 1899: 1892: 1890: 1888: 1886: 1884: 1882: 1873: 1869: 1864: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1824: 1822: 1820: 1818: 1816: 1807: 1803: 1798: 1793: 1789: 1785: 1781: 1774: 1772: 1770: 1768: 1766: 1764: 1762: 1760: 1758: 1749: 1745: 1741: 1737: 1732: 1727: 1723: 1719: 1715: 1708: 1701: 1696: 1690: 1686: 1681: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1643: 1638: 1631: 1616: 1612: 1606: 1598: 1594: 1590: 1583: 1575: 1571: 1566: 1561: 1556: 1551: 1547: 1543: 1539: 1532: 1524: 1520: 1516: 1512: 1505: 1503: 1494: 1490: 1486: 1482: 1478: 1474: 1467: 1459: 1455: 1451: 1447: 1443: 1439: 1432: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1393: 1385: 1381: 1377: 1373: 1369: 1365: 1358: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1315: 1311: 1308:(2): 93–119. 1307: 1303: 1296: 1288: 1284: 1281:(2): 93–119. 1280: 1276: 1269: 1265: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1239: 1235: 1233: 1230: 1228: 1225: 1224: 1218: 1214: 1212: 1208: 1204: 1200: 1196: 1195:up-regulation 1192: 1188: 1187:up-regulation 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1151:up-regulation 1148: 1144: 1143:carbohydrates 1140: 1136: 1131: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1098: 1094: 1089: 1087: 1083: 1079: 1075: 1071: 1067: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1021: 1017: 1012: 1010: 1006: 1005:mitochondrion 1002: 998: 993: 990: 986: 982: 978: 974: 970: 966: 962: 958: 954: 950: 948: 944: 943:carbohydrates 940: 936: 932: 928: 924: 920: 916: 911: 909: 905: 901: 897: 896:glycerolipids 893: 889: 885: 881: 880:glycerolipids 877: 873: 869: 865: 861: 857: 852: 850: 845: 841: 837: 833: 829: 828:growth medium 825: 815: 813: 809: 805: 801: 797: 793: 789: 785: 781: 777: 773: 769: 765: 760: 758: 754: 750: 746: 743:expansion is 742: 738: 737:Chlamydomonas 735: 731: 728:biosynthesis 727: 723: 719: 715: 711: 707: 703: 699: 695: 692: 688: 684: 680: 678: 674: 670: 665: 663: 659: 655: 651: 646: 644: 640: 636: 632: 628: 624: 620: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 575: 573: 569: 565: 561: 557: 553: 549: 545: 541: 537: 533: 528: 526: 522: 518: 514: 511: 507: 502: 500: 498: 493: 491: 486: 482: 480: 476:based on the 475: 474:genome portal 471: 467: 463: 459: 455: 452:of different 451: 436: 435: 431: 426: 425: 421: 416: 415: 411: 406: 405: 401: 396: 395: 391: 386: 385: 381: 376: 375: 371: 370: 369: 361: 359: 355: 351: 347: 343: 339: 335: 334:food additive 331: 327: 323: 319: 315: 311: 310:transfectable 307: 303: 299: 295: 291: 287: 285: 281: 280:canthaxanthin 277: 273: 269: 268: 267:chlorophyll c 263: 262: 261:chlorophyll b 257: 256: 255:chlorophyll a 251: 247: 244: 239: 237: 233: 229: 225: 220: 216: 212: 208: 204: 200: 199: 186: 182: 179: 175: 168: 167: 163: 160: 159: 156: 153: 150: 149: 146: 145:Eustigmatales 143: 140: 139: 136: 133: 130: 129: 126: 123: 120: 119: 116: 113: 110: 109: 106: 105:Stramenopiles 103: 100: 97: 96: 93: 90: 87: 84: 83: 80: 77: 74: 71: 70: 67: 64: 61: 60: 55: 50: 46: 42: 38: 34: 29: 26: 22: 19: 2472: 2451: 2443: 2435: 2427: 2417:. Retrieved 2410: 2364: 2360: 2356: 2350: 2315: 2311: 2305: 2297: 2262: 2258: 2252: 2244: 2209: 2205: 2199: 2155: 2151: 2145: 2108: 2104: 2098: 2090: 2053: 2049: 2039: 2024: 2018: 1991: 1987: 1977: 1952: 1948: 1942: 1905: 1901: 1837: 1833: 1787: 1783: 1721: 1717: 1707: 1649:(1): 19328. 1646: 1640: 1630: 1618:. Retrieved 1614: 1605: 1596: 1592: 1588: 1582: 1545: 1541: 1531: 1514: 1510: 1476: 1472: 1466: 1441: 1437: 1431: 1406: 1402: 1398: 1392: 1370:(1): 61–74. 1367: 1363: 1357: 1332: 1328: 1322: 1305: 1301: 1295: 1278: 1274: 1268: 1240:and biofuels 1237: 1215: 1213:production. 1134: 1132: 1096: 1090: 1056: 1043:involved in 1019: 1013: 1008: 994: 984: 952: 951: 934: 919:chloroplasts 912: 859: 853: 843: 831: 821: 811: 791: 780:endosymbiont 774:, four from 772:endosymbiont 761: 752: 736: 732:compared to 718:N. granulata 717: 713: 709: 705: 697: 690: 681: 672: 666: 653: 647: 642: 634: 614: 613:assembly in 609:involved in 602: 582: 576: 538:have set of 529: 509: 503: 496: 489: 478: 469: 465: 457: 447: 438:Hibberd 1981 432: 422: 412: 402: 392: 382: 372: 367: 349: 329: 305: 289: 288: 265: 259: 253: 245: 240: 197: 196: 195: 184: 178:Type species 165: 164: 125:Ochrophytina 98: 85: 72: 40: 24: 18: 2551:iNaturalist 2497:Wikispecies 1183:fatty acids 1175:β-oxidation 1082:fatty acids 1001:chloroplast 884:fatty acids 804:inheritance 798:(HGT) from 776:green algae 734:green algae 710:N. gaditana 708:(CCMP537), 698:N. oceanica 639:gene family 619:TAG lipases 617:. Numerous 595:brown algae 583:N. gaditana 497:N. oceanica 490:N. gaditana 479:N. gaditana 470:N. oceanica 466:N. gaditana 388:Lubián 1982 354:sustainable 308:indeed are 272:astaxanthin 121:Subphylum: 2623:Ochrophyta 2612:Categories 2419:2009-02-21 2312:Plant Cell 1902:PLOS Genet 1840:(2): 686. 1834:Nat Commun 1620:9 December 1599:: 287–293. 1261:References 1227:Microalgae 1199:transcript 1167:acetyl-CoA 1159:glycolysis 1139:catabolism 1124:glycolysis 1078:precursors 1076:. If more 1037:expression 1033:expression 1025:fatty acid 824:f/2 medium 714:N. oculata 536:microalgae 519:, reduced 356:fish-free 276:zeaxanthin 250:microalgae 2512:AlgaeBase 2412:AlgaeBase 1969:207395605 1740:2211-9264 1724:: 39–46. 1700:CC BY 4.0 1671:2045-2322 1517:: 37–47. 1444:: 63–73. 1108:proteomic 973:glutamate 840:biodiesel 836:biodiesel 768:red algae 757:gene dose 741:gene dose 722:gene dose 706:N. salina 669:orthologs 568:cell wall 564:cellulose 548:cellulose 544:cell wall 232:rbcL gene 66:Eukaryota 2482:Wikidata 2381:28628130 2342:24692423 2289:23637339 2236:23457191 2180:28285869 2172:18683258 2137:24920959 2082:24415958 2029:Archived 2010:25065670 1934:23166516 1872:22353717 1806:23966634 1689:33184333 1615:phys.org 1574:22123974 1493:84590502 1458:23587810 1384:23196114 1349:17576099 1221:See also 1163:pyruvate 1155:pathways 1147:proteins 1093:proteins 977:ammonium 969:ammonium 854:Various 800:bacteria 778:related 667:Various 572:vacuoles 499:CCMP1779 314:rotifers 236:18S rRNA 151:Family: 111:Phylum: 62:Domain: 2569:1083484 2543:3201505 2488:Q586679 2389:8175045 2333:4036577 2280:3668043 2227:3647774 2128:4052811 2073:3886936 1925:3499364 1863:3293424 1842:Bibcode 1748:1581797 1680:7665073 1651:Bibcode 1593:Lazaroa 1565:3248512 1511:Biomass 1364:Protist 1329:Protist 1245:Biofuel 1197:of the 1128:pathway 1039:of the 989:enzymes 882:, free 856:strains 702:species 694:genomes 650:species 599:diatoms 585:and of 566:in the 532:genomes 525:species 513:strains 506:genomes 492:CCMP526 462:species 454:strains 364:Species 324:. (see 318:biofuel 302:strains 211:species 161:Genus: 141:Order: 131:Class: 115:Gyrista 2595:345489 2582:694370 2556:959283 2387:  2379:  2340:  2330:  2287:  2277:  2234:  2224:  2178:  2170:  2135:  2125:  2111:: 81. 2080:  2070:  2008:  1967:  1932:  1922:  1870:  1860:  1804:  1746:  1738:  1687:  1677:  1669:  1572:  1562:  1491:  1456:  1423:620002 1421:  1382:  1347:  947:lipids 913:While 904:lipids 876:lipids 868:lipids 864:lipids 521:intron 213:. The 2590:WoRMS 2564:IRMNG 2530:7PPQD 2517:44568 2385:S2CID 2176:S2CID 1965:S2CID 1489:S2CID 1419:S2CID 1041:genes 971:into 906:into 814:spp. 808:lipid 788:genes 730:genes 726:lipid 662:miRNA 631:lipid 607:genes 591:green 579:lipid 554:. An 540:genes 517:genes 346:Spain 342:Cádiz 243:genus 224:light 215:genus 207:algae 203:genus 201:is a 99:Clade 86:Clade 73:Clade 2538:GBIF 2377:PMID 2338:PMID 2285:PMID 2232:PMID 2168:PMID 2133:PMID 2078:PMID 2006:PMID 1992:1848 1930:PMID 1868:PMID 1802:PMID 1744:OSTI 1736:ISSN 1685:PMID 1667:ISSN 1622:2020 1570:PMID 1454:PMID 1380:PMID 1345:PMID 1145:and 1027:and 1003:and 886:and 794:via 597:and 504:The 494:and 481:B-31 472:. A 468:and 278:and 264:and 234:and 2525:CoL 2369:doi 2328:PMC 2320:doi 2275:PMC 2267:doi 2263:162 2222:PMC 2214:doi 2160:doi 2156:102 2123:PMC 2113:doi 2068:PMC 2058:doi 1996:doi 1957:doi 1920:PMC 1910:doi 1858:PMC 1850:doi 1792:doi 1726:doi 1675:PMC 1659:doi 1560:PMC 1550:doi 1546:108 1519:doi 1481:doi 1446:doi 1442:137 1411:doi 1372:doi 1368:149 1337:doi 1333:158 1310:doi 1283:doi 1171:TCA 1141:of 1051:as 1018:of 999:of 945:or 858:of 806:of 784:TAG 685:), 656:of 652:of 627:TAG 623:TAG 611:TAG 587:red 556:NMR 546:of 456:of 328:). 226:or 205:of 92:SAR 2614:: 2592:: 2579:: 2566:: 2553:: 2540:: 2527:: 2514:: 2499:: 2484:: 2409:. 2383:. 2375:. 2365:35 2363:. 2336:. 2326:. 2316:26 2314:. 2310:. 2283:. 2273:. 2261:. 2257:. 2230:. 2220:. 2210:12 2208:. 2204:. 2188:^ 2174:. 2166:. 2154:. 2131:. 2121:. 2107:. 2103:. 2076:. 2066:. 2054:10 2052:. 2048:. 2004:. 1990:. 1986:. 1963:. 1951:. 1928:. 1918:. 1904:. 1900:. 1880:^ 1866:. 1856:. 1848:. 1836:. 1832:. 1814:^ 1800:. 1786:. 1782:. 1756:^ 1742:. 1734:. 1722:26 1720:. 1716:. 1683:. 1673:. 1665:. 1657:. 1647:10 1645:. 1639:. 1613:. 1595:. 1568:. 1558:. 1544:. 1540:. 1515:12 1513:. 1501:^ 1487:. 1477:25 1475:. 1452:. 1440:. 1417:. 1407:12 1405:. 1378:. 1366:. 1343:. 1331:. 1306:82 1304:. 1279:82 1277:. 1130:. 1101:CO 910:. 704:: 679:. 664:. 645:. 501:. 464:: 360:. 344:, 274:, 101:: 88:: 75:: 2422:. 2391:. 2371:: 2344:. 2322:: 2291:. 2269:: 2238:. 2216:: 2182:. 2162:: 2139:. 2115:: 2109:7 2101:" 2084:. 2060:: 2012:. 1998:: 1971:. 1959:: 1953:6 1936:. 1912:: 1906:8 1874:. 1852:: 1844:: 1838:3 1808:. 1794:: 1788:7 1750:. 1728:: 1702:. 1691:. 1661:: 1653:: 1624:. 1597:4 1576:. 1552:: 1525:. 1521:: 1495:. 1483:: 1460:. 1448:: 1425:. 1413:: 1386:. 1374:: 1351:. 1339:: 1316:. 1312:: 1289:. 1285:: 1103:2 593:/ 589:/ 340:(

Index


Scientific classification
Edit this classification
Eukaryota
Diaphoretickes
SAR
Stramenopiles
Gyrista
Ochrophytina
Eustigmatophyceae
Eustigmatales
Monodopsidaceae
Nannochloropsis
Type species
genus
algae
species
genus
taxonomic classification
light
electron microscopy
rbcL gene
18S rRNA
genus
microalgae
chlorophyll a
chlorophyll b
chlorophyll c
astaxanthin
zeaxanthin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.