Knowledge

Debris flow

Source 📝

227: 20: 639: 36: 170:, the availability of abundant loose sediment, soil, or weathered rock, and sufficient water to bring this loose material to a state of almost complete saturation (with all the pore space filled). Debris flows can be more frequent following forest and brush fires, as experience in southern California demonstrates. They pose a significant hazard in many steep, mountainous areas, and have received particular attention in Japan, China, Taiwan, USA, Canada, New Zealand, the Philippines, the European Alps, Russia, and Kazakhstan. In Japan a large debris flow or 195: 102:, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters (i.e., 1 cubic kilometer). As a result of their high sediment concentrations and mobility, debris flows can be very destructive. 613: 247:). Lateral levees can confine the paths of ensuing debris flows, and the presence of older levees provides some idea of the magnitudes of previous debris flows in a particular area. Through dating of trees growing on such deposits, the approximate frequency of destructive debris flows can be estimated. This is important information for land development in areas where debris flows are common. Ancient debris-flow deposits that are exposed only in 60: 38: 43: 41: 37: 42: 570:) and moves very economically, promoting long travel distances. Compared to buoyant flow, the neutrally buoyant flow shows completely different behaviour. For the latter case, the solid and fluid phases move together, the debris bulk mass is fluidized, the front moves substantially farther, the tail lags behind, and the overall flow height is also reduced. When 40: 627:
To prevent debris flows reaching property and people, a debris basin may be constructed. Debris basins are designed to protect soil and water resources or to prevent downstream damage. Such constructions are considered to be a last resort because they are expensive to construct and require commitment
165:
Debris flows can be triggered by intense rainfall or snowmelt, by dam-break or glacial outburst floods, or by landsliding that may or may not be associated with intense rain or earthquakes. In all cases the chief conditions required for debris flow initiation include the presence of slopes steeper
222:
and clay. These fine sediments help retain high pore-fluid pressures that enhance debris-flow mobility. In some cases the flow body is followed by a more watery tail that transitions into a hyperconcentrated stream flow. Debris flows tend to move in a series of pulses, or discrete surges, wherein
297:
material, or the outburst of a lake that was previously dammed by pyroclastic or glacial sediments. The word lahar is of Indonesian origin, but is now routinely used by geologists worldwide to describe volcanogenic debris flows. Nearly all of Earth's largest, most destructive debris flows are
631:
Before a storm that can potentially nucleate debris flows, forecasting frameworks can often quantify the likelihood that a debris flow might occur in a watershed; however, it remains challenging to predict the amount of sediment mobilized and therefore, the total size of debris flows that may
320:
is a glacial outburst flood. Jökulhlaup is an Icelandic word, and in Iceland many glacial outburst floods are triggered by sub-glacial volcanic eruptions. (Iceland sits atop the Mid-Atlantic Ridge, which is formed by a chain of mostly submarine volcanoes). Elsewhere, a more common cause of
243:. These natural levees form when relatively mobile, liquefied, fine-grained debris in the body of debris flows shoulders aside coarse, high-friction debris that collects in debris-flow heads as a consequence of grain-size segregation (a familiar phenomenon in 325:-dammed lakes. Such breaching events are often caused by the sudden calving of glacier ice into a lake, which then causes a displacement wave to breach a moraine or ice dam. Downvalley of the breach point, a jökulhlaup may increase greatly in size through 638: 1274:
Staley, D.M., Negri, J.A., Kean, J.W., Laber, J.L., Tillery, A.C. and Youberg, A.M., 2017. Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278,
39: 238:
along steep mountain fronts. Fully exposed deposits commonly have lobate forms with boulder-rich snouts, and the lateral margins of debris-flow deposits and paths are commonly marked by the presence of boulder-rich lateral
129:
concentrations exceeding about 40 to 50%, and the remainder of a flow's volume consists of water. By definition, “debris” includes sediment grains with diverse shapes and sizes, commonly ranging from microscopic
632:
nucleate for a given storm, and whether or not debris basins will have the capacity to protect downstream communities. These challenges make debris flows particularly dangerous to mountain front communities.
289:, either directly as a result of an eruption, or indirectly by the collapse of loose material on the flanks of a volcano. A variety of phenomena may trigger a lahar, including melting of glacial ice, 749: 600:
flow. In this case the force due to the pressure gradient is altered, the drag is high and the effect of the virtual mass disappears in the solid momentum. All this leads to slowing down the
431:
on the solid component. Buoyancy is an important aspect of two-phase debris flow, because it enhances flow mobility (longer travel distances) by reducing the frictional resistance in the
158:
such as logs and tree stumps. Sediment-rich water floods with solid concentrations ranging from about 10 to 40% behave somewhat differently from debris flows and are known as
329:
of loose sediment from the valley through which it travels. Ample entrainment can enable the flood to transform to a debris flow. Travel distances may exceed 100 km.
1291:"Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment" 594: 536: 463: 507: 483: 63:
Scars formed by debris flow in Ventura, greater Los Angeles during the winter of 1983. The photograph was taken within several months of the debris flows occurring.
645: 1031:
Baselt, Ivo; Oliveira, Gustavo Q. de; Fischer, Jan-Thomas & Pudasaini, Shiva P. (2022). "Deposition morphology in large-scale laboratory stony debris flows".
1890: 960: 988:
Baselt, Ivo; Oliveira, Gustavo Q. de; Fischer, Jan-Thomas & Pudasaini, Shiva P. (2021). "Evolution of stony debris flows in laboratory experiments".
756: 1368: 210:. The front, or 'head' of a debris-flow surge often contains an abundance of coarse material such as boulders and logs that impart a great deal of 435:. Buoyancy is present as long as there is fluid in the mixture. It reduces the solid normal stress, solid lateral normal stresses, and the basal 1356: 1249: 1465: 251:
are more difficult to recognize, but are commonly typified by juxtaposition of grains with greatly differing shapes and sizes. This poor
688:, read by Norma Fire, in a dance titled "Debris Flow", a "harrowing taped narrative of a family's ordeal in a massive L.A. mudslide..." 385:
Calibrating and validating such sophisticated models require well-documented data from field surveys or minute laboratory experiments.
230:
A debris flow in Ladakh, triggered by storms in 2010. It has poor sorting and levees. Steep source catchment is visible in background.
1883: 978:
Coleman, P. F., 1993. A new explanation for debris flow surge phenomena (abstract), Eos Trans. AGU, 74(16), Spring Meet. Suppl., 154.
628:
to annual maintenance. Also, debris basins may only retain debris flows from a fraction of streams that drain mountainous terrain.
146:. On Earth's land surface, mudflows are far less common than debris flows. However, underwater mudflows are prevalent on submarine 2121: 596:, the flow does not experience any buoyancy effect. Then the effective frictional shear stress for the solid phase is that of pure 214:. Trailing behind the high-friction flow head is a lower-friction, mostly liquefied flow body that contains a higher percentage of 397:, originally proposed by Iverson and later adopted and modified by others, treats debris flows as two-phase solid-fluid mixtures. 2489: 1478: 839:
Hunt,B. (1982). "Asymptotic Solution for Dam-Break Problems." Jl of Hyd. Div., Proceedings, ASCE, Vol. 108, No. HY1, pp. 115–126.
793:
Trujillo-Vela, Mario Germán; Ramos-Cañón, Alfonso Mariano; Escobar-Vargas, Jorge Alberto; Galindo-Torres, Sergio Andrés (2022).
349:
Rheologically based models that apply to mud flows treat debris flows as single-phase homogeneous materials (Examples include:
965: 1428: 234:
Debris-flow deposits are readily recognizable in the field. They make up significant percentages of many alluvial fans and
1876: 1130: 538:, (see, e.g., Bagnold, 1954) the debris mass is fluidized and moves longer travel distances. This can happen in highly 1405: 1233: 3115: 1285:
Kean, J.W.; Staley, D.M.; Lancaster, J.T.; Rengers, F.K.; Swanson, B.J.; Coe, J.A.; Hernandez, J.L.; Sigman, A.J.;
326: 884: 780: 31:, NW Indian Himalaya. Coarse bouldery levees form the channel sides. Poorly sorted rocks lie on the channel floor. 2646: 1458: 1336: 3110: 202:
Debris flows are accelerated downhill by gravity and tend to follow steep mountain channels that debouche onto
82:
channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have
2671: 1365: 1128:(1954). "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear". 2812: 2762: 2656: 1827: 671: 869: 794: 3136: 3090: 1562: 551: 1030: 987: 3151: 2316: 1451: 226: 3100: 3052: 2935: 1433: 267:
flows that can be described as debris flows are typically given more specific names. These include:
3146: 3085: 2802: 2767: 2609: 91: 19: 3095: 2787: 2552: 362: 48: 1253: 619:, Kazakhstan, after the catastrophic debris flow of 1921. A number of facilities, including the 3141: 3037: 2895: 2446: 2331: 573: 515: 442: 159: 2875: 2722: 2684: 2133: 2072: 1396: 1174: 684: 492: 468: 961:
Hungr,O. 2000. Analysis of debris flow surges using the theory of uniformly progressive flow
3105: 2827: 2651: 2411: 2268: 2218: 2012: 1533: 1302: 1221: 1186: 1139: 1083: 1040: 997: 896: 806: 342: 489:
between the fluid and the solid phases. The effect is substantial when the density ratio (
8: 3001: 2996: 2797: 2641: 2263: 2116: 2037: 1944: 1443: 1360: 750:"Iverson, R.M., 1997, The physics of debris flows, Reviews of Geophysics, 35(3): 245–296" 1306: 1225: 1190: 1143: 1087: 1044: 1001: 908: 900: 810: 3027: 2940: 2905: 2757: 2273: 2178: 2082: 1974: 1907: 1328: 1155: 1107: 1056: 1013: 943: 822: 358: 298:
lahars that originate on volcanoes. An example is the lahar that inundated the city of
252: 181: 155: 147: 142:
to describe debris flows, but true mudflows are composed mostly of grains smaller than
2747: 848: 781:
Distinguishing between debris flows and floods from field evidence in small watersheds
255:
of sediment grains distinguishes debris-flow deposits from most water-laid sediments.
194: 3006: 2845: 2837: 2777: 2737: 2626: 2441: 2203: 2193: 1979: 1842: 1552: 1486: 1401: 1332: 1320: 1229: 1099: 1060: 1017: 947: 826: 733: 424: 408: 286: 244: 151: 1429:
Mass Movements. Section of the information platform "Natural hazards in Switzerland"
1159: 1111: 818: 792: 648:
The debris basin on the Kahoma Stream Flood Control Project, protecting the town of
2920: 2822: 2727: 2476: 2326: 2321: 2298: 2238: 2067: 1939: 1774: 1768: 1570: 1474: 1310: 1194: 1147: 1091: 1052: 1048: 1009: 1005: 935: 904: 865: 814: 601: 547: 543: 412: 294: 612: 175: 2925: 2885: 2880: 2484: 2371: 2366: 2150: 2087: 2057: 2022: 2017: 1984: 1949: 1920: 1673: 1372: 1215: 1074:
E. B., Pitman; L. Le (2005). "A two-fluid model for avalanche and debris flows".
649: 400:
In real two-phase (debris) mass flows there exists a strong coupling between the
290: 105:
Notable debris-flow disasters of the twentieth century involved more than 20,000
24: 1342: 853: 2986: 2870: 2850: 2732: 2717: 2604: 2589: 2584: 2544: 2524: 2436: 2278: 2258: 2223: 2155: 2140: 2047: 1969: 1929: 1626: 1542: 849: 428: 394: 299: 167: 110: 106: 87: 75: 1868: 550:
is zero, and the basal slope effect on the solid phase also vanishes. In this
337:
Numerous different approaches have been used to model debris-flow properties,
3130: 3067: 3062: 3047: 3032: 2981: 2976: 2742: 2707: 2661: 2621: 2616: 2376: 2248: 2208: 1954: 1934: 1837: 1635: 1424:
Video documentation of experiments at the USGS debris-flow flume, Oregon, USA
1375: 1324: 1286: 1175:"Field observations of basal forces and fluid pore pressure in a debris flow" 1125: 623:, have been built since to prevent flows of this kind from reaching the city. 559: 350: 99: 317: 311: 162:
floods. Normal stream flows contain even lower concentrations of sediment.
3057: 2807: 2792: 2782: 2631: 2562: 2431: 2396: 2311: 2253: 2128: 2027: 1989: 1964: 1832: 1754: 1749: 1582: 1547: 1495: 1151: 1103: 1095: 675: 436: 354: 203: 95: 94:(roughly 2000 kilograms per cubic meter), but owing to widespread sediment 83: 2966: 2890: 2594: 2557: 2504: 2228: 2188: 2062: 1847: 1733: 1666: 1645: 1640: 1391: 1199: 679: 567: 558:, and thus the force associated with buoyancy. Under these conditions of 366: 235: 1418: 3072: 2752: 2636: 2576: 2534: 2406: 2243: 2111: 2052: 2042: 1959: 1528: 1315: 1290: 939: 923: 338: 207: 1423: 1172: 131: 3042: 2991: 2961: 2930: 2860: 2772: 2529: 2416: 2401: 2341: 2288: 2283: 2183: 2106: 2096: 1994: 1857: 1852: 1800: 1715: 1710: 1705: 1508: 1503: 1434:
Washington State information about Debris flows, and related material
697: 620: 539: 171: 114: 734:"Preliminary Soil-Slip Susceptibility Maps, Southwestern California" 59: 2712: 2679: 2356: 2198: 2165: 1807: 1795: 1700: 1600: 708: 597: 563: 420: 416: 211: 154:. Debris flows in forested regions can contain large quantities of 126: 3022: 2971: 2499: 2494: 2456: 2361: 2233: 2170: 1790: 1764: 1725: 1661: 1592: 1513: 702: 555: 432: 322: 264: 248: 187: 139: 135: 2817: 2689: 2514: 2509: 2461: 2451: 2421: 2346: 2101: 2032: 2004: 1903: 1438: 705:, below which lies Illgraben a popular debris flow tourist spot 616: 240: 198:
Ancient debris flow deposit at Resting Springs Pass, California
79: 52: 28: 546:
disappears, the lateral solid pressure gradient vanishes, the
2915: 2900: 2855: 2599: 2572: 2519: 2386: 2381: 2351: 2336: 2145: 1915: 1899: 1621: 1575: 1419:
Dongchuan Debris Flow Observation and Research Station, China
1400:. New York: Noonday Press (Farrar, Straus & Giroux, 1989 486: 405: 401: 282: 276: 783:. US Department of the Interior, US Geological Survey, 2005. 223:
each pulse or surge has a distinctive head, body and tail.
2945: 2910: 2466: 2426: 2391: 1758: 219: 215: 143: 71: 1473: 1284: 2865: 2306: 70:
are geological phenomena in which water-laden masses of
1173:
B. W., McArdell & P. Bartelt, J. Kowalski (2007).
332: 576: 566:
by the fluid, the debris mass is fully fluidized (or
518: 495: 471: 445: 795:"An overview of debris-flow mathematical modelling" 542:natural debris flows. For neutrally buoyant flows, 1252:. U.S. Fish & Wildlife Service. Archived from 1073: 588: 530: 501: 477: 457: 1076:Philosophical Transactions of the Royal Society A 852:, Sebastien Jarny & Philippe Coussot (2006). 3128: 924:"Large debris flows: A macro-viscous phenomenon" 652:, (right) from runoff from the mountains (left). 1898: 509:) is large (e.g., in the natural debris flow). 732:D.M. Morton, R.M. Alvarez, and R.H. Campbell. 321:jökulhlaups is the breaching of ice-dammed or 1884: 1459: 1364:(November 20, 1989), p.116; Jowitt, Deborah. 1124: 744: 742: 23:Debris flow channel with deposits left after 554:, the only remaining solid force is due to 439:(thus, frictional resistance) by a factor ( 1891: 1877: 1466: 1452: 1213: 739: 662:In 1989, as part of his large-scale piece 1314: 1217:Debris-flow hazards and related phenomena 1198: 882: 372:Dam break wave, e.g. Hunt, Chanson et al. 1214:Jakob, Matthias; Hungr, Oldrich (2005). 773: 611: 512:If the flow is neutrally buoyant, i.e., 285:is a debris flow related in some way to 225: 193: 120: 58: 34: 18: 2490:International scale of river difficulty 1207: 870:10.1061/(ASCE)0733-9429(2006)132:3(280) 3129: 921: 842: 1872: 1447: 966:Earth Surface Processes and Landforms 854:"Dam Break Wave of Thixotropic Fluid" 736:(Open-File Report OF 03-17 USGS 2003) 657: 78:flow down mountainsides, funnel into 607: 1242: 909:10.1146/annurev.fl.13.010181.000421 333:Theories and models of debris flows 138:. Media reports often use the term 109:, in 1985 and tens of thousands in 13: 1385: 1131:Proceedings of the Royal Society A 375:Roll wave, e.g., Takahashi, Davies 14: 3163: 1412: 666:, and later, in 1999, as part of 889:Annual Review of Fluid Mechanics 858:Journal of Hydraulic Engineering 637: 2647:Flooded grasslands and savannas 1349: 1278: 1268: 1166: 1118: 1067: 1024: 981: 972: 819:10.1016/j.earscirev.2022.104135 419:, which in turn diminishes the 1289:; Lindsay, D.N. (2019-08-01). 1053:10.1016/j.geomorph.2021.107992 1010:10.1016/j.geomorph.2020.107431 954: 915: 876: 833: 786: 726: 674:brought together the music of 381:A type of translating rock dam 107:fatalities in Armero, Colombia 1: 714: 305: 125:Debris flows have volumetric 2813:Universal Soil Loss Equation 2763:Hydrological transport model 2657:Storm Water Management Model 1828:Potentially hazardous object 1220:. Springer. pp. 38–39. 664:David Gordon's United States 388: 293:, intense rainfall on loose 7: 691: 411:, where the solid's normal 10: 3168: 2317:Antecedent drainage stream 1366:"Rush Forward. Look Back." 309: 274: 3081: 3053:River valley civilization 3015: 2954: 2936:Riparian-zone restoration 2836: 2698: 2670: 2571: 2543: 2475: 2297: 2164: 2081: 2003: 1914: 1820: 1783: 1742: 1724: 1693: 1686: 1654: 1620: 1613: 1591: 1561: 1527: 1494: 1485: 1357:"Dance: Burning the Flag" 922:Davies, T. R. H. (1986). 589:{\displaystyle \gamma =0} 531:{\displaystyle \gamma =1} 458:{\displaystyle 1-\gamma } 423:resistance, enhances the 345:. Some are listed here. 3116:Countries without rivers 3091:Rivers by discharge rate 2803:Runoff model (reservoir) 2768:Infiltration (hydrology) 719: 270: 258: 2788:River Continuum Concept 2553:Agricultural wastewater 1439:Debris Flow Association 668:Autobiography of a Liar 502:{\displaystyle \gamma } 478:{\displaystyle \gamma } 150:, where they may spawn 86:comparable to those of 49:Saint-Julien-Mont-Denis 3111:River name etymologies 3038:Hydraulic civilization 2896:Floodplain restoration 2672:Point source pollution 2447:Sedimentary structures 1152:10.1098/rspa.1954.0186 1096:10.1098/rsta.2005.1596 883:Takahashi, T. (1981). 624: 590: 532: 503: 479: 459: 231: 199: 64: 56: 32: 2723:Discharge (hydrology) 2685:Industrial wastewater 2166:Sedimentary processes 1397:The Control of Nature 799:Earth-Science Reviews 685:The Control of Nature 615: 591: 533: 504: 480: 460: 229: 197: 121:Features and behavior 62: 46: 22: 16:Geological phenomenon 2828:Volumetric flow rate 2412:Riffle-pool sequence 1200:10.1029/2006GL029183 574: 516: 493: 469: 443: 100:pore-fluid pressures 3002:Whitewater kayaking 2997:Whitewater canoeing 2798:Runoff curve number 2642:Flood pulse concept 1378:(December 21, 1999) 1307:2019Geosp..15.1140K 1226:2005dfhr.book.....J 1191:2007GeoRL..34.7406M 1144:1954RSPSA.225...49B 1088:2005RSPTA.363.1573P 1082:(1832): 1573–1602. 1045:2022Geomo.39607992B 1002:2021Geomo.37207431B 901:1981AnRFM..13...57T 811:2022ESRv..23204135T 779:Pierson, Thomas C. 148:continental margins 134:particles to great 90:and other types of 3137:Geological hazards 3028:Aquatic toxicology 2941:Stream restoration 2906:Infiltration basin 2758:Hydrological model 2274:Sediment transport 2097:Estavelle/Inversac 1975:Subterranean river 1479:list by death toll 1371:2014-12-13 at the 1316:10.1130/GES02048.1 1179:Geophys. Res. Lett 940:10.1007/BF01182546 658:In popular culture 625: 586: 528: 499: 475: 455: 427:, and reduces the 245:granular mechanics 232: 200: 152:turbidity currents 65: 57: 33: 3152:Natural disasters 3124: 3123: 3101:Whitewater rivers 3007:Whitewater slalom 2838:River engineering 2738:Groundwater model 2699:River measurement 2627:Flood forecasting 2442:Sedimentary basin 2299:Fluvial landforms 2204:Bed material load 1980:River bifurcation 1866: 1865: 1843:Geomagnetic storm 1816: 1815: 1682: 1681: 1609: 1608: 1553:Soil liquefaction 1475:Natural disasters 678:and the words of 608:Damage prevention 425:pressure gradient 409:momentum transfer 287:volcanic activity 160:hyperconcentrated 44: 3159: 3086:Rivers by length 2921:River morphology 2823:Wetted perimeter 2728:Drainage density 2239:Headward erosion 2068:Perennial stream 1940:Blackwater river 1893: 1886: 1879: 1870: 1869: 1775:Tropical cyclone 1769:Tornado outbreak 1691: 1690: 1618: 1617: 1571:Pyroclastic flow 1563:Volcano eruption 1492: 1491: 1468: 1461: 1454: 1445: 1444: 1379: 1353: 1347: 1346: 1341: 1318: 1301:(4): 1140–1163. 1282: 1276: 1272: 1266: 1265: 1263: 1261: 1246: 1240: 1239: 1211: 1205: 1204: 1202: 1170: 1164: 1163: 1122: 1116: 1115: 1071: 1065: 1064: 1028: 1022: 1021: 985: 979: 976: 970: 958: 952: 951: 934:(1–4): 161–178. 919: 913: 912: 880: 874: 873: 846: 840: 837: 831: 830: 790: 784: 777: 771: 770: 768: 767: 761: 755:. Archived from 754: 746: 737: 730: 670:, choreographer 641: 595: 593: 592: 587: 548:drag coefficient 544:Coulomb friction 537: 535: 534: 529: 508: 506: 505: 500: 484: 482: 481: 476: 464: 462: 461: 456: 378:Progressive wave 45: 3167: 3166: 3162: 3161: 3160: 3158: 3157: 3156: 3147:Landslide types 3127: 3126: 3125: 3120: 3096:Drainage basins 3077: 3011: 2950: 2926:Retention basin 2886:Erosion control 2881:Detention basin 2832: 2748:Hjulström curve 2700: 2694: 2666: 2610:Non-water flood 2567: 2539: 2485:Helicoidal flow 2471: 2372:Fluvial terrace 2367:Floating island 2293: 2168: 2160: 2151:Rhythmic spring 2085: 2077: 2058:Stream gradient 1999: 1985:River ecosystem 1950:Channel pattern 1918: 1910: 1897: 1867: 1862: 1812: 1779: 1743:Cyclonic storms 1738: 1720: 1678: 1674:Limnic eruption 1650: 1624: 1605: 1593:Natural erosion 1587: 1557: 1531: 1523: 1481: 1472: 1415: 1388: 1386:Further reading 1383: 1382: 1373:Wayback Machine 1354: 1350: 1339: 1283: 1279: 1273: 1269: 1259: 1257: 1250:"Debris Basins" 1248: 1247: 1243: 1236: 1212: 1208: 1171: 1167: 1138:(1160): 49–63. 1123: 1119: 1072: 1068: 1029: 1025: 986: 982: 977: 973: 959: 955: 920: 916: 881: 877: 847: 843: 838: 834: 791: 787: 778: 774: 765: 763: 759: 752: 748: 747: 740: 731: 727: 722: 717: 694: 660: 655: 654: 653: 650:Lahaina, Hawaii 647: 642: 610: 575: 572: 571: 562:support of the 517: 514: 513: 494: 491: 490: 485:is the density 470: 467: 466: 444: 441: 440: 391: 335: 314: 308: 291:sector collapse 279: 273: 261: 123: 98:caused by high 88:rock avalanches 74:and fragmented 47:Debris flow in 35: 17: 12: 11: 5: 3165: 3155: 3154: 3149: 3144: 3139: 3122: 3121: 3119: 3118: 3113: 3108: 3103: 3098: 3093: 3088: 3082: 3079: 3078: 3076: 3075: 3070: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3019: 3017: 3013: 3012: 3010: 3009: 3004: 2999: 2994: 2989: 2987:Stone skipping 2984: 2979: 2974: 2969: 2964: 2958: 2956: 2952: 2951: 2949: 2948: 2943: 2938: 2933: 2928: 2923: 2918: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2873: 2871:Drop structure 2868: 2863: 2858: 2853: 2851:Balancing lake 2848: 2842: 2840: 2834: 2833: 2831: 2830: 2825: 2820: 2815: 2810: 2805: 2800: 2795: 2790: 2785: 2780: 2778:Playfair's law 2775: 2770: 2765: 2760: 2755: 2750: 2745: 2740: 2735: 2733:Exner equation 2730: 2725: 2720: 2718:Bradshaw model 2715: 2710: 2704: 2702: 2696: 2695: 2693: 2692: 2687: 2682: 2676: 2674: 2668: 2667: 2665: 2664: 2659: 2654: 2649: 2644: 2639: 2634: 2629: 2624: 2619: 2614: 2613: 2612: 2607: 2605:Urban flooding 2597: 2592: 2590:Crevasse splay 2587: 2585:100-year flood 2581: 2579: 2569: 2568: 2566: 2565: 2560: 2555: 2549: 2547: 2545:Surface runoff 2541: 2540: 2538: 2537: 2532: 2527: 2525:Stream capture 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2481: 2479: 2473: 2472: 2470: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2437:Rock-cut basin 2434: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2303: 2301: 2295: 2294: 2292: 2291: 2286: 2281: 2279:Suspended load 2276: 2271: 2269:Secondary flow 2266: 2261: 2259:Retrogradation 2256: 2251: 2246: 2241: 2236: 2231: 2226: 2224:Dissolved load 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2175: 2173: 2162: 2161: 2159: 2158: 2156:Spring horizon 2153: 2148: 2143: 2141:Mineral spring 2138: 2137: 2136: 2126: 2125: 2124: 2122:list in the US 2119: 2109: 2104: 2099: 2093: 2091: 2079: 2078: 2076: 2075: 2070: 2065: 2060: 2055: 2050: 2048:Stream channel 2045: 2040: 2035: 2030: 2025: 2020: 2015: 2009: 2007: 2001: 2000: 1998: 1997: 1992: 1987: 1982: 1977: 1972: 1970:Drainage basin 1967: 1962: 1957: 1952: 1947: 1942: 1937: 1932: 1930:Alluvial river 1926: 1924: 1912: 1911: 1896: 1895: 1888: 1881: 1873: 1864: 1863: 1861: 1860: 1855: 1850: 1845: 1840: 1835: 1830: 1824: 1822: 1818: 1817: 1814: 1813: 1811: 1810: 1805: 1804: 1803: 1793: 1787: 1785: 1781: 1780: 1778: 1777: 1772: 1762: 1752: 1746: 1744: 1740: 1739: 1737: 1736: 1730: 1728: 1722: 1721: 1719: 1718: 1713: 1708: 1703: 1697: 1695: 1688: 1687:Meteorological 1684: 1683: 1680: 1679: 1677: 1676: 1671: 1670: 1669: 1658: 1656: 1652: 1651: 1649: 1648: 1643: 1638: 1632: 1630: 1615: 1611: 1610: 1607: 1606: 1604: 1603: 1597: 1595: 1589: 1588: 1586: 1585: 1580: 1579: 1578: 1567: 1565: 1559: 1558: 1556: 1555: 1550: 1545: 1543:Seismic hazard 1539: 1537: 1525: 1524: 1522: 1521: 1516: 1511: 1506: 1500: 1498: 1489: 1483: 1482: 1471: 1470: 1463: 1456: 1448: 1442: 1441: 1436: 1431: 1426: 1421: 1414: 1413:External links 1411: 1410: 1409: 1387: 1384: 1381: 1380: 1355:Tobias, Tobi. 1348: 1287:Allstadt, K.E. 1277: 1267: 1256:on 27 May 2016 1241: 1234: 1206: 1165: 1117: 1066: 1023: 980: 971: 953: 928:Acta Mechanica 914: 875: 864:(3): 280–293. 850:Hubert Chanson 841: 832: 785: 772: 738: 724: 723: 721: 718: 716: 713: 712: 711: 706: 700: 693: 690: 659: 656: 644: 643: 636: 635: 634: 609: 606: 585: 582: 579: 527: 524: 521: 498: 474: 454: 451: 448: 415:is reduced by 395:mixture theory 390: 387: 383: 382: 379: 376: 373: 370: 363:dilatant fluid 334: 331: 310:Main article: 307: 304: 275:Main article: 272: 269: 260: 257: 166:than about 25 122: 119: 84:bulk densities 15: 9: 6: 4: 3: 2: 3164: 3153: 3150: 3148: 3145: 3143: 3142:Geomorphology 3140: 3138: 3135: 3134: 3132: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3092: 3089: 3087: 3084: 3083: 3080: 3074: 3071: 3069: 3068:Surface water 3066: 3064: 3063:Sacred waters 3061: 3059: 3056: 3054: 3051: 3049: 3048:Riparian zone 3046: 3044: 3041: 3039: 3036: 3034: 3033:Body of water 3031: 3029: 3026: 3024: 3021: 3020: 3018: 3014: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2982:Riverboarding 2980: 2978: 2977:River surfing 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2959: 2957: 2953: 2947: 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2909: 2907: 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2843: 2841: 2839: 2835: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2705: 2703: 2701:and modelling 2697: 2691: 2688: 2686: 2683: 2681: 2678: 2677: 2675: 2673: 2669: 2663: 2662:Return period 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2633: 2630: 2628: 2625: 2623: 2622:Flood control 2620: 2618: 2617:Flood barrier 2615: 2611: 2608: 2606: 2603: 2602: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2583: 2582: 2580: 2578: 2574: 2570: 2564: 2561: 2559: 2556: 2554: 2551: 2550: 2548: 2546: 2542: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2482: 2480: 2478: 2474: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2304: 2302: 2300: 2296: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2249:Palaeochannel 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2209:Granular flow 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2176: 2174: 2172: 2167: 2163: 2157: 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2135: 2132: 2131: 2130: 2127: 2123: 2120: 2118: 2115: 2114: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2094: 2092: 2089: 2084: 2080: 2074: 2071: 2069: 2066: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2010: 2008: 2006: 2002: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1955:Channel types 1953: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1935:Braided river 1933: 1931: 1928: 1927: 1925: 1922: 1917: 1913: 1909: 1905: 1901: 1894: 1889: 1887: 1882: 1880: 1875: 1874: 1871: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1839: 1838:Meteor shower 1836: 1834: 1831: 1829: 1826: 1825: 1823: 1819: 1809: 1806: 1802: 1799: 1798: 1797: 1794: 1792: 1789: 1788: 1786: 1782: 1776: 1773: 1770: 1766: 1763: 1760: 1756: 1753: 1751: 1748: 1747: 1745: 1741: 1735: 1732: 1731: 1729: 1727: 1723: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1698: 1696: 1692: 1689: 1685: 1675: 1672: 1668: 1665: 1664: 1663: 1660: 1659: 1657: 1653: 1647: 1644: 1642: 1639: 1637: 1636:Coastal flood 1634: 1633: 1631: 1628: 1623: 1619: 1616: 1612: 1602: 1599: 1598: 1596: 1594: 1590: 1584: 1581: 1577: 1574: 1573: 1572: 1569: 1568: 1566: 1564: 1560: 1554: 1551: 1549: 1546: 1544: 1541: 1540: 1538: 1535: 1530: 1526: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1501: 1499: 1497: 1493: 1490: 1488: 1484: 1480: 1476: 1469: 1464: 1462: 1457: 1455: 1450: 1449: 1446: 1440: 1437: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1416: 1407: 1406:0-374-12890-1 1403: 1399: 1398: 1393: 1390: 1389: 1377: 1376:Village Voice 1374: 1370: 1367: 1363: 1362: 1358: 1352: 1344: 1338: 1334: 1330: 1326: 1322: 1317: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1271: 1255: 1251: 1245: 1237: 1235:3-540-20726-0 1231: 1227: 1223: 1219: 1218: 1210: 1201: 1196: 1192: 1188: 1185:(7): L07406. 1184: 1180: 1176: 1169: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1132: 1127: 1126:R. A. Bagnold 1121: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1070: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1033:Geomorphology 1027: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 990:Geomorphology 984: 975: 969:, 25, 483–495 968: 967: 962: 957: 949: 945: 941: 937: 933: 929: 925: 918: 910: 906: 902: 898: 894: 890: 886: 885:"Debris Flow" 879: 871: 867: 863: 859: 855: 851: 845: 836: 828: 824: 820: 816: 812: 808: 804: 800: 796: 789: 782: 776: 762:on 2013-06-03 758: 751: 745: 743: 735: 729: 725: 710: 707: 704: 701: 699: 696: 695: 689: 687: 686: 681: 677: 673: 669: 665: 651: 646: 640: 633: 629: 622: 618: 614: 605: 603: 599: 583: 580: 577: 569: 565: 561: 557: 553: 552:limiting case 549: 545: 541: 525: 522: 519: 510: 496: 488: 472: 452: 449: 446: 438: 434: 430: 426: 422: 418: 414: 410: 407: 403: 398: 396: 386: 380: 377: 374: 371: 368: 364: 360: 356: 352: 348: 347: 346: 344: 340: 330: 328: 324: 319: 313: 303: 301: 296: 292: 288: 284: 278: 268: 266: 256: 254: 250: 246: 242: 237: 228: 224: 221: 217: 213: 209: 205: 204:alluvial fans 196: 192: 190: 189: 184:), literally 183: 179: 178: 173: 169: 163: 161: 157: 153: 149: 145: 141: 137: 133: 128: 118: 116: 112: 108: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 61: 54: 50: 30: 26: 21: 3106:Flash floods 3058:River cruise 2955:River sports 2808:Stream gauge 2793:Rouse number 2783:Relief ratio 2632:Flood-meadow 2563:Urban runoff 2477:Fluvial flow 2462:River valley 2432:River island 2397:Meander scar 2312:Alluvial fan 2254:Progradation 2213: 2129:Karst spring 2073:Winterbourne 2028:Chalk stream 1990:River source 1965:Distributary 1833:Impact event 1821:Astronomical 1755:Thunderstorm 1750:Bomb cyclone 1614:Hydrological 1583:Volcanic ash 1548:Seismic risk 1518: 1496:Mass wasting 1395: 1392:McPhee, John 1359: 1351: 1298: 1294: 1280: 1270: 1258:. Retrieved 1254:the original 1244: 1216: 1209: 1182: 1178: 1168: 1135: 1129: 1120: 1079: 1075: 1069: 1036: 1032: 1026: 993: 989: 983: 974: 964: 956: 931: 927: 917: 892: 888: 878: 861: 857: 844: 835: 802: 798: 788: 775: 764:. Retrieved 757:the original 728: 683: 676:Harry Partch 672:David Gordon 667: 663: 661: 630: 626: 560:hydrodynamic 511: 437:shear stress 399: 392: 384: 355:viscoplastic 336: 315: 302:, Colombia. 280: 262: 236:debris cones 233: 201: 185: 176: 164: 156:woody debris 124: 111:Vargas State 104: 96:liquefaction 68:Debris flows 67: 66: 2967:Fly fishing 2891:Fish ladder 2876:Daylighting 2595:Flash flood 2558:First flush 2505:Plunge pool 2229:Downcutting 2214:Debris flow 2189:Aggradation 2063:Stream pool 1848:Solar flare 1734:Megadrought 1694:Temperature 1667:Megatsunami 1646:Storm surge 1641:Flash flood 1519:Debris flow 1275:pp.149-162. 680:John McPhee 367:thixotropic 327:entrainment 295:pyroclastic 208:floodplains 177:yamatsunami 117:, in 1999. 55:, July 2013 25:2010 storms 3131:Categories 3073:Wild river 2753:Hydrograph 2743:Hack's law 2708:Baer's law 2652:Inundation 2637:Floodplain 2577:stormwater 2535:Whitewater 2407:Oxbow lake 2244:Knickpoint 2219:Deposition 2112:Hot spring 2053:Streamflow 2043:Stream bed 1960:Confluence 1529:Earthquake 1487:Geological 1260:30 January 1039:: 107992. 996:: 107431. 805:: 104135. 766:2013-10-18 715:References 568:lubricated 421:frictional 339:kinematics 318:jökulhlaup 312:Jökulhlaup 306:Jökulhlaup 265:geological 174:is called 92:landslides 3043:Limnology 2992:Triathlon 2962:Canyoning 2931:Revetment 2861:Check dam 2773:Main stem 2530:Waterfall 2417:Point bar 2402:Mouth bar 2342:Billabong 2289:Water gap 2284:Wash load 2264:Saltation 2184:Anabranch 2107:Holy well 1995:Tributary 1858:Hypernova 1853:Supernova 1801:Firestorm 1716:Heat wave 1711:Ice storm 1706:Cold wave 1509:Avalanche 1504:Landslide 1333:197584816 1325:1553-040X 1295:Geosphere 1061:239137775 1018:225111202 948:122217532 895:: 57–77. 827:251268686 698:Colluvium 621:Medeu Dam 578:γ 564:particles 520:γ 497:γ 473:γ 465:), where 453:γ 450:− 389:Two-phase 186:mountain 172:landslide 115:Venezuela 2846:Aqueduct 2713:Baseflow 2680:Effluent 2357:Cut bank 2322:Avulsion 2199:Bed load 2179:Abrasion 1808:ARkStorm 1796:Wildfire 1701:Blizzard 1601:Sinkhole 1369:Archived 1361:New York 1343:70203874 1160:98030586 1112:17779815 1104:16011934 709:Rheology 692:See also 598:granular 417:buoyancy 404:and the 343:dynamics 249:outcrops 212:friction 136:boulders 127:sediment 3023:Aquifer 3016:Related 2972:Rafting 2500:Meander 2495:Log jam 2457:Thalweg 2362:Estuary 2234:Erosion 2171:erosion 2083:Springs 2038:Current 2005:Streams 1945:Channel 1908:springs 1904:streams 1791:Derecho 1765:Tornado 1726:Drought 1662:Tsunami 1514:Mudflow 1303:Bibcode 1222:Bibcode 1187:Bibcode 1140:Bibcode 1084:Bibcode 1041:Bibcode 998:Bibcode 897:Bibcode 807:Bibcode 703:Illhorn 556:gravity 540:viscous 433:mixture 369:, etc.) 359:Bagnold 351:Bingham 323:moraine 253:sorting 188:tsunami 168:degrees 140:mudflow 2818:WAFLEX 2690:Sewage 2573:Floods 2515:Riffle 2510:Rapids 2452:Strath 2422:Ravine 2347:Canyon 2102:Geyser 2033:Coulee 2018:Bourne 2013:Arroyo 1916:Rivers 1900:Rivers 1404:  1340:  1331:  1323:  1232:  1158:  1110:  1102:  1059:  1016:  946:  825:  617:Almaty 602:motion 413:stress 361:-type 341:, and 300:Armero 263:Other 241:levees 80:stream 53:France 29:Ladakh 2916:Levee 2901:Flume 2856:Canal 2600:Flood 2520:Shoal 2387:Gully 2382:Gulch 2352:Chine 2337:Bayou 2194:Armor 2146:Ponor 1921:lists 1784:Other 1655:Other 1622:Flood 1576:Lahar 1329:S2CID 1156:S2CID 1108:S2CID 1057:S2CID 1014:S2CID 944:S2CID 823:S2CID 760:(PDF) 753:(PDF) 720:Notes 682:from 487:ratio 406:fluid 402:solid 283:lahar 277:Lahar 271:Lahar 259:Types 2946:Weir 2911:Leat 2575:and 2467:Wadi 2427:Rill 2392:Glen 2377:Gill 2327:Bank 2169:and 2134:list 2117:list 2088:list 2023:Burn 1906:and 1759:Hail 1627:List 1534:List 1402:ISBN 1337:USGS 1321:ISSN 1262:2013 1230:ISBN 1100:PMID 429:drag 393:The 220:silt 216:sand 144:sand 132:clay 76:rock 72:soil 2866:Dam 2332:Bar 2307:Ait 1311:doi 1195:doi 1148:doi 1136:225 1092:doi 1080:363 1049:doi 1037:396 1006:doi 994:372 936:doi 905:doi 866:doi 862:132 815:doi 803:232 206:or 182:山津波 27:in 3133:: 1902:, 1477:– 1394:. 1335:. 1327:. 1319:. 1309:. 1299:15 1297:. 1293:. 1228:. 1193:. 1183:34 1181:. 1177:. 1154:. 1146:. 1134:. 1106:. 1098:. 1090:. 1078:. 1055:. 1047:. 1035:. 1012:. 1004:. 992:. 963:. 942:. 932:63 930:. 926:. 903:. 893:13 891:. 887:. 860:. 856:. 821:. 813:. 801:. 797:. 741:^ 604:. 365:, 357:, 353:, 316:A 281:A 218:, 191:. 113:, 51:, 2090:) 2086:( 1923:) 1919:( 1892:e 1885:t 1878:v 1771:) 1767:( 1761:) 1757:( 1629:) 1625:( 1536:) 1532:( 1467:e 1460:t 1453:v 1408:) 1345:. 1313:: 1305:: 1264:. 1238:. 1224:: 1203:. 1197:: 1189:: 1162:. 1150:: 1142:: 1114:. 1094:: 1086:: 1063:. 1051:: 1043:: 1020:. 1008:: 1000:: 950:. 938:: 911:. 907:: 899:: 872:. 868:: 829:. 817:: 809:: 769:. 584:0 581:= 526:1 523:= 447:1 180:(

Index


2010 storms
Ladakh
Saint-Julien-Mont-Denis
France

soil
rock
stream
bulk densities
rock avalanches
landslides
liquefaction
pore-fluid pressures
fatalities in Armero, Colombia
Vargas State
Venezuela
sediment
clay
boulders
mudflow
sand
continental margins
turbidity currents
woody debris
hyperconcentrated
degrees
landslide
yamatsunami
山津波

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.