Knowledge

Cosmic variance

Source đź“ť

1443: 563: 40: 654:, so the measured positions of the peaks in the Cosmic Microwave Background spectrum, integrated over the visible sky, are limited by the fact that only one spectrum is observable from Earth. The observable universe viewed from another galaxy will have the peaks in slightly different places, while remaining consistent with the same physical laws, inflation, etc. This second meaning may be regarded as a special case of the third meaning. 575: 1455: 1225: 776:
still leaves considerable uncertainty about the underlying model. Variance is normally plotted separately from other sources of uncertainty. Because it is necessarily a large fraction of the signal, workers must be very careful in interpreting the statistical significance of measurements on scales
742:
In the case of only one realization it is difficult to draw statistical conclusions about its significance. For example, if the underlying model of a physical process implies that the observed property should occur only 1% of the time, does that really mean that the model is excluded? Consider the
759:
citizens, and so on. For an observer who has only one observation (of his/her own citizenship) and who happens to be French and cannot make any external observations, the model can be rejected at the 99% significance level. Yet the external observers with more information unavailable to the first
657:
The most widespread use, to which the rest of this article refers, reflects the fact that measurements are affected by cosmic large-scale structure, so a measurement of any region of sky (viewed from Earth) may differ from a measurement of a different region of sky (also viewed from Earth) by an
763:
In other words, even if the bit of the universe observed is the result of a statistical process, the observer can only view one realization of that process, so our observation is statistically insignificant for saying much about the model, unless the observer is careful to include the
738:
in density) that happens on the horizon scale only gives us one observable realization. A physical process on a larger scale gives us zero observable realizations. A physical process on a slightly smaller scale gives us a small number of realizations.
1351: 788:, the common way of dealing with this on the horizon scale and on slightly sub-horizon scales (where the number of occurrences is greater than one but still quite small), is to explicitly include the 662:
This most widespread use of the term is based on the idea that it is only possible to observe part of the universe at one particular time, so it is difficult to make statistical statements about
650:
It is sometimes used, mainly by cosmologists, to mean the uncertainty because we can only observe one realization of all the possible observable universes. For example, we can only observe one
843:
on spacing of satellites in an orbital system. Originally observed for the Solar System, the difficulty in observing other solar systems has limited data to test this.
164: 1066: 1086: 535: 1091: 1157: 1235: 686:. In inflationary models, the observer only sees a tiny fraction of the whole universe, much less than a billionth (1/10) of the volume of the 1480: 1271: 605: 928: 1059: 860:
Somerville; Lee, Kyoungsoo; Ferguson, Henry C.; Gardner, Jonathan P.; Moustakas, Leonidas A.; Giavalisco, Mauro; et al. (2004).
1326: 1306: 1311: 1147: 1194: 1052: 339: 1336: 969:
Portsmouth, Jamie (2004). "Analysis of the Kamionkowski-Loeb method of reducing cosmic variance with CMB polarization".
1296: 772:
and is separate from other sources of experimental error: a very accurate measurement of only one value drawn from a
548: 631:
inherent in observations of the universe at extreme distances. It has three different but closely related meanings:
598: 1442: 1406: 181: 1361: 730:
problems: suppose that random physical processes happen on length scales both smaller than and bigger than the
543: 267: 257: 1291: 186: 109: 1281: 1127: 832:
of one universe, biologists have a sample size of one fossil record. The problem is closely related to the
639:– the difference between different finite samples of the same parent population. Such differences follow a 1475: 1356: 1316: 1276: 1075: 805: 651: 591: 567: 114: 1433: 1172: 809: 527: 333: 313: 121: 66: 839:
Another problem of limited sample sizes in astronomy, here practical rather than essential, is in the
1117: 159: 896: 1321: 773: 328: 93: 743:
physical model of the citizenship of human beings in the early 21st century, where about 30% are
296: 176: 861: 1230: 1122: 891: 17: 1044: 1266: 948: 501: 303: 245: 1401: 1391: 1346: 1301: 1245: 1220: 988: 940: 883: 825: 793: 640: 514: 486: 308: 735: 8: 1411: 1183: 1143: 840: 833: 406: 376: 323: 279: 171: 61: 992: 944: 887: 446: 1396: 1386: 1250: 1132: 1004: 978: 909: 873: 829: 801: 785: 703: 663: 466: 436: 401: 371: 318: 262: 31: 1112: 1008: 699: 496: 913: 1416: 1376: 996: 901: 778: 731: 691: 683: 579: 381: 217: 86: 929:"Quantifying the Effects of Cosmic Variance Using the NOAO Deep-Wide Field Survey" 391: 366: 808:
and has been the source of much controversy in the cosmology community since the
644: 636: 506: 441: 426: 411: 396: 386: 250: 147: 1447: 1000: 491: 451: 1469: 752: 695: 476: 461: 361: 1459: 481: 456: 431: 416: 272: 983: 878: 797: 667: 628: 229: 222: 1039: 1341: 1331: 727: 715: 625: 471: 927:
Keremedjiev, M. S.; MacDonald, E. C.; Dey, A.; Jannuzi, B. T. (2005).
1366: 694:
of the universe) is the result of processes that follow some general
421: 690:
postulated in inflation. So the observable universe (the so-called
666:
on the scale of the entire universe, as the number of observations (
1210: 1189: 1177: 905: 789: 765: 711: 687: 679: 154: 56: 49: 862:"Cosmic Variance in the Great Observatories Origins Deep Survey" 1215: 1074: 756: 707: 926: 1381: 1286: 748: 744: 859: 39: 1371: 1240: 813: 734:. A physical process (such as an amplitude of a primordial 658:
amount that may be much greater than the sample variance.
1431: 1025:
Stephen Hawking (2003). Cosmology from the Top Down.
1027:
Proceedings of the Davis Meeting on Cosmic Inflation
968: 1467: 933:American Astronomical Society Meeting Abstracts 714:throughout the universe can only be described 1060: 718:and cannot be derived from first principles. 599: 1076:Cosmic microwave background radiation (CMB) 635:It is sometimes used, incorrectly, to mean 1067: 1053: 800:. This is important in describing the low 760:observer, know that the model is correct. 606: 592: 38: 982: 895: 877: 721: 1468: 1048: 962: 1481:Statistical deviation and dispersion 1040:Cosmology from the Top Down (online) 853: 819: 792:of very small statistical samples ( 710:: for example, the distribution of 682:model is usually supplemented with 13: 920: 334:2dF Galaxy Redshift Survey ("2dF") 14: 1492: 1033: 866:The Astrophysical Journal Letters 549:Timeline of cosmological theories 314:Cosmic Background Explorer (COBE) 1453: 1441: 573: 562: 561: 329:Sloan Digital Sky Survey (SDSS) 182:Future of an expanding universe 828:. Just as cosmologists have a 824:A similar problem is faced by 768:. This variance is called the 706:. Some of these processes are 544:History of the Big Bang theory 340:Wilkinson Microwave Anisotropy 1: 846: 673: 536:Discovery of cosmic microwave 187:Ultimate fate of the universe 1282:Arcminute Microkelvin Imager 643:, and in this case the term 7: 1357:Mobile Anisotropy Telescope 1317:Cosmic Anisotropy Telescope 1277:Atacama Cosmology Telescope 806:cosmic microwave background 652:Cosmic Microwave Background 304:Black Hole Initiative (BHI) 10: 1497: 1087:Discovery of CMB radiation 1019: 1001:10.1103/PhysRevD.70.063504 67:Chronology of the universe 15: 1259: 1203: 1165: 1156: 1139: 1100: 1092:Timeline of CMB astronomy 1082: 670:) must be not too small. 160:Expansion of the universe 1322:Cosmic Background Imager 1128:Sunyaev–Zeldovich effect 324:Planck space observatory 110:Gravitational wave (GWB) 826:evolutionary biologists 755:citizens, about 1% are 751:citizens, about 5% are 647:should be used instead. 177:Inhomogeneous cosmology 18:Cosmic Variance (blog) 268:Large-scale structure 246:Shape of the universe 1402:South Pole Telescope 1146:image (2018) of the 794:Poisson distribution 722:Philosophical issues 641:Poisson distribution 580:Astronomy portal 538:background radiation 515:List of cosmologists 16:For the weblog, see 1302:BICEP (1,2,3,Array) 993:2004PhRvD..70f3504P 945:2005AAS...20717006K 888:2004ApJ...600L.171S 834:anthropic principle 796:) when calculating 280:Structure formation 172:Friedmann equations 62:Age of the universe 26:Part of a series on 1476:Physical cosmology 1397:Simons Observatory 1133:Thomson scattering 1123:Sachs–Wolfe effect 786:physical cosmology 704:general relativity 319:Dark Energy Survey 263:Large quasar group 32:Physical cosmology 1429: 1428: 1425: 1424: 1113:Diffusion damping 971:Physical Review D 700:quantum mechanics 616: 615: 287: 286: 129: 128: 1488: 1458: 1457: 1456: 1446: 1445: 1437: 1417:Very Small Array 1163: 1162: 1069: 1062: 1055: 1046: 1045: 1013: 1012: 986: 984:astro-ph/0402173 966: 960: 959: 957: 956: 947:. Archived from 924: 918: 917: 899: 881: 879:astro-ph/0309071 872:(2): L171–L174. 857: 820:Similar problems 779:particle horizon 732:particle horizon 692:particle horizon 684:cosmic inflation 608: 601: 594: 578: 577: 576: 565: 564: 258:Galaxy formation 218:Lambda-CDM model 207: 206: 199:Components  81: 80: 42: 23: 22: 1496: 1495: 1491: 1490: 1489: 1487: 1486: 1485: 1466: 1465: 1464: 1454: 1452: 1440: 1432: 1430: 1421: 1255: 1199: 1152: 1151: 1137: 1108:Cosmic variance 1096: 1078: 1073: 1036: 1022: 1017: 1016: 967: 963: 954: 952: 925: 921: 897:10.1.1.255.7912 858: 854: 849: 841:Titius–Bode law 822: 770:cosmic variance 724: 676: 645:sample variance 637:sample variance 621:cosmic variance 612: 574: 572: 554: 553: 540: 537: 530: 528:Subject history 520: 519: 511: 356: 348: 347: 344: 341: 299: 289: 288: 251:Galaxy filament 204: 192: 191: 143: 138:Expansion  131: 130: 115:Microwave (CMB) 94:Nucleosynthesis 78: 21: 12: 11: 5: 1494: 1484: 1483: 1478: 1463: 1462: 1450: 1427: 1426: 1423: 1422: 1420: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1364: 1359: 1354: 1349: 1344: 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1299: 1294: 1289: 1284: 1279: 1274: 1269: 1263: 1261: 1257: 1256: 1254: 1253: 1248: 1243: 1238: 1233: 1228: 1223: 1218: 1213: 1207: 1205: 1201: 1200: 1198: 1197: 1192: 1187: 1180: 1175: 1169: 1167: 1160: 1154: 1153: 1141: 1140: 1138: 1136: 1135: 1130: 1125: 1120: 1115: 1110: 1104: 1102: 1098: 1097: 1095: 1094: 1089: 1083: 1080: 1079: 1072: 1071: 1064: 1057: 1049: 1043: 1042: 1035: 1034:External links 1032: 1031: 1030: 1021: 1018: 1015: 1014: 961: 919: 906:10.1086/378628 851: 850: 848: 845: 821: 818: 816:measurements. 723: 720: 675: 672: 660: 659: 655: 648: 614: 613: 611: 610: 603: 596: 588: 585: 584: 583: 582: 570: 556: 555: 552: 551: 546: 541: 534: 531: 526: 525: 522: 521: 518: 517: 510: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 454: 449: 444: 439: 434: 429: 424: 419: 414: 409: 404: 399: 394: 389: 384: 379: 374: 369: 364: 358: 357: 354: 353: 350: 349: 346: 345: 338: 336: 331: 326: 321: 316: 311: 306: 300: 295: 294: 291: 290: 285: 284: 283: 282: 270: 265: 260: 248: 240: 239: 235: 234: 233: 232: 220: 212: 211: 205: 198: 197: 194: 193: 190: 189: 184: 179: 174: 162: 157: 144: 137: 136: 133: 132: 127: 126: 125: 124: 122:Neutrino (CNB) 112: 104: 103: 99: 98: 97: 96: 79: 77:Early universe 76: 75: 72: 71: 70: 69: 64: 59: 44: 43: 35: 34: 28: 27: 9: 6: 4: 3: 2: 1493: 1482: 1479: 1477: 1474: 1473: 1471: 1461: 1451: 1449: 1444: 1439: 1438: 1435: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1264: 1262: 1258: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1208: 1206: 1202: 1196: 1193: 1191: 1188: 1186: 1185: 1181: 1179: 1176: 1174: 1171: 1170: 1168: 1164: 1161: 1159: 1155: 1149: 1145: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1118:Recombination 1116: 1114: 1111: 1109: 1106: 1105: 1103: 1099: 1093: 1090: 1088: 1085: 1084: 1081: 1077: 1070: 1065: 1063: 1058: 1056: 1051: 1050: 1047: 1041: 1038: 1037: 1028: 1024: 1023: 1010: 1006: 1002: 998: 994: 990: 985: 980: 977:(6): 063504. 976: 972: 965: 951:on 2008-01-02 950: 946: 942: 938: 934: 930: 923: 915: 911: 907: 903: 898: 893: 889: 885: 880: 875: 871: 867: 863: 856: 852: 844: 842: 837: 835: 831: 827: 817: 815: 811: 807: 803: 799: 798:uncertainties 795: 791: 787: 782: 780: 777:close to the 775: 771: 767: 761: 758: 754: 750: 746: 740: 737: 733: 729: 728:philosophical 719: 717: 716:statistically 713: 709: 705: 701: 697: 696:physical laws 693: 689: 685: 681: 678:The standard 671: 669: 665: 656: 653: 649: 646: 642: 638: 634: 633: 632: 630: 627: 623: 622: 609: 604: 602: 597: 595: 590: 589: 587: 586: 581: 571: 569: 560: 559: 558: 557: 550: 547: 545: 542: 539: 533: 532: 529: 524: 523: 516: 513: 512: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 359: 352: 351: 343: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 301: 298: 293: 292: 281: 278: 274: 271: 269: 266: 264: 261: 259: 256: 252: 249: 247: 244: 243: 242: 241: 237: 236: 231: 228: 224: 221: 219: 216: 215: 214: 213: 209: 208: 202: 196: 195: 188: 185: 183: 180: 178: 175: 173: 170: 166: 163: 161: 158: 156: 153: 149: 146: 145: 141: 135: 134: 123: 120: 116: 113: 111: 108: 107: 106: 105: 101: 100: 95: 92: 88: 85: 84: 83: 82: 74: 73: 68: 65: 63: 60: 58: 55: 51: 48: 47: 46: 45: 41: 37: 36: 33: 30: 29: 25: 24: 19: 1182: 1107: 1026: 974: 970: 964: 953:. Retrieved 949:the original 936: 932: 922: 869: 865: 855: 838: 823: 783: 774:distribution 769: 762: 741: 736:perturbation 726:This raises 725: 698:, including 677: 661: 620: 619: 617: 342:Probe (WMAP) 276: 273:Reionization 254: 226: 200: 168: 151: 148:Hubble's law 139: 118: 90: 53: 1158:Experiments 830:sample size 668:sample size 629:uncertainty 626:statistical 297:Experiments 230:Dark matter 223:Dark energy 165:FLRW metric 102:Backgrounds 1470:Categories 1352:LSPE/STRIP 1347:Keck Array 1342:GroundBIRD 1332:COSMOSOMAS 1226:LSPE/SWIPE 955:2007-09-18 939:: 170.06. 847:References 802:multipoles 674:Background 377:Copernicus 355:Scientists 210:Components 1392:Saskatoon 1367:POLARBEAR 1221:BOOMERanG 1009:119349882 892:CiteSeerX 664:cosmology 618:The term 507:Zeldovich 407:Friedmann 382:de Sitter 309:BOOMERanG 238:Structure 203:Structure 87:Inflation 1412:Tenerife 1211:Archeops 1190:RELIKT-1 1178:LiteBIRD 914:16650601 790:variance 766:variance 753:American 712:galaxies 688:universe 680:Big Bang 568:Category 487:Suntzeff 447:LemaĂ®tre 397:Einstein 362:Aaronson 155:Redshift 57:Universe 50:Big Bang 1448:Physics 1434:Portals 1387:QUIJOTE 1204:Balloon 1142:4-year 1101:Effects 1020:Sources 989:Bibcode 941:Bibcode 884:Bibcode 804:of the 749:Chinese 624:is the 492:Sunyaev 477:Schmidt 467:Penzias 462:Penrose 437:Huygens 427:Hawking 412:Galileo 1312:CAPMAP 1260:Ground 1251:TopHat 1246:Spider 1236:MAXIMA 1216:ARCADE 1184:Planck 1144:Planck 1007:  912:  894:  757:French 745:Indian 708:random 566:  502:Wilson 497:Tolman 457:Newton 452:Mather 442:Kepler 432:Hubble 392:Ehlers 372:Alpher 367:AlfvĂ©n 275:  253:  225:  167:  150:  142:Future 117:  89:  52:  1460:Space 1382:QUIET 1377:QUBIC 1327:CLASS 1287:AMiBA 1272:ACBAR 1166:Space 1005:S2CID 979:arXiv 910:S2CID 874:arXiv 482:Smoot 472:Rubin 417:Gamow 402:Ellis 387:Dicke 1372:QUaD 1362:OVRO 1337:DASI 1307:BIMA 1297:ATCA 1292:APEX 1241:QMAP 1231:EBEX 1195:WMAP 1173:COBE 814:WMAP 812:and 810:COBE 747:and 702:and 422:Guth 1407:SZA 1267:ABS 1148:CMB 997:doi 937:207 902:doi 870:600 784:In 1472:: 1003:. 995:. 987:. 975:70 973:. 935:. 931:. 908:. 900:. 890:. 882:. 868:. 864:. 836:. 781:. 1436:: 1150:. 1068:e 1061:t 1054:v 1029:. 1011:. 999:: 991:: 981:: 958:. 943:: 916:. 904:: 886:: 876:: 607:e 600:t 593:v 277:· 255:· 227:· 201:· 169:· 152:· 140:· 119:· 91:· 54:· 20:.

Index

Cosmic Variance (blog)
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization
Structure formation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑