Knowledge

Shape of the universe

Source 📝

3029: 1936:; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; BenoĂźt, A.; Benoit-LĂ©vy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; et al. (2014). "Planck2013 results. XVI. Cosmological parameters". 746: 223: 2530:; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; et al. (2020). "Planck 2018 results. VI. Cosmological parameters". 2993: 1026: 77: 36: 3017: 2969: 758: 3005: 139: 1240:. For instance, one can imagine finding a gas cloud that is not in thermal equilibrium due to being so large that light speed cannot propagate the thermal information. Knowing this propagation speed, we then know the size of the gas cloud as well as the distance to the gas cloud, we then have two sides of a triangle and can then determine the angles. Using a method similar to this, the 2981: 1466:, i.e., possess positive curvature, the topology is compact. For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite. Many textbooks erroneously state that a flat or hyperbolic universe implies an infinite universe; however, the correct statement is that a flat universe that is also 938:
the universe's global geometry can be constructed, all consistent with current observations and general relativity. Hence, it is unclear whether the observable universe matches the entire universe or is significantly smaller, though it is generally accepted that the universe is larger than the observable universe.
825:. The global topology of the universe cannot be deduced from measurements of curvature inferred from observations within the family of homogeneous general relativistic models alone, due to the existence of locally indistinguishable spaces with varying global topological characteristics. For example; a 1294:
are ignored, then the curvature of the universe can be determined by measuring the average density of matter within it, assuming that all matter is evenly distributed (rather than the distortions caused by 'dense' objects such as galaxies). This assumption is justified by the observations that, while
937:
If the observable universe encompasses the entire universe, we might determine its structure through observation. However, if the observable universe is smaller, we can only grasp a portion of it, making it impossible to deduce the global geometry through observation. Different mathematical models of
945:
is longer in one dimension than the others. Scientists test these models by looking for novel implications – phenomena not yet observed but necessary if the model is accurate. For instance, a small closed universe would produce multiple images of the same object in the sky, though not necessarily of
1374:
One of the unanswered questions about the universe is whether it is infinite or finite in extent. For intuition, it can be understood that a finite universe has a finite volume that, for example, could be in theory filled with a finite amount of material, while an infinite universe is unbounded and
1290:, that is, modeling the matter within the universe as a perfect fluid. Although stars and structures of mass can be introduced into an "almost FLRW" model, a strictly FLRW model is used to approximate the local geometry of the observable universe. Another way of saying this is that, if all forms of 1018:. An example of a positively curved space would be the surface of a sphere such as the Earth. A triangle drawn from the equator to a pole will have at least two angles equal 90°, which makes the sum of the 3 angles greater than 180°. An example of a negatively curved surface would be the shape of a 864:
with an unknown global topology. It is currently unknown whether the universe is simply connected like euclidean space or multiply connected like a torus. To date, no compelling evidence has been found suggesting the topology of the universe is not simply connected, though it has not been ruled out
1724:
When cosmologists speak of the universe as being "open" or "closed", they most commonly are referring to whether the curvature is negative or positive, respectively. These meanings of open and closed are different from the mathematical meaning of open and closed used for sets in topological spaces
1989:
De Bernardis, P.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B. P.; De Gasperis, G.; Farese, P. C.; Ferreira, P. G.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V. V.; Iacoangeli, A.; Jaffe, A. H.; Lange, A. E.; Martinis, L.; Masi, S.; Mason, P. V.;
1500:) will not be able to distinguish between a flat, open and closed universe if the true value of cosmological curvature parameter is smaller than 10. If the true value of the cosmological curvature parameter is larger than 10 we will be able to distinguish between these three models even now. 1629:
In the absence of dark energy, a flat universe expands forever but at a continually decelerating rate, with expansion asymptotically approaching zero. With dark energy, the expansion rate of the universe initially slows down, due to the effect of gravity, but eventually increases. The
1411:, have an edge or boundary. Spaces that have an edge are difficult to treat, both conceptually and mathematically. Namely, it is difficult to state what would happen at the edge of such a universe. For this reason, spaces that have an edge are typically excluded from consideration. 1327:
of the whole universe—both the observable universe and beyond. While the local geometry does not determine the global geometry completely, it does limit the possibilities, particularly a geometry of a constant curvature. The universe is often taken to be a
902:
The observable universe (of a given current observer) is a roughly spherical region extending about 46 billion light-years in all directions (from that observer, the observer being the current Earth, unless specified otherwise). It appears older and more
1262:
These and other astronomical measurements constrain the spatial curvature to be very close to zero, although they do not constrain its sign. This means that although the local geometries of spacetime are generated by the theory of relativity based on
1990:
Mauskopf, P. D.; Melchiorri, A.; Miglio, L.; Montroy, T.; Netterfield, C. B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; et al. (2000). "A flat Universe from high-resolution maps of the cosmic microwave background radiation".
1699:
A hyperbolic universe, one of a negative spatial curvature, is described by hyperbolic geometry, and can be thought of locally as a three-dimensional analog of an infinitely extended saddle shape. There are a great variety of
1336:; relaxing either of these complicates the analysis considerably. A global geometry is a local geometry plus a topology. It follows that a topology alone does not give a global geometry: for instance, Euclidean 3-space and 2143:; Weeks, Jeff; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Phillipe (2003-10-09). "Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background". 1446:
In the 1990s and early 2000s, empirical methods for determining the global topology using measurements on scales that would show multiple imaging were proposed and applied to cosmological observations.
1733:(i.e., one that is not compact and without boundary). A "closed universe" is necessarily a closed manifold. An "open universe" can be either a closed or open manifold. For example, in the 1075:). The density parameter is the average density of the universe divided by the critical energy density, that is, the mass energy needed for a universe to be flat. Put another way, 2209:
Roukema, Boudewijn; BuliƄski, Zbigniew; Szaniewska, Agnieszka; Gaudin, Nicolas E. (2008). "A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data".
2262:
Boudewijn François Roukema; Bajtlik S.; Biesiada M.; Szaniewska A.; Jurkiewicz H. (2007). "A weak acceleration effect due to residual gravity in a multiply connected universe".
1734: 1279: 347: 1454:, acceleration effects measured on local scales in the patterns of the movements of galaxies should, in principle, reveal the global topology of the universe. 1708:. For hyperbolic local geometry, many of the possible three-dimensional spaces are informally called "horn topologies", so called because of the shape of the 2852: 1737:(FLRW) model, the universe is considered to be without boundaries, in which case "compact universe" could describe a universe that is a closed manifold. 1489:
relate the local geometry to the global geometry. If the local geometry has constant curvature, the global geometry is very constrained, as described in
1725:
and for the mathematical meaning of open and closed manifolds, which gives rise to ambiguity and confusion. In mathematics, there are definitions for a
1610:. The most familiar such global structure is that of Euclidean space, which is infinite in extent. Flat universes that are finite in extent include the 718: 1430:. The term "without boundary" means that the space has no edges. Moreover, so that calculus can be applied, the universe is typically assumed to be a 1001:
Negative curvature – a drawn triangle's angles add up to less than 180°; such 3-dimensional space is locally modeled by a region of a
989:
Positive curvature – a drawn triangle's angles add up to more than 180°; such 3-dimensional space is locally modeled by a region of a
2792: 1067:
explains that mass and energy bend the curvature of spacetime and is used to determine what curvature the universe has by using a value called the
946:
the same age. As of 2024, current observational evidence suggests that the observable universe is spatially flat with an unknown global structure.
157: 2951: 1618:. Moreover, in three dimensions, there are 10 finite closed flat 3-manifolds, of which 6 are orientable and 4 are non-orientable. These are the 788: 2404:
Jan J Ostrowski; Boudewijn F Roukema; Zbigniew P BuliƄski (30 July 2012). "A relativistic model of the topological acceleration effect".
1375:
no numerical volume could possibly fill it. Mathematically, the question of whether the universe is infinite or finite is referred to as
1232:
Another way to measure Ω is to do so geometrically by measuring an angle across the observable universe. This can be done by using the
1060:. These depictions of two-dimensional surfaces are merely easily visualizable analogs to the 3-dimensional structure of (local) space. 2333:
Boudewijn François Roukema; Rozanski P. T. (2009). "The residual gravity acceleration effect in the Poincare dodecahedral space".
3064: 3059: 2918: 49: 2627:
Aurich, Ralf; Lustig, S.; Steiner, F.; Then, H. (2004). "Hyperbolic Universes with a Horned Topology and the CMB Anisotropy".
2060: 1785: 1607: 1110: 522: 2692:
Janna Levin, Evan Scannapieco & Joseph Silk (1998). "The topology of the universe: the biggest manifold of them all".
1304: 24: 1286:
is commonly used to model the universe. The FLRW model provides a curvature of the universe based on the mathematics of
1875: 1434:. A mathematical object that possesses all these properties, compact without boundary and differentiable, is termed a 1407:
Assuming a finite universe, the universe can either have an edge or no edge. Many finite mathematical spaces, e.g., a
1817: 1623: 1109:
in the universe and take its average density, then divide that average by the critical energy density. Data from the
965: 731: 193: 175: 120: 63: 1379:. An infinite universe (unbounded metric space) means that there are points arbitrarily far apart: for any distance 1022:
or mountain pass. A triangle drawn on a saddle surface will have the sum of the angles adding up to less than 180°.
102: 968:
is a quantity describing how the geometry of a space differs locally from flat space. The curvature of any locally
781: 3028: 1482: 1470:
implies an infinite universe. For example, Euclidean space is flat, simply connected, and infinite, but there are
364: 1343:
As stated in the introduction, investigations within the study of the global structure of the universe include:
3049: 1451: 726: 450: 440: 87: 1662: 2629: 2406: 1631: 880: 369: 292: 1333: 1399:
is called the diameter of the universe, in which case the universe has a well-defined "volume" or "scale".
861: 1704:, and their classification is not completely understood. Those of finite volume can be understood via the 3054: 2335: 2264: 1768:, whereby the universe is described to have originated when two membranes collided at the fifth dimension 1106: 912: 774: 750: 297: 20: 2959: 1030: 710: 516: 496: 304: 249: 55: 1676: 1666: 1490: 923: 342: 1680: 511: 276: 1794: â€“ Physics inside a bounded region is fully captured by physics at the boundary of the region 1691:
and colleagues in 2003 and an optimal orientation on the sky for the model was estimated in 2008.
1354:
whether the geometry of the global universe is flat, positively curved, or negatively curved, and,
892:
geometry: This relates to the curvature of the universe, primarily concerning what we can observe.
2954:
Scientific American Blog explanation of a flat universe and the curved spacetime in the universe.
2593: 1705: 1634:
is the same as that of an open universe in the sense that space will continue expanding forever.
1431: 479: 359: 98: 1908: 1797: 1497: 1450:
In the 2000s and 2010s, it was shown that, since the universe is inhomogeneous as shown in the
1015: 834: 826: 153: 94: 1771: 1244:
has determined that the sum of the angles to 180° within experimental error, corresponding to
2786: 1791: 1701: 1462:
The curvature of the universe places constraints on the topology. If the spatial geometry is
1427: 1296: 1138: 1117:
give values for the three constituents of all the mass–energy in the universe – normal mass (
684: 486: 2553: 2358: 2287: 2261: 2232: 1959: 2889: 2823: 2758: 2711: 2648: 2549: 2490: 2354: 2283: 2228: 2164: 2103: 2009: 1955: 1893:
Crane, Leah (29 June 2024). de Lange, Catherine (ed.). "How big is the universe, really?".
1826: 1807: 1684: 1672: 1658: 1638: 1463: 1376: 1241: 849: 697: 669: 491: 2445: 2382: 2311: 1675:
is a positively curved space, colloquially described as "soccerball-shaped", as it is the
8: 3021: 2429: 2140: 2081: 1688: 1486: 1337: 1283: 1229:. From these values, within experimental error, the universe seems to be spatially flat. 1114: 1045: 977: 972:(and hence of a locally isotropic universe) falls into one of the three following cases: 874: 853: 809:
refers to both its local and global geometry. Local geometry is defined primarily by its
589: 559: 506: 462: 354: 244: 2893: 2827: 2762: 2715: 2652: 2494: 2168: 2107: 2013: 976:
Zero curvature (flat) – a drawn triangle's angles add up to 180° and the
629: 3009: 2997: 2905: 2879: 2841: 2813: 2774: 2748: 2727: 2701: 2664: 2638: 2565: 2539: 2508: 2480: 2469:"How flat can you get? A model comparison perspective on the curvature of the Universe" 2415: 2344: 2273: 2244: 2218: 2188: 2154: 2119: 2093: 2033: 1999: 1971: 1945: 1810:, which showed there is an intrinsic notion of curvature for surfaces. This is used by 1753: 1408: 1272: 1264: 1064: 1053: 1037: 818: 649: 619: 584: 554: 501: 445: 214: 2660: 3069: 2937: 2909: 2778: 2770: 2731: 2723: 2569: 2503: 2468: 2433: 2403: 2370: 2299: 2180: 2123: 2115: 2056: 2025: 1975: 1803: 1750: â€“ Maximally symmetric Lorentzian manifold with a positive cosmological constant 1650: 1426:
without boundary. The term compact means that it is finite in extent ("bounded") and
1329: 1068: 679: 2901: 2668: 2512: 2973: 2897: 2845: 2831: 2766: 2719: 2656: 2557: 2498: 2449: 2441: 2425: 2386: 2378: 2362: 2315: 2307: 2291: 2248: 2236: 2192: 2172: 2145: 2111: 2037: 2017: 1963: 1848: 1811: 1757: 1496:
The latest research shows that even the most powerful future experiments (like the
1467: 1002: 959: 941:
The universe may be compact in some dimensions and not in others, similar to how a
856:
for example) imply that the observable universe is spatially flat to within a 0.4%
762: 564: 400: 269: 2859: 2561: 2366: 1967: 1829: â€“ Hypothesis that the total amount of energy in the universe is exactly zero 574: 549: 2295: 2240: 1747: 1726: 1435: 1387:
apart. A finite universe is a bounded metric space, where there is some distance
1118: 969: 857: 838: 689: 624: 609: 594: 579: 569: 433: 330: 907:
the deeper we look into space. In theory, we could look all the way back to the
3033: 2527: 1933: 1287: 674: 634: 2583: 1814:
to generalize the (intrinsic) notion of curvature to higher-dimensional spaces
3043: 2614: 2437: 2374: 2303: 1806: â€“ Differential geometry theorem—The "remarkable theorem" discovered by 1730: 1619: 1423: 659: 644: 544: 2870:
Fagundes, Helio V. (2002). "Exploring the global topology of the universe".
2836: 2801: 1422:, that have no edges. Mathematically, these spaces are referred to as being 2985: 2184: 2029: 1709: 1615: 955: 664: 639: 614: 599: 455: 2453: 2390: 2319: 2933: 2643: 2278: 2159: 2004: 1713: 1654: 1419: 1300: 1291: 1134: 1122: 931: 412: 405: 2691: 2332: 2176: 1716:, a negatively curved space, colloquially described as "funnel-shaped". 1471: 2863: 1475: 1237: 654: 2884: 2753: 2706: 2098: 1507:
mission, released in 2018, show the cosmological curvature parameter,
980:
holds; such 3-dimensional space is locally modeled by Euclidean space
898:
geometry: This pertains to the universe's overall shape and structure.
833:
has everywhere zero curvature but is finite in extent, whereas a flat
2021: 1756: â€“ Cosmological model—A string-theory-related model depicting a 1308: 927: 810: 802: 604: 2525: 105:. Statements consisting only of original research should be removed. 2818: 2626: 2544: 1765: 1415: 1348: 1324: 1320: 1130: 990: 908: 904: 814: 806: 337: 239: 232: 2485: 2420: 2349: 2223: 1950: 1025: 821:
explains how spatial curvature (local geometry) is constrained by
19:"Edge of the universe" redirects here. For the Bee Gees song, see 2588: 1036:
is greater than, less than, or equal to 1. From top to bottom: a
830: 822: 1029:
The local geometry of the universe is determined by whether the
2738: 2208: 1931: 1800: â€“ List of statements that appear to contradict themselves 1358: 1126: 1019: 942: 1712:, a canonical model of hyperbolic geometry. An example is the 1357:
whether the topology is simply connected (for example, like a
1761: 1611: 1535:, consistent with a flat universe. (i.e. positive curvature: 1362: 1105:
to determine the curvature two ways. One is to count all the
1474:
that are flat, multiply connected, finite, and compact (see
222: 2739:
LachiĂšze-Rey, M., Luminet, J.P. (1995). "Cosmic Topology".
2584:"A Universe From Nothing lecture by Lawrence Krauss at AAI" 2139: 1852: 1214:
The actual value for critical density value is measured as
845: 2980: 885:
The universe's structure can be examined from two angles:
2467:
Vardanyan, Mihran; Trotta, Roberto; Silk, Joseph (2009).
1606:
In a universe with zero curvature, the local geometry is
1233: 1340:
have the same topology but different global geometries.
2855:
Possible wrap-around dodecahedral shape of the universe
2685: 1988: 1822:
Pages displaying short descriptions of redirect targets
1776:
Pages displaying short descriptions of redirect targets
2853:
Universe is Finite, "Soccer Ball"-Shaped, Study Hints.
1687:, the symmetry of a soccer ball. This was proposed by 1438:. The 3-sphere and 3-torus are both closed manifolds. 2957: 1414:
However, there exist many finite spaces, such as the
1311:
when analyzed at a sufficiently large spatial scale.
813:, while the global geometry is characterised by its 2466: 2080: 1694: 1644: 1383:, there are points that are of a distance at least 868: 148:
may be too technical for most readers to understand
1778:for 6 or 7 extra space-like dimensions all with a 1361:) or else multiply connected (for example, like a 2802:"The Status of Cosmic Topology after Planck Data" 2473:Monthly Notices of the Royal Astronomical Society 1236:and measuring the power spectrum and temperature 3041: 2084:; LachiĂšze-Rey, Marc (1995). "Cosmic Topology". 1280:Friedmann–LemaĂźtre–Robertson–Walker (FLRW) model 1653:, and can be thought of as a three-dimensional 1601: 926:. Studies show that the observable universe is 2799: 2620: 2076: 2074: 2072: 1649:A positively curved universe is described by 1314: 911:, but in practice, we can only see up to the 782: 2791:: CS1 maint: multiple names: authors list ( 2608: 1719: 949: 817:(which itself is constrained by curvature). 1402: 64:Learn how and when to remove these messages 2069: 1622:. The most familiar is the aforementioned 1101:Scientists could experimentally calculate 789: 775: 221: 2883: 2835: 2817: 2752: 2705: 2642: 2543: 2502: 2484: 2419: 2348: 2277: 2255: 2222: 2204: 2202: 2158: 2097: 2003: 1949: 1867: 1841: 1391:such that all points are within distance 1125:), relativistic particles (predominantly 194:Learn how and when to remove this message 176:Learn how and when to remove this message 160:, without removing the technical details. 121:Learn how and when to remove this message 16:Local and global geometry of the universe 2869: 1764:-shaped universe; an alternative to the 1441: 1024: 2135: 2133: 1788: â€“ Historical concept in cosmology 1014:Curved geometries are in the domain of 3042: 2952:What do you mean the universe is flat? 2199: 2050: 1820: â€“ Cartesian product of 3 circles 922:years after the big bang) as anything 2526:Planck Collaboration; Ade, P. A. R.; 2397: 2053:Space and time in the modern universe 1892: 1873: 1786:History of the center of the Universe 1774: â€“ Theory of subatomic structure 1729:(i.e., compact without boundary) and 1369: 837:space is infinite in extent (such as 158:make it understandable to non-experts 2326: 2130: 1307:), it is on average homogeneous and 1111:Wilkinson Microwave Anisotropy Probe 132: 70: 29: 1849:"Will the Universe expand forever?" 1735:Friedmann–LemaĂźtre–Robertson–Walker 1452:cosmic web of large-scale structure 1305:large-scale structure of the cosmos 25:Journey to the Edge of the Universe 13: 2926:(Pi and the size of the Universe)" 517:2dF Galaxy Redshift Survey ("2dF") 14: 3081: 2916: 2679: 2615:"Is the universe a dodecahedron?" 1818:Three-torus model of the universe 1772:Extra dimensions in string theory 1395:of each other. The smallest such 732:Timeline of cosmological theories 497:Cosmic Background Explorer (COBE) 45:This article has multiple issues. 3027: 3015: 3003: 2991: 2979: 2967: 2504:10.1111/j.1365-2966.2009.14938.x 1695:Universe with negative curvature 1645:Universe with positive curvature 869:Shape of the observable universe 844:Current observational evidence ( 756: 745: 744: 137: 75: 34: 2902:10.1590/S0103-97332002000500012 2596:from the original on 2021-12-15 2576: 2519: 2460: 512:Sloan Digital Sky Survey (SDSS) 365:Future of an expanding universe 53:or discuss these issues on the 3065:Unsolved problems in astronomy 3060:Physical cosmological concepts 2430:10.1088/0264-9381/29/16/165006 2055:. cambridge university press. 2044: 1982: 1925: 1901: 1886: 1874:Biron, Lauren (7 April 2015). 1097:, there is negative curvature. 1090:, there is positive curvature. 865:by astronomical observations. 727:History of the Big Bang theory 523:Wilkinson Microwave Anisotropy 1: 2694:Classical and Quantum Gravity 2630:Classical and Quantum Gravity 2407:Classical and Quantum Gravity 1913:hyperphysics.phy-astr.gsu.edu 1834: 1632:ultimate fate of the universe 1602:Universe with zero curvature 881:Distance measures (cosmology) 719:Discovery of cosmic microwave 370:Ultimate fate of the universe 2872:Brazilian Journal of Physics 2771:10.1016/0370-1573(94)00085-H 2532:Astronomy & Astrophysics 2336:Astronomy & Astrophysics 2265:Astronomy & Astrophysics 2116:10.1016/0370-1573(94)00085-h 1938:Astronomy & Astrophysics 1457: 1319:Global structure covers the 7: 2661:10.1088/0264-9381/21/21/010 2562:10.1051/0004-6361/201833910 2367:10.1051/0004-6361/200911881 1968:10.1051/0004-6361/201321591 1798:List of cosmology paradoxes 1740: 1673:PoincarĂ© dodecahedral space 1663:PoincarĂ© dodecahedral space 913:cosmic microwave background 862:curvature density parameter 487:Black Hole Initiative (BHI) 101:the claims made and adding 23:. For the documentary, see 21:Edge of the Universe (song) 10: 3086: 2724:10.1088/0264-9381/15/9/015 2296:10.1051/0004-6361:20064979 2241:10.1051/0004-6361:20078777 2211:Astronomy and Astrophysics 1909:"Density Parameter, Omega" 1315:Global universal structure 1071:, represented with Omega ( 953: 878: 872: 250:Chronology of the universe 18: 2051:Davies, P. C. W. (1977). 1720:Curvature: open or closed 1683:, which is very close to 1637:A flat universe can have 1295:the universe is "weakly" 950:Curvature of the universe 343:Expansion of the universe 2686:Geometry of the Universe 2617:, article at PhysicsWeb. 1681:binary icosahedral group 1483:local to global theorems 1403:With or without boundary 1347:whether the universe is 507:Planck space observatory 293:Gravitational wave (GWB) 2837:10.3390/universe2010001 2554:2020A&A...641A...6P 2359:2009A&A...502...27R 2288:2007A&A...463..861R 2233:2008A&A...482..747L 1960:2014A&A...571A..16P 1706:Mostow rigidity theorem 1679:of the 3-sphere by the 1432:differentiable manifold 1083:, the universe is flat. 934:on the largest scales. 360:Inhomogeneous cosmology 2800:Luminet, J.P. (2016). 1876:"Our universe is Flat" 1702:hyperbolic 3-manifolds 1556:, negative curvature: 1113:(WMAP) as well as the 1061: 1016:non-Euclidean geometry 956:Curvature § Space 3050:Differential geometry 1792:Holographic principle 1503:Final results of the 1442:Observational methods 1267:, we can approximate 1139:cosmological constant 1028: 954:Further information: 924:beyond that is opaque 451:Large-scale structure 429:Shape of the universe 2141:Luminet, Jean-Pierre 2082:Luminet, Jean-Pierre 1880:symmetrymagazine.org 1827:Zero-energy universe 1685:icosahedral symmetry 1665:), all of which are 1659:spherical 3-manifold 1620:Bieberbach manifolds 1351:or finite in extent, 1242:BOOMERanG experiment 763:Astronomy portal 721:background radiation 698:List of cosmologists 2894:2002BrJPh..32..891F 2828:2016Univ....2....1L 2763:1995PhR...254..135L 2716:1998CQGra..15.2689L 2653:2004CQGra..21.4901A 2495:2009MNRAS.397..431V 2177:10.1038/nature01944 2169:2003Natur.425..593L 2108:1995PhR...254..135L 2014:2000Natur.404..955D 1689:Jean-Pierre Luminet 1491:Thurston geometries 1487:Riemannian geometry 1334:topological defects 1284:Friedmann equations 1265:spacetime intervals 1046:hyperbolic universe 978:Pythagorean theorem 875:Observable universe 805:, the shape of the 463:Structure formation 355:Friedmann equations 245:Age of the universe 209:Part of a series on 3055:General relativity 2860:possible universes 2858:Classification of 1766:Hot Big Bang Model 1754:Ekpyrotic universe 1577:, zero curvature: 1370:Infinite or finite 1338:hyperbolic 3-space 1273:Euclidean geometry 1227:10 kg⋅m 1065:General relativity 1062: 1038:spherical universe 1031:density parameter 827:multiply connected 819:General relativity 502:Dark Energy Survey 446:Large quasar group 215:Physical cosmology 86:possibly contains 2637:(21): 4901–4926. 2153:(6958): 593–595. 2062:978-0-521-29151-4 1855:. 24 January 2014 1804:Theorema Egregium 1669:of the 3-sphere. 1651:elliptic geometry 1639:zero total energy 1330:geodesic manifold 1115:Planck spacecraft 1069:density parameter 799: 798: 470: 469: 312: 311: 204: 203: 196: 186: 185: 178: 131: 130: 123: 88:original research 68: 3077: 3032: 3031: 3020: 3019: 3018: 3008: 3007: 3006: 2996: 2995: 2994: 2984: 2983: 2972: 2971: 2970: 2963: 2948: 2946: 2945: 2936:. Archived from 2922: 2913: 2887: 2849: 2839: 2821: 2796: 2790: 2782: 2756: 2735: 2709: 2700:(9): 2689–2697. 2688:at icosmos.co.uk 2673: 2672: 2646: 2644:astro-ph/0403597 2624: 2618: 2612: 2606: 2605: 2603: 2601: 2580: 2574: 2573: 2547: 2523: 2517: 2516: 2506: 2488: 2464: 2458: 2457: 2423: 2401: 2395: 2394: 2352: 2330: 2324: 2323: 2281: 2279:astro-ph/0602159 2259: 2253: 2252: 2226: 2206: 2197: 2196: 2162: 2160:astro-ph/0310253 2137: 2128: 2127: 2101: 2078: 2067: 2066: 2048: 2042: 2041: 2022:10.1038/35010035 2007: 2005:astro-ph/0004404 1986: 1980: 1979: 1953: 1929: 1923: 1922: 1920: 1919: 1905: 1899: 1898: 1890: 1884: 1883: 1882:. FermiLab/SLAC. 1871: 1865: 1864: 1862: 1860: 1845: 1823: 1777: 1758:five-dimensional 1657:, or some other 1624:3-torus universe 1597: 1593: 1583: 1576: 1572: 1562: 1555: 1551: 1541: 1534: 1532: 1526: 1468:simply connected 1398: 1394: 1390: 1386: 1382: 1271:by the familiar 1258: 1257: 1255: 1228: 1226: 1210: 1208: 1184: 1182: 1170: 1168: 1156: 1154: 1104: 1096: 1089: 1082: 1074: 1059: 1051: 1043: 1034: 1009: 1003:hyperbolic space 997: 985: 960:Flatness problem 921: 920: 835:simply connected 791: 784: 777: 761: 760: 759: 748: 747: 441:Galaxy formation 401:Lambda-CDM model 390: 389: 382:Components  264: 263: 225: 206: 205: 199: 192: 181: 174: 170: 167: 161: 141: 140: 133: 126: 119: 115: 112: 106: 103:inline citations 79: 78: 71: 60: 38: 37: 30: 3085: 3084: 3080: 3079: 3078: 3076: 3075: 3074: 3040: 3039: 3038: 3026: 3016: 3014: 3004: 3002: 2992: 2990: 2978: 2968: 2966: 2958: 2943: 2941: 2925: 2920: 2784: 2783: 2741:Physics Reports 2682: 2677: 2676: 2625: 2621: 2613: 2609: 2599: 2597: 2582: 2581: 2577: 2524: 2520: 2465: 2461: 2402: 2398: 2331: 2327: 2260: 2256: 2207: 2200: 2138: 2131: 2086:Physics Reports 2079: 2070: 2063: 2049: 2045: 1998:(6781): 955–9. 1987: 1983: 1932:Ade, P. A. R.; 1930: 1926: 1917: 1915: 1907: 1906: 1902: 1891: 1887: 1872: 1868: 1858: 1856: 1847: 1846: 1842: 1837: 1832: 1821: 1775: 1748:de Sitter space 1743: 1727:closed manifold 1722: 1697: 1647: 1604: 1595: 1591: 1585: 1578: 1574: 1570: 1564: 1557: 1553: 1549: 1543: 1536: 1530: 1528: 1514: 1508: 1460: 1444: 1436:closed manifold 1405: 1396: 1392: 1388: 1384: 1380: 1372: 1317: 1253: 1251: 1249: 1245: 1224: 1222: 1220: 1206: 1204: 1202: 1198: 1194: 1190: 1180: 1178: 1176: 1166: 1164: 1162: 1152: 1150: 1148: 1119:baryonic matter 1102: 1094: 1087: 1080: 1072: 1057: 1049: 1041: 1032: 1005: 993: 981: 970:isotropic space 962: 952: 918: 916: 915:(CMB) (roughly 883: 877: 871: 858:margin of error 839:Euclidean space 795: 757: 755: 737: 736: 723: 720: 713: 711:Subject history 703: 702: 694: 539: 531: 530: 527: 524: 482: 472: 471: 434:Galaxy filament 387: 375: 374: 326: 321:Expansion  314: 313: 298:Microwave (CMB) 277:Nucleosynthesis 261: 200: 189: 188: 187: 182: 171: 165: 162: 154:help improve it 151: 142: 138: 127: 116: 110: 107: 92: 80: 76: 39: 35: 28: 17: 12: 11: 5: 3083: 3073: 3072: 3067: 3062: 3057: 3052: 3037: 3036: 3024: 3012: 3000: 2988: 2976: 2956: 2955: 2949: 2923: 2917:Grime, James. 2914: 2878:(4): 891–894. 2867: 2856: 2850: 2797: 2747:(3): 135–214. 2736: 2689: 2681: 2680:External links 2678: 2675: 2674: 2619: 2607: 2575: 2518: 2479:(1): 431–444. 2459: 2414:(16): 165006. 2396: 2325: 2254: 2198: 2129: 2092:(3): 135–214. 2068: 2061: 2043: 1981: 1924: 1900: 1885: 1866: 1839: 1838: 1836: 1833: 1831: 1830: 1824: 1815: 1801: 1795: 1789: 1783: 1769: 1751: 1744: 1742: 1739: 1721: 1718: 1696: 1693: 1646: 1643: 1603: 1600: 1587: 1566: 1545: 1510: 1459: 1456: 1443: 1440: 1404: 1401: 1371: 1368: 1367: 1366: 1355: 1352: 1316: 1313: 1288:fluid dynamics 1247: 1218: 1212: 1211: 1200: 1196: 1192: 1188: 1185: 1174: 1171: 1160: 1157: 1146: 1099: 1098: 1091: 1084: 1012: 1011: 999: 987: 951: 948: 900: 899: 893: 873:Main article: 870: 867: 797: 796: 794: 793: 786: 779: 771: 768: 767: 766: 765: 753: 739: 738: 735: 734: 729: 724: 717: 714: 709: 708: 705: 704: 701: 700: 693: 692: 687: 682: 677: 672: 667: 662: 657: 652: 647: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 541: 540: 537: 536: 533: 532: 529: 528: 521: 519: 514: 509: 504: 499: 494: 489: 483: 478: 477: 474: 473: 468: 467: 466: 465: 453: 448: 443: 431: 423: 422: 418: 417: 416: 415: 403: 395: 394: 388: 381: 380: 377: 376: 373: 372: 367: 362: 357: 345: 340: 327: 320: 319: 316: 315: 310: 309: 308: 307: 305:Neutrino (CNB) 295: 287: 286: 282: 281: 280: 279: 262: 260:Early universe 259: 258: 255: 254: 253: 252: 247: 242: 227: 226: 218: 217: 211: 210: 202: 201: 184: 183: 145: 143: 136: 129: 128: 83: 81: 74: 69: 43: 42: 40: 33: 15: 9: 6: 4: 3: 2: 3082: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3047: 3045: 3035: 3030: 3025: 3023: 3013: 3011: 3001: 2999: 2989: 2987: 2982: 2977: 2975: 2965: 2964: 2961: 2953: 2950: 2940:on 2015-04-30 2939: 2935: 2931: 2927: 2915: 2911: 2907: 2903: 2899: 2895: 2891: 2886: 2885:gr-qc/0112078 2881: 2877: 2873: 2868: 2865: 2861: 2857: 2854: 2851: 2847: 2843: 2838: 2833: 2829: 2825: 2820: 2815: 2811: 2807: 2803: 2798: 2794: 2788: 2780: 2776: 2772: 2768: 2764: 2760: 2755: 2754:gr-qc/9605010 2750: 2746: 2742: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2708: 2707:gr-qc/9803026 2703: 2699: 2695: 2690: 2687: 2684: 2683: 2670: 2666: 2662: 2658: 2654: 2650: 2645: 2640: 2636: 2632: 2631: 2623: 2616: 2611: 2595: 2591: 2590: 2585: 2579: 2571: 2567: 2563: 2559: 2555: 2551: 2546: 2541: 2537: 2533: 2529: 2522: 2514: 2510: 2505: 2500: 2496: 2492: 2487: 2482: 2478: 2474: 2470: 2463: 2455: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2422: 2417: 2413: 2409: 2408: 2400: 2392: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2356: 2351: 2346: 2342: 2338: 2337: 2329: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2285: 2280: 2275: 2271: 2267: 2266: 2258: 2250: 2246: 2242: 2238: 2234: 2230: 2225: 2220: 2216: 2212: 2205: 2203: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2161: 2156: 2152: 2148: 2147: 2142: 2136: 2134: 2125: 2121: 2117: 2113: 2109: 2105: 2100: 2099:gr-qc/9605010 2095: 2091: 2087: 2083: 2077: 2075: 2073: 2064: 2058: 2054: 2047: 2039: 2035: 2031: 2027: 2023: 2019: 2015: 2011: 2006: 2001: 1997: 1993: 1985: 1977: 1973: 1969: 1965: 1961: 1957: 1952: 1947: 1943: 1939: 1935: 1928: 1914: 1910: 1904: 1897:. p. 31. 1896: 1895:New Scientist 1889: 1881: 1877: 1870: 1854: 1850: 1844: 1840: 1828: 1825: 1819: 1816: 1813: 1809: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1773: 1770: 1767: 1763: 1759: 1755: 1752: 1749: 1746: 1745: 1738: 1736: 1732: 1731:open manifold 1728: 1717: 1715: 1711: 1707: 1703: 1692: 1690: 1686: 1682: 1678: 1674: 1670: 1668: 1664: 1661:(such as the 1660: 1656: 1652: 1642: 1640: 1635: 1633: 1627: 1625: 1621: 1617: 1613: 1609: 1599: 1590: 1581: 1569: 1560: 1548: 1539: 1525: 1522: 1518: 1513: 1506: 1501: 1499: 1494: 1492: 1488: 1484: 1479: 1477: 1473: 1469: 1465: 1455: 1453: 1448: 1439: 1437: 1433: 1429: 1425: 1421: 1417: 1412: 1410: 1400: 1378: 1364: 1360: 1356: 1353: 1350: 1346: 1345: 1344: 1341: 1339: 1335: 1331: 1326: 1322: 1312: 1310: 1306: 1302: 1298: 1297:inhomogeneous 1293: 1289: 1285: 1281: 1276: 1274: 1270: 1266: 1260: 1243: 1239: 1235: 1230: 1217: 1186: 1172: 1158: 1144: 1143: 1142: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1092: 1085: 1078: 1077: 1076: 1070: 1066: 1055: 1054:flat universe 1047: 1039: 1035: 1027: 1023: 1021: 1017: 1008: 1004: 1000: 996: 992: 988: 984: 979: 975: 974: 973: 971: 967: 961: 957: 947: 944: 939: 935: 933: 929: 925: 914: 910: 906: 897: 894: 891: 888: 887: 886: 882: 876: 866: 863: 859: 855: 851: 847: 842: 840: 836: 832: 829:space like a 828: 824: 820: 816: 812: 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 764: 754: 752: 743: 742: 741: 740: 733: 730: 728: 725: 722: 716: 715: 712: 707: 706: 699: 696: 695: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 542: 535: 534: 526: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 484: 481: 476: 475: 464: 461: 457: 454: 452: 449: 447: 444: 442: 439: 435: 432: 430: 427: 426: 425: 424: 420: 419: 414: 411: 407: 404: 402: 399: 398: 397: 396: 392: 391: 385: 379: 378: 371: 368: 366: 363: 361: 358: 356: 353: 349: 346: 344: 341: 339: 336: 332: 329: 328: 324: 318: 317: 306: 303: 299: 296: 294: 291: 290: 289: 288: 284: 283: 278: 275: 271: 268: 267: 266: 265: 257: 256: 251: 248: 246: 243: 241: 238: 234: 231: 230: 229: 228: 224: 220: 219: 216: 213: 212: 208: 207: 198: 195: 180: 177: 169: 159: 155: 149: 146:This article 144: 135: 134: 125: 122: 114: 111:November 2020 104: 100: 96: 90: 89: 84:This article 82: 73: 72: 67: 65: 58: 57: 52: 51: 46: 41: 32: 31: 26: 22: 3022:Solar System 2942:. Retrieved 2938:the original 2929: 2875: 2871: 2809: 2805: 2787:cite journal 2744: 2740: 2697: 2693: 2634: 2628: 2622: 2610: 2598:. Retrieved 2587: 2578: 2535: 2531: 2521: 2476: 2472: 2462: 2411: 2405: 2399: 2340: 2334: 2328: 2269: 2263: 2257: 2214: 2210: 2150: 2144: 2089: 2085: 2052: 2046: 1995: 1991: 1984: 1941: 1937: 1927: 1916:. Retrieved 1912: 1903: 1894: 1888: 1879: 1869: 1857:. Retrieved 1843: 1779: 1723: 1710:pseudosphere 1698: 1671: 1648: 1636: 1628: 1616:Klein bottle 1605: 1588: 1579: 1567: 1558: 1546: 1537: 1523: 1520: 1516: 1511: 1504: 1502: 1495: 1481:In general, 1480: 1461: 1449: 1445: 1413: 1406: 1373: 1342: 1318: 1277: 1268: 1261: 1231: 1215: 1213: 1197:relativistic 1161:relativistic 1100: 1063: 1013: 1006: 994: 982: 963: 940: 936: 901: 895: 889: 884: 843: 801:In physical 800: 525:Probe (WMAP) 459: 456:Reionization 437: 428: 409: 383: 351: 334: 331:Hubble's law 322: 301: 273: 236: 190: 172: 163: 147: 117: 108: 85: 61: 54: 48: 47:Please help 44: 3010:Outer space 2998:Spaceflight 2934:Brady Haran 2930:Numberphile 2528:Aghanim, N. 2272:: 861–871. 1934:Aghanim, N. 1714:Picard horn 1655:hypersphere 1377:boundedness 1301:anisotropic 1292:dark energy 1135:dark energy 1123:dark matter 1107:mass–energy 932:homogeneous 480:Experiments 413:Dark matter 406:Dark energy 348:FLRW metric 285:Backgrounds 3044:Categories 2944:2013-04-07 2864:Lambda-CDM 2819:1601.03884 2812:(1): 1–9. 2600:17 October 2545:1807.06209 2446:1253.83052 2383:1177.85087 2312:1118.85330 2217:(3): 747. 1918:2015-06-01 1835:References 1476:flat torus 1332:, free of 1238:anisotropy 905:redshifted 879:See also: 560:Copernicus 538:Scientists 393:Components 95:improve it 50:improve it 2974:Astronomy 2910:119495347 2779:119500217 2732:119080782 2570:119335614 2486:0901.3354 2454:Q96692451 2438:0264-9381 2421:1109.1596 2391:Q68676519 2375:0004-6361 2350:0902.3402 2343:: 27–35. 2320:Q68598777 2304:0004-6361 2224:0801.0006 2124:119500217 1976:118349591 1951:1303.5076 1667:quotients 1509:1 − Ω = Ω 1464:spherical 1458:Curvature 1309:isotropic 1303:(see the 1131:neutrinos 966:curvature 928:isotropic 850:BOOMERanG 811:curvature 803:cosmology 690:Zeldovich 590:Friedmann 565:de Sitter 492:BOOMERanG 421:Structure 386:Structure 270:Inflation 166:July 2023 99:verifying 56:talk page 3070:Big Bang 2806:Universe 2669:17619026 2594:Archived 2592:. 2009. 2513:15995519 2450:Wikidata 2387:Wikidata 2316:Wikidata 2185:14534579 2030:10801117 1859:16 March 1782:topology 1762:membrane 1741:See also 1677:quotient 1575:Ω < 1 1554:Ω > 1 1527:, to be 1428:complete 1416:3-sphere 1349:infinite 1325:topology 1323:and the 1321:geometry 1219:critical 1095:Ω < 1 1088:Ω > 1 1052:, and a 1050:Ω < 1 1042:Ω > 1 991:3-sphere 909:Big Bang 815:topology 807:universe 751:Category 670:Suntzeff 630:LemaĂźtre 580:Einstein 545:Aaronson 338:Redshift 240:Universe 233:Big Bang 3034:Physics 2960:Portals 2890:Bibcode 2862:in the 2846:7331164 2824:Bibcode 2759:Bibcode 2712:Bibcode 2649:Bibcode 2589:YouTube 2550:Bibcode 2491:Bibcode 2355:Bibcode 2284:Bibcode 2249:1616362 2229:Bibcode 2193:4380713 2165:Bibcode 2104:Bibcode 2038:4412370 2010:Bibcode 1956:Bibcode 1944:: A16. 1812:Riemann 1780:compact 1424:compact 1420:3-torus 1269:3-space 1137:or the 1133:), and 1127:photons 860:of the 831:3 torus 823:gravity 675:Sunyaev 660:Schmidt 650:Penzias 645:Penrose 620:Huygens 610:Hawking 595:Galileo 152:Please 93:Please 2908:  2866:model. 2844:  2777:  2730:  2667:  2568:  2538:: A6. 2511:  2452:  2444:  2436:  2389:  2381:  2373:  2318:  2310:  2302:  2247:  2191:  2183:  2146:Nature 2122:  2059:  2036:  2028:  1992:Nature 1974:  1571:> 0 1550:< 0 1533:0.0019 1529:0.0007 1505:Planck 1359:sphere 1282:using 1183:0.0018 1179:0.6817 1020:saddle 958:, and 943:cuboid 896:Global 854:Planck 852:, and 749:  685:Wilson 680:Tolman 640:Newton 635:Mather 625:Kepler 615:Hubble 575:Ehlers 555:Alpher 550:AlfvĂ©n 458:  436:  408:  350:  333:  325:Future 300:  272:  235:  2986:Stars 2906:S2CID 2880:arXiv 2842:S2CID 2814:arXiv 2775:S2CID 2749:arXiv 2728:S2CID 2702:arXiv 2665:S2CID 2639:arXiv 2566:S2CID 2540:arXiv 2509:S2CID 2481:arXiv 2416:arXiv 2345:arXiv 2274:arXiv 2245:S2CID 2219:arXiv 2189:S2CID 2155:arXiv 2120:S2CID 2094:arXiv 2034:S2CID 2000:arXiv 1972:S2CID 1946:arXiv 1808:Gauss 1612:torus 1596:Ω = 1 1363:torus 1248:total 1189:total 1155:0.018 1151:0.315 1081:Ω = 1 1058:Ω = 1 1056:with 1048:with 1040:with 890:Local 665:Smoot 655:Rubin 600:Gamow 585:Ellis 570:Dicke 2793:link 2602:2011 2434:ISSN 2371:ISSN 2300:ISSN 2181:PMID 2057:ISBN 2026:PMID 1861:2015 1853:NASA 1614:and 1608:flat 1561:= −1 1540:= +1 1472:tori 1418:and 1409:disc 1299:and 1278:The 1256:0.12 1252:1.00 1223:9.47 1209:0.02 1205:1.00 1193:mass 1165:9.24 1147:mass 1129:and 1121:and 1044:, a 964:The 930:and 846:WMAP 605:Guth 2898:doi 2832:doi 2767:doi 2745:254 2720:doi 2657:doi 2558:doi 2536:641 2499:doi 2477:397 2442:Zbl 2426:doi 2379:Zbl 2363:doi 2341:502 2308:Zbl 2292:doi 2270:463 2237:doi 2215:482 2173:doi 2151:425 2112:doi 2090:254 2018:doi 1996:404 1964:doi 1942:571 1598:). 1592:= 0 1582:= 0 1515:= − 1498:SKA 1485:in 1478:). 1234:CMB 1199:+ Ω 1195:+ Ω 1191:= Ω 1093:If 1086:If 1079:If 919:000 917:370 841:). 156:to 97:by 3046:: 2932:. 2928:. 2924:39 2904:. 2896:. 2888:. 2876:32 2874:. 2840:. 2830:. 2822:. 2808:. 2804:. 2789:}} 2785:{{ 2773:. 2765:. 2757:. 2743:. 2726:. 2718:. 2710:. 2698:15 2696:. 2663:. 2655:. 2647:. 2635:21 2633:. 2586:. 2564:. 2556:. 2548:. 2534:. 2507:. 2497:. 2489:. 2475:. 2471:. 2448:. 2440:. 2432:. 2424:. 2412:29 2410:. 2385:. 2377:. 2369:. 2361:. 2353:. 2339:. 2314:. 2306:. 2298:. 2290:. 2282:. 2268:. 2243:. 2235:. 2227:. 2213:. 2201:^ 2187:. 2179:. 2171:. 2163:. 2149:. 2132:^ 2118:. 2110:. 2102:. 2088:. 2071:^ 2032:. 2024:. 2016:. 2008:. 1994:. 1970:. 1962:. 1954:. 1940:. 1911:. 1878:. 1851:. 1760:, 1641:. 1626:. 1594:, 1584:, 1573:, 1563:, 1552:, 1542:, 1517:Kc 1493:. 1365:). 1275:. 1259:. 1250:≈ 1221:= 1203:= 1177:≈ 1169:10 1163:≈ 1149:≈ 1141:: 848:, 59:. 2962:: 2947:. 2921:π 2919:" 2912:. 2900:: 2892:: 2882:: 2848:. 2834:: 2826:: 2816:: 2810:2 2795:) 2781:. 2769:: 2761:: 2751:: 2734:. 2722:: 2714:: 2704:: 2671:. 2659:: 2651:: 2641:: 2604:. 2572:. 2560:: 2552:: 2542:: 2515:. 2501:: 2493:: 2483:: 2456:. 2428:: 2418:: 2393:. 2365:: 2357:: 2347:: 2322:. 2294:: 2286:: 2276:: 2251:. 2239:: 2231:: 2221:: 2195:. 2175:: 2167:: 2157:: 2126:. 2114:: 2106:: 2096:: 2065:. 2040:. 2020:: 2012:: 2002:: 1978:. 1966:: 1958:: 1948:: 1921:. 1863:. 1589:K 1586:Ω 1580:K 1568:K 1565:Ω 1559:K 1547:K 1544:Ω 1538:K 1531:± 1524:H 1521:a 1519:/ 1512:K 1397:d 1393:d 1389:d 1385:d 1381:d 1254:± 1246:Ω 1225:× 1216:ρ 1207:± 1201:Λ 1187:Ω 1181:± 1175:Λ 1173:Ω 1167:× 1159:Ω 1153:± 1145:Ω 1103:Ω 1073:Ω 1033:Ω 1010:. 1007:H 998:. 995:S 986:. 983:E 790:e 783:t 776:v 460:· 438:· 410:· 384:· 352:· 335:· 323:· 302:· 274:· 237:· 197:) 191:( 179:) 173:( 168:) 164:( 150:. 124:) 118:( 113:) 109:( 91:. 66:) 62:( 27:.

Index

Edge of the Universe (song)
Journey to the Edge of the Universe
improve it
talk page
Learn how and when to remove these messages
original research
improve it
verifying
inline citations
Learn how and when to remove this message
help improve it
make it understandable to non-experts
Learn how and when to remove this message
Learn how and when to remove this message
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑