Knowledge

Big Bang nucleosynthesis

Source đź“ť

1536:
was about 1 neutron to 7 protons (allowing for some decay of neutrons into protons). Once it was cool enough, the neutrons quickly bound with an equal number of protons to form first deuterium, then helium-4. Helium-4 is very stable and is nearly the end of this chain if it runs for only a short time, since helium neither decays nor combines easily to form heavier nuclei (since there are no stable nuclei with mass numbers of 5 or 8, helium does not combine easily with either protons, or with itself). Once temperatures are lowered, out of every 16 nucleons (2 neutrons and 14 protons), 4 of these (25% of the total particles and total mass) combine quickly into one helium-4 nucleus. This produces one helium for every 12 hydrogens, resulting in a universe that is a little over 8% helium by number of atoms, and 25% helium by mass.
3496: 1825:
better observations, and in most cases trying to change BBN resulted in abundances that were more inconsistent with observations rather than less. The second reason for researching non-standard BBN, and largely the focus of non-standard BBN in the early 21st century, is to use BBN to place limits on unknown or speculative physics. For example, standard BBN assumes that no exotic hypothetical particles were involved in BBN. One can insert a hypothetical particle (such as a massive neutrino) and see what has to happen before BBN predicts abundances that are very different from observations. This has been done to put limits on the mass of a stable
1445:
binding energy of deuterium; therefore any deuterium that was formed was immediately destroyed (a situation known as the "deuterium bottleneck"). Hence, the formation of helium-4 was delayed until the universe became cool enough for deuterium to survive (at about T = 0.1 MeV); after which there was a sudden burst of element formation. However, very shortly thereafter, around twenty minutes after the Big Bang, the temperature and density became too low for any significant fusion to occur. At this point, the elemental abundances were nearly fixed, and the only changes were the result of the
1016:
temperature and density caused the reactions to become too slow, which occurred at about T = 0.7 MeV (time around 1 second) and is called the freeze out temperature. At freeze out, the neutron–proton ratio was about 1/6. However, free neutrons are unstable with a mean life of 880 sec; some neutrons decayed in the next few minutes before fusing into any nucleus, so the ratio of total neutrons to protons after nucleosynthesis ends is about 1/7. Almost all neutrons that fused instead of decaying ended up combined into helium-4, due to the fact that helium-4 has the highest
1544:. In addition, it provides an important test for the Big Bang theory. If the observed helium abundance is significantly different from 25%, then this would pose a serious challenge to the theory. This would particularly be the case if the early helium-4 abundance was much smaller than 25% because it is hard to destroy helium-4. For a few years during the mid-1990s, observations suggested that this might be the case, causing astrophysicists to talk about a Big Bang nucleosynthetic crisis, but further observations were consistent with the Big Bang theory. 1661:
but insufficient to carry the process further using helium-4 in the next fusion step. BBN did not convert all of the deuterium in the universe to helium-4 due to the expansion that cooled the universe and reduced the density, and so cut that conversion short before it could proceed any further. One consequence of this is that, unlike helium-4, the amount of deuterium is very sensitive to initial conditions. The denser the initial universe was, the more deuterium would be converted to helium-4 before time ran out, and the less deuterium would remain.
1482: 559: 36: 3468: 1564: 3532: 1433:
content, since the universe was highly radiation dominated until much later, and this dominant component controls the temperature/time relation. At this time there were about six protons for every neutron, but a small fraction of the neutrons decay before fusing in the next few hundred seconds, so at the end of nucleosynthesis there are about seven protons to every neutron, and almost all the neutrons are in Helium-4 nuclei.
3556: 3508: 571: 3544: 1424:
while "incomplete" reaction chains lead to small amounts of left-over H or He; the amount of these decreases with increasing baryon-photon ratio. That is, the larger the baryon-photon ratio the more reactions there will be and the more efficiently deuterium will be eventually transformed into helium-4. This result makes deuterium a very useful tool in measuring the baryon-to-photon ratio.
3520: 1677:. If one assumes that all of the universe consists of protons and neutrons, the density of the universe is such that much of the currently observed deuterium would have been burned into helium-4. The standard explanation now used for the abundance of deuterium is that the universe does not consist mostly of baryons, but that non-baryonic matter (also known as 782:, but less than 8% of the nuclei would be helium-4 nuclei. Other (trace) nuclei are usually expressed as number ratios to hydrogen. The first detailed calculations of the primordial isotopic abundances came in 1966 and have been refined over the years using updated estimates of the input nuclear reaction rates. The first systematic 763:
calculate element abundances after nucleosynthesis ends. Although the baryon per photon ratio is important in determining element abundances, the precise value makes little difference to the overall picture. Without major changes to the Big Bang theory itself, BBN will result in mass abundances of about 75% of hydrogen-1, about 25%
1660:
Deuterium is in some ways the opposite of helium-4, in that while helium-4 is very stable and difficult to destroy, deuterium is only marginally stable and easy to destroy. The temperatures, time, and densities were sufficient to combine a substantial fraction of the deuterium nuclei to form helium-4
1535:
Big Bang nucleosynthesis predicts a primordial abundance of about 25% helium-4 by mass, irrespective of the initial conditions of the universe. As long as the universe was hot enough for protons and neutrons to transform into each other easily, their ratio, determined solely by their relative masses,
1432:
Big Bang nucleosynthesis began roughly about 20 seconds after the big bang, when the universe had cooled sufficiently to allow deuterium nuclei to survive disruption by high-energy photons. (Note that the neutron–proton freeze-out time was earlier). This time is essentially independent of dark matter
1423:
along with some other low-probability reactions leading to Li or Be. (An important feature is that there are no stable nuclei with mass 5 or 8, which implies that reactions adding one baryon to He, or fusing two He, do not occur). Most fusion chains during BBN ultimately terminate in He (helium-4),
1020:
per nucleon among light elements. This predicts that about 8% of all atoms should be helium-4, leading to a mass fraction of helium-4 of about 25%, which is in line with observations. Small traces of deuterium and helium-3 remained as there was insufficient time and density for them to react and form
1723:
The theory of BBN gives a detailed mathematical description of the production of the light "elements" deuterium, helium-3, helium-4, and lithium-7. Specifically, the theory yields precise quantitative predictions for the mixture of these elements, that is, the primordial abundances at the end of the
1668:
During the 1970s, there were major efforts to find processes that could produce deuterium, but those revealed ways of producing isotopes other than deuterium. The problem was that while the concentration of deuterium in the universe is consistent with the Big Bang model as a whole, it is too high to
1824:
There have been, and continue to be, various reasons for researching non-standard BBN. The first, which is largely of historical interest, is to resolve inconsistencies between BBN predictions and observations. This has proved to be of limited usefulness in that the inconsistencies were resolved by
1520:
The predicted abundance of CNO isotopes produced in Big Bang nucleosynthesis is expected to be on the order of 10 that of H, making them essentially undetectable and negligible. Indeed, none of these primordial isotopes of the elements from beryllium to oxygen have yet been detected, although those
762:
The key parameter which allows one to calculate the effects of Big Bang nucleosynthesis is the baryon/photon number ratio, which is a small number of order 6 Ă— 10. This parameter corresponds to the baryon density and controls the rate at which nucleons collide and react; from this it is possible to
1539:
One analogy is to think of helium-4 as ash, and the amount of ash that one forms when one completely burns a piece of wood is insensitive to how one burns it. The resort to the BBN theory of the helium-4 abundance is necessary as there is far more helium-4 in the universe than can be explained by
1436:
One feature of BBN is that the physical laws and constants that govern the behavior of matter at these energies are very well understood, and hence BBN lacks some of the speculative uncertainties that characterize earlier periods in the life of the universe. Another feature is that the process of
1015:
At times much earlier than 1 sec, these reactions were fast and maintained the n/p ratio close to 1:1. As the temperature dropped, the equilibrium shifted in favour of protons due to their slightly lower mass, and the n/p ratio smoothly decreased. These reactions continued until the decreasing
1444:
are less stable than helium nuclei, and the protons and neutrons have a strong tendency to form helium-4. However, forming helium-4 requires the intermediate step of forming deuterium. Before nucleosynthesis began, the temperature was high enough for many photons to have energy greater than the
1688:
It is very hard to come up with another process that would produce deuterium other than by nuclear fusion. Such a process would require that the temperature be hot enough to produce deuterium, but not hot enough to produce helium-4, and that this process should immediately cool to non-nuclear
1817:: a non-standard BBN scenario assumes that the Big Bang occurred, but inserts additional physics in order to see how this affects elemental abundances. These pieces of additional physics include relaxing or removing the assumption of homogeneity, or inserting new particles such as massive 806:
The neutron–proton ratio was set by Standard Model physics before the nucleosynthesis era, essentially within the first 1-second after the Big Bang. Neutrons can react with positrons or electron neutrinos to create protons and other products in one of the following reactions:
1692:
Producing deuterium by fission is also difficult. The problem here again is that deuterium is very unlikely due to nuclear processes, and that collisions between atomic nuclei are likely to result either in the fusion of the nuclei, or in the release of free neutrons or
1517:). However, this process is very slow and requires much higher densities, taking tens of thousands of years to convert a significant amount of helium to carbon in stars, and therefore it made a negligible contribution in the minutes following the Big Bang. 1664:
There are no known post-Big Bang processes which can produce significant amounts of deuterium. Hence observations about deuterium abundance suggest that the universe is not infinitely old, which is in accordance with the Big Bang theory.
771:, trace amounts (on the order of 10) of lithium, and negligible heavier elements. That the observed abundances in the universe are generally consistent with these abundance numbers is considered strong evidence for the Big Bang theory. 1521:
of beryllium and boron may be able to be detected in the future. So far, the only stable nuclides known experimentally to have been made during Big Bang nucleosynthesis are protium, deuterium, helium-3, helium-4, and lithium-7.
746:
The fusion of nuclei occurred between roughly 10 seconds to 20 minutes after the Big Bang; this corresponds to the temperature range when the universe was cool enough for deuterium to survive, but hot and dense enough for
2211:
Coc, Alain; Vangioni, Elisabeth (2014). "Revised Big Bang Nucleosynthesis with long-lived negatively charged massive particles: Impact of new 6Li limits, primordial 9Be nucleosynthesis, and updated recombination rates".
1784:
The present measurement of helium-4 indicates good agreement, and yet better agreement for helium-3. But for lithium-7, there is a significant discrepancy between BBN and WMAP/Planck, and the abundance derived from
912: 1010: 1793:", is considered a problem for the original models, that have resulted in revised calculations of the standard BBN based on new nuclear data, and to various reevaluation proposals for primordial 2031: 2015: 1142: 1346: 1414: 1210: 1083: 1029:
The baryon–photon ratio, η, is the key parameter determining the abundances of light elements after nucleosynthesis ends. Baryons and light elements can fuse in the following main reactions:
1278: 1727:
In order to test these predictions, it is necessary to reconstruct the primordial abundances as faithfully as possible, for instance by observing astronomical objects in which very little
3120:, in which Alpher and Gamow suggested that the light elements were created by hydrogen ions capturing neutrons in the hot, dense early universe. Bethe's name was added for symmetry 1681:) makes up most of the mass of the universe. This explanation is also consistent with calculations that show that a universe made mostly of protons and neutrons would be far more 1781:
give an independent value for the baryon-to-photon ratio. Using this value, are the BBN predictions for the abundances of light elements in agreement with the observations?
1701:
was proposed as a source of deuterium. That theory failed to account for the abundance of deuterium, but led to explanations of the source of other light elements.
160: 1762:
of the baryon-to-photon ratio? Or more precisely, allowing for the finite precision of both the predictions and the observations, one asks: is there some
1437:
nucleosynthesis is determined by conditions at the start of this phase of the life of the universe, and proceeds independently of what happened before.
531: 1754:, it has one unique value of the baryon-to-photon ratio. For a long time, this meant that to test BBN theory against observations one had to ask: can 1902: 2803:
Malaney, Robert A.; Mathews, Grant J. (1993). "Probing the early universe: A review of primordial nucleosynthesis beyond the standard big bang".
2137: 2469: 1715:
Lithium-7 and lithium-6 produced in the Big Bang are on the order of: lithium-7 to be 10 of all primordial nuclides; and lithium-6 around 10.
2330: 2053: 794:
The creation of light elements during BBN was dependent on a number of parameters; among those was the neutron–proton ratio (calculable from
786:
study of how nuclear reaction rate uncertainties impact isotope predictions, over the relevant temperature range, was carried out in 1993.
601: 3007:
Burles, Scott; Kenneth M. Nollett; Michael S. Turner (2001). "What Is The BBN Prediction for the Baryon Density and How Reliable Is It?".
2898: 3312: 2494:
A. Coc; et al. (2004). "Updated Big Bang Nucleosynthesis confronted to WMAP observations and to the Abundance of Light Elements".
1628: 2938:
Burles, Scott; Nollett, Kenneth M.; Turner, Michael S. (1999-03-19). "Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space".
2399: 2380: 2593:
T. M. Bania, R. T. Rood & D. S. Balser (2002). "The cosmological density of baryons from observations of 3He+ in the Milky Way".
1600: 1581: 813: 3581: 1735:) or by observing objects that are very far away, and thus can be seen in a very early stage of their evolution (such as distant 1689:
temperatures after no more than a few minutes. It would also be necessary for the deuterium to be swept away before it reoccurs.
2036:
Michael S. Smith, Lawrence H. Kawano and Robert A. Malaney, The Astrophysical Journal Supplement Series, 85:219-247, 1993 April.
1607: 3064: 2308: 2120: 1770: 1742:
As noted above, in the standard picture of BBN, all of the light element abundances depend on the amount of ordinary matter (
3101: 3274: 1774: 335: 1813:
In addition to the standard BBN scenario there are numerous non-standard BBN scenarios. These should not be confused with
1614: 918: 3393: 2960:
Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han (February 2016). "Big Bang Nucleosynthesis: 2015".
1089: 3472: 3408: 2545:
K. A. Olive & E. A. Skillman (2004). "A Realistic Determination of the Error on the Primordial Helium Abundance".
1284: 1647: 1596: 1352: 1148: 1039: 544: 2233:
Bludman, S. A. (December 1998). "Baryonic Mass Fraction in Rich Clusters and the Total Mass Density in the Cosmos".
1216: 1470: 594: 3495: 3279:
C. Pitrou, A. Coc, J.-P. Uzan, E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions
2639:
J. M. O'Meara; et al. (2001). "The Deuterium to Hydrogen Abundance Ratio Towards a Fourth QSO: HS0105+1619".
3403: 3305: 1489:
indicating the origins – including big bang nucleosynthesis â€“ of the elements. All elements above 103 (
177: 1789:. The discrepancy is a factor of 2.4―4.3 below the theoretically predicted value. This discrepancy, called the " 2288: 1585: 539: 263: 253: 2415:
R. H. Cyburt, B. D. Fields & K. A. Olive (2008). "A Bitter Pill: The Primordial Lithium Problem Worsens".
3425: 1863: 182: 105: 3150:
These two 1948 papers of Gamow laid the foundation for our present understanding of big-bang nucleosynthesis
1790: 3199:
Alpher, R. A. (1948). "A Neutron-Capture Theory of the Formation and Relative Abundance of the Elements".
2867: 587: 563: 110: 1887: 3486: 3433: 3360: 3329: 3321: 3298: 1843: 523: 329: 309: 117: 62: 2932: 1621: 3397: 155: 2145: 2020:
Robert V. Wagoner, William A. Fowler, and F. Hoyle, The Astrophysical Journal, Vol. 148, April 1967.
720:
Elements heavier than lithium are thought to have been created later in the life of the Universe by
3576: 3117: 2477: 324: 3347: 1858: 1794: 1728: 1574: 1541: 1506: 783: 721: 292: 172: 2300: 3234:(1948), 1577. This paper contains the first estimate of the present temperature of the universe 2906: 2842: 1814: 1751: 1017: 2850: 736:
The initial conditions (neutron–proton ratio) were set in the first second after the Big Bang.
2875: 2235: 1698: 1505:. This deficit of larger atoms also limited the amounts of lithium-7 produced during BBN. In 497: 299: 241: 2714: 3247: 3208: 3163: 3133: 3026: 2979: 2812: 2759: 2710: 2658: 2602: 2564: 2513: 2434: 2396: 2377: 2349: 2254: 2072: 1989: 1938: 1514: 510: 482: 304: 2085: 2048: 8: 3560: 2189: 1786: 1778: 755: 658:
is thought by most cosmologists to have occurred from 10 seconds to 20 minutes after the
402: 372: 319: 275: 167: 57: 3251: 3212: 3167: 3137: 3030: 2983: 2921: 2816: 2763: 2662: 2606: 2568: 2517: 2446: 2438: 2353: 2258: 2076: 1993: 1942: 442: 3548: 3536: 3356: 3280: 3263: 3187: 3087: 3079: 3071: 3042: 3016: 2995: 2969: 2939: 2783: 2749: 2726: 2700: 2674: 2648: 2626: 2580: 2554: 2529: 2503: 2450: 2424: 2362: 2339: 2325: 2293: 2270: 2244: 2213: 2193: 2175: 2090: 2062: 2032:"EXPERIMENTAL, COMPUTATIONAL, AND OBSERVATIONAL ANALYSIS OF PRIMORDIAL NUCLEOSYNTHESIS" 1962: 1928: 667: 615: 462: 432: 397: 367: 314: 258: 27: 3586: 3352: 3179: 3046: 2999: 2824: 2775: 2730: 2618: 2454: 2304: 2197: 2116: 2094: 1966: 1954: 774:
In this field, for historical reasons it is customary to quote the helium-4 fraction
492: 2678: 2584: 2533: 2274: 3512: 3267: 3255: 3216: 3191: 3171: 3141: 3034: 2987: 2820: 2787: 2767: 2718: 2688: 2666: 2630: 2610: 2572: 2521: 2442: 2357: 2262: 2185: 2108: 2080: 1997: 1946: 575: 377: 213: 82: 1669:
be consistent with a model that presumes that most of the universe is composed of
778:, symbol Y, so that 25% helium-4 means that helium-4 atoms account for 25% of the 387: 362: 3105: 3098: 2991: 2722: 2403: 2384: 1980:
Peebles, P. J. E. (1966). "Primeval Helium Abundance and the Primeval Fireball".
1853: 1848: 1694: 1481: 655: 502: 437: 422: 407: 392: 382: 246: 143: 3006: 3500: 3038: 2871: 2001: 1486: 795: 748: 732:
There are several important characteristics of Big Bang nucleosynthesis (BBN):
631: 487: 447: 2927: 1950: 1509:, the bottleneck is passed by triple collisions of helium-4 nuclei, producing 662:. It is thought to be responsible for the formation of most of the universe's 3570: 3145: 1958: 472: 457: 357: 3220: 2414: 1473:
that outlined the theory of light-element production in the early universe.
3524: 3415: 3385: 3380: 3375: 3364: 3342: 3290: 3183: 3124:
Gamow, G. (1948). "The Origin of Elements and the Separation of Galaxies".
3059: 2937: 2779: 2622: 1826: 1732: 1497:
Big Bang nucleosynthesis produced very few nuclei of elements heavier than
1466: 1441: 714: 694: 477: 452: 427: 412: 268: 3238:
Alpher, R. A.; Herman, R.; Gamow, G. (1948). "Evolution of the Universe".
2592: 1766:
of baryon-to-photon values which can account for all of the observations?
3370: 3227:
R. A. Alpher and R. Herman, "On the Relative Abundance of the Elements,"
3091: 3078:; Forensic Cosmology: Probing Baryons and Neutrinos With BBN and the CBR 3075: 3021: 2944: 2754: 2705: 2653: 2559: 2508: 2249: 1678: 1454: 1446: 710: 225: 218: 2771: 3448: 3443: 3083: 1769:
More recently, the question has changed: Precision observations of the
1588: in this section. Unsourced material may be challenged and removed. 1490: 1465:
The history of Big Bang nucleosynthesis began with the calculations of
643: 467: 3467: 2295:
The Big Bang and Other Explosions in Nuclear and Particle Astrophysics
1919:
Coc, Alain; Vangioni, Elisabeth (2017). "Primordial nucleosynthesis".
739:
The universe was very close to homogeneous at this time, and strongly
3453: 3259: 3175: 3070:
Steigman, Gary, Primordial Nucleosynthesis: Successes And Challenges
2846: 2738:"A probable stellar solution to the cosmological lithium discrepancy" 2138:"Equilibrium and change: The physics behind Big Bang Nucleosynthesis" 1553: 740: 706: 690: 674: 417: 2737: 2614: 2218: 1563: 3337: 3284: 2974: 2670: 2576: 2525: 2266: 2180: 1933: 1838: 1818: 1530: 768: 764: 698: 682: 670: 659: 651: 639: 150: 52: 45: 2429: 2344: 2067: 3438: 2317: 1747: 1710: 1674: 1502: 1501:
due to a bottleneck: the absence of a stable nucleus with 8 or 5
1498: 1450: 702: 686: 635: 2470:"Elements of the past: Big Bang Nucleosynthesis and observation" 2899:"Big Bang Nucleosynthesis: Cooking up the first light elements" 1743: 1736: 1670: 1510: 907:{\displaystyle {\ce {n\ +e+<=>{\overline {\nu }}_{e}+p}}} 678: 663: 647: 2024: 3086:; and Big Bang Nucleosynthesis: Probing the First 20 Minutes 2864:
The Cosmic Compendium: The Big Bang & the Early Universe
35: 2049:"Primordial Nucleosynthesis in the Precision Cosmology Era" 779: 3519: 2837:
Soler, F. J. P., Froggatt, C. D., & Muheim, F., eds.,
2691:(2005). "The Lithium Content of the Galactic Halo Stars". 2540:
For the observational values, see the following articles:
1886:
Patrignani, C.; et al. (Particle Data Group) (2016).
693:(Li). In addition to these stable nuclei, two unstable or 673:(He)), along with small fractions of the hydrogen isotope 2839:
Neutrinos in Particle Physics, Astrophysics and Cosmology
2544: 942: 894: 2016:"ON THE SYNTHESIS OF ELEMENTS AT VERY HIGH TEMPERATURES" 724:, through the formation, evolution and death of stars. 2686: 1758:
of the light element observations be explained with a
966: 858: 717:
later decayed into He and Li, respectively, as above.
3484: 1355: 1287: 1219: 1151: 1092: 1042: 1005:{\displaystyle {\ce {n \ + \nu_{e}<=> p + e-}}} 921: 816: 2959: 1718: 3154:Gamow, G. (1948). "The Evolution of the Universe". 1137:{\displaystyle {\ce {p + ^2H -> ^3He + \gamma}}} 2292: 2008: 1408: 1340: 1272: 1204: 1136: 1077: 1004: 906: 3237: 2638: 2490:For a recent calculation of BBN predictions, see 1449:decay of the two major unstable products of BBN, 1341:{\displaystyle {\ce {^3He + ^2H -> ^4He + p}}} 974: 973: 956: 955: 866: 865: 848: 847: 3568: 2796: 1973: 1409:{\displaystyle {\ce {^3H + ^2H -> ^4He + n}}} 1205:{\displaystyle {\ce {^2H + ^2H -> ^3He + n}}} 1078:{\displaystyle {\ce {p + n -> ^2H + \gamma}}} 3060:Non-Standard Big Bang Nucleosynthesis Scenarios 1273:{\displaystyle {\ce {^2H + ^2H -> ^3H + p}}} 2802: 2417:Journal of Cosmology and Astroparticle Physics 2232: 1912: 3306: 2331:Annual Review of Nuclear and Particle Science 2166:Coc, A (2017). "Primordial Nucleosynthesis". 2054:Annual Review of Nuclear and Particle Science 2046: 650:as a nucleus) during the early phases of the 595: 3320: 2210: 1918: 754:It was widespread, encompassing the entire 3313: 3299: 3275:Java Big Bang element abundance calculator 1885: 602: 588: 34: 3020: 2973: 2943: 2890: 2753: 2704: 2652: 2558: 2507: 2428: 2378:"Chapter 12: Cosmic Background Radiation" 2361: 2343: 2248: 2217: 2179: 2107: 2084: 2066: 1932: 1808: 1648:Learn how and when to remove this message 1493:) are also man-made and are not included. 751:reactions to occur at a significant rate. 1480: 2735: 2397:"Unit 4: The Evolution Of The Universe" 2299:. Singapore: World Scientific. p.  2287: 1979: 1921:International Journal of Modern Physics 949: 841: 801: 789: 685:(He), and a very small fraction of the 3569: 3198: 2493: 2323: 1752:universe is presumed to be homogeneous 1024: 3294: 3153: 3123: 3096:R. A. Alpher, H. A. Bethe, G. Gamow, 2933:Big Bang nucleosynthesis on arxiv.org 2168:Journal of Physics: Conference Series 2086:10.1146/annurev.nucl.56.080805.140437 1881: 1879: 1771:cosmic microwave background radiation 2953: 1775:Wilkinson Microwave Anisotropy Probe 1586:adding citations to reliable sources 1557: 1460: 3065:Max-Planck-Institut fĂĽr Astrophysik 2165: 1469:in the 1940s. Alpher published the 1440:As the universe expands, it cools. 13: 3473:Graphical timeline of the Big Bang 2363:10.1146/annurev-nucl-102010-130445 2159: 1876: 727: 697:isotopes were produced: the heavy 330:2dF Galaxy Redshift Survey ("2dF") 14: 3598: 2896: 2885: 2467: 2135: 1731:has taken place (such as certain 1719:Measurements and status of theory 1476: 634:other than those of the lightest 545:Timeline of cosmological theories 310:Cosmic Background Explorer (COBE) 16:Process during the early universe 3554: 3542: 3530: 3518: 3506: 3494: 3466: 2326:"The Primordial Lithium Problem" 1908:from the original on 2016-12-01. 1562: 569: 558: 557: 3099:The Origin of Chemical Elements 2856: 2831: 2461: 2408: 2389: 2370: 2281: 2226: 2204: 1797:, especially the abundances of 1795:proton–proton nuclear reactions 1573:needs additional citations for 798:) and the baryon-photon ratio. 767:, about 0.01% of deuterium and 325:Sloan Digital Sky Survey (SDSS) 178:Future of an expanding universe 3582:Physical cosmological concepts 2190:10.1088/1742-6596/665/1/012001 2129: 2101: 2040: 1384: 1316: 1248: 1180: 1112: 1053: 976: 951: 868: 843: 540:History of the Big Bang theory 336:Wilkinson Microwave Anisotropy 1: 2736:A. Korn; et al. (2006). 2447:10.1088/1475-7516/2008/11/012 1869: 1864:Ultimate fate of the universe 532:Discovery of cosmic microwave 183:Ultimate fate of the universe 2992:10.1103/RevModPhys.88.015004 2825:10.1016/0370-1573(93)90134-Y 2693:Astronomy & Astrophysics 2030:Smith, Kawano, and Malaney. 1791:cosmological lithium problem 1547: 883: 7: 3116:(1948), 803. The so-called 1832: 1524: 1427: 300:Black Hole Initiative (BHI) 10: 3603: 3434:Heat death of the universe 3330:Chronology of the universe 3039:10.1103/PhysRevD.63.063512 2723:10.1051/0004-6361:20042491 2014:Wagoner, Fowler and Hoyle 2002:10.1103/PhysRevLett.16.410 1888:"Big-Bang nucleosynthesis" 1844:Chronology of the universe 1708: 1704: 1597:"Big Bang nucleosynthesis" 1551: 1528: 624:primordial nucleosynthesis 63:Chronology of the universe 3462: 3424: 3328: 2324:Fields, Brian D. (2011). 1951:10.1142/S0218301317410026 1746:) relative to radiation ( 1398: 1383: 1368: 1330: 1315: 1300: 1262: 1247: 1232: 1194: 1179: 1164: 1126: 1111: 1067: 156:Expansion of the universe 3390:Big Bang nucleosynthesis 3322:Timeline of the Big Bang 3146:10.1103/physrev.74.505.2 2928:BBN (cosmology tutorial) 1471:Alpher–Bethe–Gamow paper 1393: 1387: 1378: 1372: 1363: 1357: 1325: 1319: 1310: 1304: 1295: 1289: 1257: 1251: 1242: 1236: 1227: 1221: 1189: 1183: 1174: 1168: 1159: 1153: 1121: 1115: 1106: 1100: 1062: 1056: 620:Big Bang nucleosynthesis 320:Planck space observatory 106:Gravitational wave (GWB) 3348:Grand unification epoch 3221:10.1103/PhysRev.74.1737 3054:: FERMILAB-Pub-00-239-A 2715:2005A&A...442..961C 1982:Physical Review Letters 1859:Stellar nucleosynthesis 1729:stellar nucleosynthesis 1542:stellar nucleosynthesis 722:stellar nucleosynthesis 630:) is the production of 173:Inhomogeneous cosmology 2891:For a general audience 2047:Gary Steigman (2007). 1815:non-standard cosmology 1809:Non-standard scenarios 1494: 1410: 1342: 1274: 1206: 1138: 1079: 1006: 908: 796:Standard Model physics 2641:Astrophysical Journal 2547:Astrophysical Journal 2496:Astrophysical Journal 2395:David Toback (2009). 2376:David Toback (2009). 2236:Astrophysical Journal 1699:cosmic ray spallation 1484: 1411: 1343: 1275: 1207: 1139: 1080: 1007: 909: 646:, H, having a single 626:, and abbreviated as 264:Large-scale structure 242:Shape of the universe 3426:Fate of the universe 3057:Jedamzik, Karsten, " 2687:C. Charbonnel & 2115:. World Scientific. 2113:Nuclei in the Cosmos 2109:Bertulani, Carlos A. 1697:. During the 1970s, 1582:improve this article 1515:triple-alpha process 1353: 1285: 1217: 1149: 1090: 1040: 919: 814: 802:Neutron–proton ratio 790:Important parameters 576:Astronomy portal 534:background radiation 511:List of cosmologists 3252:1948Natur.162..774A 3213:1948PhRv...74.1737A 3168:1948Natur.162..680G 3138:1948PhRv...74..505G 3031:2001PhRvD..63f3512B 2984:2016RvMP...88a5004C 2817:1993PhR...229..145M 2772:10.1038/nature05011 2764:2006Natur.442..657K 2663:2001ApJ...552..718O 2607:2002Natur.415...54B 2569:2004ApJ...617...29O 2518:2004ApJ...600..544C 2439:2008JCAP...11..012C 2354:2011ARNPS..61...47F 2259:1998ApJ...508..535B 2077:2007ARNPS..57..463S 1994:1966PhRvL..16..410P 1943:2017IJMPE..2641002C 1787:Population II stars 1025:Baryon–photon ratio 962: 944: 896: 854: 756:observable universe 276:Structure formation 168:Friedmann equations 58:Age of the universe 22:Part of a series on 3357:Inflationary epoch 3104:2013-02-07 at the 2909:on 8 February 2007 2480:on 8 February 2007 2402:2010-07-06 at the 2383:2010-07-06 at the 2148:on 8 February 2007 1685:than is observed. 1495: 1406: 1338: 1270: 1202: 1134: 1075: 1002: 981: 932: 904: 877: 873: 616:physical cosmology 315:Dark Energy Survey 259:Large quasar group 28:Physical cosmology 3482: 3481: 3394:Matter domination 3353:Electroweak epoch 3246:(4124): 774–775. 3207:(12): 1737–1742. 2954:Academic articles 2862:Anderson, R. W., 2310:978-981-02-2024-2 2122:978-981-4417-66-2 1658: 1657: 1650: 1632: 1485:A version of the 1461:History of theory 1421: 1420: 1404: 1394: 1392: 1391: 1390: 1379: 1377: 1376: 1375: 1364: 1362: 1361: 1360: 1336: 1326: 1324: 1323: 1322: 1311: 1309: 1308: 1307: 1296: 1294: 1293: 1292: 1268: 1258: 1256: 1255: 1254: 1243: 1241: 1240: 1239: 1228: 1226: 1225: 1224: 1200: 1190: 1188: 1187: 1186: 1175: 1173: 1172: 1171: 1160: 1158: 1157: 1156: 1122: 1120: 1119: 1118: 1107: 1105: 1104: 1103: 1096: 1063: 1061: 1060: 1059: 1052: 1046: 994: 987: 983: 939: 928: 925: 902: 891: 886: 875: 830: 823: 820: 715:unstable isotopes 705:(H or T) and the 612: 611: 283: 282: 125: 124: 3594: 3559: 3558: 3557: 3547: 3546: 3545: 3535: 3534: 3533: 3523: 3522: 3511: 3510: 3509: 3499: 3498: 3490: 3470: 3315: 3308: 3301: 3292: 3291: 3271: 3260:10.1038/162774b0 3224: 3195: 3176:10.1038/162680a0 3149: 3092:astro-ph/0307244 3076:astro-ph/0511534 3050: 3024: 3022:astro-ph/0008495 3003: 2977: 2949: 2947: 2945:astro-ph/9903300 2917: 2915: 2914: 2905:. Archived from 2879: 2872:Lulu Press, Inc. 2860: 2854: 2835: 2829: 2828: 2800: 2794: 2791: 2757: 2755:astro-ph/0608201 2734: 2708: 2706:astro-ph/0505247 2682: 2656: 2654:astro-ph/0011179 2634: 2588: 2562: 2560:astro-ph/0405588 2537: 2511: 2509:astro-ph/0309480 2488: 2486: 2485: 2476:. Archived from 2465: 2459: 2458: 2432: 2412: 2406: 2393: 2387: 2374: 2368: 2367: 2365: 2347: 2321: 2315: 2314: 2298: 2285: 2279: 2278: 2252: 2250:astro-ph/9706047 2230: 2224: 2223: 2221: 2208: 2202: 2201: 2183: 2163: 2157: 2156: 2154: 2153: 2144:. Archived from 2133: 2127: 2126: 2105: 2099: 2098: 2088: 2070: 2044: 2038: 2028: 2022: 2012: 2006: 2005: 1977: 1971: 1970: 1936: 1916: 1910: 1909: 1907: 1892: 1883: 1804: 1800: 1653: 1646: 1642: 1639: 1633: 1631: 1590: 1566: 1558: 1415: 1413: 1412: 1407: 1405: 1402: 1388: 1373: 1358: 1347: 1345: 1344: 1339: 1337: 1334: 1320: 1305: 1290: 1279: 1277: 1276: 1271: 1269: 1266: 1252: 1237: 1222: 1211: 1209: 1208: 1203: 1201: 1198: 1184: 1169: 1154: 1143: 1141: 1140: 1135: 1133: 1116: 1101: 1094: 1084: 1082: 1081: 1076: 1074: 1057: 1050: 1044: 1032: 1031: 1011: 1009: 1008: 1003: 1001: 1000: 999: 992: 985: 984: 982: 980: 979: 972: 964: 963: 961: 954: 946: 943: 940: 937: 926: 923: 913: 911: 910: 905: 903: 900: 895: 892: 889: 887: 879: 876: 874: 872: 871: 864: 856: 855: 853: 846: 838: 836: 835: 828: 821: 818: 604: 597: 590: 574: 573: 572: 561: 560: 254:Galaxy formation 214:Lambda-CDM model 203: 202: 195:Components  77: 76: 38: 19: 18: 3602: 3601: 3597: 3596: 3595: 3593: 3592: 3591: 3577:Nucleosynthesis 3567: 3566: 3565: 3555: 3553: 3543: 3541: 3531: 3529: 3517: 3507: 3505: 3493: 3485: 3483: 3478: 3458: 3420: 3409:Habitable epoch 3324: 3319: 3229:Physical Review 3201:Physical Review 3162:(4122): 680–2. 3126:Physical Review 3111:Physical Review 3106:Wayback Machine 2956: 2922:Overview of BBN 2920:White, Martin: 2912: 2910: 2903:Einstein Online 2893: 2888: 2883: 2882: 2868:Morrisville, NC 2861: 2857: 2836: 2832: 2805:Physics Reports 2801: 2797: 2748:(7103): 657–9. 2615:10.1038/415054a 2489: 2483: 2481: 2474:Einstein Online 2466: 2462: 2413: 2409: 2404:Wayback Machine 2394: 2390: 2385:Wayback Machine 2375: 2371: 2322: 2318: 2311: 2286: 2282: 2231: 2227: 2209: 2205: 2164: 2160: 2151: 2149: 2142:Einstein Online 2134: 2130: 2123: 2106: 2102: 2045: 2041: 2029: 2025: 2013: 2009: 1988:(10): 410–413. 1978: 1974: 1917: 1913: 1905: 1890: 1884: 1877: 1872: 1854:Relic abundance 1849:Nucleosynthesis 1835: 1811: 1803:Be + H → Be + p 1802: 1799:Be + n → Li + p 1798: 1721: 1713: 1707: 1695:alpha particles 1654: 1643: 1637: 1634: 1591: 1589: 1579: 1567: 1556: 1550: 1533: 1527: 1479: 1463: 1430: 1356: 1354: 1351: 1350: 1288: 1286: 1283: 1282: 1220: 1218: 1215: 1214: 1152: 1150: 1147: 1146: 1093: 1091: 1088: 1087: 1043: 1041: 1038: 1037: 1027: 995: 991: 975: 968: 967: 965: 957: 950: 948: 947: 945: 941: 936: 922: 920: 917: 916: 893: 888: 878: 867: 860: 859: 857: 849: 842: 840: 839: 837: 831: 827: 817: 815: 812: 811: 804: 792: 730: 728:Characteristics 656:nucleosynthesis 654:. This type of 622:(also known as 608: 570: 568: 550: 549: 536: 533: 526: 524:Subject history 516: 515: 507: 352: 344: 343: 340: 337: 295: 285: 284: 247:Galaxy filament 200: 188: 187: 139: 134:Expansion  127: 126: 111:Microwave (CMB) 90:Nucleosynthesis 74: 17: 12: 11: 5: 3600: 3590: 3589: 3584: 3579: 3564: 3563: 3551: 3539: 3527: 3515: 3503: 3480: 3479: 3477: 3476: 3463: 3460: 3459: 3457: 3456: 3451: 3446: 3441: 3436: 3430: 3428: 3422: 3421: 3419: 3418: 3413: 3412: 3411: 3401: 3383: 3378: 3373: 3368: 3350: 3345: 3340: 3334: 3332: 3326: 3325: 3318: 3317: 3310: 3303: 3295: 3289: 3288: 3277: 3272: 3235: 3225: 3196: 3151: 3132:(4): 505–506. 3121: 3094: 3084:hep-ph/0309347 3068: 3055: 3004: 2962:Rev. Mod. Phys 2955: 2952: 2951: 2950: 2935: 2930: 2924: 2918: 2897:Weiss, Achim. 2892: 2889: 2887: 2886:External links 2884: 2881: 2880: 2855: 2830: 2811:(4): 145–219. 2795: 2793: 2792: 2699:(3): 961–992. 2683: 2671:10.1086/320579 2647:(2): 718–730. 2635: 2601:(6867): 54–7. 2589: 2577:10.1086/425170 2539: 2538: 2526:10.1086/380121 2502:(2): 544–552. 2468:Weiss, Achim. 2460: 2407: 2388: 2369: 2316: 2309: 2289:Schramm, D. N. 2280: 2267:10.1086/306412 2243:(2): 535–538. 2225: 2203: 2158: 2136:Weiss, Achim. 2128: 2121: 2100: 2061:(1): 463–491. 2039: 2023: 2007: 1972: 1927:(8): 1741002. 1911: 1874: 1873: 1871: 1868: 1867: 1866: 1861: 1856: 1851: 1846: 1841: 1834: 1831: 1810: 1807: 1733:dwarf galaxies 1720: 1717: 1709:Main article: 1706: 1703: 1656: 1655: 1570: 1568: 1561: 1552:Main article: 1549: 1546: 1529:Main article: 1526: 1523: 1487:periodic table 1478: 1477:Heavy elements 1475: 1462: 1459: 1429: 1426: 1419: 1418: 1417: 1416: 1401: 1397: 1386: 1382: 1371: 1367: 1348: 1333: 1329: 1318: 1314: 1303: 1299: 1280: 1265: 1261: 1250: 1246: 1235: 1231: 1212: 1197: 1193: 1182: 1178: 1167: 1163: 1144: 1132: 1129: 1125: 1114: 1110: 1099: 1085: 1073: 1070: 1066: 1055: 1049: 1026: 1023: 1018:binding energy 1013: 1012: 998: 990: 978: 971: 960: 953: 935: 931: 914: 899: 885: 882: 870: 863: 852: 845: 834: 826: 803: 800: 791: 788: 760: 759: 752: 744: 737: 729: 726: 677:(H or D), the 610: 609: 607: 606: 599: 592: 584: 581: 580: 579: 578: 566: 552: 551: 548: 547: 542: 537: 530: 527: 522: 521: 518: 517: 514: 513: 506: 505: 500: 495: 490: 485: 480: 475: 470: 465: 460: 455: 450: 445: 440: 435: 430: 425: 420: 415: 410: 405: 400: 395: 390: 385: 380: 375: 370: 365: 360: 354: 353: 350: 349: 346: 345: 342: 341: 334: 332: 327: 322: 317: 312: 307: 302: 296: 291: 290: 287: 286: 281: 280: 279: 278: 266: 261: 256: 244: 236: 235: 231: 230: 229: 228: 216: 208: 207: 201: 194: 193: 190: 189: 186: 185: 180: 175: 170: 158: 153: 140: 133: 132: 129: 128: 123: 122: 121: 120: 118:Neutrino (CNB) 108: 100: 99: 95: 94: 93: 92: 75: 73:Early universe 72: 71: 68: 67: 66: 65: 60: 55: 40: 39: 31: 30: 24: 23: 15: 9: 6: 4: 3: 2: 3599: 3588: 3585: 3583: 3580: 3578: 3575: 3574: 3572: 3562: 3552: 3550: 3540: 3538: 3528: 3526: 3521: 3516: 3514: 3504: 3502: 3497: 3492: 3491: 3488: 3475: 3474: 3469: 3465: 3464: 3461: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3431: 3429: 3427: 3423: 3417: 3414: 3410: 3407: 3406: 3405: 3402: 3399: 3398:Recombination 3395: 3391: 3387: 3384: 3382: 3379: 3377: 3374: 3372: 3369: 3366: 3362: 3358: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3335: 3333: 3331: 3327: 3323: 3316: 3311: 3309: 3304: 3302: 3297: 3296: 3293: 3286: 3282: 3278: 3276: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3241: 3236: 3233: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3169: 3165: 3161: 3157: 3152: 3147: 3143: 3139: 3135: 3131: 3127: 3122: 3119: 3115: 3112: 3108: 3107: 3103: 3100: 3095: 3093: 3089: 3085: 3081: 3077: 3073: 3069: 3066: 3062: 3061: 3056: 3053: 3048: 3044: 3040: 3036: 3032: 3028: 3023: 3018: 3015:(6): 063512. 3014: 3010: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2976: 2971: 2968:(1): 015004. 2967: 2963: 2958: 2957: 2946: 2941: 2936: 2934: 2931: 2929: 2926:Wright, Ned: 2925: 2923: 2919: 2908: 2904: 2900: 2895: 2894: 2877: 2873: 2869: 2865: 2859: 2852: 2848: 2844: 2840: 2834: 2826: 2822: 2818: 2814: 2810: 2806: 2799: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2756: 2751: 2747: 2743: 2739: 2732: 2728: 2724: 2720: 2716: 2712: 2707: 2702: 2698: 2694: 2690: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2655: 2650: 2646: 2642: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2600: 2596: 2590: 2586: 2582: 2578: 2574: 2570: 2566: 2561: 2556: 2552: 2548: 2542: 2541: 2535: 2531: 2527: 2523: 2519: 2515: 2510: 2505: 2501: 2497: 2492: 2491: 2479: 2475: 2471: 2464: 2456: 2452: 2448: 2444: 2440: 2436: 2431: 2426: 2422: 2418: 2411: 2405: 2401: 2398: 2392: 2386: 2382: 2379: 2373: 2364: 2359: 2355: 2351: 2346: 2341: 2337: 2333: 2332: 2327: 2320: 2312: 2306: 2302: 2297: 2296: 2290: 2284: 2276: 2272: 2268: 2264: 2260: 2256: 2251: 2246: 2242: 2238: 2237: 2229: 2220: 2215: 2207: 2199: 2195: 2191: 2187: 2182: 2177: 2173: 2169: 2162: 2147: 2143: 2139: 2132: 2124: 2118: 2114: 2110: 2104: 2096: 2092: 2087: 2082: 2078: 2074: 2069: 2064: 2060: 2056: 2055: 2050: 2043: 2037: 2033: 2027: 2021: 2017: 2011: 2003: 1999: 1995: 1991: 1987: 1983: 1976: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1935: 1930: 1926: 1922: 1915: 1904: 1900: 1896: 1895:Chin. Phys. C 1889: 1882: 1880: 1875: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1836: 1830: 1828: 1822: 1820: 1816: 1806: 1796: 1792: 1788: 1782: 1780: 1776: 1772: 1767: 1765: 1761: 1757: 1753: 1750:). Since the 1749: 1745: 1740: 1738: 1734: 1730: 1725: 1716: 1712: 1702: 1700: 1696: 1690: 1686: 1684: 1680: 1676: 1672: 1666: 1662: 1652: 1649: 1641: 1638:February 2023 1630: 1627: 1623: 1620: 1616: 1613: 1609: 1606: 1602: 1599: â€“  1598: 1594: 1593:Find sources: 1587: 1583: 1577: 1576: 1571:This section 1569: 1565: 1560: 1559: 1555: 1545: 1543: 1537: 1532: 1522: 1518: 1516: 1512: 1508: 1504: 1500: 1492: 1488: 1483: 1474: 1472: 1468: 1458: 1456: 1452: 1448: 1443: 1442:Free neutrons 1438: 1434: 1425: 1399: 1395: 1380: 1369: 1365: 1349: 1331: 1327: 1312: 1301: 1297: 1281: 1263: 1259: 1244: 1233: 1229: 1213: 1195: 1191: 1176: 1165: 1161: 1145: 1130: 1127: 1123: 1108: 1097: 1086: 1071: 1068: 1064: 1047: 1036: 1035: 1034: 1033: 1030: 1022: 1019: 996: 988: 969: 958: 933: 929: 915: 897: 880: 861: 850: 832: 824: 810: 809: 808: 799: 797: 787: 785: 781: 777: 772: 770: 766: 757: 753: 750: 745: 742: 738: 735: 734: 733: 725: 723: 718: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 676: 672: 669: 665: 661: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 617: 605: 600: 598: 593: 591: 586: 585: 583: 582: 577: 567: 565: 556: 555: 554: 553: 546: 543: 541: 538: 535: 529: 528: 525: 520: 519: 512: 509: 508: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 355: 348: 347: 339: 333: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 297: 294: 289: 288: 277: 274: 270: 267: 265: 262: 260: 257: 255: 252: 248: 245: 243: 240: 239: 238: 237: 233: 232: 227: 224: 220: 217: 215: 212: 211: 210: 209: 205: 204: 198: 192: 191: 184: 181: 179: 176: 174: 171: 169: 166: 162: 159: 157: 154: 152: 149: 145: 142: 141: 137: 131: 130: 119: 116: 112: 109: 107: 104: 103: 102: 101: 97: 96: 91: 88: 84: 81: 80: 79: 78: 70: 69: 64: 61: 59: 56: 54: 51: 47: 44: 43: 42: 41: 37: 33: 32: 29: 26: 25: 21: 20: 3561:Solar System 3471: 3416:Reionization 3389: 3386:Photon epoch 3381:Lepton epoch 3376:Hadron epoch 3365:Baryogenesis 3343:Planck epoch 3243: 3239: 3231: 3228: 3204: 3200: 3159: 3155: 3129: 3125: 3113: 3110: 3097: 3058: 3051: 3012: 3009:Phys. Rev. D 3008: 2965: 2961: 2911:. Retrieved 2907:the original 2902: 2863: 2858: 2838: 2833: 2808: 2804: 2798: 2745: 2741: 2696: 2692: 2644: 2640: 2598: 2594: 2553:(1): 29–49. 2550: 2546: 2499: 2495: 2482:. Retrieved 2478:the original 2473: 2463: 2420: 2416: 2410: 2391: 2372: 2338:(1): 47–68. 2335: 2329: 2319: 2294: 2283: 2240: 2234: 2228: 2206: 2171: 2167: 2161: 2150:. Retrieved 2146:the original 2141: 2131: 2112: 2103: 2058: 2052: 2042: 2035: 2026: 2019: 2010: 1985: 1981: 1975: 1924: 1920: 1914: 1898: 1894: 1827:tau neutrino 1823: 1812: 1783: 1768: 1763: 1760:single value 1759: 1755: 1741: 1726: 1722: 1714: 1691: 1687: 1682: 1667: 1663: 1659: 1644: 1635: 1625: 1618: 1611: 1604: 1592: 1580:Please help 1575:verification 1572: 1538: 1534: 1519: 1496: 1467:Ralph Alpher 1464: 1439: 1435: 1431: 1422: 1028: 1014: 805: 793: 775: 773: 761: 731: 719: 713:(Be). These 627: 623: 619: 613: 338:Probe (WMAP) 272: 269:Reionization 250: 222: 196: 164: 147: 144:Hubble's law 135: 114: 89: 86: 49: 3549:Outer space 3537:Spaceflight 3371:Quark epoch 3067:, Garching. 2843:Baton Rouge 2685:Lithium-7: 2637:Deuterium: 2423:(11): 012. 2219:1403.4156v1 1777:(WMAP) and 1679:dark matter 1455:beryllium-7 1447:radioactive 784:Monte Carlo 743:-dominated. 711:beryllium-7 695:radioactive 293:Experiments 226:Dark matter 219:Dark energy 161:FLRW metric 98:Backgrounds 3571:Categories 3449:Big Bounce 3444:Big Crunch 3285:1801.08023 2975:1505.01076 2913:2007-02-24 2591:Helium-3: 2543:Helium-4: 2484:2007-02-24 2181:1609.06048 2174:: 012001. 2152:2007-02-24 1934:1707.01004 1901:: 100001. 1870:References 1724:big-bang. 1608:newspapers 1491:lawrencium 1021:helium-4. 644:hydrogen-1 373:Copernicus 351:Scientists 206:Components 3513:Astronomy 3454:Big Slurp 3404:Dark ages 3361:Reheating 3118:αβγ paper 3052:Report-no 3047:117792085 3000:118409603 2874:, 2015), 2849:, 2009), 2847:CRC Press 2731:119340132 2689:F. Primas 2455:122212670 2430:0808.2818 2345:1203.3551 2198:250691040 2095:118473571 2068:0712.1100 1967:119410875 1959:0218-3013 1819:neutrinos 1801:, versus 1773:with the 1554:Deuterium 1548:Deuterium 1385:⟶ 1317:⟶ 1249:⟶ 1181:⟶ 1131:γ 1113:⟶ 1072:γ 1054:⟶ 997:− 977:⇀ 970:− 959:− 952:↽ 934:ν 884:¯ 881:ν 869:⇀ 862:− 851:− 844:↽ 741:radiation 707:beryllium 691:lithium-7 675:deuterium 503:Zeldovich 403:Friedmann 378:de Sitter 305:BOOMERanG 234:Structure 199:Structure 83:Inflation 3587:Big Bang 3338:Big Bang 3184:18893719 3102:Archived 2780:16900193 2679:14164537 2623:11780112 2585:15187664 2534:16276658 2400:Archived 2381:Archived 2291:(1996). 2275:16714636 2111:(2013). 1903:Archived 1839:Big Bang 1833:See also 1675:neutrons 1531:Helium-4 1525:Helium-4 1503:nucleons 1428:Sequence 769:helium-3 765:helium-4 709:isotope 701:isotope 699:hydrogen 689:isotope 683:helium-3 681:isotope 671:helium-4 660:Big Bang 652:universe 640:hydrogen 564:Category 483:Suntzeff 443:LemaĂ®tre 393:Einstein 358:Aaronson 151:Redshift 53:Universe 46:Big Bang 3501:Physics 3487:Portals 3439:Big Rip 3268:4113488 3248:Bibcode 3209:Bibcode 3192:4793163 3164:Bibcode 3134:Bibcode 3027:Bibcode 2980:Bibcode 2813:Bibcode 2788:3943644 2760:Bibcode 2711:Bibcode 2659:Bibcode 2631:4303625 2603:Bibcode 2565:Bibcode 2514:Bibcode 2435:Bibcode 2350:Bibcode 2255:Bibcode 2073:Bibcode 1990:Bibcode 1939:Bibcode 1748:photons 1744:baryons 1737:quasars 1711:Lithium 1705:Lithium 1671:protons 1622:scholar 1499:lithium 1451:tritium 776:by mass 703:tritium 687:lithium 668:isotope 636:isotope 488:Sunyaev 473:Schmidt 463:Penzias 458:Penrose 433:Huygens 423:Hawking 408:Galileo 3266:  3240:Nature 3190:  3182:  3156:Nature 3045:  2998:  2851:p. 362 2786:  2778:  2742:Nature 2729:  2677:  2629:  2621:  2595:Nature 2583:  2532:  2453:  2307:  2273:  2196:  2119:  2093:  1965:  1957:  1779:Planck 1683:clumpy 1624:  1617:  1610:  1603:  1595:  1511:carbon 927:  822:  749:fusion 679:helium 664:helium 648:proton 632:nuclei 562:  498:Wilson 493:Tolman 453:Newton 448:Mather 438:Kepler 428:Hubble 388:Ehlers 368:Alpher 363:AlfvĂ©n 271:  249:  221:  163:  146:  138:Future 113:  85:  48:  3525:Stars 3281:arXiv 3264:S2CID 3188:S2CID 3088:arXiv 3080:arXiv 3072:arXiv 3043:S2CID 3017:arXiv 2996:S2CID 2970:arXiv 2940:arXiv 2876:p. 54 2784:S2CID 2750:arXiv 2727:S2CID 2701:arXiv 2675:S2CID 2649:arXiv 2627:S2CID 2581:S2CID 2555:arXiv 2530:S2CID 2504:arXiv 2451:S2CID 2425:arXiv 2340:arXiv 2271:S2CID 2245:arXiv 2214:arXiv 2194:S2CID 2176:arXiv 2091:S2CID 2063:arXiv 1963:S2CID 1929:arXiv 1906:(PDF) 1891:(PDF) 1764:range 1629:JSTOR 1615:books 1513:(the 1507:stars 666:(as 478:Smoot 468:Rubin 413:Gamow 398:Ellis 383:Dicke 3180:PMID 2776:PMID 2619:PMID 2421:2008 2305:ISBN 2117:ISBN 1955:ISSN 1673:and 1601:news 1453:and 780:mass 418:Guth 3256:doi 3244:162 3217:doi 3172:doi 3160:162 3142:doi 3063:". 3035:doi 2988:doi 2821:doi 2809:229 2768:doi 2746:442 2719:doi 2697:442 2667:doi 2645:552 2611:doi 2599:415 2573:doi 2551:617 2522:doi 2500:600 2443:doi 2358:doi 2301:175 2263:doi 2241:508 2186:doi 2172:665 2081:doi 1998:doi 1947:doi 1756:all 1739:). 1584:by 638:of 628:BBN 614:In 3573:: 3396:, 3392:, 3363:, 3359:, 3262:. 3254:. 3242:. 3232:74 3215:. 3205:74 3203:. 3186:. 3178:. 3170:. 3158:. 3140:. 3130:74 3128:. 3114:73 3109:, 3041:. 3033:. 3025:. 3013:63 3011:. 2994:. 2986:. 2978:. 2966:88 2964:. 2901:. 2870:: 2845:: 2819:. 2807:. 2782:. 2774:. 2766:. 2758:. 2744:. 2740:. 2725:. 2717:. 2709:. 2695:. 2673:. 2665:. 2657:. 2643:. 2625:. 2617:. 2609:. 2597:. 2579:. 2571:. 2563:. 2549:. 2528:. 2520:. 2512:. 2498:. 2472:. 2449:. 2441:. 2433:. 2419:. 2356:. 2348:. 2336:61 2334:. 2328:. 2303:. 2269:. 2261:. 2253:. 2239:. 2192:. 2184:. 2170:. 2140:. 2089:. 2079:. 2071:. 2059:57 2057:. 2051:. 2034:, 2018:, 1996:. 1986:16 1984:. 1961:. 1953:. 1945:. 1937:. 1925:26 1923:. 1899:40 1897:. 1893:. 1878:^ 1829:. 1821:. 1805:. 1457:. 1389:He 1321:He 1291:He 1185:He 1117:He 618:, 3489:: 3400:) 3388:( 3367:) 3355:( 3314:e 3307:t 3300:v 3287:; 3283:: 3270:. 3258:: 3250:: 3223:. 3219:: 3211:: 3194:. 3174:: 3166:: 3148:. 3144:: 3136:: 3090:: 3082:: 3074:: 3049:. 3037:: 3029:: 3019:: 3002:. 2990:: 2982:: 2972:: 2948:. 2942:: 2916:. 2878:. 2866:( 2853:. 2841:( 2827:. 2823:: 2815:: 2790:. 2770:: 2762:: 2752:: 2733:. 2721:: 2713:: 2703:: 2681:. 2669:: 2661:: 2651:: 2633:. 2613:: 2605:: 2587:. 2575:: 2567:: 2557:: 2536:. 2524:: 2516:: 2506:: 2487:. 2457:. 2445:: 2437:: 2427:: 2366:. 2360:: 2352:: 2342:: 2313:. 2277:. 2265:: 2257:: 2247:: 2222:. 2216:: 2200:. 2188:: 2178:: 2155:. 2125:. 2097:. 2083:: 2075:: 2065:: 2004:. 2000:: 1992:: 1969:. 1949:: 1941:: 1931:: 1651:) 1645:( 1640:) 1636:( 1626:· 1619:· 1612:· 1605:· 1578:. 1403:n 1400:+ 1396:4 1381:2 1374:H 1370:+ 1366:3 1359:H 1335:p 1332:+ 1328:4 1313:2 1306:H 1302:+ 1298:3 1267:p 1264:+ 1260:3 1253:H 1245:2 1238:H 1234:+ 1230:2 1223:H 1199:n 1196:+ 1192:3 1177:2 1170:H 1166:+ 1162:2 1155:H 1128:+ 1124:3 1109:2 1102:H 1098:+ 1095:p 1069:+ 1065:2 1058:H 1051:n 1048:+ 1045:p 993:e 989:+ 986:p 938:e 930:+ 924:n 901:p 898:+ 890:e 833:+ 829:e 825:+ 819:n 758:. 642:( 603:e 596:t 589:v 273:· 251:· 223:· 197:· 165:· 148:· 136:· 115:· 87:· 50:·

Index

Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization
Structure formation
Experiments

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑