Knowledge

Common coding theory

Source đź“ť

133:
efferent representations (referring to intended events). Such representations are commensurate since they both exhibit distal reference. They permit creating linkages between perception and action that do not rely on arbitrary mappings. Common coding conceives action planning in terms of operations that determine intended future events from given current events (matching between event codes and action codes). In particular perception and action may modulate each other by virtue of similarity. Unlike rule-based mapping of incommensurate codes which requires preceding acquisition of mapping rules, similarity-based matching of commensurate codes requires no such preceding rule acquisition.
174:. As concerns mirror systems, common coding seems to reflect the functional logic of mirror neurons and mechanisms in the brain. As concerns embodied cognition, common coding is compatible with the claim that meaning is embodied, i.e. grounded in perception and action. Common coding theory has further sparked refined theoretical frameworks that build on its notion of a shared representational format for action and perception. A recent example for these refinements is the 153:
learning) that they may result from certain movements, perception of these events may evoke the movements leading to them (Ideomotor control). The distinction between learning and control is equivalent to the distinction between forward and inverse computation in motor learning and control. Ideomotor learning supports prediction and anticipation of action outcomes, given current action. Ideomotor control supports selection and control of action, given intended outcomes.
149:(1852), the common coding theory posits that actions are represented in terms of their perceptual consequences. Actions are represented like any other events, the sole distinctive feature being that they are (or can be) generated through bodily movements. Perceivable action consequences may vary on two major dimensions: resident vs. remote effects, and 'cool' versus 'hot' outcomes (i.e., reward values associated with action outcomes). 93:
representations. First, representations for observed and executed actions should rely on a shared neural substrate. Second, a common cognitive system predicts facilitation of action based on directly prior perception and vice versa. Third, such a system predicts interference effects when action and perception attempt to access shared representations simultaneously.
165:
and action perception have made a case for motor contributions to perception. Close non-representational connections between perception and action have also been claimed by ecological approaches. Today common coding theory is closely related to research and theory in two intersecting fields of study:
104:
For instance, one functional MRI study demonstrated that the brain's response to the 2/3 power law of motion (i.e., which dictates a strong coupling between movement curvature and velocity) is much stronger and more widespread than to other types of motion. Compliance with this law was reflected in
26:
theory describing how perceptual representations (e.g. of things we can see and hear) and motor representations (e.g. of hand actions) are linked. The theory claims that there is a shared representation (a common code) for both perception and action. More important, seeing an event activates the
116:
One of the most direct evidence for common coding in the brain now stems from the fact that pattern classifiers that can differentiate based on brain activity whether someone has performed action A or B can also classify, above chance, whether that person heard the sound of action A or B, thereby
152:
When individuals perform actions they learn what their movements lead to (Ideomotor learning). The ideomotor theory claims that these associations can also be used in the reverse order (cf. William James, 1890 II, p. 526): When individuals perceive events of which they know (from previous
132:
Common coding posits, on top of separate coding, further domains of representation in which afferent and efferent information share the same format and dimensionality of representation. Common coding refers to 'late' afferent representations (referring to events in the environment) and 'early'
92:
should activate action representations to the degree that the perceived and the represented action are similar. Such a claim suggests that we represent observed, executed and imagined actions in a commensurate manner and makes specific predictions regarding the nature of action and perceptual
70:. In this model, perception and action do not interact directly, instead cognitive processing is needed to convert perceptual representations into action. For example, this might require creating arbitrary linkages (mapping between sensory and motor codes). 84:, claims parity between perception and action. Its core assumption is that actions are coded in terms of the perceivable effects (i.e., the distal perceptual events) they should generate. This theory also states that 105:
the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. These results support the common coding and the notion of similar
50:
is a means to perception. Indeed, the vertebrate brain has evolved for governing motor activity with the basic function to transform sensory patterns into patterns of motor coordination.
559:
Sommerville, J. A.; Decety, J. (2006). "Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition".
81: 1056:
Frings, C., Hommel, B., Koch, I., Rothermund, K., Dignath, D., Giesen, C., Kiesel, A., Kunde, W., Mayr, S., Moeller, B., Möller, M., Pfister, R., & Philipp, A.:
896:
Fowler, C. A.; Turvey, M. T. (1982). "Observational perspective and descriptive level in perceiving and acting". In Weimer, W. B.; Palermo, D. S. (eds.).
744:
Hommel, B.; MĂĽsseler, J.; Aschersleben, G.; Prinz, W. (2001). "The theory of event coding (TEC): A framework for perception and action planning".
161:
While most traditional approaches tend to stress the relative independence of perception and action, some theories have argued for closer links.
779:
Dickinson, A.; Balleine, B. W. (2002). "The role of learning in the operation of motivational systems". In Pashler, H.; Gallistel, R. (eds.).
670:
Dijksterhuis, A.; Bargh, J.A. (2001). "The perception-behavior expressway: automatic effects of social perception on social behavior".
175: 120:
In the early 21st century, the common coding theory received increased interest from researchers in developmental psychology,
73:
In contrast, the common coding account claims that perception and action are directly linked by a common computational code.
836:
Viviani, P. (2002). "Motor competence in the perception of dynamic events: A tutorial". In Prinz, W.; Hommel, B. (eds.).
317:
Massaro, D. W. (1990). "An information-processing analysis of perception and action". In Neumann, O.; Prinz, W. (eds.).
1105: 1086: 998: 930: 905: 845: 820: 788: 701: 654: 351: 326: 282: 162: 101:
From the year 2000 onwards, a growing number of results have been interpreted in favor of the common coding theory.
58:
The classical approach to cognition is a 'sandwich' model which assumes three stages of information processing:
1124: 394:
Knoblich, G.; Flach, R. (2001). "Predicting the effects of actions: interactions of perception and action".
1144: 1139: 273:
Prinz, W. (1984). "Modes of linkage between perception and action". In Prinz, W.; Sanders, A.-F. (eds.).
602:
Jackson, P.L.; Decety, J. (2004). "Motor cognition: A new paradigm to investigate social interactions".
1134: 27:
action associated with that event, and performing an action activates the associated perceptual event.
208: 1154: 1149: 188: 121: 30:
The idea of direct perception-action links originates in the work of the American psychologist
1129: 443:"Neural representations of kinematic laws of motion: Evidence for action-perception coupling" 1027: 959: 513: 454: 203: 23: 342:
Prinz, W. (2005). "Experimental approaches to action". In Roessler, J.; Eilan, N. (eds.).
8: 89: 67: 47: 517: 458: 117:
demonstrating that action execution and perception are represented using a common code.
1039: 971: 878: 627: 584: 536: 501: 477: 442: 419: 193: 171: 683: 1101: 1082: 1031: 994: 963: 926: 901: 841: 816: 808: 784: 761: 697: 650: 619: 576: 541: 502:"Testing Simulation Theory with Cross-Modal Multivariate Classification of fMRI Data" 482: 411: 347: 322: 278: 233: 110: 1043: 882: 631: 588: 1023: 975: 955: 870: 753: 726: 687: 679: 611: 568: 531: 521: 472: 462: 423: 403: 376: 248: 243: 38:. Sperry argued that the perception–action cycle is the fundamental logic of the 526: 213: 874: 804: 615: 167: 77: 39: 757: 730: 1118: 253: 218: 146: 142: 106: 31: 467: 407: 1035: 967: 765: 623: 580: 545: 486: 415: 238: 223: 35: 438: 437:
Eran Dayan, E.; Casile, A.; Levit-Binnun, N.; Giese, M.A.; Hendler, T.;
692: 572: 228: 85: 59: 43: 380: 838:
Common mechanisms in perception and action: Attention and Performance
63: 34:
and more recently, American neurophysiologist and Nobel prize winner
840:. Vol. XIX. Oxford: Oxford University Press. pp. 406–442. 946:
Rizzolatti, G.; Craighero, L. (2004). "The mirror-neuron system".
811:(2004). "Computational motor control". In Gazzaniga, M. S. (ed.). 436: 198: 42:. Perception and action processes are functionally intertwined: 900:. Vol. 2. Hillsdale, NJ: Lawrence Erlbaum. pp. 1–19. 743: 319:
Relationships between perception and action: Current approaches
861:
Liberman, A. M. (1982). "On finding that speech is special".
647:
Stimulus-response compatibility: Data, theory and application
815:(3rd ed.). Cambridge, MA: MIT Press. pp. 485–494. 717:
Prinz, W (1992). "Why don't we perceive our brain states?".
298:
Sperry, R.W. (1952). "Neurology and the mind-body problem".
82:
Max Planck Institute for Human Cognitive and Brain Sciences
1077:
Morsella, E.; Bargh, J.A.; Gollwitzer, P.M., eds. (2009).
1076: 783:. Vol. 3. New York: John Wiley. pp. 497–533. 346:. New York: Oxford University Press. pp. 165–187. 367:
Prinz, W. (1997). "Perception and action planning".
945: 499: 803: 778: 669: 558: 1116: 1058:Binding and retrieval in action control (BRAC). 500:Etzel, J. A.; Gazzola, V.; Keysers, C. (2008). 1050: 1014:Barsalou, L. W. (2008). "Grounded cognition". 176:Binding and retrieval in action control (BRAC) 127: 1095: 601: 393: 96: 923:The ecological approach to visual perception 895: 781:Stevens' handbook of experimental psychology 672:Advances in Experimental Social Psychology 691: 644: 535: 525: 476: 466: 1013: 860: 719:European Journal of Cognitive Psychology 369:European Journal of Cognitive Psychology 321:. New York: Springer. pp. 133–166. 277:. New York: Springer. pp. 185–193. 835: 316: 1117: 1096:Roessler, J.; Eilan, N., eds. (2003). 1028:10.1146/annurev.psych.59.103006.093639 960:10.1146/annurev.neuro.27.070203.144230 920: 297: 136: 1100:. New York: Oxford University Press. 1081:. New York: Oxford University Press. 716: 366: 341: 272: 156: 141:In line with the ideomotor theory of 898:Cognition and the symbolic processes 988: 124:, robotics, and social psychology. 13: 1070: 14: 1166: 561:Psychonomic Bulletin & Review 1079:Oxford Handbook of Human Action 1007: 982: 939: 914: 889: 854: 829: 797: 772: 737: 710: 663: 638: 604:Current Opinion in Neurobiology 595: 552: 493: 430: 387: 360: 335: 310: 291: 266: 1: 948:Annual Review of Neuroscience 746:Behavioral and Brain Sciences 684:10.1016/S0065-2601(01)80003-4 275:Cognition and motor processes 260: 53: 1062:Trends in Cognitive Sciences 925:. Boston: Houghton Mifflin. 527:10.1371/journal.pone.0003690 80:and his colleagues from the 76:This theory, put forward by 7: 1064:, Nr. 24, 2020, p. 375–387. 1016:Annual Review of Psychology 813:The cognitive neurosciences 181: 128:Commensurate representation 16:Cognitive psychology theory 10: 1171: 875:10.1037/0003-066x.37.2.148 616:10.1016/j.conb.2004.01.020 97:Evidence for common coding 1098:Agency and self-awareness 758:10.1017/s0140525x01000103 731:10.1080/09541449208406240 645:Proctor & Vu (2006). 344:Agency and self-awareness 209:Mental practice of action 46:is a means to action and 649:. Taylor & Francis. 163:Motor theories of speech 468:10.1073/pnas.0710033104 408:10.1111/1467-9280.00387 921:Gibson, J. J. (1979). 189:Affective neuroscience 122:cognitive neuroscience 863:American Psychologist 396:Psychological Science 1125:Cognitive psychology 991:Action in Perception 204:Lawrence W. Barsalou 24:cognitive psychology 20:Common coding theory 1145:Action (philosophy) 518:2008PLoSO...3.3690E 459:2007PNAS..10420582D 453:(51): 20582–20587. 137:Ideomotor principle 1140:Enactive cognition 573:10.3758/bf03193831 300:American Scientist 194:Embodied cognition 172:embodied cognition 157:Related approaches 1135:Cognitive science 381:10.1080/713752551 234:Predictive coding 111:motion perception 1162: 1111: 1092: 1065: 1054: 1048: 1047: 1011: 1005: 1004: 989:NoĂ«, A. (2004). 986: 980: 979: 943: 937: 936: 918: 912: 911: 893: 887: 886: 858: 852: 851: 833: 827: 826: 801: 795: 794: 776: 770: 769: 741: 735: 734: 714: 708: 707: 695: 667: 661: 660: 642: 636: 635: 599: 593: 592: 556: 550: 549: 539: 529: 497: 491: 490: 480: 470: 434: 428: 427: 391: 385: 384: 364: 358: 357: 339: 333: 332: 314: 308: 307: 295: 289: 288: 270: 249:Vittorio Guidano 244:Social cognition 113:and production. 1170: 1169: 1165: 1164: 1163: 1161: 1160: 1159: 1155:Motor cognition 1115: 1114: 1108: 1089: 1073: 1071:Further reading 1068: 1055: 1051: 1012: 1008: 1001: 987: 983: 944: 940: 933: 919: 915: 908: 894: 890: 859: 855: 848: 834: 830: 823: 802: 798: 791: 777: 773: 742: 738: 715: 711: 704: 668: 664: 657: 643: 639: 600: 596: 557: 553: 498: 494: 435: 431: 392: 388: 365: 361: 354: 340: 336: 329: 315: 311: 296: 292: 285: 271: 267: 263: 258: 214:Motor cognition 184: 159: 139: 130: 99: 56: 17: 12: 11: 5: 1168: 1158: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1113: 1112: 1107:978-0199245628 1106: 1093: 1088:978-0195309980 1087: 1072: 1069: 1067: 1066: 1049: 1006: 999: 981: 938: 931: 913: 906: 888: 869:(2): 148–167. 853: 846: 828: 821: 809:Ghahramani, Z. 796: 789: 771: 752:(5): 849–878. 736: 709: 702: 662: 655: 637: 594: 567:(2): 179–200. 551: 492: 429: 402:(6): 467–472. 386: 375:(2): 129–154. 359: 352: 334: 327: 309: 290: 283: 264: 262: 259: 257: 256: 251: 246: 241: 236: 231: 226: 221: 216: 211: 206: 201: 196: 191: 185: 183: 180: 168:Mirror neurons 158: 155: 138: 135: 129: 126: 98: 95: 78:Wolfgang Prinz 55: 52: 40:nervous system 15: 9: 6: 4: 3: 2: 1167: 1156: 1153: 1151: 1150:Motor control 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1122: 1120: 1109: 1103: 1099: 1094: 1090: 1084: 1080: 1075: 1074: 1063: 1059: 1053: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1002: 1000:0-262-14088-8 996: 993:. MIT Press. 992: 985: 977: 973: 969: 965: 961: 957: 953: 949: 942: 934: 932:0-395-27049-9 928: 924: 917: 909: 907:0-89859-066-3 903: 899: 892: 884: 880: 876: 872: 868: 864: 857: 849: 847:0-19-851069-1 843: 839: 832: 824: 822:0-262-07254-8 818: 814: 810: 806: 800: 792: 790:0-471-38047-4 786: 782: 775: 767: 763: 759: 755: 751: 747: 740: 732: 728: 724: 720: 713: 705: 703:9780120152339 699: 694: 689: 685: 681: 677: 673: 666: 658: 656:0-415-31536-0 652: 648: 641: 633: 629: 625: 621: 617: 613: 609: 605: 598: 590: 586: 582: 578: 574: 570: 566: 562: 555: 547: 543: 538: 533: 528: 523: 519: 515: 512:(11): e3690. 511: 507: 503: 496: 488: 484: 479: 474: 469: 464: 460: 456: 452: 448: 444: 440: 433: 425: 421: 417: 413: 409: 405: 401: 397: 390: 382: 378: 374: 370: 363: 355: 353:0-19-924561-4 349: 345: 338: 330: 328:0-387-52069-4 324: 320: 313: 305: 301: 294: 286: 284:0-387-12855-7 280: 276: 269: 265: 255: 254:William James 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 219:Motor imagery 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 186: 179: 177: 173: 169: 164: 154: 150: 148: 147:Hermann Lotze 144: 143:William James 134: 125: 123: 118: 114: 112: 108: 107:neural coding 102: 94: 91: 87: 83: 79: 74: 71: 69: 65: 61: 51: 49: 45: 41: 37: 33: 32:William James 28: 25: 21: 1130:Neuroscience 1097: 1078: 1061: 1057: 1052: 1019: 1015: 1009: 990: 984: 951: 947: 941: 922: 916: 897: 891: 866: 862: 856: 837: 831: 812: 799: 780: 774: 749: 745: 739: 722: 718: 712: 675: 671: 665: 646: 640: 607: 603: 597: 564: 560: 554: 509: 505: 495: 450: 446: 432: 399: 395: 389: 372: 368: 362: 343: 337: 318: 312: 303: 299: 293: 274: 268: 239:Roger Sperry 224:Neuroscience 170:systems and 160: 151: 140: 131: 119: 115: 103: 100: 75: 72: 57: 36:Roger Sperry 29: 19: 18: 1022:: 617–645. 954:: 169–192. 805:Wolpert, D. 693:2066/207586 178:framework. 145:(1890) and 1119:Categories 610:(2): 1–5. 306:: 291–312. 261:References 229:Pragmatism 86:perception 60:perception 54:Background 44:perception 439:Flash, T. 66:and then 64:cognition 1044:22345373 1036:17705682 968:15217330 883:14469676 766:12239891 725:: 1–20. 678:: 1–40. 632:36205586 624:15082334 589:14689479 581:16892982 546:18997869 506:PLOS ONE 487:18079289 441:(2007). 416:11760133 182:See also 976:1729870 537:2577733 514:Bibcode 478:2154474 455:Bibcode 424:9061659 199:Empathy 1104:  1085:  1042:  1034:  997:  974:  966:  929:  904:  881:  844:  819:  787:  764:  700:  653:  630:  622:  587:  579:  544:  534:  485:  475:  422:  414:  350:  325:  281:  90:action 88:of an 68:action 48:action 1040:S2CID 972:S2CID 879:S2CID 628:S2CID 585:S2CID 420:S2CID 22:is a 1102:ISBN 1083:ISBN 1060:In: 1032:PMID 995:ISBN 964:PMID 927:ISBN 902:ISBN 842:ISBN 817:ISBN 785:ISBN 762:PMID 698:ISBN 651:ISBN 620:PMID 577:PMID 542:PMID 483:PMID 447:PNAS 412:PMID 348:ISBN 323:ISBN 279:ISBN 109:for 1024:doi 956:doi 871:doi 754:doi 727:doi 688:hdl 680:doi 612:doi 569:doi 532:PMC 522:doi 473:PMC 463:doi 451:104 404:doi 377:doi 1121:: 1038:. 1030:. 1020:59 1018:. 970:. 962:. 952:27 950:. 877:. 867:37 865:. 807:; 760:. 750:24 748:. 721:. 696:. 686:. 676:33 674:. 626:. 618:. 608:14 606:. 583:. 575:. 565:13 563:. 540:. 530:. 520:. 508:. 504:. 481:. 471:. 461:. 449:. 445:. 418:. 410:. 400:12 398:. 371:. 304:40 302:. 62:, 1110:. 1091:. 1046:. 1026:: 1003:. 978:. 958:: 935:. 910:. 885:. 873:: 850:. 825:. 793:. 768:. 756:: 733:. 729:: 723:4 706:. 690:: 682:: 659:. 634:. 614:: 591:. 571:: 548:. 524:: 516:: 510:3 489:. 465:: 457:: 426:. 406:: 383:. 379:: 373:9 356:. 331:. 287:.

Index

cognitive psychology
William James
Roger Sperry
nervous system
perception
action
perception
cognition
action
Wolfgang Prinz
Max Planck Institute for Human Cognitive and Brain Sciences
perception
action
neural coding
motion perception
cognitive neuroscience
William James
Hermann Lotze
Motor theories of speech
Mirror neurons
embodied cognition
Binding and retrieval in action control (BRAC)
Affective neuroscience
Embodied cognition
Empathy
Lawrence W. Barsalou
Mental practice of action
Motor cognition
Motor imagery
Neuroscience

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑