Knowledge

Neural coding

Source 📝

415:, which occurs within the brain on the order of milliseconds. The brain must obtain a large quantity of information based on a relatively short neural response. Additionally, if low firing rates on the order of ten spikes per second must be distinguished from arbitrarily close rate coding for different stimuli, then a neuron trying to discriminate these two stimuli may need to wait for a second or more to accumulate enough information. This is not consistent with numerous organisms which are able to discriminate between stimuli in the time frame of milliseconds, suggesting that a rate code is not the only model at work. 339:
information, a more consistent, regular firing rate would have been evolutionarily advantageous, and neurons would have utilized this code over other less robust options. Temporal coding supplies an alternate explanation for the “noise," suggesting that it actually encodes information and affects neural processing. To model this idea, binary symbols can be used to mark the spikes: 1 for a spike, 0 for no spike. Temporal coding allows the sequence 000111000111 to mean something different from 001100110011, even though the mean firing rate is the same for both sequences, at 6 spikes/10 ms.
688:) attempt to automatically find a small number of representative patterns which, when combined in the right proportions, reproduce the original input patterns. The sparse coding for the input then consists of those representative patterns. For example, the very large set of English sentences can be encoded by a small number of symbols (i.e. letters, numbers, punctuation, and spaces) combined in a particular order for a particular sentence, and so a sparse coding for English would be those symbols. 554:
directions. However it fires the fastest for one direction and more slowly depending on how close the target was to the neuron's "preferred" direction. If each neuron represents movement in its preferred direction, and the vector sum of all neurons is calculated (each neuron has a firing rate and a preferred direction), the sum points in the direction of motion. In this manner, the population of neurons codes the signal for the motion. This particular population code is referred to as
562:
nerve. The first ALSR representation was for steady-state vowels; ALSR representations of pitch and formant frequencies in complex, non-steady state stimuli were later demonstrated for voiced-pitch, and formant representations in consonant-vowel syllables. The advantage of such representations is that global features such as pitch or formant transition profiles can be represented as global features across the entire nerve simultaneously via both rate and place coding.
648: 448:
given odorants. This type of extra information could help in recognizing a certain odor, but is not completely necessary, as average spike count over the course of the animal's sniffing was also a good identifier. Along the same lines, experiments done with the olfactory system of rabbits showed distinct patterns which correlated with different subsets of odorants, and a similar result was obtained in experiments with the locust olfactory system.
994:. If the number of basis vectors n is equal to the dimensionality k of the input set, the coding is said to be critically complete. In this case, smooth changes in the input vector result in abrupt changes in the coefficients, and the coding is not able to gracefully handle small scalings, small translations, or noise in the inputs. If, however, the number of basis vectors is larger than the dimensionality of the input set, the coding is 193:
statistically or probabilistically. They may be characterized by firing rates, rather than as specific spike sequences. In most sensory systems, the firing rate increases, generally non-linearly, with increasing stimulus intensity. Under a rate coding assumption, any information possibly encoded in the temporal structure of the spike train is ignored. Consequently, rate coding is inefficient but highly robust with respect to the ISI '
636: 436:
In studies dealing with the front cortical portion of the brain in primates, precise patterns with short time scales only a few milliseconds in length were found across small populations of neurons which correlated with certain information processing behaviors. However, little information could be determined from the patterns; one possible theory is they represented the higher-order processing taking place in the brain.
98:. These differ from action potentials because information about the strength of a stimulus directly correlates with the strength of the neurons' output. The signal decays much faster for graded potentials, necessitating short inter-neuron distances and high neuronal density. The advantage of graded potentials is higher information rates capable of encoding more states (i.e. higher fidelity) than spiking neurons. 281:, at least, information is not simply encoded in firing but also in the timing and duration of non-firing, quiescent periods. There is also evidence from retinal cells, that information is encoded not only in the firing rate but also in spike timing. More generally, whenever a rapid response of an organism is required a firing rate defined as a spike-count over a few hundred milliseconds is simply too slow. 432:
similar responses in terms of spike count. The temporal component of the pattern elicited by each tastant may be used to determine its identity (e.g., the difference between two bitter tastants, such as quinine and denatonium). In this way, both rate coding and temporal coding may be used in the gustatory system – rate for basic tastant type, temporal for more specific differentiation.
117:) between two successive spikes in a spike train often vary, apparently randomly. The study of neural coding involves measuring and characterizing how stimulus attributes, such as light or sound intensity, or motor actions, such as the direction of an arm movement, are represented by neuron action potentials or spikes. In order to describe and analyze neuronal firing, 2081: 226:. As the weight of the stimulus increased, the number of spikes recorded from sensory nerves innervating the muscle also increased. From these original experiments, Adrian and Zotterman concluded that action potentials were unitary events, and that the frequency of events, and not individual event magnitude, was the basis for most inter-neuronal communication. 390:
what neural coding strategy is being used. Temporal coding in the narrow sense refers to temporal precision in the response that does not arise solely from the dynamics of the stimulus, but that nevertheless relates to properties of the stimulus. The interplay between stimulus and encoding dynamics makes the identification of a temporal code difficult.
542:
theoretical point of view, population coding is one of a few mathematically well-formulated problems in neuroscience. It grasps the essential features of neural coding and yet is simple enough for theoretic analysis. Experimental studies have revealed that this coding paradigm is widely used in the sensory and motor areas of the brain.
465:
control spikes and therefore certain behaviors of the mouse (e.g., making the mouse turn left). Researchers, through optogenetics, have the tools to effect different temporal codes in a neuron while maintaining the same mean firing rate, and thereby can test whether or not temporal coding occurs in specific neural circuits.
298:(t;t+Δt) summed over all repetitions of the experiment divided by the number K of repetitions is a measure of the typical activity of the neuron between time t and t+Δt. A further division by the interval length Δt yields time-dependent firing rate r(t) of the neuron, which is equivalent to the spike density of PSTH ( 294:(PSTH). The time t is measured with respect to the start of the stimulation sequence. The Δt must be large enough (typically in the range of one or a few milliseconds) so that there is a sufficient number of spikes within the interval to obtain a reliable estimate of the average. The number of occurrences of spikes n 553:
activity pattern across the population. The moving direction of the object is retrieved from the population activity, to be immune from the fluctuation existing in a single neuron's signal. When monkeys are trained to move a joystick towards a lit target, a single neuron will fire for multiple target
317:
As an experimental procedure, the time-dependent firing rate measure is a useful method to evaluate neuronal activity, in particular in the case of time-dependent stimuli. The obvious problem with this approach is that it can not be the coding scheme used by neurons in the brain. Neurons can not wait
242:
The spike-count rate, also referred to as temporal average, is obtained by counting the number of spikes that appear during a trial and dividing by the duration of trial. The length T of the time window is set by the experimenter and depends on the type of neuron recorded from and to the stimulus. In
233:
neurons, partly due to the relative ease of measuring rates experimentally. However, this approach neglects all the information possibly contained in the exact timing of the spikes. During recent years, more and more experimental evidence has suggested that a straightforward firing rate concept based
132:
With the development of large-scale neural recording and decoding technologies, researchers have begun to crack the neural code and have already provided the first glimpse into the real-time neural code as memory is formed and recalled in the hippocampus, a brain region known to be central for memory
1029:
Sparse coding may be a general strategy of neural systems to augment memory capacity. To adapt to their environments, animals must learn which stimuli are associated with rewards or punishments and distinguish these reinforced stimuli from similar but irrelevant ones. Such tasks require implementing
672:
As a consequence, sparseness may be focused on temporal sparseness ("a relatively small number of time periods are active") or on the sparseness in an activated population of neurons. In this latter case, this may be defined in one time period as the number of activated neurons relative to the total
606:
present in the two spike trains about a stimulus feature. However, this was later demonstrated to be incorrect. Correlation structure can increase information content if noise and signal correlations are of opposite sign. Correlations can also carry information not present in the average firing rate
418:
To account for the fast encoding of visual stimuli, it has been suggested that neurons of the retina encode visual information in the latency time between stimulus onset and first action potential, also called latency to first spike or time-to-first-spike. This type of temporal coding has been shown
573:
Typically an encoding function has a peak value such that activity of the neuron is greatest if the perceptual value is close to the peak value, and becomes reduced accordingly for values less close to the peak value. It follows that the actual perceived value can be reconstructed from the overall
447:
of mice, first-spike latency relative to the start of a sniffing action seemed to encode much of the information about an odor. This strategy of using spike latency allows for rapid identification of and reaction to an odorant. In addition, some mitral/tufted cells have specific firing patterns for
435:
Research on mammalian gustatory system has shown that there is an abundance of information present in temporal patterns across populations of neurons, and this information is different from that which is determined by rate coding schemes. Groups of neurons may synchronize in response to a stimulus.
410:
For very brief stimuli, a neuron's maximum firing rate may not be fast enough to produce more than a single spike. Due to the density of information about the abbreviated stimulus contained in this single spike, it would seem that the timing of the spike itself would have to convey more information
389:
The temporal structure of a spike train or firing rate evoked by a stimulus is determined both by the dynamics of the stimulus and by the nature of the neural encoding process. Stimuli that change rapidly tend to generate precisely timed spikes (and rapidly changing firing rates in PSTHs) no matter
321:
Nevertheless, the experimental time-dependent firing rate measure can make sense, if there are large populations of independent neurons that receive the same stimulus. Instead of recording from a population of N neurons in a single run, it is experimentally easier to record from a single neuron and
250:
The spike-count rate can be determined from a single trial, but at the expense of losing all temporal resolution about variations in neural response during the course of the trial. Temporal averaging can work well in cases where the stimulus is constant or slowly varying and does not require a fast
517:
signals reflect population (network) oscillations. The phase-of-firing code is often categorized as a temporal code although the time label used for spikes (i.e. the network oscillation phase) is a low-resolution (coarse-grained) reference for time. As a result, often only four discrete values for
464:
to open, depolarizing the cell and producing a spike. When blue light is not sensed by the cell, the channel closes, and the neuron ceases to spike. The pattern of the spikes matches the pattern of the blue light stimuli. By inserting channelrhodopsin gene sequences into mouse DNA, researchers can
346:
patterns. However, functions of the brain are more temporally precise than the use of only rate encoding seems to allow. In other words, essential information could be lost due to the inability of the rate code to capture all the available information of the spike train. In addition, responses are
643:
A typical population code involves neurons with a Gaussian tuning curve whose means vary linearly with the stimulus intensity, meaning that the neuron responds most strongly (in terms of spikes per second) to a stimulus near the mean. The actual intensity could be recovered as the stimulus level
569:
and the ability to represent a number of different stimulus attributes simultaneously. Population coding is also much faster than rate coding and can reflect changes in the stimulus conditions nearly instantaneously. Individual neurons in such a population typically have different but overlapping
431:
is useful for studying temporal coding because of its fairly distinct stimuli and the easily discernible responses of the organism. Temporally encoded information may help an organism discriminate between different tastants of the same category (sweet, bitter, sour, salty, umami) that elicit very
401:
The issue of temporal coding is distinct and independent from the issue of independent-spike coding. If each spike is independent of all the other spikes in the train, the temporal character of the neural code is determined by the behavior of time-dependent firing rate r(t). If r(t) varies slowly
141:
The link between stimulus and response can be studied from two opposite points of view. Neural encoding refers to the map from stimulus to response. The main focus is to understand how neurons respond to a wide variety of stimuli, and to construct models that attempt to predict responses to other
668:
The sparse code is when each item is encoded by the strong activation of a relatively small set of neurons. For each item to be encoded, this is a different subset of all available neurons. In contrast to sensor-sparse coding, sensor-dense coding implies that all information from possible sensor
541:
Population coding is a method to represent stimuli by using the joint activities of a number of neurons. In population coding, each neuron has a distribution of responses over some set of inputs, and the responses of many neurons may be combined to determine some value about the inputs. From the
561:
Place-time population codes, termed the averaged-localized-synchronized-response (ALSR) code, have been derived for neural representation of auditory acoustic stimuli. This exploits both the place or tuning within the auditory nerve, as well as the phase-locking within each nerve fiber auditory
423:
of macaques, the timing of the first spike relative to the start of the stimulus was found to provide more information than the interval between spikes. However, the interspike interval could be used to encode additional information, which is especially important when the spike rate reaches its
334:
are found to carry information, the neural code is often identified as a temporal code. A number of studies have found that the temporal resolution of the neural code is on a millisecond time scale, indicating that precise spike timing is a significant element in neural coding. Such codes, that
1070:
anterior paired lateral (APL) neurons. Systematic activation and blockade of each leg of this feedback circuit shows that Kenyon cells activate APL neurons and APL neurons inhibit Kenyon cells. Disrupting the Kenyon cell–APL feedback loop decreases the sparseness of Kenyon cell odor responses,
655:
This type of code is used to encode continuous variables such as joint position, eye position, color, or sound frequency. Any individual neuron is too noisy to faithfully encode the variable using rate coding, but an entire population ensures greater fidelity and precision. For a population of
468:
Optogenetic technology also has the potential to enable the correction of spike abnormalities at the root of several neurological and psychological disorders. If neurons do encode information in individual spike timing patterns, key signals could be missed by attempting to crack the code while
192:
Rate coding is a traditional coding scheme, assuming that most, if not all, information about the stimulus is contained in the firing rate of the neuron. Because the sequence of action potentials generated by a given stimulus varies from trial to trial, neuronal responses are typically treated
338:
Neurons exhibit high-frequency fluctuations of firing-rates which could be noise or could carry information. Rate coding models suggest that these irregularities are noise, while temporal coding models suggest that they encode information. If the nervous system only used rate codes to convey
154:
A sequence, or 'train', of spikes may contain information based on different coding schemes. In some neurons the strength with which a postsynaptic partner responds may depend solely on the 'firing rate', the average number of spikes per unit time (a 'rate code'). At the other end, a complex
1045:
has suggested that sparse coding increases the capacity of associative memory by reducing overlap between representations. Experimentally, sparse representations of sensory information have been observed in many systems, including vision, audition, touch, and olfaction. However, despite the
974:-like distribution, but peakier than Gaussian, with many zero values, some small absolute values, fewer larger absolute values, and very few very large absolute values. Thus, many of the basis vectors are active. Hard sparseness, on the other hand, indicates that there are many zero values, 289:
The time-dependent firing rate is defined as the average number of spikes (averaged over trials) appearing during a short interval between times t and t+Δt, divided by the duration of the interval. It works for stationary as well as for time-dependent stimuli. To experimentally measure the
1071:
increases inter-odor correlations, and prevents flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor-specificity of memories.
305:
For sufficiently small Δt, r(t)Δt is the average number of spikes occurring between times t and t+Δt over multiple trials. If Δt is small, there will never be more than one spike within the interval between t and t+Δt on any given trial. This means that r(t)Δt is also the
393:
In temporal coding, learning can be explained by activity-dependent synaptic delay modifications. The modifications can themselves depend not only on spike rates (rate coding) but also on spike timing patterns (temporal coding), i.e., can be a special case of
607:
of two pairs of neurons. A good example of this exists in the pentobarbital-anesthetized marmoset auditory cortex, in which a pure tone causes an increase in the number of correlated spikes, but not an increase in the mean firing rate, of pairs of neurons.
656:
unimodal tuning curves, i.e. with a single peak, the precision typically scales linearly with the number of neurons. Hence, for half the precision, half as many neurons are required. In contrast, when the tuning curves have multiple peaks, as in
512:
It has been shown that neurons in some cortical sensory areas encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network oscillatory fluctuations, rather than only in terms of their spike count. The
374:) are candidates for temporal codes. As there is no absolute time reference in the nervous system, the information is carried either in terms of the relative timing of spikes in a population of neurons (temporal patterns) or with respect to an 982:
small absolute values, fewer larger absolute values, and very few very large absolute values, and thus few of the basis vectors are active. This is appealing from a metabolic perspective: less energy is used when fewer neurons are firing.
94:. Information about the stimulus is encoded in this pattern of action potentials and transmitted into and around the brain. Beyond this, specialized neurons, such as those of the retina, can communicate more information through 255:— and this is the situation usually encountered in experimental protocols. Real-world input, however, is hardly stationary, but often changing on a fast time scale. For example, even when viewing a static image, humans perform 602:, or "spikes", within a spike train may carry additional information above and beyond the simple timing of the spikes. Early work suggested that correlation between spike trains can only reduce, and never increase, the total 673:
number of neurons in the population. This seems to be a hallmark of neural computations since compared to traditional computers, information is massively distributed across neurons. Sparse coding of natural images produces
469:
looking only at mean firing rates. Understanding any temporally encoded aspects of the neural code and replicating these sequences in neurons could allow for greater control and treatment of neurological disorders such as
1046:
accumulating evidence for widespread sparse coding and theoretical arguments for its importance, a demonstration that sparse coding improves the stimulus-specificity of associative memory has been difficult to obtain.
827: 957: 74:: voltage spikes that can travel down axons. Sensory neurons change their activities by firing sequences of action potentials in various temporal patterns, with the presence of external sensory stimuli, such as 533:. Within a cycle of gamma oscillation, each neuron has its own preferred relative firing time. As a result, an entire population of neurons generates a firing sequence that has a duration of up to about 15 ms. 290:
time-dependent firing rate, the experimenter records from a neuron while stimulating with some input sequence. The same stimulation sequence is repeated several times and the neuronal response is reported in a
2622:
Han X, Qian X, Stern P, Chuong AS, Boyden ES. "Informational lesions: optical perturbations of spike timing and neural synchrony via microbial opsin gene fusions." Cambridge, Massachusetts: MIT Media Lad,
1066:
is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. Sparseness is controlled by a negative feedback circuit between Kenyon cells and
200:
During rate coding, precisely calculating firing rate is very important. In fact, the term "firing rate" has a few different definitions, which refer to different averaging procedures, such as an
3197:
Onken, A; Grünewälder, S; Munk, MHJ; Obermayer, K (2009), "Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation",
1305:
Sengupta B, Laughlin SB, Niven JE (2014) Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency. PLOS Computational Biology 10(1): e1003439.
745: 347:
different enough between similar (but not identical) stimuli to suggest that the distinct patterns of spikes contain a higher volume of information than is possible to include in a rate code.
2838:
Maunsell JH, Van Essen DC (May 1983). "Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation".
574:
pattern of activity in the set of neurons. Vector coding is an example of simple averaging. A more sophisticated mathematical technique for performing such a reconstruction is the method of
518:
the phase are enough to represent all the information content in this kind of code with respect to the phase of oscillations in low frequencies. Phase-of-firing code is loosely based on the
875: 644:
corresponding to the mean of the neuron with the greatest response. However, the noise inherent in neural responses means that a maximum likelihood estimation function is more accurate.
578:
based on a multivariate distribution of the neuronal responses. These models can assume independence, second order correlations, or even more detailed dependencies such as higher order
166:
Whether neurons use rate coding or temporal coding is a topic of intense debate within the neuroscience community, even though there is no clear definition of what these terms mean.
660:
that represent space, the precision of the population can scale exponentially with the number of neurons. This greatly reduces the number of neurons required for the same precision.
2921:
Sachs, Murray B.; Young, Eric D. (November 1979). "Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers".
243:
practice, to get sensible averages, several spikes should occur within the time window. Typical values are T = 100 ms or T = 500 ms, but the duration may also be longer or shorter (
2881: 274:. It has led to the idea that a neuron transforms information about a single input variable (the stimulus strength) into a single continuous output variable (the firing rate). 460:
allow neurologists to control spikes in individual neurons, offering electrical and spatial single-cell resolution. For example, blue light causes the light-gated ion channel
146:
refers to the reverse map, from response to stimulus, and the challenge is to reconstruct a stimulus, or certain aspects of that stimulus, from the spike sequences it evokes.
3759:
Pati, Y. C.; Rezaiifar, R.; Krishnaprasad, P. S. (November 1993). "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition".
877:
for each input vector, so that a linear combination of the basis vectors with proportions given by the coefficients results in a close approximation to the input vector:
509:. This type of code takes into account a time label for each spike according to a time reference based on phase of local ongoing oscillations at low or high frequencies. 549:(MT), neurons are tuned to the direction of object motion. In response to an object moving in a particular direction, many neurons in MT fire with a noise-corrupted and 681:
of simple cells in the visual cortex. The capacity of sparse codes may be increased by simultaneous use of temporal coding, as found in the locust olfactory system.
70:
Neurons have an ability uncommon among the cells of the body to propagate signals rapidly over large distances by generating characteristic electrical pulses called
1002:
is estimated to be overcomplete by a factor of 500, so that, for example, a 14 x 14 patch of input (a 196-dimensional space) is coded by roughly 100,000 neurons.
322:
average over N repeated runs. Thus, the time-dependent firing rate coding relies on the implicit assumption that there are always populations of neurons.
526:. Another feature of this code is that neurons adhere to a preferred order of spiking between a group of sensory neurons, resulting in firing sequence. 419:
also in the auditory and somato-sensory system. The main drawback of such a coding scheme is its sensitivity to intrinsic neuronal fluctuations. In the
3099:
Schneidman, E; Berry, MJ; Segev, R; Bialek, W (2006), "Weak Pairwise Correlations Imply Strongly Correlated Network States in a Neural Population",
2106: 3476: 481:. Regulation of spike intervals in single cells more precisely controls brain activity than the addition of pharmacological agents intravenously. 424:
limit, as in high-contrast situations. For this reason, temporal coding may play a part in coding defined edges rather than gradual transitions.
2722: 753: 880: 106: 456:
The specificity of temporal coding requires highly refined technology to measure informative, reliable, experimental data. Advances made in
4133:
Olshausen, B. A.; Field, D. J. (1996). "Emergence of simple-cell receptive field properties by learning a sparse code for natural images".
109:
of an action potential (about 1 ms) is ignored, an action potential sequence, or spike train, can be characterized simply by a series of
2888: 2607:
Karl Diesseroth, Lecture. "Personal Growth Series: Karl Diesseroth on Cracking the Neural Code." Google Tech Talks. November 21, 2008.
335:
communicate via the time between spikes are also referred to as interpulse interval codes, and have been supported by recent studies.
229:
In the following decades, measurement of firing rates became a standard tool for describing the properties of all types of sensory or
1950:
Butts DA, Weng C, Jin J, et al. (September 2007). "Temporal precision in the neural code and the timescales of natural vision".
1021:
representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves.
579: 970:. These refer to the distribution of basis vector coefficients for typical inputs. A coding with soft sparseness has a smooth 270:
Despite its shortcomings, the concept of a spike-count rate code is widely used not only in experiments, but also in models of
3786: 2296: 1934: 1332: 1290: 1171:
Brown EN, Kass RE, Mitra PP (May 2004). "Multiple neural spike train data analysis: state-of-the-art and future challenges".
2372:
Wainrib, Gilles; Michèle, Thieullen; Khashayar, Pakdaman (7 April 2010). "Intrinsic variability of latency to first-spike".
3007:
Miller, M.I.; Sachs, M.B. (1983). "Representation of stop consonants in the discharge patterns of auditory-nerve fibrers".
411:
than simply the average frequency of action potentials over a given period of time. This model is especially important for
4235: 2311:
Sjöström, Jesper, and Wulfram Gerstner. "Spike-timing dependent plasticity." Spike-timing dependent plasticity 35 (2010).
159:' is based on the precise timing of single spikes. They may be locked to an external stimulus such as in the visual and 3605:"A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields" 2964:
Miller, M.I.; Sachs, M.B. (June 1984). "Representation of voice pitch in discharge patterns of auditory-nerve fibers".
1755:"Intracellular Calcium Dynamics Permit a Purkinje Neuron Model to Perform Toggle and Gain Computations Upon its Inputs" 1688: 706: 3335:
Merzenich, MM (Jun 1996). "Primary cortical representation of sounds by the coordination of action-potential timing".
998:. Overcomplete codings smoothly interpolate between input vectors and are robust under input noise. The human primary 4127: 4113: 3414: 3394: 1653: 395: 1540: 836: 696:
Most models of sparse coding are based on the linear generative model. In this model, the symbols are combined in a
3810:
Needell, D.; Tropp, J.A. (2009-05-01). "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples".
3872:
Vinje, WE; Gallant, JL (2000). "Sparse coding and decorrelation in primary visual cortex during natural vision".
2795:
Wu S, Amari S, Nakahara H (May 2002). "Population coding and decoding in a neural field: a computational study".
2321:
Gollisch, T.; Meister, M. (22 February 2008). "Rapid Neural Coding in the Retina with Relative Spike Latencies".
1031: 3716:
Zhang, Zhifeng; Mallat, Stephane G.; Davis, Geoffrey M. (July 1994). "Adaptive time-frequency decompositions".
962:
The codings generated by algorithms implementing a linear generative model can be classified into codings with
565:
Population coding has a number of other advantages as well, including reduction of uncertainty due to neuronal
382:, is that spikes occurring at specific phases of an oscillatory cycle are more effective in depolarizing the 402:
with time, the code is typically called a rate code, and if it varies rapidly, the code is called temporal.
2001: 1121: 354:), employ those features of the spiking activity that cannot be described by the firing rate. For example, 2636:
Montemurro, Marcelo A.; Rasch, Malte J.; Murayama, Yusuke; Logothetis, Nikos K.; Panzeri, Stefano (2008).
2017:
J. Leo van Hemmen, TJ Sejnowski. 23 Problems in Systems Neuroscience. Oxford Univ. Press, 2006. p.143-158.
1552: 1038:
respond to any given stimulus and each neuron responds to only a few stimuli out of all possible stimuli.
530: 1471:"Mapping and deciphering neural codes of NMDA receptor-dependent fear memory engrams in the hippocampus" 420: 3523: 1111: 1014: 496: 105:
and shape, they are typically treated as identical stereotyped events in neural coding studies. If the
3251:
Johnson, KO (Jun 1980). "Sensory discrimination: neural processes preceding discrimination decision".
4240: 4066: 3051: 2719: 1146: 1081: 1042: 47: 3894: 3769: 362:
with respect to background oscillations, characteristics based on the second and higher statistical
3175: 367: 331: 3604: 3477:"Emergence of simple-cell receptive field properties by learning a sparse code for natural images" 685: 2034:
Theunissen, F; Miller, JP (1995). "Temporal Encoding in Nervous Systems: A Rigorous Definition".
1091: 566: 343: 1861: 1355:
Stein RB, Gossen ER, Jones KE (May 2005). "Neuronal variability: noise or part of the signal?".
4230: 3889: 3764: 3170: 2464:
Hallock, Robert M.; Di Lorenzo, Patricia M. (2006). "Temporal coding in the gustatory system".
748: 478: 307: 2284: 318:
for the stimuli to repeatedly present in an exactly same manner before generating a response.
1706:"The impulses produced by sensory nerve endings: Part II: The response of a single end organ" 1398: 514: 31: 342:
Until recently, scientists had put the most emphasis on rate encoding as an explanation for
4180:"On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus" 4142: 3881: 3725: 3491: 3439: 3428:"Resolution of nested neuronal representations can be exponential in the number of neurons" 3344: 3206: 3118: 3016: 2930: 2330: 2176: 1959: 1873: 1577: 1482: 1423: 1010: 570:
selectivities, so that many neurons, but not necessarily all, respond to a given stimulus.
546: 363: 4079:
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination
2746:"Synchrony makes neurons fire in sequence, and stimulus properties determine who is ahead" 2120:
Kostal L, Lansky P, Rospars JP (November 2007). "Neuronal coding and spiking randomness".
8: 3654: 2228:
Jolivet, Renaud; Rauch, Alexander; Lüscher, Hans-Rudolf; Gerstner, Wulfram (2006-08-01).
1151: 971: 583: 550: 506: 379: 375: 118: 4146: 4078: 3885: 3729: 3495: 3443: 3348: 3210: 3122: 3020: 2934: 2334: 2180: 1963: 1877: 1581: 1486: 1427: 519: 4204: 4179: 4166: 4043: 4018: 3953: 3926: 3845: 3819: 3792: 3635: 3573: 3548: 3515: 3368: 3312: 3287: 3229: 3139: 3108: 3076: 2989: 2863: 2820: 2772: 2745: 2702: 2582: 2557: 2533: 2508: 2489: 2441: 2416: 2397: 2354: 2265: 2205: 2164: 2145: 2059: 1983: 1905: 1832: 1805: 1781: 1754: 1730: 1705: 1505: 1470: 1446: 1411: 1380: 1196: 1136: 697: 603: 575: 412: 260: 211:
In rate coding, learning is based on activity-dependent synaptic weight modifications.
133:
formation. Neuroscientists have initiated several large-scale brain decoding projects.
122: 3693: 3676: 1232: 1215: 4209: 4158: 4123: 4109: 4048: 3999: 3958: 3907: 3837: 3782: 3741: 3698: 3627: 3578: 3507: 3457: 3410: 3390: 3360: 3317: 3268: 3234: 3144: 3081: 3032: 2981: 2977: 2946: 2855: 2812: 2777: 2694: 2659: 2587: 2538: 2481: 2446: 2389: 2346: 2292: 2257: 2249: 2230:"Predicting spike timing of neocortical pyramidal neurons by simple threshold models" 2210: 2192: 2137: 2133: 2100: 2063: 2051: 1975: 1930: 1897: 1889: 1837: 1806:"The sodium-potassium pump is an information processing element in brain computation" 1786: 1735: 1684: 1659: 1649: 1605: 1600: 1565: 1510: 1451: 1384: 1372: 1328: 1286: 1269: 1245: 1237: 1188: 555: 470: 310:
of trials on which a spike occurred between those times. Equivalently, r(t)Δt is the
71: 39: 35: 4094: 3796: 3161:
Amari, SL (2001), "Information Geometry on Hierarchy of Probability Distributions",
2493: 2477: 2149: 1013:
algorithm which finds the "best matching" projections of multidimensional data, and
4199: 4191: 4170: 4150: 4106:
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
4038: 4030: 3989: 3948: 3938: 3899: 3849: 3829: 3774: 3733: 3688: 3619: 3568: 3560: 3519: 3499: 3452: 3447: 3427: 3387:
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
3372: 3352: 3307: 3299: 3260: 3224: 3214: 3180: 3134: 3126: 3071: 3067: 3063: 3024: 2993: 2973: 2938: 2867: 2847: 2824: 2804: 2767: 2762: 2757: 2706: 2686: 2649: 2577: 2569: 2528: 2520: 2473: 2436: 2428: 2401: 2381: 2358: 2338: 2269: 2241: 2200: 2184: 2129: 2043: 1987: 1967: 1926:
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
1909: 1881: 1827: 1817: 1776: 1766: 1725: 1721: 1717: 1595: 1585: 1500: 1490: 1441: 1431: 1364: 1318: 1227: 1180: 1126: 1116: 1055: 1006: 624: 620: 599: 502: 490: 461: 428: 383: 278: 186: 95: 3903: 3639: 1200: 351: 299: 264: 244: 189:, or "spike firing", increases. Rate coding is sometimes called frequency coding. 3994: 3977: 3943: 3219: 2726: 1924: 1678: 1541:
https://www.simonsfoundation.org/life-sciences/simons-collaboration-global-brain/
1495: 1436: 1322: 1277: 1141: 1131: 1096: 1063: 1035: 678: 271: 230: 219: 160: 143: 114: 110: 684:
Given a potentially large set of input patterns, sparse coding algorithms (e.g.
3833: 2808: 2690: 2573: 2524: 2432: 1306: 444: 378:(phase of firing). One way in which temporal codes are decoded, in presence of 259:, rapid changes of the direction of gaze. The image projected onto the retinal 181:
firing communication states that as the intensity of a stimulus increases, the
42:. Based on the theory that sensory and other information is represented in the 4195: 3778: 3623: 3564: 3264: 2851: 2654: 2637: 2608: 2385: 2245: 2002:"A consensus layer V pyramidal neuron can sustain interpulse-interval coding " 30:
field concerned with characterising the hypothetical relationship between the
4224: 3841: 3745: 2253: 2196: 1893: 1822: 1771: 1590: 1551:
Burcas G.T & Albright T.D. Gauging sensory representations in the brain.
1241: 1106: 1101: 1018: 999: 830: 474: 284: 156: 126: 59: 2371: 2342: 2229: 1885: 1663: 4213: 4098: 4052: 4003: 3962: 3911: 3631: 3582: 3461: 3321: 3303: 3238: 3196: 3148: 3085: 2816: 2781: 2744:
Havenith MN, Yu S, Biederlack J, Chen NH, Singer W, Nikolić D (June 2011).
2698: 2663: 2638:"Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex" 2591: 2542: 2485: 2450: 2393: 2350: 2261: 2214: 2141: 1979: 1901: 1841: 1790: 1739: 1514: 1455: 1376: 1270:"Spike arrival times: A highly efficient coding scheme for neural networks" 1249: 1192: 457: 215: 55: 27: 4162: 3702: 3677:"Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?" 3511: 3364: 3272: 3036: 2985: 2859: 2055: 1648:. Kistler, Werner M., 1969-. Cambridge, U.K.: Cambridge University Press. 1609: 3761:
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
2950: 2720:
Spike arrival times: A highly efficient coding scheme for neural networks
1643: 1273: 1086: 1059: 822:{\displaystyle {\vec {b_{1}}},\ldots ,{\vec {b_{n}}}\in \mathbb {R} ^{k}} 523: 440: 311: 3130: 2188: 1971: 703:
More formally, given a k-dimensional set of real-numbered input vectors
234:
on temporal averaging may be too simplistic to describe brain activity.
4065:
A sparse memory is a precise memory. Oxford Science blog. 28 Feb 2014.
3927:"Sparse representation of sounds in the unanesthetized auditory cortex" 3098: 2047: 1553:
http://www.vcl.salk.edu/Publications/PDF/Buracas_Albright_1999_TINS.pdf
1051: 952:{\displaystyle {\vec {\xi }}\approx \sum _{j=1}^{n}s_{j}{\vec {b}}_{j}} 3737: 3184: 3113: 647: 222:
in 1926. In this simple experiment different weights were hung from a
4154: 3503: 3356: 3028: 2942: 1067: 657: 182: 102: 87: 4034: 3288:"Correlations and the encoding of information in the nervous system" 1645:
Spiking neuron models : single neurons, populations, plasticity
1368: 1528: 1184: 256: 252: 4067:
http://www.ox.ac.uk/news/science-blog/sparse-memory-precise-memory
3824: 3653:
Lee, Honglak; Battle, Alexis; Raina, Rajat; Ng, Andrew Y. (2006).
3052:"Receptive fields of single neurones in the cat's striate cortex" 2635: 2163:
Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark (2016-12-15).
1862:"Rapid Neural Coding in the Retina with Relative Spike Latencies" 674: 635: 501:
Phase-of-firing code is a neural coding scheme that combines the
1412:"Neural population-level memory traces in the mouse hippocampus" 616: 595: 223: 178: 51: 3978:"Synaptic mechanisms underlying sparse coding of active touch" 1324:
Spiking Neuron Models: Single Neurons, Populations, Plasticity
3549:"A temporal channel for information in sparse sensory coding" 2677:
Fries P, Nikolić D, Singer W (July 2007). "The gamma cycle".
194: 91: 83: 79: 75: 43: 2507:
Carleton, Alan; Accolla, Riccardo; Simon, Sidney A. (2010).
1564:
Gerstner W, Kreiter AK, Markram H, Herz AV (November 1997).
747:, the goal of sparse coding is to determine n k-dimensional 623:, or "spike", is independent of each other spike within the 3975: 3862:
Kanerva, Pentti. Sparse distributed memory. MIT press, 1988
2227: 829:, corresponding to neuronal receptive fields, along with a 529:
Phase code has been shown in visual cortex to involve also
291: 113:
point events in time. The lengths of interspike intervals (
34:
and the neuronal responses, and the relationship among the
4118:
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W.
3976:
Crochet, S; Poulet, JFA; Kremer, Y; Petersen, CCH (2011).
3758: 3405:
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W.
2558:"Neural and behavioral mechanisms of olfactory perception" 1563: 1399:
http://www.scientificamerican.com/article/the-memory-code/
285:
Time-dependent firing rate (averaging over several trials)
101:
Although action potentials can vary somewhat in duration,
3285: 2729:, SJ Thorpe - Parallel processing in neural systems, 1990 370:, spike randomness, or precisely timed groups of spikes ( 2743: 1017:, a representation learning method which aims to find a 330:
When precise spike timing or high-frequency firing-rate
237: 163:
or be generated intrinsically by the neural circuitry.
16:
Method by which information is represented in the brain
2282: 883: 839: 756: 709: 405: 3924: 2506: 2029: 2027: 2025: 2023: 1676: 4019:"Sparse odor representation and olfactory learning" 2739: 2737: 2735: 2320: 2283:Geoffrois, E.; Edeline, J.M.; Vibert, J.F. (1994). 2119: 1469:Zhang, H; Chen, G; Kuang, H; Tsien, JZ (Nov 2013). 1468: 1279:
Parallel processing in neural systems and computers
4016: 3425: 2676: 1641: 951: 869: 821: 739: 263:changes therefore every few hundred milliseconds ( 4122:. Cambridge, Massachusetts: The MIT Press; 1999. 4108:. Cambridge, Massachusetts: The MIT Press; 2001. 3662:Advances in Neural Information Processing Systems 3409:. Cambridge, Massachusetts: The MIT Press; 1999. 3389:. Cambridge, Massachusetts: The MIT Press; 2001. 2837: 2463: 2162: 2075: 2073: 2020: 740:{\displaystyle {\vec {\xi }}\in \mathbb {R} ^{k}} 4222: 3715: 3652: 3009:The Journal of the Acoustical Society of America 2923:The Journal of the Acoustical Society of America 2882:"Intro to Sensory Motor Systems Ch. 38 page 766" 2732: 2033: 1354: 833:n-dimensional vector of weights or coefficients 4017:Ito, I; Ong, RCY; Raman, B; Stopfer, M (2008). 2794: 2500: 2011: 1929:. Massachusetts Institute of Technology Press. 1859: 1703: 1677:Kandel, E.; Schwartz, J.; Jessel, T.M. (1991). 1317: 451: 314:that a spike occurs during this time interval. 4132: 3674: 3474: 2603: 2601: 2070: 1539:The Simons Collaboration on the Global Brain. 1170: 870:{\displaystyle {\vec {s}}\in \mathbb {R} ^{n}} 172: 149: 3675:Olshausen, Bruno A.; Field, David J. (1997). 2631: 2629: 2618: 2616: 1409: 4081:." Nature Neuroscience 17.4 (2014): 559-568. 3925:Hromádka, T; Deweese, MR; Zador, AM (2008). 3871: 3809: 3546: 3426:Mathis A, Herz AV, Stemmler MB (July 2012). 2165:"Oscillatory integration windows in neurons" 2105:: CS1 maint: multiple names: authors list ( 1949: 1307:https://doi.org/10.1371/journal.pcbi.1003439 277:There is a growing body of evidence that in 204:(rate as a single-neuron spike count) or an 3812:Applied and Computational Harmonic Analysis 3603:Rehn, Martin; Sommer, Friedrich T. (2007). 3475:Olshausen, Bruno A; Field, David J (1996). 3049: 3006: 2963: 2670: 2609:https://www.youtube.com/watch?v=5SLdSbp6VjM 2598: 1922: 986:Another measure of coding is whether it is 610: 247:in the textbook 'Spiking Neuron Models' ). 3602: 2920: 2626: 2613: 2509:"Coding in the mammalian gustatory system" 2079: 1803: 1752: 1557: 691: 651:Neural responses are noisy and unreliable. 505:count code with a time reference based on 4203: 4042: 3993: 3952: 3942: 3893: 3823: 3768: 3692: 3668: 3572: 3451: 3334: 3311: 3228: 3218: 3174: 3160: 3138: 3112: 3075: 2771: 2761: 2653: 2581: 2532: 2440: 2289:Computation in Neurons and Neural Systems 2204: 2156: 1831: 1821: 1780: 1770: 1729: 1599: 1589: 1504: 1494: 1445: 1435: 1231: 857: 809: 727: 677:-like oriented filters that resemble the 522:phenomena observed in place cells of the 3286:Panzeri; Schultz; Treves; Rolls (1999). 2831: 2466:Neuroscience & Biobehavioral Reviews 1860:Gollisch, T.; Meister, M. (2008-02-22). 1263: 1261: 1259: 646: 634: 598:firing claims that correlations between 136: 3598: 3596: 3594: 3592: 3547:Gupta, N; Stopfer, M (6 October 2014). 3250: 3163:IEEE Transactions on Information Theory 1759:Frontiers in Computational Neuroscience 1566:"Neural codes: firing rates and beyond" 1350: 1348: 1346: 1344: 1311: 1213: 484: 4223: 2555: 2414: 2113: 1943: 1670: 1267: 1024: 615:The independent-spike coding model of 4177: 3612:Journal of Computational Neuroscience 3043: 2911:Science. 1986 Sep 26;233(4771):1416-9 2234:Journal of Computational Neuroscience 2036:Journal of Computational Neuroscience 1916: 1855: 1853: 1851: 1637: 1635: 1633: 1631: 1629: 1627: 1625: 1623: 1621: 1619: 1410:Chen, G; Wang, LP; Tsien, JZ (2009). 1256: 1034:in which only a few neurons out of a 589: 3655:"Efficient sparse coding algorithms" 3589: 3050:Hubel DH, Wiesel TN (October 1959). 1923:Dayan, Peter; Abbott, L. F. (2001). 1341: 1164: 536: 238:Spike-count rate (average over time) 214:Rate coding was originally shown by 4184:Neurobiology of Learning and Memory 3646: 3419: 2086:© Current Biology 1995, Vol 5 No 12 619:firing claims that each individual 13: 4087: 2788: 2080:Zador, Stevens, Charles, Anthony. 1848: 1616: 1272:. In Eckmiller, R.; Hartmann, G.; 630: 406:Temporal coding in sensory systems 325: 14: 4252: 4120:Spikes: Exploring the Neural Code 3407:Spikes: Exploring the Neural Code 2285:"Learning by Delay Modifications" 1285:. North-Holland. pp. 91–94. 396:spike-timing-dependent plasticity 4178:Tsien, JZ.; et al. (2014). 2134:10.1111/j.1460-9568.2007.05880.x 1529:http://braindecodingproject.org/ 663: 594:The correlation coding model of 545:For example, in the visual area 206:average over several repetitions 4071: 4059: 4010: 3969: 3918: 3865: 3856: 3803: 3752: 3709: 3540: 3468: 3399: 3379: 3328: 3279: 3244: 3190: 3154: 3092: 3000: 2957: 2914: 2905: 2874: 2713: 2562:Current Opinion in Neurobiology 2549: 2478:10.1016/j.neubiorev.2006.07.005 2457: 2421:Current Opinion in Neurobiology 2408: 2365: 2314: 2305: 2276: 2221: 1994: 1797: 1746: 1704:Adrian ED, Zotterman Y (1926). 1697: 1545: 1533: 1521: 639:Plot of typical position coding 3453:10.1103/PhysRevLett.109.018103 3068:10.1113/jphysiol.1959.sp006308 2763:10.1523/JNEUROSCI.2817-10.2011 2287:. In Eeckman, Frank H. (ed.). 1722:10.1113/jphysiol.1926.sp002281 1462: 1403: 1391: 1327:. Cambridge University Press. 1299: 1207: 937: 890: 846: 798: 770: 716: 439:As with the visual system, in 208:(rate of PSTH) of experiment. 1: 3904:10.1126/science.287.5456.1273 3694:10.1016/s0042-6989(97)00169-7 1321:; Kistler, Werner M. (2002). 1233:10.1016/S0896-6273(00)81193-9 1158: 3995:10.1016/j.neuron.2011.02.022 3944:10.1371/journal.pbio.0060016 3220:10.1371/journal.pcbi.1000577 2978:10.1016/0378-5955(84)90054-6 2415:Victor, Johnathan D (2005). 2291:. Springer. pp. 133–8. 1804:Forrest MD (December 2014). 1680:Principles of Neural Science 1570:Proc. Natl. Acad. Sci. U.S.A 1496:10.1371/journal.pone.0079454 1437:10.1371/journal.pone.0008256 1214:Johnson, K. O. (June 2000). 1122:Models of neural computation 1058:, sparse odor coding by the 452:Temporal coding applications 350:Temporal codes (also called 292:Peri-Stimulus-Time Histogram 7: 1642:Gerstner, Wulfram. (2002). 1074: 531:high-frequency oscillations 173:Traditional View: Rate Code 150:Hypothesized coding schemes 65: 10: 4257: 4236:Computational neuroscience 3834:10.1016/j.acha.2008.07.002 2809:10.1162/089976602753633367 2691:10.1016/j.tins.2007.05.005 2574:10.1016/j.conb.2008.08.015 2525:10.1016/j.tins.2010.04.002 2433:10.1016/j.conb.2005.08.002 1683:(3rd ed.). Elsevier. 1112:Feature integration theory 1005:Other models are based on 700:to approximate the input. 497:Phase resetting in neurons 494: 488: 358:after the stimulus onset, 129:have been widely applied. 4196:10.1016/j.nlm.2013.06.019 4104:Dayan P & Abbott LF. 3779:10.1109/ACSSC.1993.342465 3624:10.1007/s10827-006-0003-9 3565:10.1016/j.cub.2014.08.021 3385:Dayan P & Abbott LF. 3265:10.1152/jn.1980.43.6.1793 2852:10.1152/jn.1983.49.5.1127 2655:10.1016/j.cub.2008.02.023 2556:Wilson, Rachel I (2008). 2386:10.1007/s00422-010-0384-8 2246:10.1007/s10827-006-7074-5 2082:"The enigma of the brain" 1147:Sparse distributed memory 1082:Artificial neural network 1043:sparse distributed memory 376:ongoing brain oscillation 177:The rate coding model of 4077:Lin, Andrew C., et al. " 3763:. pp. 40–44 vol.1. 1823:10.3389/fphys.2014.00472 1772:10.3389/fncom.2014.00086 1591:10.1073/pnas.94.24.12740 1527:Brain Decoding Project. 611:Independent-spike coding 368:probability distribution 2513:Trends in Neurosciences 2343:10.1126/science.1149639 1886:10.1126/science.1149639 1810:Frontiers in Physiology 1092:Biological neuron model 692:Linear generative model 344:post-synaptic potential 3304:10.1098/rspb.1999.0736 2374:Biological Cybernetics 953: 919: 871: 823: 741: 652: 640: 580:maximum entropy models 50:, it is believed that 38:of the neurons in the 4093:Földiák P, Endres D, 2417:"Spike train metrics" 2169:Nature Communications 1268:Thorpe, S.J. (1990). 954: 899: 872: 824: 742: 650: 638: 515:local field potential 495:Further information: 421:primary visual cortex 137:Encoding and decoding 36:electrical activities 24:neural representation 1041:Theoretical work on 1032:associative memories 1011:sparse approximation 881: 837: 754: 707: 669:locations is known. 485:Phase-of-firing code 384:post-synaptic neuron 4147:1996Natur.381..607O 3886:2000Sci...287.1273V 3880:(5456): 1273–1276. 3730:1994OptEn..33.2183D 3718:Optical Engineering 3496:1996Natur.381..607O 3444:2012PhRvL.109a8103M 3349:1996Natur.381..610D 3211:2009PLSCB...5E0577O 3131:10.1038/nature04701 3123:2006Natur.440.1007S 3107:(7087): 1007–1012, 3021:1983ASAJ...74..502M 2935:1979ASAJ...66.1381Y 2335:2008Sci...319.1108G 2329:(5866): 1108–1111. 2189:10.1038/ncomms13808 2181:2016NatCo...713808G 1972:10.1038/nature06105 1964:2007Natur.449...92B 1878:2008Sci...319.1108G 1872:(5866): 1108–1111. 1753:Forrest MD (2014). 1582:1997PNAS...9412740G 1487:2013PLoSO...879454Z 1428:2009PLoSO...4.8256C 1152:Vector quantization 1025:Biological evidence 1015:dictionary learning 988:critically complete 479:Parkinson's disease 441:mitral/tufted cells 380:neural oscillations 356:time-to-first-spike 119:statistical methods 48:networks of neurons 4101:, 3(1):2984, 2008. 2725:2012-02-15 at the 2048:10.1007/bf00961885 2000:Singh & Levy, 1357:Nat. Rev. Neurosci 1137:Neural oscillation 1030:stimulus-specific 949: 867: 819: 737: 686:sparse autoencoder 653: 641: 604:mutual information 590:Correlation coding 576:maximum likelihood 413:sound localization 123:probability theory 4029:(10): 1177–1184. 3788:978-0-8186-4120-6 3738:10.1117/12.173207 3687:(23): 3311–3325. 3490:(6583): 607–609. 3298:(1423): 1001–12. 3185:10.1109/18.930911 2298:978-0-7923-9465-5 1936:978-0-262-04199-7 1397:The Memory Code. 1334:978-0-521-89079-3 1319:Gerstner, Wulfram 1292:978-0-444-88390-2 940: 893: 849: 801: 773: 719: 600:action potentials 556:population vector 537:Population coding 372:temporal patterns 202:average over time 187:action potentials 96:graded potentials 72:action potentials 4248: 4241:Neural circuitry 4217: 4207: 4174: 4155:10.1038/381607a0 4082: 4075: 4069: 4063: 4057: 4056: 4046: 4014: 4008: 4007: 3997: 3988:(6): 1160–1175. 3973: 3967: 3966: 3956: 3946: 3922: 3916: 3915: 3897: 3869: 3863: 3860: 3854: 3853: 3827: 3807: 3801: 3800: 3772: 3756: 3750: 3749: 3724:(7): 2183–2192. 3713: 3707: 3706: 3696: 3672: 3666: 3665: 3659: 3650: 3644: 3643: 3609: 3600: 3587: 3586: 3576: 3544: 3538: 3537: 3535: 3534: 3528: 3522:. Archived from 3504:10.1038/381607a0 3481: 3472: 3466: 3465: 3455: 3423: 3417: 3403: 3397: 3383: 3377: 3376: 3357:10.1038/381610a0 3332: 3326: 3325: 3315: 3283: 3277: 3276: 3248: 3242: 3241: 3232: 3222: 3205:(11): e1000577, 3199:PLOS Comput Biol 3194: 3188: 3187: 3178: 3169:(5): 1701–1711, 3158: 3152: 3151: 3142: 3116: 3096: 3090: 3089: 3079: 3047: 3041: 3040: 3029:10.1121/1.389816 3004: 2998: 2997: 2966:Hearing Research 2961: 2955: 2954: 2943:10.1121/1.383532 2929:(5): 1381–1403. 2918: 2912: 2909: 2903: 2902: 2900: 2899: 2893: 2887:. Archived from 2886: 2878: 2872: 2871: 2835: 2829: 2828: 2792: 2786: 2785: 2775: 2765: 2741: 2730: 2717: 2711: 2710: 2674: 2668: 2667: 2657: 2633: 2624: 2620: 2611: 2605: 2596: 2595: 2585: 2553: 2547: 2546: 2536: 2504: 2498: 2497: 2472:(8): 1145–1160. 2461: 2455: 2454: 2444: 2412: 2406: 2405: 2369: 2363: 2362: 2318: 2312: 2309: 2303: 2302: 2280: 2274: 2273: 2225: 2219: 2218: 2208: 2160: 2154: 2153: 2128:(10): 2693–701. 2122:Eur. J. Neurosci 2117: 2111: 2110: 2104: 2096: 2094: 2092: 2077: 2068: 2067: 2031: 2018: 2015: 2009: 1998: 1992: 1991: 1947: 1941: 1940: 1920: 1914: 1913: 1857: 1846: 1845: 1835: 1825: 1801: 1795: 1794: 1784: 1774: 1750: 1744: 1743: 1733: 1701: 1695: 1694: 1674: 1668: 1667: 1639: 1614: 1613: 1603: 1593: 1561: 1555: 1549: 1543: 1537: 1531: 1525: 1519: 1518: 1508: 1498: 1466: 1460: 1459: 1449: 1439: 1407: 1401: 1395: 1389: 1388: 1352: 1339: 1338: 1315: 1309: 1303: 1297: 1296: 1284: 1265: 1254: 1253: 1235: 1211: 1205: 1204: 1168: 1127:Neural correlate 1117:Grandmother cell 1056:olfactory system 1007:matching pursuit 958: 956: 955: 950: 948: 947: 942: 941: 933: 929: 928: 918: 913: 895: 894: 886: 876: 874: 873: 868: 866: 865: 860: 851: 850: 842: 828: 826: 825: 820: 818: 817: 812: 803: 802: 797: 796: 787: 775: 774: 769: 768: 759: 746: 744: 743: 738: 736: 735: 730: 721: 720: 712: 679:receptive fields 621:action potential 520:phase precession 491:Phase precession 462:channelrhodopsin 429:gustatory system 279:Purkinje neurons 251:reaction of the 54:can encode both 4256: 4255: 4251: 4250: 4249: 4247: 4246: 4245: 4221: 4220: 4141:(6583): 607–9. 4090: 4088:Further reading 4085: 4076: 4072: 4064: 4060: 4035:10.1038/nn.2192 4015: 4011: 3974: 3970: 3923: 3919: 3895:10.1.1.456.2467 3870: 3866: 3861: 3857: 3808: 3804: 3789: 3770:10.1.1.348.5735 3757: 3753: 3714: 3710: 3681:Vision Research 3673: 3669: 3657: 3651: 3647: 3607: 3601: 3590: 3559:(19): 2247–56. 3553:Current Biology 3545: 3541: 3532: 3530: 3526: 3479: 3473: 3469: 3432:Phys. Rev. Lett 3424: 3420: 3404: 3400: 3384: 3380: 3343:(6583): 610–3. 3333: 3329: 3284: 3280: 3259:(6): 1793–815. 3249: 3245: 3195: 3191: 3159: 3155: 3097: 3093: 3048: 3044: 3005: 3001: 2962: 2958: 2919: 2915: 2910: 2906: 2897: 2895: 2891: 2884: 2880: 2879: 2875: 2840:J. Neurophysiol 2836: 2832: 2803:(5): 999–1026. 2793: 2789: 2756:(23): 8570–84. 2742: 2733: 2727:Wayback Machine 2718: 2714: 2679:Trends Neurosci 2675: 2671: 2642:Current Biology 2634: 2627: 2621: 2614: 2606: 2599: 2554: 2550: 2505: 2501: 2462: 2458: 2413: 2409: 2370: 2366: 2319: 2315: 2310: 2306: 2299: 2281: 2277: 2226: 2222: 2161: 2157: 2118: 2114: 2098: 2097: 2090: 2088: 2078: 2071: 2032: 2021: 2016: 2012: 1999: 1995: 1948: 1944: 1937: 1921: 1917: 1858: 1849: 1802: 1798: 1751: 1747: 1702: 1698: 1691: 1675: 1671: 1656: 1640: 1617: 1576:(24): 12740–1. 1562: 1558: 1550: 1546: 1538: 1534: 1526: 1522: 1467: 1463: 1408: 1404: 1396: 1392: 1369:10.1038/nrn1668 1353: 1342: 1335: 1316: 1312: 1304: 1300: 1293: 1282: 1266: 1257: 1216:"Neural coding" 1212: 1208: 1169: 1165: 1161: 1156: 1142:Receptive field 1132:Neural decoding 1097:Binding problem 1077: 1027: 968:hard sparseness 966:and those with 964:soft sparseness 943: 932: 931: 930: 924: 920: 914: 903: 885: 884: 882: 879: 878: 861: 856: 855: 841: 840: 838: 835: 834: 813: 808: 807: 792: 788: 786: 785: 764: 760: 758: 757: 755: 752: 751: 731: 726: 725: 711: 710: 708: 705: 704: 694: 666: 633: 631:Position coding 613: 592: 547:medial temporal 539: 499: 493: 487: 454: 408: 360:phase-of-firing 328: 326:Temporal coding 297: 287: 272:neural networks 240: 220:Yngve Zotterman 175: 169: 161:auditory system 152: 144:Neural decoding 139: 127:point processes 125:and stochastic 121:and methods of 68: 17: 12: 11: 5: 4254: 4244: 4243: 4238: 4233: 4219: 4218: 4175: 4130: 4116: 4102: 4089: 4086: 4084: 4083: 4070: 4058: 4009: 3968: 3917: 3864: 3855: 3818:(3): 301–321. 3802: 3787: 3751: 3708: 3667: 3645: 3618:(2): 135–146. 3588: 3539: 3467: 3418: 3398: 3378: 3327: 3278: 3253:J Neurophysiol 3243: 3189: 3176:10.1.1.46.5226 3153: 3091: 3042: 3015:(2): 502–517. 2999: 2972:(3): 257–279. 2956: 2913: 2904: 2873: 2846:(5): 1127–47. 2830: 2787: 2731: 2712: 2669: 2648:(5): 375–380. 2625: 2612: 2597: 2568:(4): 408–412. 2548: 2519:(7): 326–334. 2499: 2456: 2427:(5): 585–592. 2407: 2364: 2313: 2304: 2297: 2275: 2220: 2155: 2112: 2069: 2042:(2): 149–162. 2019: 2010: 1993: 1958:(7158): 92–5. 1942: 1935: 1915: 1847: 1796: 1745: 1716:(2): 151–171. 1696: 1690:978-0444015624 1689: 1669: 1654: 1615: 1556: 1544: 1532: 1520: 1481:(11): e79454. 1461: 1402: 1390: 1340: 1333: 1310: 1298: 1291: 1255: 1226:(3): 563–566. 1206: 1185:10.1038/nn1228 1162: 1160: 1157: 1155: 1154: 1149: 1144: 1139: 1134: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1078: 1076: 1073: 1026: 1023: 946: 939: 936: 927: 923: 917: 912: 909: 906: 902: 898: 892: 889: 864: 859: 854: 848: 845: 816: 811: 806: 800: 795: 791: 784: 781: 778: 772: 767: 763: 734: 729: 724: 718: 715: 698:linear fashion 693: 690: 665: 662: 632: 629: 612: 609: 591: 588: 538: 535: 489:Main article: 486: 483: 453: 450: 445:olfactory bulb 427:The mammalian 407: 404: 327: 324: 295: 286: 283: 261:photoreceptors 239: 236: 174: 171: 151: 148: 138: 135: 107:brief duration 67: 64: 15: 9: 6: 4: 3: 2: 4253: 4242: 4239: 4237: 4234: 4232: 4231:Neural coding 4229: 4228: 4226: 4215: 4211: 4206: 4201: 4197: 4193: 4189: 4185: 4181: 4176: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4140: 4136: 4131: 4129: 4128:0-262-68108-0 4125: 4121: 4117: 4115: 4114:0-262-04199-5 4111: 4107: 4103: 4100: 4096: 4095:Sparse coding 4092: 4091: 4080: 4074: 4068: 4062: 4054: 4050: 4045: 4040: 4036: 4032: 4028: 4024: 4020: 4013: 4005: 4001: 3996: 3991: 3987: 3983: 3979: 3972: 3964: 3960: 3955: 3950: 3945: 3940: 3936: 3932: 3928: 3921: 3913: 3909: 3905: 3901: 3896: 3891: 3887: 3883: 3879: 3875: 3868: 3859: 3851: 3847: 3843: 3839: 3835: 3831: 3826: 3821: 3817: 3813: 3806: 3798: 3794: 3790: 3784: 3780: 3776: 3771: 3766: 3762: 3755: 3747: 3743: 3739: 3735: 3731: 3727: 3723: 3719: 3712: 3704: 3700: 3695: 3690: 3686: 3682: 3678: 3671: 3663: 3656: 3649: 3641: 3637: 3633: 3629: 3625: 3621: 3617: 3613: 3606: 3599: 3597: 3595: 3593: 3584: 3580: 3575: 3570: 3566: 3562: 3558: 3554: 3550: 3543: 3529:on 2015-11-23 3525: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3485: 3478: 3471: 3463: 3459: 3454: 3449: 3445: 3441: 3438:(1): 018103. 3437: 3433: 3429: 3422: 3416: 3415:0-262-68108-0 3412: 3408: 3402: 3396: 3395:0-262-04199-5 3392: 3388: 3382: 3374: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3338: 3331: 3323: 3319: 3314: 3309: 3305: 3301: 3297: 3293: 3292:Proc Biol Sci 3289: 3282: 3274: 3270: 3266: 3262: 3258: 3254: 3247: 3240: 3236: 3231: 3226: 3221: 3216: 3212: 3208: 3204: 3200: 3193: 3186: 3182: 3177: 3172: 3168: 3164: 3157: 3150: 3146: 3141: 3136: 3132: 3128: 3124: 3120: 3115: 3114:q-bio/0512013 3110: 3106: 3102: 3095: 3087: 3083: 3078: 3073: 3069: 3065: 3062:(3): 574–91. 3061: 3057: 3053: 3046: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3003: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2960: 2952: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2917: 2908: 2894:on 2012-05-11 2890: 2883: 2877: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2834: 2826: 2822: 2818: 2814: 2810: 2806: 2802: 2798: 2797:Neural Comput 2791: 2783: 2779: 2774: 2769: 2764: 2759: 2755: 2751: 2747: 2740: 2738: 2736: 2728: 2724: 2721: 2716: 2708: 2704: 2700: 2696: 2692: 2688: 2685:(7): 309–16. 2684: 2680: 2673: 2665: 2661: 2656: 2651: 2647: 2643: 2639: 2632: 2630: 2619: 2617: 2610: 2604: 2602: 2593: 2589: 2584: 2579: 2575: 2571: 2567: 2563: 2559: 2552: 2544: 2540: 2535: 2530: 2526: 2522: 2518: 2514: 2510: 2503: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2460: 2452: 2448: 2443: 2438: 2434: 2430: 2426: 2422: 2418: 2411: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2368: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2328: 2324: 2317: 2308: 2300: 2294: 2290: 2286: 2279: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2224: 2216: 2212: 2207: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2159: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2116: 2108: 2102: 2087: 2083: 2076: 2074: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2030: 2028: 2026: 2024: 2014: 2007: 2003: 1997: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1946: 1938: 1932: 1928: 1927: 1919: 1911: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1856: 1854: 1852: 1843: 1839: 1834: 1829: 1824: 1819: 1815: 1811: 1807: 1800: 1792: 1788: 1783: 1778: 1773: 1768: 1764: 1760: 1756: 1749: 1741: 1737: 1732: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1692: 1686: 1682: 1681: 1673: 1665: 1661: 1657: 1655:0-511-07817-X 1651: 1647: 1646: 1638: 1636: 1634: 1632: 1630: 1628: 1626: 1624: 1622: 1620: 1611: 1607: 1602: 1597: 1592: 1587: 1583: 1579: 1575: 1571: 1567: 1560: 1554: 1548: 1542: 1536: 1530: 1524: 1516: 1512: 1507: 1502: 1497: 1492: 1488: 1484: 1480: 1476: 1472: 1465: 1457: 1453: 1448: 1443: 1438: 1433: 1429: 1425: 1422:(12): e8256. 1421: 1417: 1413: 1406: 1400: 1394: 1386: 1382: 1378: 1374: 1370: 1366: 1363:(5): 389–97. 1362: 1358: 1351: 1349: 1347: 1345: 1336: 1330: 1326: 1325: 1320: 1314: 1308: 1302: 1294: 1288: 1281: 1280: 1275: 1271: 1264: 1262: 1260: 1251: 1247: 1243: 1239: 1234: 1229: 1225: 1221: 1217: 1210: 1202: 1198: 1194: 1190: 1186: 1182: 1179:(5): 456–61. 1178: 1174: 1173:Nat. Neurosci 1167: 1163: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1107:Deep learning 1105: 1103: 1102:Cognitive map 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1079: 1072: 1069: 1065: 1064:mushroom body 1061: 1057: 1054: 1053: 1047: 1044: 1039: 1037: 1033: 1022: 1020: 1019:sparse matrix 1016: 1012: 1008: 1003: 1001: 1000:visual cortex 997: 993: 989: 984: 981: 977: 973: 969: 965: 960: 944: 934: 925: 921: 915: 910: 907: 904: 900: 896: 887: 862: 852: 843: 832: 814: 804: 793: 789: 782: 779: 776: 765: 761: 750: 749:basis vectors 732: 722: 713: 701: 699: 689: 687: 682: 680: 676: 670: 664:Sparse coding 661: 659: 649: 645: 637: 628: 626: 622: 618: 608: 605: 601: 597: 587: 585: 581: 577: 571: 568: 563: 559: 557: 552: 548: 543: 534: 532: 527: 525: 521: 516: 510: 508: 504: 498: 492: 482: 480: 476: 475:schizophrenia 472: 466: 463: 459: 449: 446: 442: 437: 433: 430: 425: 422: 416: 414: 403: 399: 397: 391: 387: 385: 381: 377: 373: 369: 365: 361: 357: 353: 348: 345: 340: 336: 333: 323: 319: 315: 313: 309: 303: 301: 293: 282: 280: 275: 273: 268: 266: 262: 258: 254: 248: 246: 235: 232: 227: 225: 221: 217: 212: 209: 207: 203: 198: 196: 190: 188: 184: 180: 170: 167: 164: 162: 158: 157:temporal code 147: 145: 134: 130: 128: 124: 120: 116: 112: 108: 104: 99: 97: 93: 89: 85: 81: 77: 73: 63: 62:information. 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 20:Neural coding 4187: 4183: 4138: 4134: 4119: 4105: 4099:Scholarpedia 4073: 4061: 4026: 4023:Nat Neurosci 4022: 4012: 3985: 3981: 3971: 3934: 3930: 3920: 3877: 3873: 3867: 3858: 3815: 3811: 3805: 3760: 3754: 3721: 3717: 3711: 3684: 3680: 3670: 3661: 3648: 3615: 3611: 3556: 3552: 3542: 3531:. Retrieved 3524:the original 3487: 3483: 3470: 3435: 3431: 3421: 3406: 3401: 3386: 3381: 3340: 3336: 3330: 3295: 3291: 3281: 3256: 3252: 3246: 3202: 3198: 3192: 3166: 3162: 3156: 3104: 3100: 3094: 3059: 3055: 3045: 3012: 3008: 3002: 2969: 2965: 2959: 2926: 2922: 2916: 2907: 2896:. Retrieved 2889:the original 2876: 2843: 2839: 2833: 2800: 2796: 2790: 2753: 2749: 2715: 2682: 2678: 2672: 2645: 2641: 2565: 2561: 2551: 2516: 2512: 2502: 2469: 2465: 2459: 2424: 2420: 2410: 2380:(1): 43–56. 2377: 2373: 2367: 2326: 2322: 2316: 2307: 2288: 2278: 2240:(1): 35–49. 2237: 2233: 2223: 2172: 2168: 2158: 2125: 2121: 2115: 2089:. Retrieved 2085: 2039: 2035: 2013: 2005: 1996: 1955: 1951: 1945: 1925: 1918: 1869: 1865: 1816:(472): 472. 1813: 1809: 1799: 1762: 1758: 1748: 1713: 1709: 1699: 1679: 1672: 1644: 1573: 1569: 1559: 1547: 1535: 1523: 1478: 1474: 1464: 1419: 1415: 1405: 1393: 1360: 1356: 1323: 1313: 1301: 1278: 1223: 1219: 1209: 1176: 1172: 1166: 1060:Kenyon cells 1050: 1048: 1040: 1028: 1004: 996:overcomplete 995: 992:overcomplete 991: 987: 985: 979: 975: 967: 963: 961: 702: 695: 683: 671: 667: 654: 642: 614: 593: 572: 564: 560: 544: 540: 528: 511: 507:oscillations 500: 467: 458:optogenetics 455: 438: 434: 426: 417: 409: 400: 392: 388: 371: 359: 355: 349: 341: 337: 332:fluctuations 329: 320: 316: 304: 288: 276: 269: 249: 241: 228: 216:Edgar Adrian 213: 210: 205: 201: 199: 191: 176: 168: 165: 153: 140: 131: 100: 69: 28:neuroscience 23: 19: 18: 4190:: 200–210. 2750:J. Neurosci 1087:Autoencoder 625:spike train 567:variability 551:bell-shaped 524:hippocampus 366:of the ISI 352:spike codes 312:probability 300:Chapter 1.5 265:Chapter 1.5 245:Chapter 1.5 185:or rate of 111:all-or-none 4225:Categories 3937:(1): e16. 3533:2016-03-29 3056:J. Physiol 2898:2014-02-03 1274:Hauske, G. 1159:References 1052:Drosophila 1036:population 980:hardly any 658:grid cells 471:depression 3931:PLOS Biol 3890:CiteSeerX 3842:1063-5203 3825:0803.2392 3765:CiteSeerX 3746:1560-2303 3171:CiteSeerX 2254:1573-6873 2197:2041-1723 2175:: 13808. 2091:August 4, 2064:206786736 1894:0036-8075 1710:J Physiol 1385:205500218 1242:0896-6273 1068:GABAergic 938:→ 901:∑ 897:≈ 891:→ 888:ξ 853:∈ 847:→ 805:∈ 799:→ 780:… 771:→ 723:∈ 717:→ 714:ξ 183:frequency 142:stimuli. 103:amplitude 4214:23838072 4053:18794840 4004:21435560 3963:18232737 3912:10678835 3797:16513805 3632:17053994 3583:25264257 3462:23031134 3322:10610508 3239:19956759 3149:16625187 3086:14403679 2817:11972905 2782:21653861 2723:Archived 2699:17555828 2664:18328702 2592:18809492 2543:20493563 2494:14739301 2486:16979239 2451:16140522 2394:20372920 2351:18292344 2262:16633938 2215:27976720 2150:15367988 2142:18001270 2101:cite web 2006:PLoS ONE 1980:17805296 1902:18292344 1842:25566080 1791:25191262 1740:16993780 1664:57417395 1515:24302990 1475:PLOS ONE 1456:20016843 1416:PLOS ONE 1377:15861181 1276:(eds.). 1250:10896153 1193:15114358 1075:See also 972:Gaussian 617:neuronal 596:neuronal 558:coding. 308:fraction 257:saccades 253:organism 231:cortical 179:neuronal 66:Overview 40:ensemble 32:stimulus 4205:3769419 4171:4358477 4163:8637596 4143:Bibcode 4044:3124899 3954:2214813 3882:Bibcode 3874:Science 3850:1642637 3726:Bibcode 3703:9425546 3574:4189991 3520:4358477 3512:8637596 3492:Bibcode 3440:Bibcode 3373:4258853 3365:8637597 3345:Bibcode 3313:1689940 3273:7411183 3230:2776173 3207:Bibcode 3140:1785327 3119:Bibcode 3077:1363130 3037:6619427 3017:Bibcode 2994:4704044 2986:6480513 2931:Bibcode 2868:8708245 2860:6864242 2825:1122223 2773:6623348 2707:3070167 2583:2596880 2534:2902637 2442:2713191 2402:7121609 2359:1032537 2331:Bibcode 2323:Science 2270:8911457 2206:5171764 2177:Bibcode 2056:8521284 1988:4402057 1960:Bibcode 1910:1032537 1874:Bibcode 1866:Science 1833:4274886 1782:4138505 1731:1514782 1610:9398065 1578:Bibcode 1506:3841182 1483:Bibcode 1447:2788416 1424:Bibcode 1062:of the 1049:In the 675:wavelet 584:copulas 443:in the 364:moments 56:digital 52:neurons 26:) is a 4212:  4202:  4169:  4161:  4135:Nature 4126:  4112:  4051:  4041:  4002:  3982:Neuron 3961:  3951:  3910:  3892:  3848:  3840:  3795:  3785:  3767:  3744:  3701:  3640:294586 3638:  3630:  3581:  3571:  3518:  3510:  3484:Nature 3460:  3413:  3393:  3371:  3363:  3337:Nature 3320:  3310:  3271:  3237:  3227:  3173:  3147:  3137:  3101:Nature 3084:  3074:  3035:  2992:  2984:  2951:500976 2949:  2866:  2858:  2823:  2815:  2780:  2770:  2705:  2697:  2662:  2590:  2580:  2541:  2531:  2492:  2484:  2449:  2439:  2400:  2392:  2357:  2349:  2295:  2268:  2260:  2252:  2213:  2203:  2195:  2148:  2140:  2062:  2054:  2008:, 2017 1986:  1978:  1952:Nature 1933:  1908:  1900:  1892:  1840:  1830:  1789:  1779:  1765:: 86. 1738:  1728:  1687:  1662:  1652:  1608:  1598:  1513:  1503:  1454:  1444:  1383:  1375:  1331:  1289:  1248:  1240:  1220:Neuron 1201:562815 1199:  1191:  831:sparse 477:, and 302:in ). 224:muscle 60:analog 4167:S2CID 3846:S2CID 3820:arXiv 3793:S2CID 3658:(PDF) 3636:S2CID 3608:(PDF) 3527:(PDF) 3516:S2CID 3480:(PDF) 3369:S2CID 3109:arXiv 2990:S2CID 2892:(PDF) 2885:(PDF) 2864:S2CID 2821:S2CID 2703:S2CID 2623:2009. 2490:S2CID 2398:S2CID 2355:S2CID 2266:S2CID 2146:S2CID 2060:S2CID 1984:S2CID 1906:S2CID 1601:34168 1381:S2CID 1283:(PDF) 1197:S2CID 582:, or 503:spike 267:in ) 195:noise 92:touch 88:smell 84:taste 80:sound 76:light 44:brain 4210:PMID 4159:PMID 4124:ISBN 4110:ISBN 4049:PMID 4000:PMID 3959:PMID 3908:PMID 3838:ISSN 3783:ISBN 3742:ISSN 3699:PMID 3628:PMID 3579:PMID 3508:PMID 3458:PMID 3411:ISBN 3391:ISBN 3361:PMID 3318:PMID 3269:PMID 3235:PMID 3145:PMID 3082:PMID 3033:PMID 2982:PMID 2947:PMID 2856:PMID 2813:PMID 2778:PMID 2695:PMID 2660:PMID 2588:PMID 2539:PMID 2482:PMID 2447:PMID 2390:PMID 2347:PMID 2293:ISBN 2258:PMID 2250:ISSN 2211:PMID 2193:ISSN 2138:PMID 2107:link 2093:2012 2052:PMID 1976:PMID 1931:ISBN 1898:PMID 1890:ISSN 1838:PMID 1787:PMID 1736:PMID 1685:ISBN 1660:OCLC 1650:ISBN 1606:PMID 1511:PMID 1452:PMID 1373:PMID 1329:ISBN 1287:ISBN 1246:PMID 1238:ISSN 1189:PMID 1009:, a 218:and 115:ISIs 90:and 58:and 22:(or 4200:PMC 4192:doi 4188:105 4151:doi 4139:381 4039:PMC 4031:doi 3990:doi 3949:PMC 3939:doi 3900:doi 3878:287 3830:doi 3775:doi 3734:doi 3689:doi 3620:doi 3569:PMC 3561:doi 3500:doi 3488:381 3448:doi 3436:109 3353:doi 3341:381 3308:PMC 3300:doi 3296:266 3261:doi 3225:PMC 3215:doi 3181:doi 3135:PMC 3127:doi 3105:440 3072:PMC 3064:doi 3060:148 3025:doi 2974:doi 2939:doi 2848:doi 2805:doi 2768:PMC 2758:doi 2687:doi 2650:doi 2578:PMC 2570:doi 2529:PMC 2521:doi 2474:doi 2437:PMC 2429:doi 2382:doi 2378:103 2339:doi 2327:319 2242:doi 2201:PMC 2185:doi 2130:doi 2044:doi 1968:doi 1956:449 1882:doi 1870:319 1828:PMC 1818:doi 1777:PMC 1767:doi 1726:PMC 1718:doi 1596:PMC 1586:doi 1501:PMC 1491:doi 1442:PMC 1432:doi 1365:doi 1228:doi 1181:doi 990:or 978:or 197:'. 46:by 4227:: 4208:. 4198:. 4186:. 4182:. 4165:. 4157:. 4149:. 4137:. 4097:, 4047:. 4037:. 4027:11 4025:. 4021:. 3998:. 3986:69 3984:. 3980:. 3957:. 3947:. 3933:. 3929:. 3906:. 3898:. 3888:. 3876:. 3844:. 3836:. 3828:. 3816:26 3814:. 3791:. 3781:. 3773:. 3740:. 3732:. 3722:33 3720:. 3697:. 3685:37 3683:. 3679:. 3660:. 3634:. 3626:. 3616:22 3614:. 3610:. 3591:^ 3577:. 3567:. 3557:24 3555:. 3551:. 3514:. 3506:. 3498:. 3486:. 3482:. 3456:. 3446:. 3434:. 3430:. 3367:. 3359:. 3351:. 3339:. 3316:. 3306:. 3294:. 3290:. 3267:. 3257:43 3255:. 3233:, 3223:, 3213:, 3201:, 3179:, 3167:47 3165:, 3143:, 3133:, 3125:, 3117:, 3103:, 3080:. 3070:. 3058:. 3054:. 3031:. 3023:. 3013:74 3011:. 2988:. 2980:. 2970:14 2968:. 2945:. 2937:. 2927:66 2925:. 2862:. 2854:. 2844:49 2842:. 2819:. 2811:. 2801:14 2799:. 2776:. 2766:. 2754:31 2752:. 2748:. 2734:^ 2701:. 2693:. 2683:30 2681:. 2658:. 2646:18 2644:. 2640:. 2628:^ 2615:^ 2600:^ 2586:. 2576:. 2566:18 2564:. 2560:. 2537:. 2527:. 2517:33 2515:. 2511:. 2488:. 2480:. 2470:30 2468:. 2445:. 2435:. 2425:15 2423:. 2419:. 2396:. 2388:. 2376:. 2353:. 2345:. 2337:. 2325:. 2264:. 2256:. 2248:. 2238:21 2236:. 2232:. 2209:. 2199:. 2191:. 2183:. 2171:. 2167:. 2144:. 2136:. 2126:26 2124:. 2103:}} 2099:{{ 2084:. 2072:^ 2058:. 2050:. 2038:. 2022:^ 2004:, 1982:. 1974:. 1966:. 1954:. 1904:. 1896:. 1888:. 1880:. 1868:. 1864:. 1850:^ 1836:. 1826:. 1812:. 1808:. 1785:. 1775:. 1761:. 1757:. 1734:. 1724:. 1714:61 1712:. 1708:. 1658:. 1618:^ 1604:. 1594:. 1584:. 1574:94 1572:. 1568:. 1509:. 1499:. 1489:. 1477:. 1473:. 1450:. 1440:. 1430:. 1418:. 1414:. 1379:. 1371:. 1359:. 1343:^ 1258:^ 1244:. 1236:. 1224:26 1222:. 1218:. 1195:. 1187:. 1175:. 976:no 959:. 627:. 586:. 473:, 398:. 386:. 86:, 82:, 78:, 4216:. 4194:: 4173:. 4153:: 4145:: 4055:. 4033:: 4006:. 3992:: 3965:. 3941:: 3935:6 3914:. 3902:: 3884:: 3852:. 3832:: 3822:: 3799:. 3777:: 3748:. 3736:: 3728:: 3705:. 3691:: 3664:. 3642:. 3622:: 3585:. 3563:: 3536:. 3502:: 3494:: 3464:. 3450:: 3442:: 3375:. 3355:: 3347:: 3324:. 3302:: 3275:. 3263:: 3217:: 3209:: 3203:5 3183:: 3129:: 3121:: 3111:: 3088:. 3066:: 3039:. 3027:: 3019:: 2996:. 2976:: 2953:. 2941:: 2933:: 2901:. 2870:. 2850:: 2827:. 2807:: 2784:. 2760:: 2709:. 2689:: 2666:. 2652:: 2594:. 2572:: 2545:. 2523:: 2496:. 2476:: 2453:. 2431:: 2404:. 2384:: 2361:. 2341:: 2333:: 2301:. 2272:. 2244:: 2217:. 2187:: 2179:: 2173:7 2152:. 2132:: 2109:) 2095:. 2066:. 2046:: 2040:2 1990:. 1970:: 1962:: 1939:. 1912:. 1884:: 1876:: 1844:. 1820:: 1814:5 1793:. 1769:: 1763:8 1742:. 1720:: 1693:. 1666:. 1612:. 1588:: 1580:: 1517:. 1493:: 1485:: 1479:8 1458:. 1434:: 1426:: 1420:4 1387:. 1367:: 1361:6 1337:. 1295:. 1252:. 1230:: 1203:. 1183:: 1177:7 945:j 935:b 926:j 922:s 916:n 911:1 908:= 905:j 863:n 858:R 844:s 815:k 810:R 794:n 790:b 783:, 777:, 766:1 762:b 733:k 728:R 296:K 155:'

Index

neuroscience
stimulus
electrical activities
ensemble
brain
networks of neurons
neurons
digital
analog
action potentials
light
sound
taste
smell
touch
graded potentials
amplitude
brief duration
all-or-none
ISIs
statistical methods
probability theory
point processes
Neural decoding
temporal code
auditory system
neuronal
frequency
action potentials
noise

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.