Knowledge

Action potential

Source 📝

1700:
not inactivate at all; this variability guarantees that there will be always an available source of current for repolarization, even if some of the potassium channels are inactivated because of preceding depolarization. On the other hand, all neuronal voltage-activated sodium channels inactivate within several milliseconds during strong depolarization, thus making following depolarization impossible until a substantial fraction of sodium channels have returned to their closed state. Although it limits the frequency of firing, the absolute refractory period ensures that the action potential moves in only one direction along an axon. The currents flowing in due to an action potential spread out in both directions along the axon. However, only the unfired part of the axon can respond with an action potential; the part that has just fired is unresponsive until the action potential is safely out of range and cannot restimulate that part. In the usual
342:; that is, they cause the membrane potential to rise or fall. Action potentials are triggered when enough depolarization accumulates to bring the membrane potential up to threshold. When an action potential is triggered, the membrane potential abruptly shoots upward and then equally abruptly shoots back downward, often ending below the resting level, where it remains for some period of time. The shape of the action potential is stereotyped; this means that the rise and fall usually have approximately the same amplitude and time course for all action potentials in a given cell. (Exceptions are discussed later in the article). In most neurons, the entire process takes place in about a thousandth of a second. Many types of neurons emit action potentials constantly at rates of up to 10–100 per second. However, some types are much quieter, and may go for minutes or longer without emitting any action potentials. 2619:
makes it easier to activate an action potential. Thus, when an insect lands on the trap of the plant, it triggers a hair-like mechanoreceptor. This receptor then activates an action potential that lasts around 1.5 ms. This causes an increase of positive calcium ions into the cell, slightly depolarizing it. However, the flytrap does not close after one trigger. Instead, it requires the activation of two or more hairs. If only one hair is triggered, it disregards the activation as a false positive. Further, the second hair must be activated within a certain time interval (0.75–40 s) for it to register with the first activation. Thus, a buildup of calcium begins and then slowly falls after the first trigger. When the second action potential is fired within the time interval, it reaches the calcium threshold to depolarize the cell, closing the trap on the prey within a fraction of a second.
1909: 2466: 873: 1252: 3305: 560: 1032: 2301: 1727: 447:) proceeds explosively. The time and amplitude trajectory of the action potential are determined by the biophysical properties of the voltage-gated ion channels that produce it. Several types of channels capable of producing the positive feedback necessary to generate an action potential do exist. Voltage-gated sodium channels are responsible for the fast action potentials involved in nerve conduction. Slower action potentials in muscle cells and some types of neurons are generated by voltage-gated calcium channels. Each of these types comes in multiple variants, with different voltage sensitivity and different temporal dynamics. 3176: 3428: 3039: 995:. Although glial cells are not involved with the transmission of electrical signals, they communicate and provide important biochemical support to neurons. To be specific, myelin wraps multiple times around the axonal segment, forming a thick fatty layer that prevents ions from entering or escaping the axon. This insulation prevents significant signal decay as well as ensuring faster signal speed. This insulation, however, has the restriction that no channels can be present on the surface of the axon. There are, therefore, regularly spaced patches of membrane, which have no insulation. These 1668:, in which they cannot be made to open regardless of the membrane potential—this gives rise to the absolute refractory period. Even after a sufficient number of sodium channels have transitioned back to their resting state, it frequently happens that a fraction of potassium channels remains open, making it difficult for the membrane potential to depolarize, and thereby giving rise to the relative refractory period. Because the density and subtypes of potassium channels may differ greatly between different types of neurons, the duration of the relative refractory period is highly variable. 749:, the speed of transmission of an action potential was undefined and it was assumed that adjacent areas became depolarized due to released ion interference with neighbouring channels. Measurements of ion diffusion and radii have since shown this not to be possible. Moreover, contradictory measurements of entropy changes and timing disputed the capacitance model as acting alone. Alternatively, Gilbert Ling's adsorption hypothesis, posits that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto adsorption sites of cells. 1813: 5818: 618:. The sodium channels close at the peak of the action potential, while potassium continues to leave the cell. The efflux of potassium ions decreases the membrane potential or hyperpolarizes the cell. For small voltage increases from rest, the potassium current exceeds the sodium current and the voltage returns to its normal resting value, typically −70 mV. However, if the voltage increases past a critical threshold, typically 15 mV higher than the resting value, the sodium current dominates. This results in a runaway condition whereby the 431: 215: 3094: 2556:), which opens voltage-sensitive sodium channels; these become inactivated and the membrane is repolarized through the outward current of potassium ions. The resting potential prior to the action potential is typically −90mV, somewhat more negative than typical neurons. The muscle action potential lasts roughly 2–4 ms, the absolute refractory period is roughly 1–3 ms, and the conduction velocity along the muscle is roughly 5 m/s. The action potential releases 2888: 278:. The membrane potential starts out at approximately −70 mV at time zero. A stimulus is applied at time = 1 ms, which raises the membrane potential above −55 mV (the threshold potential). After the stimulus is applied, the membrane potential rapidly rises to a peak potential of +40 mV at time = 2 ms. Just as quickly, the potential then drops and overshoots to −90 mV at time = 3 ms, and finally the resting potential of −70 mV is reestablished at time = 5 ms. 271: 356: 1456:, and electrostatic effects (attraction of opposite charges) are responsible for the movement of ions in and out of the neuron. The inside of a neuron has a negative charge, relative to the cell exterior, from the movement of K out of the cell. The neuron membrane is more permeable to K than to other ions, allowing this ion to selectively move out of the cell, down its concentration gradient. This concentration gradient along with 22: 11433: 3492:, both of which have only two coupled ODEs. The properties of the Hodgkin–Huxley and FitzHugh–Nagumo models and their relatives, such as the Bonhoeffer–Van der Pol model, have been well-studied within mathematics, computation and electronics. However the simple models of generator potential and action potential fail to accurately reproduce the near threshold neural spike rate and spike shape, specifically for the 2853:. For comparison, a hormone molecule carried in the bloodstream moves at roughly 8 m/s in large arteries. Part of this function is the tight coordination of mechanical events, such as the contraction of the heart. A second function is the computation associated with its generation. Being an all-or-none signal that does not decay with transmission distance, the action potential has similar advantages to 1112:, an action potential can be transmitted directly from one cell to the next in either direction. The free flow of ions between cells enables rapid non-chemical-mediated transmission. Rectifying channels ensure that action potentials move only in one direction through an electrical synapse. Electrical synapses are found in all nervous systems, including the human brain, although they are a distinct minority. 234:. A typical voltage across an animal cell membrane is −70 mV. This means that the interior of the cell has a negative voltage relative to the exterior. In most types of cells, the membrane potential usually stays fairly constant. Some types of cells, however, are electrically active in the sense that their voltages fluctuate over time. In some types of electrically active cells, including 1471: ≈ –75 mV. Since Na ions are in higher concentrations outside of the cell, the concentration and voltage differences both drive them into the cell when Na channels open. Depolarization opens both the sodium and potassium channels in the membrane, allowing the ions to flow into and out of the axon, respectively. If the depolarization is small (say, increasing 1169:, which in turn alter the ionic permeabilities of the membrane and its voltage. These voltage changes can again be excitatory (depolarizing) or inhibitory (hyperpolarizing) and, in some sensory neurons, their combined effects can depolarize the axon hillock enough to provoke action potentials. Some examples in humans include the 2615:, also known as the Venus flytrap, is found in subtropical wetlands in North and South Carolina. When there are poor soil nutrients, the flytrap relies on a diet of insects and animals. Despite research on the plant, there lacks an understanding behind the molecular basis to the Venus flytraps, and carnivore plants in general. 1558:. At longer times, after some but not all of the ion channels have recovered, the axon can be stimulated to produce another action potential, but with a higher threshold, requiring a much stronger depolarization, e.g., to −30 mV. The period during which action potentials are unusually difficult to evoke is called the 2953:). These axons are so large in diameter (roughly 1 mm, or 100-fold larger than a typical neuron) that they can be seen with the naked eye, making them easy to extract and manipulate. However, they are not representative of all excitable cells, and numerous other systems with action potentials have been studied. 2618:
However, plenty of research has been done on action potentials and how they affect movement and clockwork within the Venus flytrap. To start, the resting membrane potential of the Venus flytrap (−120 mV) is lower than animal cells (usually −90 mV to −40 mV). The lower resting potential
1699:
corresponds to the time required for the voltage-activated sodium channels to recover from inactivation, i.e., to return to their closed state. There are many types of voltage-activated potassium channels in neurons. Some of them inactivate fast (A-type currents) and some of them inactivate slowly or
1079:
and, thus, the membrane potential. If the binding increases the voltage (depolarizes the membrane), the synapse is excitatory. If, however, the binding decreases the voltage (hyperpolarizes the membrane), it is inhibitory. Whether the voltage is increased or decreased, the change propagates passively
2469:
Phases of a cardiac action potential. The sharp rise in voltage ("0") corresponds to the influx of sodium ions, whereas the two decays ("1" and "3", respectively) correspond to the sodium-channel inactivation and the repolarizing eflux of potassium ions. The characteristic plateau ("2") results from
1881:
The length of axons' myelinated segments is important to the success of saltatory conduction. They should be as long as possible to maximize the speed of conduction, but not so long that the arriving signal is too weak to provoke an action potential at the next node of Ranvier. In nature, myelinated
1686:
The action potential generated at the axon hillock propagates as a wave along the axon. The currents flowing inwards at a point on the axon during an action potential spread out along the axon, and depolarize the adjacent sections of its membrane. If sufficiently strong, this depolarization provokes
1671:
The absolute refractory period is largely responsible for the unidirectional propagation of action potentials along axons. At any given moment, the patch of axon behind the actively spiking part is refractory, but the patch in front, not having been activated recently, is capable of being stimulated
1263:
In sensory neurons, action potentials result from an external stimulus. However, some excitable cells require no such stimulus to fire: They spontaneously depolarize their axon hillock and fire action potentials at a regular rate, like an internal clock. The voltage traces of such cells are known as
1146:
Despite the classical view of the action potential as a stereotyped, uniform signal having dominated the field of neuroscience for many decades, newer evidence does suggest that action potentials are more complex events indeed capable of transmitting information through not just their amplitude, but
637:
Currents produced by the opening of voltage-gated channels in the course of an action potential are typically significantly larger than the initial stimulating current. Thus, the amplitude, duration, and shape of the action potential are determined largely by the properties of the excitable membrane
177:
ions, which changes the electrochemical gradient, which in turn produces a further rise in the membrane potential towards zero. This then causes more channels to open, producing a greater electric current across the cell membrane and so on. The process proceeds explosively until all of the available
129:
situated at the ends of an axon; these signals can then connect with other neurons at synapses, or to motor cells or glands. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events
789:
deflection at P0 than they do at P30. One consequence of the decreasing action potential duration is that the fidelity of the signal can be preserved in response to high frequency stimulation. Immature neurons are more prone to synaptic depression than potentiation after high frequency stimulation.
3595:
In general, while this simple description of action potential initiation is accurate, it does not explain phenomena such as excitation block (the ability to prevent neurons from eliciting action potentials by stimulating them with large current steps) and the ability to elicit action potentials by
3347:
refined Bernstein's hypothesis by considering that the axonal membrane might have different permeabilities to different ions; in particular, they demonstrated the crucial role of the sodium permeability for the action potential. They made the first actual recording of the electrical changes across
1886:
of saltatory conduction is high, allowing transmission to bypass nodes in case of injury. However, action potentials may end prematurely in certain places where the safety factor is low, even in unmyelinated neurons; a common example is the branch point of an axon, where it divides into two axons.
2598:
ions. In 1906, J. C. Bose published the first measurements of action potentials in plants, which had previously been discovered by Burdon-Sanderson and Darwin. An increase in cytoplasmic calcium ions may be the cause of anion release into the cell. This makes calcium a precursor to ion movements,
257:
of molecules in which larger protein molecules are embedded. The lipid bilayer is highly resistant to movement of electrically charged ions, so it functions as an insulator. The large membrane-embedded proteins, in contrast, provide channels through which ions can pass across the membrane. Action
1553:
The critical threshold voltage for this runaway condition is usually around −45 mV, but it depends on the recent activity of the axon. A cell that has just fired an action potential cannot fire another one immediately, since the Na channels have not recovered from the inactivated state. The
805:
of calcium channels during development are slower than those of the voltage-gated sodium channels that will carry the action potential in the mature neurons. The longer opening times for the calcium channels can lead to action potentials that are considerably slower than those of mature neurons.
2640:
Unlike the rising phase and peak, the falling phase and after-hyperpolarization seem to depend primarily on cations that are not calcium. To initiate repolarization, the cell requires movement of potassium out of the cell through passive transportation on the membrane. This differs from neurons
442:
loops: The membrane potential controls the state of the ion channels, but the state of the ion channels controls the membrane potential. Thus, in some situations, a rise in the membrane potential can cause ion channels to open, thereby causing a further rise in the membrane potential. An action
2868:
The common prokaryotic/eukaryotic ancestor, which lived perhaps four billion years ago, is believed to have had voltage-gated channels. This functionality was likely, at some later point, cross-purposed to provide a communication mechanism. Even modern single-celled bacteria can utilize action
3014:
The third problem, that of obtaining electrodes small enough to record voltages within a single axon without perturbing it, was solved in 1949 with the invention of the glass micropipette electrode, which was quickly adopted by other researchers. Refinements of this method are able to produce
2334:
Some synapses dispense with the "middleman" of the neurotransmitter, and connect the presynaptic and postsynaptic cells together. When an action potential reaches such a synapse, the ionic currents flowing into the presynaptic cell can cross the barrier of the two cell membranes and enter the
2265:
to be released into the synaptic cleft. Neurotransmitters are small molecules that may open ion channels in the postsynaptic cell; most axons have the same neurotransmitter at all of their termini. The arrival of the action potential opens voltage-sensitive calcium channels in the presynaptic
547:
channels are governed by a transition matrix whose rates are voltage-dependent in a complicated way. Since these channels themselves play a major role in determining the voltage, the global dynamics of the system can be quite difficult to work out. Hodgkin and Huxley approached the problem by
3356:
technique to determine the dependence of the axonal membrane's permeabilities to sodium and potassium ions on voltage and time, from which they were able to reconstruct the action potential quantitatively. Hodgkin and Huxley correlated the properties of their mathematical model with discrete
1478:
from −70 mV to −60 mV), the outward potassium current overwhelms the inward sodium current and the membrane repolarizes back to its normal resting potential around −70 mV. However, if the depolarization is large enough, the inward sodium current increases more than the outward
669:
The principal ions involved in an action potential are sodium and potassium cations; sodium ions enter the cell, and potassium ions leave, restoring equilibrium. Relatively few ions need to cross the membrane for the membrane voltage to change drastically. The ions exchanged during an action
3150:
snake inhibits the voltage-sensitive potassium channel. Such inhibitors of ion channels serve an important research purpose, by allowing scientists to "turn off" specific channels at will, thus isolating the other channels' contributions; they can also be useful in purifying ion channels by
2626:
loss of salt (KCl). Whereas, the animal action potential is osmotically neutral because equal amounts of entering sodium and leaving potassium cancel each other osmotically. The interaction of electrical and osmotic relations in plant cells appears to have arisen from an osmotic function of
426:
Thus, a voltage-gated ion channel tends to be open for some values of the membrane potential, and closed for others. In most cases, however, the relationship between membrane potential and channel state is probabilistic and involves a time delay. Ion channels switch between conformations at
2478:
The cardiac action potential differs from the neuronal action potential by having an extended plateau, in which the membrane is held at a high voltage for a few hundred milliseconds prior to being repolarized by the potassium current as usual. This plateau is due to the action of slower
2076:
along the length of the neuron, and where λ and τ are the characteristic length and time scales on which those voltages decay in response to a stimulus. Referring to the circuit diagram on the right, these scales can be determined from the resistances and capacitances per unit length.
1405:
considers only two types of voltage-sensitive ion channels, and makes several assumptions about them, e.g., that their internal gates open and close independently of one another. In reality, there are many types of ion channels, and they do not always open and close independently.
1869:
of an action potential, typically tenfold. Conversely, for a given conduction velocity, myelinated fibers are smaller than their unmyelinated counterparts. For example, action potentials move at roughly the same speed (25 m/s) in a myelinated frog axon and an unmyelinated
1589:. This lowers the membrane's permeability to sodium relative to potassium, driving the membrane voltage back towards the resting value. At the same time, the raised voltage opens voltage-sensitive potassium channels; the increase in the membrane's potassium permeability drives 202:. Sodium-based action potentials usually last for under one millisecond, but calcium-based action potentials may last for 100 milliseconds or longer. In some types of neurons, slow calcium spikes provide the driving force for a long burst of rapidly emitted sodium spikes. In 2693:
that does not transmit action potentials, although some studies have suggested that these organisms have a form of electrical signaling, too. The resting potential, as well as the size and duration of the action potential, have not varied much with evolution, although the
1309:
The course of the action potential can be divided into five parts: the rising phase, the peak phase, the falling phase, the undershoot phase, and the refractory period. During the rising phase the membrane potential depolarizes (becomes more positive). The point at which
1691:
in 1937. After crushing or cooling nerve segments and thus blocking the action potentials, he showed that an action potential arriving on one side of the block could provoke another action potential on the other, provided that the blocked segment was sufficiently short.
1874:, but the frog axon has a roughly 30-fold smaller diameter and 1000-fold smaller cross-sectional area. Also, since the ionic currents are confined to the nodes of Ranvier, far fewer ions "leak" across the membrane, saving metabolic energy. This saving is a significant 705:
Although action potentials are generated locally on patches of excitable membrane, the resulting currents can trigger action potentials on neighboring stretches of membrane, precipitating a domino-like propagation. In contrast to passive spread of electric potentials
3475:
Mathematical and computational models are essential for understanding the action potential, and offer predictions that may be tested against experimental data, providing a stringent test of a theory. The most important and accurate of the early neural models is the
3373:
to examine the conductance states of individual ion channels. In the 21st century, researchers are beginning to understand the structural basis for these conductance states and for the selectivity of channels for their species of ion, through the atomic-resolution
2848:
Given its conservation throughout evolution, the action potential seems to confer evolutionary advantages. One function of action potentials is rapid, long-range signaling within the organism; the conduction velocity can exceed 110 m/s, which is one-third the
1708:—is very rare. However, if a laboratory axon is stimulated in its middle, both halves of the axon are "fresh", i.e., unfired; then two action potentials will be generated, one traveling towards the axon hillock and the other traveling towards the synaptic knobs. 578:(2) of the neuron activates sodium channels, allowing sodium ions to pass through the cell membrane into the cell, resulting in a net positive charge in the neuron relative to the extracellular fluid. After the action potential peak is reached, the neuron begins 314:
different electrical properties. As a result, some parts of the membrane of a neuron may be excitable (capable of generating action potentials), whereas others are not. Recent studies have shown that the most excitable part of a neuron is the part after the
1314:
stops is called the peak phase. At this stage, the membrane potential reaches a maximum. Subsequent to this, there is a falling phase. During this stage the membrane potential becomes more negative, returning towards resting potential. The undershoot, or
2415:, located in the synapse. This enzyme quickly reduces the stimulus to the muscle, which allows the degree and timing of muscular contraction to be regulated delicately. Some poisons inactivate acetylcholinesterase to prevent this control, such as the 2051: 1319:, phase is the period during which the membrane potential temporarily becomes more negatively charged than when at rest (hyperpolarized). Finally, the time during which a subsequent action potential is impossible or difficult to fire is called the 2641:
because the movement of potassium does not dominate the decrease in membrane potential. To fully repolarize, a plant cell requires energy in the form of ATP to assist in the release of hydrogen from the cell – utilizing a transporter called
258:
potentials are driven by channel proteins whose configuration switches between closed and open states as a function of the voltage difference between the interior and exterior of the cell. These voltage-sensitive proteins are known as
958:. These spines have a thin neck connecting a bulbous protrusion to the dendrite. This ensures that changes occurring inside the spine are less likely to affect the neighboring spines. The dendritic spine can, with rare exception (see 450:
The most intensively studied type of voltage-dependent ion channels comprises the sodium channels involved in fast nerve conduction. These are sometimes known as Hodgkin-Huxley sodium channels because they were first characterized by
710:), action potentials are generated anew along excitable stretches of membrane and propagate without decay. Myelinated sections of axons are not excitable and do not produce action potentials and the signal is propagated passively as 3484:(ODEs). Although the Hodgkin–Huxley model may be a simplification with few limitations compared to the realistic nervous membrane as it exists in nature, its complexity has inspired several even-more-simplified models, such as the 1664:, during which a stronger-than-usual stimulus is required. These two refractory periods are caused by changes in the state of sodium and potassium channel molecules. When closing after an action potential, sodium channels enter an 3277:, who discovered in 1843 that stimulating these muscle and nerve preparations produced a notable diminution in their resting currents, making him the first researcher to identify the electrical nature of the action potential. The 979:. Multiple signals generated at the spines, and transmitted by the soma all converge here. Immediately after the axon hillock is the axon. This is a thin tubular protrusion traveling away from the soma. The axon is insulated by a 186:
channels are then activated, and there is an outward current of potassium ions, returning the electrochemical gradient to the resting state. After an action potential has occurred, there is a transient negative shift, called the
2182:
These time and length-scales can be used to understand the dependence of the conduction velocity on the diameter of the neuron in unmyelinated fibers. For example, the time-scale τ increases with both the membrane resistance
1766:. Myelin sheath reduces membrane capacitance and increases membrane resistance in the inter-node intervals, thus allowing a fast, saltatory movement of action potentials from node to node. Myelination is found mainly in 3054:
While glass micropipette electrodes measure the sum of the currents passing through many ion channels, studying the electrical properties of a single ion channel became possible in the 1970s with the development of the
1084:
and its refinements). Typically, the voltage stimulus decays exponentially with the distance from the synapse and with time from the binding of the neurotransmitter. Some fraction of an excitatory voltage may reach the
178:
ion channels are open, resulting in a large upswing in the membrane potential. The rapid influx of sodium ions causes the polarity of the plasma membrane to reverse, and the ion channels then rapidly inactivate. As the
2593:
are also electrically excitable. The fundamental difference from animal action potentials is that the depolarization in plant cells is not accomplished by an uptake of positive sodium ions, but by release of negative
1570:
The positive feedback of the rising phase slows and comes to a halt as the sodium ion channels become maximally open. At the peak of the action potential, the sodium permeability is maximized and the membrane voltage
1130:
of an action potential is often thought to be independent of the amount of current that produced it. In other words, larger currents do not create larger action potentials. Therefore, action potentials are said to be
999:
can be considered to be "mini axon hillocks", as their purpose is to boost the signal in order to prevent significant signal decay. At the furthest end, the axon loses its insulation and begins to branch into several
825:
In order for the transition from a calcium-dependent action potential to a sodium-dependent action potential to proceed new channels must be added to the membrane. If Xenopus neurons are grown in an environment with
582:(3), where the sodium channels close and potassium channels open, allowing potassium ions to cross the membrane into the extracellular fluid, returning the membrane potential to a negative value. Finally, there is a 1296:
nerves. The external stimuli do not cause the cell's repetitive firing, but merely alter its timing. In some cases, the regulation of frequency can be more complex, leading to patterns of action potentials, such as
3500:. More modern research has focused on larger and more integrated systems; by joining action-potential models with models of other parts of the nervous system (such as dendrites and synapses), researchers can study 3167:, which prolongs the activation of the sodium channels involved in action potentials. The ion channels of insects are sufficiently different from their human counterparts that there are few side effects in humans. 2857:. The integration of various dendritic signals at the axon hillock and its thresholding to form a complex train of action potentials is another form of computation, one that has been exploited biologically to form 2627:
electrical excitability in a common unicellular ancestors of plants and animals under changing salinity conditions. Further, the present function of rapid signal transmission is seen as a newer accomplishment of
2921:
for their contribution to the description of the ionic basis of nerve conduction. It focused on three goals: isolating signals from single neurons or axons, developing fast, sensitive electronics, and shrinking
2339:. Thus, the ionic currents of the presynaptic action potential can directly stimulate the postsynaptic cell. Electrical synapses allow for faster transmission because they do not require the slow diffusion of 53:
occurs when K channels open and K moves out of the axon, creating a change in electric polarity between the outside of the cell and the inside. The impulse travels down the axon in one direction only, to the
3285:. Progress in electrophysiology stagnated thereafter due to the limitations of chemical theory and experimental practice. To establish that nervous tissue is made up of discrete cells, the Spanish physician 1788:
Action potentials cannot propagate through the membrane in myelinated segments of the axon. However, the current is carried by the cytoplasm, which is sufficient to depolarize the first or second subsequent
970:
organelles. Unlike the spines, the surface of the soma is populated by voltage activated ion channels. These channels help transmit the signals generated by the dendrites. Emerging out from the soma is the
1882:
segments are generally long enough for the passively propagated signal to travel for at least two nodes while retaining enough amplitude to fire an action potential at the second or third node. Thus, the
2177: 11423: 975:. This region is characterized by having a very high concentration of voltage-activated sodium channels. In general, it is considered to be the spike initiation zone for action potentials, i.e. the 2602:
The initial influx of calcium ions also poses a small cellular depolarization, causing the voltage-gated ion channels to open and allowing full depolarization to be propagated by chloride ions.
1185:, respectively. However, not all sensory neurons convert their external signals into action potentials; some do not even have an axon. Instead, they may convert the signal into the release of a 5240:
Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001. Electrical Potentials Across Nerve Cell Membranes. Available from:
3463:
of four types of ions. The two conductances on the left, for potassium (K) and sodium (Na), are shown with arrows to indicate that they can vary with the applied voltage, corresponding to the
777:
are added to the membrane, causing a decrease in input resistance. A mature neuron also undergoes shorter changes in membrane potential in response to synaptic currents. Neurons from a ferret
521:. This is only the population average behavior, however – an individual channel can in principle make any transition at any time. However, the likelihood of a channel's transitioning from the 1618:
The depolarized voltage opens additional voltage-dependent potassium channels, and some of these do not close right away when the membrane returns to its normal resting voltage. In addition,
334:. At the axon hillock of a typical neuron, the resting potential is around –70 millivolts (mV) and the threshold potential is around –55 mV. Synaptic inputs to a neuron cause the membrane to 11556: 8857:
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, et al. (April 1998). "The structure of the potassium channel: molecular basis of K+ conduction and selectivity".
662:, which scale with the magnitude of the stimulus. A variety of action potential types exist in many cell types and cell compartments as determined by the types of voltage-gated channels, 1622:
open in response to the influx of calcium ions during the action potential. The intracellular concentration of potassium ions is transiently unusually low, making the membrane voltage
11421: 1809:
and Robert Stämpfli. By contrast, in unmyelinated axons, the action potential provokes another in the membrane immediately adjacent, and moves continuously down the axon like a wave.
242:. In some types of neurons, the entire up-and-down cycle takes place in a few thousandths of a second. In muscle cells, a typical action potential lasts about a fifth of a second. In 8723:
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (August 1981). "Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches".
1452:, while there is a high concentration of potassium ions in the intracellular fluid compared to the extracellular fluid. The difference in concentrations, which causes ions to move 1358:, which is a key part of the rising phase of the action potential. A complicating factor is that a single ion channel may have multiple internal "gates" that respond to changes in 2125: 1963: 670:
potential, therefore, make a negligible change in the interior and exterior ionic concentrations. The few ions that do cross are pumped out again by the continuous action of the
2552:
The action potential in a normal skeletal muscle cell is similar to the action potential in neurons. Action potentials result from the depolarization of the cell membrane (the
574:(1), sodium and potassium ions have limited ability to pass through the membrane, and the neuron has a net negative charge inside. Once the action potential is triggered, the 1028:. The basic requirement is that the membrane voltage at the hillock be raised above the threshold for firing. There are several ways in which this depolarization can occur. 9180:
Sato C, Ueno Y, Asai K, Takahashi K, Sato M, Engel A, Fujiyoshi Y (February 2001). "The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities".
2208:); as the resistance increases, less charge is transferred per unit time, making the equilibration slower. In a similar manner, if the internal resistance per unit length 841:
This maturation of electrical properties is seen across species. Xenopus sodium and potassium currents increase drastically after a neuron goes through its final phase of
8894:
Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (November 2001). "Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution".
810:
neurons initially have action potentials that take 60–90 ms. During development, this time decreases to 1 ms. There are two reasons for this drastic decrease. First, the
590:
while the Na and K ions return to their resting state distributions across the membrane (1), and the neuron is ready to repeat the process for the next action potential.
218:
Shape of a typical action potential. The membrane potential remains near a baseline level until at some point in time, it abruptly spikes upward and then rapidly falls.
11422: 1738:
causes inwards currents that depolarize the membrane at the next node, provoking a new action potential there; the action potential appears to "hop" from node to node.
238:
and muscle cells, the voltage fluctuations frequently take the form of a rapid upward (positive) spike followed by a rapid fall. These up-and-down cycles are known as
501:(closed) state. It tends then to stay inactivated for some time, but, if the membrane potential becomes low again, the channel will eventually transition back to the 6333: 6829:
Tasaki I, Takeuchi T (1942). "Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Übertragung des nervenimpulses".
3077:
technologies have been developed in recent years to measure action potentials, either via simultaneous multisite recordings or with ultra-spatial resolution. Using
4598: 4596: 4594: 9418:
Morth JP, Pedersen BP, Toustrup-Jensen MS, Sørensen TL, Petersen J, Andersen JP, et al. (December 2007). "Crystal structure of the sodium-potassium pump".
834:
inhibitors that transition is prevented. Even the electrical activity of the cell itself may play a role in channel expression. If action potentials in Xenopus
1089:
and may (in rare cases) depolarize the membrane enough to provoke a new action potential. More typically, the excitatory potentials from several synapses must
5325:
Opritov, V A, et al. "Direct Coupling of Action Potential Generation in Cells of a Higher Plant (Cucurbita Pepo) with the Operation of an Electrogenic Pump."
4591: 2898: 1695:
Once an action potential has occurred at a patch of membrane, the membrane patch needs time to recover before it can fire again. At the molecular level, this
497:(open) state. The higher the membrane potential the greater the probability of activation. Once a channel has activated, it will eventually transition to the 1774:. Not all neurons in vertebrates are myelinated; for example, axons of the neurons comprising the autonomous nervous system are not, in general, myelinated. 556:. These equations have been extensively modified by later research, but form the starting point for most theoretical studies of action potential biophysics. 206:, on the other hand, an initial fast sodium spike provides a "primer" to provoke the rapid onset of a calcium spike, which then produces muscle contraction. 1781:
of action potentials and makes them more energy-efficient. Whether saltatory or not, the mean conduction velocity of an action potential ranges from 1 
1585:. However, the same raised voltage that opened the sodium channels initially also slowly shuts them off, by closing their pores; the sodium channels become 1326:
The course of the action potential is determined by two coupled effects. First, voltage-sensitive ion channels open and close in response to changes in the
3361:
that could exist in several different states, including "open", "closed", and "inactivated". Their hypotheses were confirmed in the mid-1970s and 1980s by
1801:. Although the mechanism of saltatory conduction was suggested in 1925 by Ralph Lillie, the first experimental evidence for saltatory conduction came from 1954:
in 1946. In simple cable theory, the neuron is treated as an electrically passive, perfectly cylindrical transmission cable, which can be described by a
1704:, the action potential propagates from the axon hillock towards the synaptic knobs (the axonal termini); propagation in the opposite direction—known as 2905:
The study of action potentials has required the development of new experimental methods. The initial work, prior to 1955, was carried out primarily by
1890:
Some diseases degrade myelin and impair saltatory conduction, reducing the conduction velocity of action potentials. The most well-known of these is
11553: 9041:
Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY (December 1999). "Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel".
11172: 11085: 11059: 931:
Several types of cells support an action potential, such as plant cells, muscle cells, and the specialized cells of the heart (in which occurs the
3023:), which also confers high input impedance. Action potentials may also be recorded with small metal electrodes placed just next to a neuron, with 2631:
cells in a more stable osmotic environment. It is likely that the familiar signaling function of action potentials in some vascular plants (e.g.
2514:. Conversely, anomalies in the cardiac action potential—whether due to a congenital mutation or injury—can lead to human pathologies, especially 3293:
to reveal the myriad shapes of neurons, which they rendered painstakingly. For their discoveries, Golgi and Ramón y Cajal were awarded the 1906
5521: 4567: 3939: 3937: 3935: 11135:"The Recent Evolution of a Symbiotic Ion Channel in the Legume Family Altered Ion Conductance and Improved Functionality in Calcium Signaling" 11519: 11492: 1644:, that persists until the membrane potassium permeability returns to its usual value, restoring the membrane potential to the resting state. 1354:. Thus, the membrane potential affects the permeability, which then further affects the membrane potential. This sets up the possibility for 427:
unpredictable times: The membrane potential determines the rate of transitions and the probability per unit time of each type of transition.
4192: 4190: 4188: 3932: 2215:
is lower in one axon than in another (e.g., because the radius of the former is larger), the spatial decay length λ becomes longer and the
655: 493:(closed) state. If the membrane potential is raised above a certain level, the channel shows increased probability of transitioning to the 2564:
and allow the muscle to contract. Muscle action potentials are provoked by the arrival of a pre-synaptic neuronal action potential at the
8293:"Some factors affecting the time course of the recovery of contracture ability following a potassium contracture in frog striated muscle" 4185: 3422: 7812:
Gradmann D, Hoffstadt J (November 1998). "Electrocoupling of ion transporters in plants: interaction with internal ion concentrations".
2960:, which permitted experimenters to study the ionic currents underlying an action potential in isolation, and eliminated a key source of 1742:
In order to enable fast and efficient transduction of electrical signals in the nervous system, certain neuronal axons are covered with
6652:"Fenestration nodes and the wide submyelinic space form the basis for the unusually fast impulse conduction of shrimp myelinated axons" 3596:
briefly hyperpolarizing the membrane. By analyzing the dynamics of a system of sodium and potassium channels in a membrane patch using
3405:
was identified in 1957 and its properties gradually elucidated, culminating in the determination of its atomic-resolution structure by
3348:
the neuronal membrane that mediate the action potential. This line of research culminated in the five 1952 papers of Hodgkin, Katz and
2611:) use sodium-gated channels to operate plant movements and "count" stimulation events to determine if a threshold for movement is met. 11474: 11465: 11111: 1934:) are not shown, since they are usually negligibly small; the extracellular medium may be assumed to have the same voltage everywhere. 1861:
Myelin has two important advantages: fast conduction speed and energy efficiency. For axons larger than a minimum diameter (roughly 1
1024:
and their termination at the synaptic knobs, it is helpful to consider the methods by which action potentials can be initiated at the
2452: 5869:
Golding NL, Kath WL, Spruston N (December 2001). "Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites".
2483:
channels opening and holding the membrane voltage near their equilibrium potential even after the sodium channels have inactivated.
2343:
across the synaptic cleft. Hence, electrical synapses are used whenever fast response and coordination of timing are crucial, as in
3003:
at a fixed value is a direct reflection of the current flowing through the membrane. Other electronic advances included the use of
10251:
Handbook of Physiology: a Critical, Comprehensive Presentation of Physiological Knowledge and Concepts: Section 1: Neurophysiology
4649: 3155:
or in assaying their concentration. However, such inhibitors also make effective neurotoxins, and have been considered for use as
1797:
provokes another action potential at the next node; this apparent "hopping" of the action potential from node to node is known as
8939:
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (May 2003). "X-ray structure of a voltage-dependent K+ channel".
6800:
Tasaki I, Takeuchi T (1941). "Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung".
2133: 1004:. These presynaptic terminals, or synaptic boutons, are a specialized area within the axon of the presynaptic cell that contains 7701:
Mummert H, Gradmann D (December 1991). "Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes".
4456: 3071:
in 1991. Patch-clamping verified that ionic channels have discrete states of conductance, such as open, closed and inactivated.
1777:
Myelin prevents ions from entering or leaving the axon along myelinated segments. As a general rule, myelination increases the
11510: 6380: 5911:
Sasaki, T., Matsuki, N., Ikegaya, Y. 2011 Action-potential modulation during axonal conduction Science 331 (6017), pp. 599–601
5537:, and Frederic L. Holmes. "Experiment, Quantification and Discovery: Helmholtz's Early Physiological Researches, 1843-50". In 11504: 11389: 11368: 11306: 11207: 10974: 10937: 10863: 10828: 10790: 10755: 10720: 10681: 10646: 10594: 10556: 10521: 10483: 10445: 10410: 10373: 10346: 10283: 10223: 10124: 10057: 8420:
Piccolino M (October 1997). "Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology".
7788: 7297:
Humeau Y, Doussau F, Grant NJ, Poulain B (May 2000). "How botulinum and tetanus neurotoxins block neurotransmitter release".
7224: 6520: 4931: 4121: 3747: 3294: 3068: 2918: 1398: 3335:
suggested that the action potential was generated as a threshold was crossed, what would be later shown as a product of the
2486:
The cardiac action potential plays an important role in coordinating the contraction of the heart. The cardiac cells of the
459:
in their Nobel Prize-winning studies of the biophysics of the action potential, but can more conveniently be referred to as
4127: 294:. This electrical polarization results from a complex interplay between protein structures embedded in the membrane called 182:
close, sodium ions can no longer enter the neuron, and they are then actively transported back out of the plasma membrane.
3854: 330:, which is the value the membrane potential maintains as long as nothing perturbs the cell, and a higher value called the 169:
of the cell, but they rapidly begin to open if the membrane potential increases to a precisely defined threshold voltage,
11595: 9328:"The effects of injecting 'energy-rich' phosphate compounds on the active transport of ions in the giant axons of Loligo" 5082:
Luken JO (December 2005). "Habitats of Dionaea muscipula (Venus' Fly Trap), Droseraceae, Associated with Carolina Bays".
3994:"Ling's Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems" 1857:). The red and blue curves are fits of experimental data, whereas the dotted lines are their theoretical extrapolations. 950:. Dendrites are cellular projections whose primary function is to receive synaptic signals. Their protrusions, known as 722:, this type of signal propagation provides a favorable tradeoff of signal velocity and axon diameter. Depolarization of 9871:, van der Mark J (1929). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". 9847:, Van der Mark J (1928). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". 7631:
Tamargo J, Caballero R, Delpón E (January 2004). "Pharmacological approaches in the treatment of atrial fibrillation".
2996:
fixed (zero rate of change) regardless of the currents flowing across the membrane. Thus, the current required to keep
9375:
Caldwell PC, Keynes RD (June 1957). "The utilization of phosphate bond energy for sodium extrusion from giant axons".
954:, are designed to capture the neurotransmitters released by the presynaptic neuron. They have a high concentration of 11349: 11325: 11284: 11226: 10902: 8351: 7117: 5855: 5497: 5411: 4152: 4094: 4061: 2256: 2252: 1943: 1193:, either of which may stimulate subsequent neuron(s) into firing an action potential. For illustration, in the human 1098: 1057: 1044: 1040: 739: 626:, producing an action potential. The frequency at which a neuron elicits action potentials is often referred to as a 419:
At least one of the conformations creates a channel through the membrane that is permeable to specific types of ions.
395: 373: 11146: 302:. In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the 274:
Approximate plot of a typical action potential shows its various phases as the action potential passes a point on a
8600:
Lapicque L (1907). "Recherches quantitatives sur l'excitationelectrique des nerfs traitee comme une polarisation".
4229: 1490:
increases, which in turn further increases the inward current. A sufficiently strong depolarization (increase in
815: 9231:
Skou JC (February 1957). "The influence of some cations on an adenosine triphosphatase from peripheral nerves".
8463:
Piccolino M (April 2000). "The bicentennial of the Voltaic battery (1800-2000): the artificial electric organ".
5095: 11600: 11524: 3725: 3561: 3481: 1653: 1320: 1293: 1165:, an external signal such as pressure, temperature, light, or sound is coupled with the opening and closing of 1071:. These neurotransmitters then bind to receptors on the postsynaptic cell. This binding opens various types of 587: 559: 377: 7588:
Kléber AG, Rudy Y (April 2004). "Basic mechanisms of cardiac impulse propagation and associated arrhythmias".
5686:"Vibrotactile sensitivity threshold: nonlinear stochastic mechanotransduction model of the Pacinian Corpuscle" 4988: 2599:
such as the influx of negative chloride ions and efflux of positive potassium ions, as seen in barley leaves.
1746:
sheaths. Myelin is a multilamellar membrane that enwraps the axon in segments separated by intervals known as
8678:, Sakmann B (April 1976). "Single-channel currents recorded from membrane of denervated frog muscle fibres". 7666:
Slayman CL, Long WS, Gradmann D (April 1976). ""Action potentials" in Neurospora crassa, a mycelial fungus".
3576: 3139: 2197:. As the capacitance increases, more charge must be transferred to produce a given transmembrane voltage (by 1955: 1202: 199: 195: 7332:
Zoidl G, Dermietzel R (November 2002). "On the search for the electrical synapse: a glimpse at the future".
6773:
Tasaki I (1939). "Electro-saltatory transmission of nerve impulse and effect of narcosis upon nerve fiber".
2046:{\displaystyle \tau {\frac {\partial V}{\partial t}}=\lambda ^{2}{\frac {\partial ^{2}V}{\partial x^{2}}}-V} 568:
a) Sodium (Na) ion. b) Potassium (K) ion. c) Sodium channel. d) Potassium channel. e) Sodium-potassium pump.
11339: 6915:"Direct determination of membrane resting potential and action potential in single myelinated nerve fibers" 2622:
Together with the subsequent release of positive potassium ions the action potential in plants involves an
1453: 10088:
Elektrobiologie, die Lehre von den elektrischen Vorgängen im Organismus auf moderner Grundlage dargestellt
6285:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 5980:
Noble D (November 1960). "Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations".
4297:"Myelination Increases the Spatial Extent of Analog Modulation of Synaptic Transmission: A Modeling Study" 3651:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 3409:. The crystal structures of related ionic pumps have also been solved, giving a broader view of how these 2083: 1259:, the cell spontaneously depolarizes (straight line with upward slope) until it fires an action potential. 959: 11605: 7966:
Meunier C, Segev I (November 2002). "Playing the devil's advocate: is the Hodgkin-Huxley model useful?".
1687:
a similar action potential at the neighboring membrane patches. This basic mechanism was demonstrated by
1637: 339: 79: 11168: 11081: 11055: 7459:
Hughes BW, Kusner LL, Kaminski HJ (April 2006). "Molecular architecture of the neuromuscular junction".
6564:
Poliak S, Peles E (December 2003). "The local differentiation of myelinated axons at nodes of Ranvier".
1147:
their duration and phase as well, sometimes even up to distances originally not thought to be possible.
11620: 11585: 11272: 7897: 6651: 3468: 3331:
and Howard Curtis, who showed that membrane conductance increases during an action potential. In 1907,
2407:) of the muscle fiber. However, the acetylcholine does not remain bound; rather, it dissociates and is 2307:
between excitable cells allow ions to pass directly from one cell to another, and are much faster than
1386:
is raised suddenly, the sodium channels open initially, but then close due to the slower inactivation.
1289: 802: 778: 10708: 8992:"Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy" 3269:
followed up Galvani's studies and demonstrated that injured nerves and muscles in frogs could produce
1610:
to drop quickly, repolarizing the membrane and producing the "falling phase" of the action potential.
1461: 1097:
to provoke a new action potential. Their joint efforts can be thwarted, however, by the counteracting
11610: 11590: 11457: 11438: 10092:
Electric Biology, the study of the electrical processes in the organism represented on a modern basis
8369:
Keynes RD, Ritchie JM (August 1984). "On the binding of labelled saxitoxin to the squid giant axon".
8236:"Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes" 3546: 3513: 3489: 3464: 3402: 3105: 2862: 2858: 1755: 1681: 1636:. The membrane potential goes below the resting membrane potential. Hence, there is an undershoot or 1511:≈ +55 mV. The increasing voltage in turn causes even more sodium channels to open, which pushes 1497:) causes the voltage-sensitive sodium channels to open; the increasing permeability to sodium drives 1170: 1035:
When an action potential arrives at the end of the pre-synaptic axon (top), it causes the release of
671: 666:, channel distributions, ionic concentrations, membrane capacitance, temperature, and other factors. 610:
ions from the cell. The inward flow of sodium ions increases the concentration of positively charged
570:
In the stages of an action potential, the permeability of the membrane of the neuron changes. At the
409: 259: 158: 114: 38: 10329: 10001: 9713:
Nagumo J, Arimoto S, Yoshizawa S (1962). "An active pulse transmission line simulating nerve axon".
6550: 5817: 5724: 3445:
represent the current through, and the voltage across, a small patch of membrane, respectively. The
3286: 3188: 438:
Voltage-gated ion channels are capable of producing action potentials because they can give rise to
78:
then causes adjacent locations to similarly depolarize. Action potentials occur in several types of
11615: 10582: 5130:"The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake" 4476: 3698:
Williams JA (February 1981). "Electrical correlates of secretion in endocrine and exocrine cells".
3477: 3379: 2448: 1402: 955: 932: 838:
are blocked, the typical increase in sodium and potassium current density is prevented or delayed.
746: 690: 553: 203: 107: 4249: 1389:
The voltages and currents of the action potential in all of its phases were modeled accurately by
942:
Neurons are electrically excitable cells composed, in general, of one or more dendrites, a single
793:
In the early development of many organisms, the action potential is actually initially carried by
10368:. Cambridge studies in mathematical biology. Vol. 6. Cambridge: Cambridge University Press. 10207: 10175: 3536: 3152: 1174: 827: 614:
in the cell and causes depolarization, where the potential of the cell is higher than the cell's
366: 45:. Na channels open at the beginning of the action potential, and Na moves into the axon, causing 10117:
The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System
6147:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 5963:
Aur D., Jog, MS., 2010 Neuroelectrodynamics: Understanding the brain language, IOS Press, 2010.
5031:
Felle HH, Zimmermann MR (June 2007). "Systemic signalling in barley through action potentials".
3319:
The 20th century saw significant breakthroughs in electrophysiology. In 1902 and again in 1912,
11580: 10438:
Practical Electrophysiological Methods: A Guide for in Vitro Studies in Vertebrate Neurobiology
9996: 8334:
Ritchie JM, Rogart RB (1977). "The binding of saxitoxin and tetrodotoxin to excitable tissue".
5565:"Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons" 3526: 3485: 3460: 2910: 2654: 2565: 2543: 2494:
that synchronizes the heart. The action potentials of those cells propagate to and through the
2401:, which binds to the acetylcholine receptor, an integral membrane protein in the membrane (the 2382: 2372: 2368: 1763: 1701: 1641: 1457: 1316: 711: 707: 651: 320: 188: 10707:
Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, Williams SM (2001).
6507:. Novartis Foundation Symposia. Vol. 276. pp. 15–21, discussion 21–5, 54–7, 275–81. 5461: 2226:
is increased, that lowers the average "leakage" current across the membrane, likewise causing
1770:, but an analogous system has been discovered in a few invertebrates, such as some species of 11514: 9868: 9844: 9828: 8031:
Ling G, Gerard RW (December 1949). "The normal membrane potential of frog sartorius fibers".
5198:
Hedrich R, Neher E (March 2018). "Venus Flytrap: How an Excitable, Carnivorous Plant Works".
3571: 3406: 3375: 3282: 3232: 2495: 2376: 1942:
and its elaborations, such as the compartmental model. Cable theory was developed in 1855 by
1705: 1230: 831: 549: 4142: 194:
In animal cells, there are two primary types of action potentials. One type is generated by
11478: 11469: 11453: 11107: 11027: 10816: 10746:
Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, White LE (2008).
9988: 9800: 9675: 9618: 9427: 9189: 9142: 9050: 9003: 8948: 8903: 8866: 8815: 8772: 8687: 8548: 8378: 8247: 8155: 8009: 7171: 7030: 6348: 5989: 5364: 5265: 5207: 5141: 5040: 3979: 3762: 3566: 3328: 3301:
of the 19th century; Golgi himself had argued for the network model of the nervous system.
3274: 2412: 1798: 1731: 1721: 1182: 1135:
signals, since either they occur fully or they do not occur at all. This is in contrast to
719: 118: 103: 9944:
Keener JP (1983). "Analogue circuitry for the Van der Pol and FitzHugh-Nagumo equations".
5128:
Böhm J, Scherzer S, Krol E, Kreuzer I, von Meyer K, Lorey C, et al. (February 2016).
4743: 3215:
The role of electricity in the nervous systems of animals was first observed in dissected
3203:
emerges and moves generally downwards with a few branch points. The smaller cells labeled
3142:") block action potentials by inhibiting the voltage-sensitive sodium channel; similarly, 283: 8: 11575: 10341:. Applied Mathematical Sciences. Vol. 42 (2nd ed.). New York: Springer Verlag. 6239:"The dual effect of membrane potential on sodium conductance in the giant axon of Loligo" 5921:
Aur D, Connolly CI, Jog MS (November 2005). "Computing spike directivity with tetrodes".
5541:, ed. David Cahan, 50-108. Berkeley; Los Angeles; London: University of California, 1994. 5490:
Emil du Bois-Reymond : neuroscience, self, and society in nineteenth-century Germany
5008: 3597: 3278: 3078: 2945: 2893: 2854: 2695: 2581: 2491: 2423: 2216: 1866: 1817: 1778: 1449: 1445: 1438: 1265: 1256: 1246: 331: 42: 11543: 11031: 9992: 9804: 9679: 9622: 9431: 9193: 9146: 9054: 9007: 8952: 8907: 8870: 8819: 8776: 8691: 8382: 8251: 8159: 7175: 7034: 6352: 5993: 5368: 5269: 5211: 5145: 5044: 3766: 1878:, since the human nervous system uses approximately 20% of the body's metabolic energy. 734:. In addition, backpropagating action potentials have been recorded in the dendrites of 412:. A voltage-gated ion channel is a transmembrane protein that has three key properties: 11499:, by WK Purves, D Sadava, GH Orians, and HC Heller, 8th edition, New York: WH Freeman, 11487: 11379: 10891: 10317: 10180: 10046: 10022: 9961: 9816: 9774: 9749: 9730: 9696: 9663: 9639: 9606: 9587: 9562:
Kepler TB, Abbott LF, Marder E (1992). "Reduction of conductance-based neuron models".
9545: 9520: 9495: 9470: 9451: 9400: 9352: 9327: 9303: 9278: 9274: 9256: 9213: 9168: 9111: 9074: 9029: 8972: 8927: 8839: 8806:
Yellen G (September 2002). "The voltage-gated potassium channels and their relatives".
8748: 8711: 8652: 8627: 8619: 8577: 8552: 8530: 8488: 8445: 8402: 8317: 8292: 8268: 8235: 8176: 8143: 8119: 8094: 7991: 7837: 7726: 7613: 7530: 7518: 7484: 7400: 7357: 7274: 7249: 7155: 7137: 7099: 7056: 6991: 6966: 6939: 6914: 6893: 6868: 6846: 6817: 6745: 6720: 6632: 6607:
Simons M, Trotter J (October 2007). "Wrapping it up: the cell biology of myelination".
6589: 6538: 6480: 6455: 6451: 6434: 6409: 6405: 6372: 6309: 6284: 6280: 6263: 6238: 6234: 6217: 6192: 6188: 6171: 6146: 6142: 6125: 6100: 6092: 6060: 6035: 6013: 5946: 5894: 5801: 5774: 5713: 5589: 5564: 5515: 5286: 5253: 5162: 5129: 5107: 5064: 4440: 4415: 4396: 4342: 4315: 4020: 3993: 3822: 3797: 3778: 3675: 3650: 3501: 3497: 3340: 2906: 2547: 2465: 2321: 2304: 1947: 1891: 1688: 1444:
For a neuron at rest, there is a high concentration of sodium and chloride ions in the
1390: 1327: 1281: 1214: 1190: 1136: 1105: 1094: 766: 762: 659: 647: 452: 291: 249:
The electrical properties of a cell are determined by the structure of its membrane. A
231: 154:". A neuron that emits an action potential, or nerve impulse, is often said to "fire". 150:", and the temporal sequence of action potentials generated by a neuron is called its " 67: 11359:
Miller C (1987). "How ion channel proteins work". In Kaczmarek LK, Levitan IB (eds.).
10010: 9687: 9630: 8784: 8476: 8433: 8211: 8194: 8167: 7979: 7780: 7310: 6101:"Measurement of current-voltage relations in the membrane of the giant axon of Loligo" 5775:"Oscillations, intercellular coupling, and insulin secretion in pancreatic beta cells" 3249:
In the 19th century scientists studied the propagation of electrical signals in whole
1946:
to model the transatlantic telegraph cable and was shown to be relevant to neurons by
1812: 1665: 489:
state. When the membrane potential is low, the channel spends most of its time in the
11500: 11385: 11364: 11345: 11321: 11302: 11280: 11259: 11254: 11222: 11203: 10988: 10980: 10970: 10951: 10943: 10933: 10916: 10908: 10898: 10877: 10869: 10859: 10842: 10834: 10824: 10804: 10796: 10786: 10769: 10761: 10751: 10734: 10726: 10716: 10695: 10687: 10677: 10660: 10652: 10642: 10625: 10608: 10600: 10590: 10570: 10562: 10552: 10535: 10527: 10517: 10497: 10489: 10479: 10459: 10451: 10441: 10424: 10416: 10406: 10400: 10387: 10379: 10369: 10352: 10342: 10305: 10297: 10289: 10279: 10262: 10254: 10237: 10229: 10219: 10212: 10195: 10187: 10163: 10155: 10138: 10130: 10120: 10103: 10095: 10071: 10063: 10053: 10014: 9930: 9779: 9701: 9644: 9579: 9550: 9500: 9443: 9404: 9392: 9357: 9308: 9248: 9244: 9205: 9160: 9103: 9066: 9021: 8964: 8931: 8919: 8882: 8831: 8788: 8740: 8703: 8657: 8582: 8480: 8437: 8394: 8357: 8347: 8322: 8273: 8216: 8181: 8124: 8048: 7983: 7948: 7913: 7878: 7873: 7856: 7829: 7794: 7784: 7718: 7683: 7679: 7648: 7605: 7565: 7534: 7522: 7476: 7441: 7392: 7349: 7314: 7279: 7230: 7220: 7189: 7141: 7091: 7048: 6996: 6944: 6898: 6786: 6750: 6705: 6671: 6624: 6581: 6526: 6516: 6485: 6439: 6364: 6314: 6268: 6222: 6176: 6130: 6065: 6005: 5938: 5886: 5847: 5806: 5705: 5594: 5503: 5493: 5407: 5382: 5291: 5223: 5167: 5099: 5056: 5013: 4945: 4937: 4927: 4918:
Segev I, Fleshman JW, Burke RE (1989). "Compartmental Models of Complex Neurons". In
4445: 4388: 4347: 4296: 4148: 4117: 4090: 4067: 4057: 4025: 3827: 3707: 3680: 3410: 3390: 2914: 2882: 2702:
Comparison of action potentials (APs) from a representative cross-section of animals
2607: 2503: 2456: 1875: 1480: 1355: 1269: 1090: 1005: 858: 819: 769:
of a neuron changes as the result of a current impulse is a function of the membrane
619: 615: 603: 439: 430: 327: 326:
Each excitable patch of membrane has two important levels of membrane potential: the
166: 10676:. Developments in Plant Biology. Vol. 4. Amsterdam: Elsevier Biomedical Press. 10026: 9965: 9820: 9734: 9260: 9115: 8752: 8534: 8449: 8406: 7841: 7730: 7617: 7404: 7361: 7103: 7060: 6850: 6636: 6593: 5950: 5717: 3431:
Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential.
1908: 1139:, whose amplitudes are dependent on the intensity of a stimulus. In both cases, the 1039:
molecules that open ion channels in the post-synaptic neuron (bottom). The combined
962:), act as an independent unit. The dendrites extend from the soma, which houses the 408:
Action potentials result from the presence in a cell's membrane of special types of
11249: 11035: 10083: 10006: 9953: 9926: 9903: 9856: 9808: 9769: 9761: 9722: 9691: 9683: 9634: 9626: 9591: 9571: 9540: 9532: 9490: 9482: 9455: 9435: 9388: 9384: 9347: 9343: 9339: 9298: 9294: 9290: 9240: 9217: 9197: 9172: 9150: 9095: 9078: 9058: 9033: 9011: 8976: 8956: 8911: 8874: 8843: 8823: 8780: 8732: 8715: 8695: 8647: 8643: 8639: 8572: 8564: 8522: 8506: 8472: 8429: 8386: 8339: 8312: 8304: 8263: 8255: 8206: 8195:"A new generation of Ca2+ indicators with greatly improved fluorescence properties" 8171: 8163: 8114: 8110: 8106: 8075: 8040: 7995: 7975: 7940: 7905: 7868: 7821: 7776: 7753: 7710: 7675: 7640: 7597: 7557: 7514: 7488: 7468: 7431: 7384: 7341: 7306: 7269: 7261: 7212: 7179: 7129: 7083: 7038: 6986: 6982: 6978: 6962: 6934: 6930: 6926: 6888: 6884: 6880: 6838: 6821: 6809: 6782: 6740: 6732: 6701: 6663: 6616: 6573: 6508: 6475: 6471: 6467: 6429: 6425: 6421: 6376: 6356: 6304: 6300: 6296: 6258: 6254: 6250: 6212: 6208: 6204: 6166: 6162: 6158: 6120: 6116: 6112: 6055: 6047: 6017: 5997: 5964: 5934: 5930: 5898: 5878: 5796: 5786: 5697: 5584: 5580: 5576: 5372: 5281: 5273: 5215: 5157: 5149: 5111: 5091: 5068: 5048: 5003: 4714: 4712: 4710: 4435: 4427: 4400: 4378: 4337: 4327: 4015: 4005: 3817: 3813: 3809: 3782: 3770: 3670: 3666: 3662: 3493: 3398: 3394: 3336: 3320: 3224: 3156: 2961: 2930: 2515: 2460: 2340: 2308: 2267: 2262: 2248: 2244: 1951: 1871: 1782: 1747: 1430: 1337: 1336:. This changes the membrane's permeability to those ions. Second, according to the 1206: 1186: 1061: 1036: 1009: 996: 988: 727: 715: 643: 9099: 9086:
Bezanilla F (April 2000). "The voltage sensor in voltage-dependent ion channels".
8492: 7375:
Brink PR, Cronin K, Ramanan SV (August 1996). "Gap junctions in excitable cells".
5219: 752: 173:
the transmembrane potential. When the channels open, they allow an inward flow of
11560: 11538: 10964: 8628:"The effect of sodium ions on the electrical activity of giant axon of the squid" 5791: 5401: 4416:"Analog transmission of action potential fine structure in spiral ganglion axons" 4111: 4087:
Calcium Channels: Their Properties, Functions, Regulation, and Clinical relevance
3386: 3311:
of the sodium–potassium pump in its E2-Pi state. The estimated boundaries of the
3266: 3074: 3032: 3008: 2939: 2487: 2286: 1794: 1790: 1759: 1735: 1273: 1222: 1162: 1132: 1121: 951: 902: 846: 794: 770: 675: 639: 505:
state. During an action potential, most channels of this type go through a cycle
295: 287: 162: 9486: 8878: 8066:
Nastuk WL, Hodgkin A (1950). "The electrical activity of single muscle fibers".
7216: 5968: 4707: 3323:
advanced the hypothesis that the action potential resulted from a change in the
1844:), whereas the speed of unmyelinated neurons varies roughly as the square root ( 1525:. This positive feedback continues until the sodium channels are fully open and 1075:. This opening has the further effect of changing the local permeability of the 11335: 10783:
Modeling in the Neurosciences: from Biological Systems to Neuromimetic Robotics
10471: 9908: 9891: 9726: 8259: 8095:"The recording of potentials from motoneurones with an intracellular electrode" 7601: 6620: 5534: 5241: 4956: 4776: 4774: 4678: 4676: 4674: 4672: 4555: 4277: 3846: 3610: 3531: 3332: 3308: 3270: 3258: 3240: 3196: 3135: 2850: 2511: 2499: 2275: 1434: 1311: 1156: 1081: 943: 811: 798: 735: 731: 595: 335: 311: 214: 179: 170: 75: 71: 50: 46: 11040: 11015: 9957: 9860: 7561: 7345: 7043: 7018: 6512: 5882: 5377: 5352: 5153: 5052: 4383: 4366: 1660:, during which it is impossible to evoke another action potential, and then a 1429:
into the cell; these cations can come from a wide variety of sources, such as
11569: 10955: 10808: 10773: 10738: 10664: 10629: 10509: 10356: 10293: 10266: 7931:
Keynes RD (1989). "The role of giant axons in studies of the nerve impulse".
7644: 7265: 6910: 6864: 6721:"Factors Affecting Transmission and Recovery in the Passive Iron Nerve Model" 5701: 5507: 5103: 5017: 4919: 4332: 4113:
Cellular and Molecular Biology of Neuronal Development | Ira Black | Springer
4071: 4010: 3614: 3509: 3353: 3349: 3312: 3290: 3220: 3180: 3082: 3016: 2957: 2642: 2633: 2518:. Several anti-arrhythmia drugs act on the cardiac action potential, such as 2507: 2398: 2344: 2282: 1883: 1806: 1802: 1785:(m/s) to over 100 m/s, and, in general, increases with axonal diameter. 1394: 1226: 1076: 1001: 984: 947: 909: 782: 738:, which are ubiquitous in the neocortex. These are thought to have a role in 723: 663: 456: 444: 422:
The transition between conformations is influenced by the membrane potential.
275: 254: 250: 223: 165:. These channels are shut when the membrane potential is near the (negative) 126: 55: 30: 11530:
Production of the action potential: voltage and current clamping simulations
10846: 10539: 10501: 10463: 10391: 10309: 10142: 10107: 10075: 6667: 4949: 4771: 4759: 4669: 4531: 3281:
of action potentials was then measured in 1850 by du Bois-Reymond's friend,
3011:, so that the measurement itself did not affect the voltage being measured. 1047:
of such inputs can begin a new action potential in the post-synaptic neuron.
622:
from the sodium current activates even more sodium channels. Thus, the cell
11483: 11294: 11263: 10992: 10920: 10858:. Inter-University Electronics Series. Vol. 9. New York: McGraw-Hill. 10699: 10428: 10339:
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
10241: 10018: 9783: 9705: 9664:"Impulses and Physiological States in Theoretical Models of Nerve Membrane" 9554: 9504: 9447: 9396: 9361: 9312: 9252: 9209: 9164: 9107: 9070: 9025: 8968: 8923: 8835: 8661: 8623: 8586: 8484: 8390: 8277: 8128: 8079: 8052: 8044: 7987: 7944: 7917: 7909: 7882: 7798: 7652: 7609: 7569: 7526: 7480: 7445: 7353: 7318: 7283: 7234: 7193: 7184: 7159: 7133: 7095: 7052: 7000: 6948: 6902: 6754: 6675: 6628: 6585: 6530: 6489: 6443: 6368: 6318: 6272: 6226: 6180: 6134: 6096: 6069: 6009: 5942: 5890: 5851: 5810: 5709: 5598: 5386: 5295: 5227: 5171: 5060: 4897: 4509: 4507: 4449: 4392: 4351: 4029: 3831: 3684: 3556: 3366: 3344: 3298: 3236: 3228: 3208: 3117: 3097: 3064: 3004: 2662: 2527: 2394: 2390: 2325: 1939: 1903: 1751: 1418:
with a sufficiently strong depolarization, e.g., a stimulus that increases
1415: 1218: 1166: 1109: 1086: 1025: 976: 972: 963: 914: 897: 892: 698: 316: 10612: 10199: 10167: 9648: 9583: 8886: 8792: 8744: 8707: 8441: 8398: 8326: 8220: 8185: 7952: 7833: 7825: 7722: 7396: 5835: 4431: 4265: 3886: 3884: 3882: 3880: 3878: 3876: 3874: 3872: 3711: 2700: 11134: 10881: 10781:
Reeke GN, Poznanski RR, Sporns O, Rosenberg JR, Lindsay KA, eds. (2005).
9917:
Evans JW, Feroe J (1977). "Local stability theory of the nerve impulse".
9536: 8760: 8675: 8568: 8371:
Proceedings of the Royal Society of London. Series B, Biological Sciences
8361: 8308: 8012:(1949). "Dynamic electrical characteristics of the squid axon membrane". 7687: 7436: 7419: 7019:"Rapid conduction and the evolution of giant axons and myelinated fibers" 6869:"Evidence for saltatory conduction in peripheral myelinated nerve fibres" 5277: 3370: 3362: 3358: 3160: 3143: 3116:, both natural and synthetic, function by blocking the action potential. 3060: 3056: 3047: 3043: 2972: 2586: 2561: 2416: 2198: 1717: 1234: 1072: 992: 774: 299: 83: 11441:
was created from a revision of this article dated 22 June 2005
9765: 9439: 8960: 8827: 6736: 6360: 6051: 4810: 4786: 4519: 4504: 3327:
of the axonal membrane to ions. Bernstein's hypothesis was confirmed by
2219:
of an action potential should increase. If the transmembrane resistance
761:'s ability to generate and propagate an action potential changes during 678:, maintains the normal ratio of ion concentrations across the membrane. 11535:
Open-source software to simulate neuronal and cardiac action potentials
11511:
Ionic motion and the Goldman voltage for arbitrary ionic concentrations
10574: 9812: 9575: 8736: 8526: 8343: 7714: 7548:
Costa LG (April 2006). "Current issues in organophosphate toxicology".
7388: 7211:. Handbook of Experimental Pharmacology. Vol. 184. pp. 1–21. 6842: 6813: 5539:
Hermann von Helmholtz and the Foundations of Nineteenth Century Science
4847: 4733: 4731: 4316:"Past and Future of Analog-Digital Modulation of Synaptic Transmission" 3869: 3774: 3622: 3324: 3164: 3159:. Neurotoxins aimed at the ion channels of insects have been effective 3121: 3113: 3101: 3093: 2670: 2569: 2553: 2408: 2403: 2352: 2300: 2279: 2271: 1938:
The flow of currents within an axon can be described quantitatively by
1913: 1862: 1767: 1619: 1554:
period during which no new action potential can be fired is called the
1425:. This depolarization is often caused by the injection of extra sodium 1365:
in opposite ways, or at different rates. For example, although raising
1285: 882: 380: in this section. Unsourced material may be challenged and removed. 286:– in other words, they maintain a voltage difference across the cell's 243: 95: 7472: 7250:"Ca2+-dependent mechanisms of presynaptic control at central synapses" 3081:, action potentials have been optically recorded from a tiny patch of 1251: 1108:. Due to the direct connection between excitable cells in the form of 1031: 11529: 9201: 9155: 9130: 8915: 8699: 6692:
Hursh JB (1939). "Conduction velocity and diameter of nerve fibers".
6001: 4219: 4217: 4215: 4213: 3551: 3130: 3125: 3050:
has two states: open (high conductance) and closed (low conductance).
3024: 3020: 2956:
The second problem was addressed with the crucial development of the
2923: 2690: 2648: 2531: 2523: 2519: 2498:(AV node), which is normally the only conduction pathway between the 2431: 1603:. Combined, these changes in sodium and potassium permeability cause 1198: 1178: 1143:
of action potentials is correlated with the intensity of a stimulus.
1140: 1127: 967: 872: 607: 319:(the point where the axon leaves the cell body), which is called the 230:
difference between the exterior and interior of the cell, called the
183: 131: 99: 11237: 9417: 8510: 7757: 6577: 6334:"Unique features of action potential initiation in cortical neurons" 6193:"The components of membrane conductance in the giant axon of Loligo" 4859: 4822: 4728: 2261:
In general, action potentials that reach the synaptic knobs cause a
552:
for the parameters that govern the ion channel states, known as the
355: 9750:"Activation of passive iron as a model for the excitation of nerve" 9471:"What the structure of a calcium pump tells us about its mechanism" 7857:"Electrical signals and their physiological significance in plants" 7775:. International Review of Cytology. Vol. 257. pp. 43–82. 7087: 5685: 5254:"Closing of venus flytrap by electrical stimulation of motor cells" 4414:
Liu, Wenke; Liu, Qing; Crozier, Robert A.; Davis, Robin L. (2021).
4161: 3541: 3452:
represents the capacitance of the membrane patch, whereas the four
3192: 2628: 2427: 2336: 2329: 2294: 1379:
the channel's "inactivation gate", albeit more slowly. Hence, when
1298: 877: 683: 303: 270: 135: 21: 10947: 10800: 10765: 10656: 9279:"Active transport of cations in giant axons from Sepia and Loligo" 9062: 9016: 8991: 5862: 4210: 3427: 2887: 2270:
filled with neurotransmitter to migrate to the cell's surface and
1912:
Cable theory's simplified view of a neuronal fiber. The connected
1280:
provide a good example. Although such pacemaker potentials have a
939:, which also has the simplest mechanism for the action potential. 11475:
Action potential propagation in myelinated and unmyelinated axons
11361:
Neuromodulation: The Biochemical Control of Neuronal Excitability
8893: 7550:
Clinica Chimica Acta; International Journal of Clinical Chemistry
5456:
Some Electrical Properties of Fine-Tipped Pipette Microelectrodes
3922: 3920: 3845:
Purves D, Augustine GJ, Fitzpatrick D, et al., eds. (2001).
3315:
are shown as blue (intracellular) and red (extracellular) planes.
3243: 3038: 2870: 2674: 2623: 2557: 2480: 2471: 2290: 1917: 1894:, in which the breakdown of myelin impairs coordinated movement. 1832:
of myelinated neurons varies roughly linearly with axon diameter
1065: 842: 835: 807: 786: 679: 485:. The channel is permeable only to sodium ions when it is in the 227: 139: 91: 10984: 10912: 10873: 10838: 10730: 10691: 10604: 10566: 10531: 10493: 10455: 10420: 10383: 10301: 10258: 10233: 10191: 10159: 10134: 10099: 10067: 4941: 3480:, which describes the action potential by a coupled set of four 2926:
enough that the voltage inside a single cell could be recorded.
1340:, this change in permeability changes the equilibrium potential 11550:(electronic neuroscience textbook by UT Houston Medical School) 11534: 10253:. Vol. 1. Washington, DC: American Physiological Society. 9521:"Thresholds and plateaus in the Hodgkin-Huxley nerve equations" 8336:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 79
3618: 3505: 3254: 3223:, who studied it from 1791 to 1797. Galvani's results inspired 3175: 3028: 2686: 2682: 2678: 2666: 2348: 1771: 1743: 1426: 1210: 1068: 980: 936: 919: 758: 753:
Maturation of the electrical properties of the action potential
611: 599: 323:, but the axon and cell body are also excitable in most cases. 235: 174: 87: 34: 10745: 10706: 10218:. A series of books in biology. San Francisco: W. H. Freeman. 10186:. A series of books in biology. San Francisco: W. H. Freeman. 10182:
Structure and Function in the Nervous Systems of Invertebrates
8856: 8144:"A large change in dye absorption during the action potential" 5432: 4962: 4780: 4765: 4682: 4655: 4606: 4602: 4573: 4561: 4537: 4283: 4271: 4196: 3943: 3917: 1288:
can be altered by pharmaceuticals as well as signals from the
1020:
Before considering the propagation of action potentials along
689:
are involved in a few types of action potentials, such as the
11171:(Press release). The Royal Swedish Academy of Science. 1997. 11110:(Press release). The Royal Swedish Academy of Science. 1906. 11084:(Press release). The Royal Swedish Academy of Science. 1991. 11058:(Press release). The Royal Swedish Academy of Science. 1963. 10780: 8511:"Untersuchungen zur Thermodynamik der bioelektrischen Ströme" 7074:
Miller RH, Mi S (November 2007). "Dissecting demyelination".
6503:
Zalc B (2006). "The Acquisition of Myelin: A Success Story".
5624: 4056:(Third ed.). Elsevier Academic Press. pp. 211–214. 3250: 3147: 2934: 2698:
does vary dramatically with axonal diameter and myelination.
2658: 2637:) arose independently from that in metazoan excitable cells. 2590: 2419: 2356: 1793:. Instead, the ionic current from an action potential at one 1277: 694: 686: 9040: 8553:"Electric Impedance of the Squid Giant Axon During Activity" 5332: 1375:
most gates in the voltage-sensitive sodium channel, it also
991:(in the central nervous system), both of which are types of 8142:
Ross WN, Salzberg BM, Cohen LB, Davila HV (December 1974).
6967:"A theory of the effects of fibre size in medullated nerve" 5096:
10.1656/1528-7092(2005)004[0573:HODMVF]2.0.CO;2
4926:. Cambridge, Massachusetts: The MIT Press. pp. 63–96. 4697: 4695: 4693: 4691: 3216: 3200: 2386: 2172:{\displaystyle \lambda ={\sqrt {\frac {r_{m}}{r_{\ell }}}}} 1821: 1201:
convert the incoming sound into the opening and closing of
1021: 887: 718:, generate action potentials to boost the signal. Known as 307: 122: 26: 11320:. Cambridge, Massachusetts: Bradford Book, The MIT Press. 8990:
Cha A, Snyder GE, Selvin PR, Bezanilla F (December 1999).
6857: 5683: 5639:
Mathematical models of axcitation and propagation in nerve
4543: 4173: 3844: 2869:
potentials to communicate with other bacteria in the same
1726: 1209:
molecules to be released. In similar manner, in the human
814:
becomes primarily carried by sodium channels. Second, the
533:
state is refractory until it has transitioned back to the
121:, assisting—the propagation of signals along the neuron's 9607:"Voltage oscillations in the barnacle giant muscle fiber" 9326:
Caldwell PC, Hodgkin AL, Keynes RD, Shaw TL (July 1960).
9325: 7296: 5605: 3907: 3905: 3903: 3901: 3899: 3297:. Their work resolved a long-standing controversy in the 1825: 1194: 586:(4), during which the voltage-dependent ion channels are 8989: 7744:
Gradmann D (2001). "Models for oscillations in plants".
6557: 6456:"Evidence for electrical transmission in nerve: Part II" 4968: 4798: 4688: 4492: 2506:. Action potentials from the AV node travel through the 1464:
of potassium ions making the resting potential close to
1284:, it can be adjusted by external stimuli; for instance, 849:
increases by 600% within the first two postnatal weeks.
638:
and not the amplitude or duration of the stimulus. This
11270: 10823:(5th ed.). Cambridge: Cambridge University Press. 10514:
Methods in Neuronal Modeling: From Synapses to Networks
10478:(2nd ed.). Cambridge: Cambridge University Press. 10405:(2nd ed.). Sunderland, Mass.: Sinauer Associates. 9867: 9843: 8763:, Sakmann B (March 1992). "The patch clamp technique". 8722: 8141: 6410:"Evidence for electrical transmission in nerve: Part I" 5420: 5127: 4924:
Methods in Neuronal Modeling: From Synapses to Networks
3467:. The two conductances on the right help determine the 3304: 1080:
to nearby regions of the membrane (as described by the
602:
ions into the cell. This is followed by the opening of
25:
As an action potential (nerve impulse) travels down an
9979:
Hooper SL (March 2000). "Central pattern generators".
9712: 8192: 7630: 7160:"The electrical constants of a crustacean nerve fibre" 6036:"Potential, Impedance, and Rectification in Membranes" 5650: 5544: 3961: 3896: 3257:) and demonstrated that nervous tissue was made up of 2982:
times the rate of change of the transmembrane voltage
2230:
to become longer, increasing the conduction velocity.
1483:) results: the more inward current there is, the more 1233:, produce action potentials, which then travel up the 822:
current, increases to 3.5 times its initial strength.
246:, an action potential may last three seconds or more. 11363:. New York: Oxford University Press. pp. 39–63. 11334: 10546: 10278:(15th ed.). Norwalk, Conn.: Appleton and Lange. 10206: 9741: 9179: 6793: 6331: 5451: 4989:"Jagdish Chandra Bose and Plant Neurobiology: Part I" 4865: 4828: 4816: 4792: 4749: 4737: 4718: 4659: 4637: 4610: 4577: 4525: 4513: 4486: 4482: 4466: 4255: 4235: 4200: 4167: 3991: 3947: 3890: 3385:
Julius Bernstein was also the first to introduce the
3273:. Matteucci's work inspired the German physiologist, 2136: 2086: 1966: 416:
It is capable of assuming more than one conformation.
113:
In neurons, action potentials play a central role in
11301:(3rd ed.). Sunderland, MA: Sinauer Associates. 10750:(4th ed.). Sunderland, MA: Sinauer Associates. 10715:(2nd ed.). Sunderland, MA: Sinauer Associates. 10671: 9791:
Bonhoeffer KF (1953). "Modelle der Nervenerregung".
9411: 8499: 8233: 7458: 5629:
Bifurcation Analysis of the Hodgkin-Huxley Equations
5309: 5251: 3853:(2nd ed.). Sunderland, MA: Sinauer Associates. 1115: 714:. Regularly spaced unmyelinated patches, called the 642:
property of the action potential sets it apart from
540:
The outcome of all this is that the kinetics of the
443:
potential occurs when this positive feedback cycle (
157:
Action potentials are generated by special types of
11216: 10962: 10674:
Plant Membrane Transport: Current Conceptual Issues
7665: 7120:(1855). "On the theory of the electric telegraph". 5868: 5475: 4365:Clark, Beverley; Häusser, Michael (8 August 2006). 3261:, instead of an interconnected network of tubes (a 3235:—with which he studied animal electricity (such as 1927:(the counterparts of the intracellular resistances 11013: 10890: 10336: 10211: 10179: 10045: 9946:IEEE Transactions on Systems, Man, and Cybernetics 9561: 8234:Bu G, Adams H, Berbari EJ, Rubart M (March 2009). 7668:Biochimica et Biophysica Acta (BBA) - Biomembranes 7374: 5644: 5562: 4917: 4413: 4144:Current Topics in Developmental Biology, Volume 39 2649:Taxonomic distribution and evolutionary advantages 2397:. In such cases, the released neurotransmitter is 2171: 2119: 2045: 1711: 1578:is nearly equal to the sodium equilibrium voltage 142:. Action potentials in neurons are also known as " 33:of the axon. In response to a signal from another 29:there is a change in electric polarity across the 10435: 10152:A History of the Electrical Activity of the Brain 10043: 8092: 7811: 6505:Purinergic Signalling in Neuron–Glia Interactions 6091: 5734: 5438: 5403:The Brain, the Nervous System, and Their Diseases 4883:Multiple Sclerosis as a Neurodegenerative Disease 3600:, however, these phenomena are readily explained. 2989:, the solution was to design a circuit that kept 1672:by the depolarization from the action potential. 1629:even closer to the potassium equilibrium voltage 1056:Action potentials are most commonly initiated by 11567: 11108:"The Nobel Prize in Physiology or Medicine 1906" 11082:"The Nobel Prize in Physiology or Medicine 1991" 11056:"The Nobel Prize in Physiology or Medicine 1963" 10709:"Release of Transmitters from Synaptic Vesicles" 10547:Lavallée M, Schanne OF, Hébert NC, eds. (1969). 9892:"Nerve axon equations. I. Linear approximations" 8938: 8193:Grynkiewicz G, Poenie M, Tsien RY (March 1985). 7012: 7010: 5772: 5672:Analysis of Neural Excitability and Oscillations 3992:Tamagawa H, Funatani M, Ikeda K (January 2016). 3798:"The Axon Initial Segment: An Updated Viewpoint" 1460:present on the membrane of the neuron causes an 1008:enclosed in small membrane-bound spheres called 11554:Khan Academy: Electrotonic and action potential 11197: 10815: 10672:Spanswick RM, Lucas WJ, Dainty J, eds. (1980). 10619: 10174: 8456: 8413: 8290: 7895: 7700: 7331: 7207:Süudhof TC (2008). "Neurotransmitter Release". 6087: 6085: 6083: 6081: 6079: 6029: 6027: 5471: 5338: 5030: 4853: 4663: 4462: 4259: 4239: 4223: 4204: 3951: 3926: 2068:) is the voltage across the membrane at a time 1409: 10963:Worden FG, Swazey JP, Adelman G, eds. (1975). 10932:. Burlington, Mass.: Elsevier Academic Press. 9374: 9368: 9319: 8093:Brock LG, Coombs JS, Eccles JC (August 1952). 8068:Journal of Cellular and Comparative Physiology 8033:Journal of Cellular and Comparative Physiology 7805: 7737: 7420:"Neuromuscular junction in health and disease" 7154: 7016: 6909: 6863: 6828: 6799: 6332:Naundorf B, Wolf F, Volgushev M (April 2006). 5920: 5833: 5829: 5827: 5684:Biswas A, Manivannan M, Srinivasan MA (2015). 5302: 1225:) do not produce action potentials; only some 265: 10821:Animal Physiology: Adaptation and Environment 10366:An Introduction to the Mathematics of Neurons 9972: 9273: 9267: 8612: 8368: 8333: 8227: 8065: 7694: 7659: 7007: 6687: 6685: 6606: 6279: 6233: 6187: 6141: 5617: 3648: 3393:across the membrane; this was generalized by 3239:) and the physiological responses to applied 2929:The first problem was solved by studying the 2537: 1916:correspond to adjacent segments of a passive 466:channels. (The "V" stands for "voltage".) An 11242:Progress in Biophysics and Molecular Biology 10470: 10363: 9937: 9598: 8799: 8759: 8674: 8668: 8059: 7965: 7924: 7854: 7764: 7164:Proceedings of the Royal Society of Medicine 7148: 6955: 6760: 6076: 6024: 5611: 5252:Volkov AG, Adesina T, Jovanov E (May 2007). 5197: 4893: 4891: 4364: 4313: 3973: 3067:. For this discovery, they were awarded the 2442: 2381:A special case of a chemical synapse is the 693:and the action potential in the single-cell 656:subthreshold membrane potential oscillations 473:channel has three possible states, known as 11520:A cartoon illustrating the action potential 11100: 11074: 10969:. Cambridge, Massachusetts: The MIT Press. 10636: 10589:. Cambridge, Massachusetts: The MIT Press. 10516:. Cambridge, Massachusetts: The MIT Press. 10114: 10052:. Cambridge, Massachusetts: The MIT Press. 9827: 9604: 8850: 8618: 8515:Pflügers Archiv für die gesamte Physiologie 8086: 7110: 6831:Pflügers Archiv für die gesamte Physiologie 6802:Pflügers Archiv für die gesamte Physiologie 6766: 6563: 5824: 5766: 5657: 5487: 4620: 4367:"Neural Coding: Analog Signalling in Axons" 4179: 3423:Quantitative models of the action potential 3289:and his students used a stain developed by 2278:. This complex process is inhibited by the 1479:potassium current and a runaway condition ( 1323:, which may overlap with the other phases. 935:). However, the main excitable cell is the 41:open and close as the membrane reaches its 11315: 11048: 10785:. Boca Raton, Fla.: Taylor & Francis. 9916: 9790: 9747: 8547: 8030: 8024: 8002: 7587: 7505:Newmark J (January 2007). "Nerve agents". 7500: 7498: 6682: 6649: 5973: 5520:: CS1 maint: location missing publisher ( 4911: 2978:of the membrane. Since the current equals 2891:Giant axons of the longfin inshore squid ( 2575: 2362: 1546:and sodium permeability correspond to the 434:Action potential propagation along an axon 11384:(5th ed.). New York: W. H. Freeman. 11377: 11253: 11217:Bear MF, Connors BW, Paradiso MA (2001). 11202:. Cambridge: Cambridge University Press. 11039: 10581: 10508: 10082: 10000: 9907: 9773: 9695: 9655: 9638: 9544: 9494: 9351: 9302: 9154: 9128: 9085: 9015: 8651: 8576: 8505: 8462: 8419: 8316: 8284: 8267: 8210: 8175: 8118: 7896:Leys SP, Mackie GO, Meech RW (May 1999). 7872: 7583: 7581: 7579: 7435: 7377:Journal of Bioenergetics and Biomembranes 7273: 7183: 7042: 6990: 6938: 6892: 6744: 6479: 6433: 6308: 6262: 6216: 6170: 6124: 6059: 5800: 5790: 5773:MacDonald PE, Rorsman P (February 2006). 5747: 5730: 5667: 5588: 5563:Baranauskas G, Martina M (January 2006). 5550: 5376: 5285: 5161: 5007: 4901: 4888: 4439: 4382: 4341: 4331: 4084: 4019: 4009: 3821: 3795: 3674: 3613:are muscle fibers and not related to the 3378:, fluorescence distance measurements and 2453:Electrical conduction system of the heart 2335:postsynaptic cell through pores known as 2116: 1613: 1504:closer to the sodium equilibrium voltage 1414:A typical action potential begins at the 1397:in 1952, for which they were awarded the 1104:Neurotransmission can also occur through 747:Hodgkin–Huxley membrane capacitance model 396:Learn how and when to remove this message 16:Neuron communication by electric impulses 11449:, and does not reflect subsequent edits. 11432: 11358: 10641:(5th ed.). San Francisco: Pearson. 10639:Human Physiology: An Integrated Approach 10624:. Springfield, Ill.: Charles C. Thomas. 9661: 9518: 8599: 7959: 7743: 7209:Pharmacology of Neurotransmitter Release 7073: 5957: 5623:Sato, S; Fukai, H; Nomura, T; Doi, S in 5319: 4140: 4051: 3697: 3426: 3303: 3174: 3092: 3037: 2886: 2464: 2299: 1907: 1811: 1725: 1250: 1217:and the next layer of cells (comprising 1030: 594:As the membrane potential is increased, 563:Ion movement during an action potential. 558: 429: 269: 226:in animals, plants and fungi maintain a 213: 37:, sodium- (Na) and potassium- (K)–gated 20: 11344:(4th ed.). New York: McGraw-Hill. 11318:Foundations of Cellular Neurophysiology 11279:. New York: New York University Press. 10888: 10853: 10337:Guckenheimer J, Holmes P, eds. (1986). 10149: 10048:Neurocomputing: Foundations of Research 10044:Anderson JA, Rosenfeld E, eds. (1988). 9468: 9122: 7504: 7495: 7247: 7206: 7017:Hartline DK, Colman DR (January 2007). 6961: 6450: 6404: 6033: 5752:Reconstruction of Small Neural Networks 5634: 5467: 5399: 5350: 4804: 4753: 4701: 4643: 4614: 4585: 4549: 4470: 4243: 3967: 3745: 3691: 3015:electrode tips that are as fine as 100 2876: 2653:Action potentials are found throughout 2266:membrane; the influx of calcium causes 1750:. It is produced by specialized cells: 1652:Each action potential is followed by a 1240: 11568: 11132: 10927: 10436:Kettenmann H, Grantyn R, eds. (1992). 10273: 10094:]. Braunschweig: Vieweg und Sohn. 9978: 9943: 9831:(1926). "On relaxation-oscillations". 8805: 7930: 7848: 7770: 7576: 7417: 7116: 6772: 6718: 5905: 5193: 5191: 5189: 5187: 5185: 5183: 5181: 5123: 5121: 4986: 4974: 4878: 4627: 3416: 2315: 1177:, which are critical for the sense of 1060:from a presynaptic neuron. Typically, 987:(in the peripheral nervous system) or 863: 726:, in general, triggers the release of 11293: 10966:The Neurosciences, Paths of Discovery 10398: 10248: 9889: 8983: 8135: 7547: 6691: 5979: 5666:* Rinzel, J & Ermentrout, GB; in 5426: 5081: 4841: 4722: 4581: 4498: 4109: 4047: 4045: 4043: 4041: 4039: 3955: 3911: 3649:Hodgkin AL, Huxley AF (August 1952). 3069:Nobel Prize in Physiology or Medicine 2919:Nobel Prize in Physiology or Medicine 1399:Nobel Prize in Physiology or Medicine 983:sheath. Myelin is composed of either 282:All cells in animal body tissues are 11544:Introduction to the Action Potential 11381:Lehninger Principles of Biochemistry 11235: 11175:from the original on 23 October 2009 11145:(3). BMJ Publishing Group: 192–197. 11114:from the original on 4 December 2008 9230: 8291:Milligan JV, Edwards C (July 1965). 8008: 6502: 6496: 5834:Barnett MW, Larkman PM (June 2007). 5740: 5329:, vol. 49, no. 1, 2002, pp. 142–147. 4996:Indian Journal of History of Science 3748:"Action Potentials in Higher Plants" 2238: 2120:{\displaystyle \tau =\ r_{m}c_{m}\,} 1647: 852: 845:. The sodium current density of rat 529:state is very low: A channel in the 378:adding citations to reliable sources 349: 345: 11299:Ion Channels of Excitable Membranes 11169:"The Nobel Prize in Chemistry 1997" 8199:The Journal of Biological Chemistry 7902:The Journal of Experimental Biology 6656:The Journal of Experimental Biology 5914: 5760: 5452:Lavallée, Schanne & Hébert 1969 5327:Russian Journal of Plant Physiology 5178: 5118: 4866:Bullock, Orkand & Grinnell 1977 4829:Bullock, Orkand & Grinnell 1977 4817:Bullock, Orkand & Grinnell 1977 4793:Bullock, Orkand & Grinnell 1977 4750:Bullock, Orkand & Grinnell 1977 4738:Bullock, Orkand & Grinnell 1977 4719:Bullock, Orkand & Grinnell 1977 4660:Bullock, Orkand & Grinnell 1977 4611:Bullock, Orkand & Grinnell 1977 4578:Bullock, Orkand & Grinnell 1977 4526:Bullock, Orkand & Grinnell 1977 4514:Bullock, Orkand & Grinnell 1977 4487:Bullock, Orkand & Grinnell 1977 4483:Bullock, Orkand & Grinnell 1977 4467:Bullock, Orkand & Grinnell 1977 4256:Bullock, Orkand & Grinnell 1977 4236:Bullock, Orkand & Grinnell 1977 4201:Bullock, Orkand & Grinnell 1977 4168:Bullock, Orkand & Grinnell 1977 4052:Sanes DH, Reh TA (1 January 2012). 3948:Bullock, Orkand & Grinnell 1977 3891:Bullock, Orkand & Grinnell 1977 2901:to understand the action potential. 2437: 117:by providing for—or with regard to 13: 11419: 11338:, Schwartz JH, Jessell TM (2000). 11190: 11149:from the original on 14 March 2012 11088:from the original on 24 March 2010 7519:10.1097/01.nrl.0000252923.04894.53 5310:Spanswick, Lucas & Dainty 1980 4906:Cable Theory for Dendritic Neurons 4469:, pp. 49–56, 76–93, 247–255; 4320:Frontiers in Cellular Neuroscience 4301:Frontiers in Cellular Neuroscience 4130:from the original on 17 July 2017. 4036: 3031:, or optically with dyes that are 2021: 2007: 1981: 1973: 1454:from a high to a low concentration 1347:, and, thus, the membrane voltage 1150: 1099:inhibitory postsynaptic potentials 1058:excitatory postsynaptic potentials 1045:inhibitory postsynaptic potentials 14: 11632: 11484:Generation of AP in cardiac cells 11400: 11219:Neuroscience: Exploring the Brain 11200:Ion Channels: Molecules in Action 11062:from the original on 16 July 2007 11014:Fitzhugh R, Izhikevich E (2006). 10897:. New York: John Wiley and Sons. 9754:The Journal of General Physiology 9525:The Journal of General Physiology 8785:10.1038/scientificamerican0392-44 8557:The Journal of General Physiology 8297:The Journal of General Physiology 7855:Fromm J, Lautner S (March 2007). 6725:The Journal of General Physiology 6040:The Journal of General Physiology 5858:from the original on 8 July 2011. 5733:, pp. 19–39, 46–66, 72–141; 5476:Worden, Swazey & Adelman 1975 4987:Tandon, Prakash N (1 July 2019). 4054:Development of the nervous system 3369:, who developed the technique of 2470:the opening of voltage-sensitive 2257:Inhibitory postsynaptic potential 2253:Excitatory postsynaptic potential 740:spike-timing-dependent plasticity 11488:generation of AP in neuron cells 11431: 11255:10.1016/j.pbiomolbio.2003.12.004 11198:Aidley DJ, Stanfield PR (1996). 11161: 11126: 10620:McHenry LC, Garrison FH (1969). 9883: 9748:Bonhoeffer KF (September 1948). 9511: 9462: 9224: 8593: 8541: 7898:"Impulse conduction in a sponge" 7889: 7874:10.1111/j.1365-3040.2006.01614.x 7624: 7122:Proceedings of the Royal Society 6787:10.1152/ajplegacy.1939.127.2.211 6706:10.1152/ajplegacy.1939.127.1.131 6650:Xu K, Terakawa S (August 1999). 5816: 5677: 5556: 5528: 5481: 5444: 5393: 5344: 5245: 5234: 5075: 5024: 4980: 3857:from the original on 5 June 2018 3339:of ionic conductances. In 1949, 3106:voltage-sensitive sodium channel 1920:. The extracellular resistances 946:, a single axon and one or more 871: 354: 11466:Ionic flow in action potentials 11238:"Axonal excitability revisited" 11007: 10622:Garrison's History of Neurology 10214:Introduction to Nervous Systems 10210:, Orkand R, Grinnell A (1977). 9605:Morris C, Lecar H (July 1981). 8338:. Vol. 79. pp. 1–50. 7814:The Journal of Membrane Biology 7773:Action potential in charophytes 7703:The Journal of Membrane Biology 7541: 7452: 7411: 7368: 7325: 7290: 7241: 7200: 7067: 6712: 6643: 6609:Current Opinion in Neurobiology 6600: 6398: 6325: 5923:Journal of Neuroscience Methods 4871: 4834: 4632:Neuronal Channels and Receptors 4407: 4358: 4314:Zbili, M.; Debanne, D. (2019). 4307: 4289: 4134: 4103: 4089:. CRC Press. pp. 138–142. 4078: 3985: 3603: 3589: 3482:ordinary differential equations 3163:; one example is the synthetic 2568:, which is a common target for 1897: 1820:of myelinated and unmyelinated 1712:Myelin and saltatory conduction 1656:, which can be divided into an 1203:mechanically gated ion channels 365:needs additional citations for 58:where it signals other neurons. 10119:. Santa Clara, Calif.: TELOS. 9389:10.1113/jphysiol.1957.sp005830 9344:10.1113/jphysiol.1960.sp006509 9295:10.1113/jphysiol.1955.sp005290 9131:"A 3D view of sodium channels" 9129:Catterall WA (February 2001). 8644:10.1113/jphysiol.1949.sp004310 8111:10.1113/jphysiol.1952.sp004759 7424:British Journal of Anaesthesia 7158:, Rushton WA (December 1946). 6983:10.1113/jphysiol.1951.sp004655 6931:10.1113/jphysiol.1951.sp004545 6913:, Stampfli R (February 1951). 6885:10.1113/jphysiol.1949.sp004335 6694:American Journal of Physiology 6472:10.1113/jphysiol.1937.sp003508 6426:10.1113/jphysiol.1937.sp003507 6301:10.1113/jphysiol.1952.sp004764 6255:10.1113/jphysiol.1952.sp004719 6209:10.1113/jphysiol.1952.sp004718 6163:10.1113/jphysiol.1952.sp004717 6117:10.1113/jphysiol.1952.sp004716 5935:10.1016/j.jneumeth.2005.05.006 5645:Guckenheimer & Holmes 1986 5581:10.1523/jneurosci.2283-05.2006 5258:Plant Signaling & Behavior 5009:10.16943/ijhs/2019/v54i2/49660 3838: 3814:10.1523/JNEUROSCI.1922-17.2018 3789: 3739: 3718: 3667:10.1113/jphysiol.1952.sp004764 3642: 3562:Law of specific nerve energies 3465:voltage-sensitive ion channels 3088: 2233: 1675: 1064:molecules are released by the 200:voltage-gated calcium channels 74:rapidly rises and falls. This 1: 10011:10.1016/S0960-9822(00)00367-5 9688:10.1016/S0006-3495(61)86902-6 9631:10.1016/S0006-3495(81)84782-0 9469:Lee AG, East JM (June 2001). 9233:Biochimica et Biophysica Acta 9100:10.1152/physrev.2000.80.2.555 8477:10.1016/S0166-2236(99)01544-1 8434:10.1016/S0166-2236(97)01101-6 8212:10.1016/S0021-9258(19)83641-4 8168:10.1016/S0006-3495(74)85963-1 7980:10.1016/S0166-2236(02)02278-6 7861:Plant, Cell & Environment 7781:10.1016/S0074-7696(07)57002-6 7311:10.1016/S0300-9084(00)00216-9 6034:Goldman DE (September 1943). 5735:Anderson & Rosenfeld 1988 5439:Kettenmann & Grantyn 1992 5220:10.1016/j.tplants.2017.12.004 3796:Leterrier C (February 2018). 3631: 3577:Soliton model in neuroscience 1956:partial differential equation 1865:), myelination increases the 1734:, an action potential at one 1565: 1015: 926:Structure of a typical neuron 196:voltage-gated sodium channels 11525:Action potential propagation 11497:Life: The Science of Biology 11341:Principles of Neural Science 11001: 10276:Review of Medical Physiology 9931:10.1016/0025-5564(77)90076-1 9245:10.1016/0006-3002(57)90343-8 7680:10.1016/0005-2736(76)90138-3 6566:Nature Reviews. Neuroscience 5792:10.1371/journal.pbio.0040049 5690:IEEE Transactions on Haptics 5492:. Cambridge, Massachusetts. 5353:"Early evolution of neurons" 3847:"Voltage-Gated Ion Channels" 3726:"Cardiac Muscle Contraction" 3636: 3352:, in which they applied the 3108:, halting action potentials. 2949:, at the time classified as 2933:found in the neurons of the 2289:, which are responsible for 1805:and Taiji Takeuchi and from 1410:Stimulation and rising phase 803:opening and closing kinetics 598:open, allowing the entry of 7: 10402:Nerve and Muscle Excitation 10115:Bower JM, Beeman D (1995). 8879:10.1126/science.280.5360.69 7904:. 202 (Pt 9) (9): 1139–50. 7633:Current Medicinal Chemistry 7217:10.1007/978-3-540-74805-2_1 6283:, Huxley AF (August 1952). 5969:10.3233/978-1-60750-473-3-i 5569:The Journal of Neuroscience 5472:McHenry & Garrison 1969 5351:Kristan WB (October 2016). 5339:Bullock & Horridge 1965 5308:Gradmann, D; Mummert, H in 4147:. Elsevier Academic Press. 3802:The Journal of Neuroscience 3519: 3100:is a lethal toxin found in 1051: 966:, and many of the "normal" 266:Process in a typical neuron 209: 130:leading to contraction. In 106:, and certain cells of the 10: 11637: 11596:Computational neuroscience 11493:Resting membrane potential 11378:Nelson DL, Cox MM (2008). 11316:Johnston D, Wu SM (1995). 9909:10.1512/iumj.1972.21.21071 9727:10.1109/JRPROC.1962.288235 9277:, Keynes RD (April 1955). 8260:10.1016/j.bpj.2008.12.3896 7602:10.1152/physrev.00025.2003 7248:Rusakov DA (August 2006). 6621:10.1016/j.conb.2007.08.003 6237:, Huxley AF (April 1952). 6191:, Huxley AF (April 1952). 6145:, Huxley AF (April 1952). 5871:Journal of Neurophysiology 4420:Journal of Neurophysiology 3514:central pattern generators 3469:resting membrane potential 3420: 3170: 3007:and electronics with high 2880: 2863:artificial neural networks 2859:central pattern generators 2579: 2541: 2538:Muscular action potentials 2446: 2366: 2319: 2242: 1901: 1828:. The conduction velocity 1715: 1697:absolute refractory period 1679: 1662:relative refractory period 1658:absolute refractory period 1620:further potassium channels 1560:relative refractory period 1556:absolute refractory period 1244: 1154: 1119: 856: 779:lateral geniculate nucleus 410:voltage-gated ion channels 260:voltage-gated ion channels 159:voltage-gated ion channels 138:, they provoke release of 110:are also excitable cells. 11221:. Baltimore: Lippincott. 11041:10.4249/scholarpedia.1349 10893:Neurophysiology: A Primer 9958:10.1109/TSMC.1983.6313098 9861:10.1080/14786441108564652 9487:10.1042/0264-6021:3560665 9377:The Journal of Physiology 9332:The Journal of Physiology 9283:The Journal of Physiology 8632:The Journal of Physiology 8099:The Journal of Physiology 7562:10.1016/j.cca.2005.10.008 7346:10.1007/s00441-002-0632-x 7044:10.1016/j.cub.2006.11.042 6971:The Journal of Physiology 6919:The Journal of Physiology 6873:The Journal of Physiology 6867:, Stämpfli R (May 1949). 6513:10.1002/9780470032244.ch3 6460:The Journal of Physiology 6414:The Journal of Physiology 6289:The Journal of Physiology 6243:The Journal of Physiology 6197:The Journal of Physiology 6151:The Journal of Physiology 6105:The Journal of Physiology 5883:10.1152/jn.2001.86.6.2998 5656:Nelson, ME; Rinzel, J in 5406:. ABC-Clio. p. 532. 5378:10.1016/j.cub.2016.05.030 5154:10.1016/j.cub.2015.11.057 5053:10.1007/s00425-006-0458-y 4384:10.1016/j.cub.2006.07.007 4116:. Springer. p. 103. 3655:The Journal of Physiology 3547:Central pattern generator 3512:and others controlled by 3295:Nobel Prize in Physiology 2443:Cardiac action potentials 1756:peripheral nervous system 1682:Nerve conduction velocity 1550:of the action potential. 1304: 1229:and the third layer, the 1171:olfactory receptor neuron 956:ligand-gated ion channels 10854:Schwann HP, ed. (1969). 10512:, Segev I, eds. (1989). 10364:Hoppensteadt FC (1986). 10036: 9662:Fitzhugh R (July 1961). 8551:, Curtis HJ (May 1939). 7645:10.2174/0929867043456241 7334:Cell and Tissue Research 7266:10.1177/1073858405284672 6761:Keynes & Aidley 1991 6719:Lillie RS (March 1925). 5702:10.1109/TOH.2014.2369422 5662:The Hodgkin-Huxley Model 4333:10.3389/fncel.2019.00160 4011:10.3390/membranes6010011 3583: 3380:cryo-electron microscopy 3191:in 1899. Large trees of 2449:Cardiac action potential 933:cardiac action potential 773:. As a cell grows, more 691:cardiac action potential 606:that permit the exit of 554:Hodgkin-Huxley equations 108:anterior pituitary gland 11016:"FitzHugh-Nagumo model" 10928:Waxman SG, ed. (2007). 10637:Silverthorn DU (2010). 9519:Fitzhugh R (May 1960). 9475:The Biochemical Journal 8602:J. Physiol. Pathol. Gen 8465:Trends in Neurosciences 8422:Trends in Neurosciences 7968:Trends in Neurosciences 7418:Hirsch NP (July 2007). 6668:10.1242/jeb.202.15.1979 5658:Bower & Beeman 1995 5488:Finkelstein GW (2013). 5314:Plant action potentials 5200:Trends in Plant Science 5084:Southeastern Naturalist 3746:Pickard B (June 1973). 3537:Biological neuron model 3153:affinity chromatography 3138:genus responsible for " 2722:Conduction speed (m/s) 2655:multicellular organisms 2576:Plant action potentials 2426:, and the insecticides 2363:Neuromuscular junctions 1458:potassium leak channels 1116:"All-or-none" principle 652:electrotonic potentials 115:cell–cell communication 11427: 11407:Listen to this article 11133:Warlow C (June 2007). 10856:Biological Engineering 10178:, Horridge GA (1965). 9849:Philosophical Magazine 9833:Philosophical Magazine 9715:Proceedings of the IRE 9564:Biological Cybernetics 8391:10.1098/rspb.1984.0055 8080:10.1002/jcp.1030350105 8045:10.1002/jcp.1030340304 7945:10.1002/bies.950100213 7910:10.1242/jeb.202.9.1139 7746:Aust. J. Plant Physiol 7185:10.1098/rspb.1946.0024 7134:10.1098/rspl.1854.0093 5836:"The action potential" 3527:Anode break excitation 3472: 3316: 3287:Santiago Ramón y Cajal 3212: 3199:, from which a single 3189:Santiago Ramón y Cajal 3109: 3079:voltage-sensitive dyes 3051: 2911:Andrew Fielding Huxley 2902: 2899:crucial for scientists 2713:Resting potential (mV) 2566:neuromuscular junction 2560:ions that free up the 2544:Neuromuscular junction 2475: 2383:neuromuscular junction 2373:Acetylcholine receptor 2369:Neuromuscular junction 2312: 2272:release their contents 2173: 2121: 2047: 1935: 1858: 1764:central nervous system 1739: 1702:orthodromic conduction 1642:afterhyperpolarization 1614:Afterhyperpolarization 1518:still further towards 1317:afterhyperpolarization 1260: 1048: 712:electrotonic potential 708:electrotonic potential 604:potassium ion channels 591: 550:differential equations 525:state directly to the 435: 321:axonal initial segment 284:electrically polarized 279: 219: 189:afterhyperpolarization 59: 11601:Cellular neuroscience 11515:University of Arizona 11426: 11277:Neuroelectric Systems 10549:Glass Microelectrodes 10249:Field J, ed. (1959). 9896:Indiana Univ. Math. J 9088:Physiological Reviews 7826:10.1007/s002329900446 7590:Physiological Reviews 5748:Koch & Segev 1989 5668:Koch & Segev 1989 4902:Koch & Segev 1989 4432:10.1152/jn.00237.2021 3572:Single-unit recording 3490:FitzHugh–Nagumo model 3430: 3407:X-ray crystallography 3403:sodium–potassium pump 3307: 3283:Hermann von Helmholtz 3178: 3096: 3041: 2890: 2496:atrioventricular node 2468: 2377:Cholinesterase enzyme 2303: 2174: 2122: 2048: 1911: 1818:conduction velocities 1815: 1729: 1706:antidromic conduction 1254: 1189:, or into continuous 1034: 672:sodium–potassium pump 562: 433: 273: 217: 161:embedded in a cell's 104:pancreatic beta cells 24: 11479:Blackwell Publishing 11470:Blackwell Publishing 11458:More spoken articles 11236:Clay JR (May 2005). 10474:, Aidley DJ (1991). 9873:Arch. Neerl. Physiol 9537:10.1085/jgp.43.5.867 9141:(6823): 988–9, 991. 8569:10.1085/jgp.22.5.649 8309:10.1085/jgp.48.6.975 5278:10.4161/psb.2.3.4217 4854:Schmidt-Nielsen 1997 4752:, pp. 147–149; 4664:Schmidt-Nielsen 1997 4613:, pp. 147–148; 4580:, pp. 149–150; 4465:, pp. 535–580; 4463:Schmidt-Nielsen 1997 4260:Schmidt-Nielsen 1997 4258:, pp. 178–180; 4242:, pp. 490–499; 4240:Schmidt-Nielsen 1997 4238:, pp. 177–240; 4224:Schmidt-Nielsen 1997 4205:Schmidt-Nielsen 1997 4203:, pp. 140–141; 4085:Partridge D (1991). 3952:Schmidt-Nielsen 1997 3927:Schmidt-Nielsen 1997 3755:The Botanical Review 3598:computational models 3567:Neural accommodation 3478:Hodgkin–Huxley model 3275:Emil du Bois-Reymond 3231:—the earliest-known 2971:associated with the 2877:Experimental methods 2685:seem to be the main 2413:acetylcholinesterase 2134: 2084: 1964: 1799:saltatory conduction 1732:saltatory conduction 1722:Saltatory conduction 1539:. The sharp rise in 1439:pacemaker potentials 1266:pacemaker potentials 1257:pacemaker potentials 1241:Pacemaker potentials 1175:Meissner's corpuscle 1095:nearly the same time 720:saltatory conduction 674:, which, with other 548:developing a set of 374:improve this article 204:cardiac muscle cells 119:saltatory conduction 11559:2 July 2014 at the 11548:Neuroscience Online 11139:Practical Neurology 11032:2006SchpJ...1.1349I 10930:Molecular Neurology 10889:Stevens CF (1966). 10587:Embodiments of Mind 10551:. New York: Wiley. 10440:. New York: Wiley. 10274:Ganong, WF (1991). 10150:Brazier MA (1961). 9993:2000CBio...10.R176H 9805:1953NW.....40..301B 9793:Naturwissenschaften 9766:10.1085/jgp.32.1.69 9680:1961BpJ.....1..445F 9668:Biophysical Journal 9623:1981BpJ....35..193M 9611:Biophysical Journal 9440:10.1038/nature06419 9432:2007Natur.450.1043M 9194:2001Natur.409.1047S 9147:2001Natur.409..988C 9055:1999Natur.402..813G 9008:1999Natur.402..809C 8961:10.1038/nature01580 8953:2003Natur.423...33J 8908:2001Natur.414...43Z 8871:1998Sci...280...69D 8828:10.1038/nature00978 8820:2002Natur.419...35Y 8777:1992SciAm.266c..44N 8765:Scientific American 8692:1976Natur.260..799N 8383:1984RSPSB.222..147K 8252:2009BpJ....96.2532B 8240:Biophysical Journal 8160:1974BpJ....14..983R 8148:Biophysical Journal 7176:1946RSPSB.133..444H 7076:Nature Neuroscience 7035:2007CBio...17R..29H 6737:10.1085/jgp.7.4.473 6386:on 20 December 2018 6361:10.1038/nature04610 6353:2006Natur.440.1060N 6052:10.1085/jgp.27.1.37 5994:1960Natur.188..495N 5840:Practical Neurology 5400:Hellier JL (2014). 5369:2016CBio...26.R949K 5270:2007PlSiB...2..139V 5212:2018TPS....23..220H 5146:2016CBio...26..286B 5045:2007Plant.226..203F 4819:, pp. 161–164. 4795:, pp. 160–164. 4756:, pp. 126–127. 4666:, pp. 478–480. 4588:, pp. 152–158. 4552:, pp. 127–128. 4528:, pp. 444–445. 4516:, pp. 152–153. 4501:, pp. 115–132. 4489:, pp. 122–124. 4262:, pp. 490–491. 4226:, pp. 483–484. 4207:, pp. 480–481. 4141:Pedersen R (1998). 3893:, pp. 150–151. 3767:1973BotRv..39..172P 3417:Quantitative models 3279:conduction velocity 2946:Doryteuthis pealeii 2917:, awarded the 1963 2894:Doryteuthis pealeii 2855:digital electronics 2830:Spinal motor neuron 2703: 2696:conduction velocity 2582:Variation potential 2492:pacemaker potential 2316:Electrical synapses 2305:Electrical synapses 2217:conduction velocity 1876:selective advantage 1867:conduction velocity 1779:conduction velocity 1762:exclusively in the 1754:exclusively in the 1666:"inactivated" state 1450:intracellular fluid 1446:extracellular fluid 1247:Pacemaker potential 1215:photoreceptor cells 1137:receptor potentials 1106:electrical synapses 864:Anatomy of a neuron 660:synaptic potentials 648:receptor potentials 596:sodium ion channels 332:threshold potential 43:threshold potential 11606:Cellular processes 11428: 11273:Micheli-Tzanakou E 10154:. London: Pitman. 9813:10.1007/BF00632438 9576:10.1007/BF00197717 8737:10.1007/BF00656997 8527:10.1007/BF01790181 8521:(10–12): 521–562. 8344:10.1007/BFb0037088 8014:Arch. Sci. Physiol 7771:Beilby MJ (2007). 7715:10.1007/BF01994359 7461:Muscle & Nerve 7437:10.1093/bja/aem144 7389:10.1007/BF02110111 7254:The Neuroscientist 6965:(September 1951). 6843:10.1007/BF01755237 6814:10.1007/BF01755414 6662:(Pt 15): 1979–89. 5535:Olesko, Kathryn M. 4963:Purves et al. 2008 4922:, Segev I (eds.). 4781:Purves et al. 2008 4766:Purves et al. 2008 4683:Purves et al. 2008 4656:Purves et al. 2008 4607:Purves et al. 2008 4603:Purves et al. 2008 4584:, pp. 84–85; 4576:, pp. 64–74; 4574:Purves et al. 2008 4562:Purves et al. 2008 4538:Purves et al. 2008 4284:Purves et al. 2008 4272:Purves et al. 2001 4199:, pp. 49–50; 4197:Purves et al. 2008 3946:, pp. 48–49; 3944:Purves et al. 2008 3775:10.1007/BF02859299 3502:neural computation 3498:Pacinian corpuscle 3486:Morris–Lecar model 3473: 3411:molecular machines 3376:crystal structures 3317: 3253:(i.e., bundles of 3213: 3110: 3104:that inhibits the 3052: 2913:, who were, along 2907:Alan Lloyd Hodgkin 2903: 2806:Sciatic nerve axon 2758:Median giant fiber 2701: 2605:Some plants (e.g. 2548:Muscle contraction 2510:and thence to the 2476: 2322:Electrical synapse 2313: 2169: 2117: 2043: 1936: 1892:multiple sclerosis 1859: 1816:Comparison of the 1740: 1689:Alan Lloyd Hodgkin 1401:in 1963. However, 1391:Alan Lloyd Hodgkin 1261: 1205:, which may cause 1049: 767:membrane potential 632:neural firing rate 592: 436: 292:membrane potential 280: 232:membrane potential 220: 94:, as well as some 68:membrane potential 60: 11621:Action potentials 11586:Electrophysiology 11505:978-0-7167-7671-0 11424: 11391:978-0-7167-7108-1 11370:978-0-19-504097-5 11308:978-0-87893-321-1 11209:978-0-521-49882-1 10976:978-0-262-23072-8 10939:978-0-12-369509-3 10865:978-0-07-055734-5 10830:978-0-521-57098-5 10817:Schmidt-Nielsen K 10792:978-0-415-32868-5 10757:978-0-87893-697-7 10722:978-0-87893-742-4 10683:978-0-444-80192-0 10648:978-0-321-55980-7 10596:978-0-262-63114-3 10558:978-0-471-51885-3 10523:978-0-262-11133-1 10485:978-0-521-41042-7 10447:978-0-471-56200-9 10412:978-0-87893-410-2 10375:978-0-521-31574-6 10348:978-0-387-90819-9 10285:978-0-8385-8418-7 10225:978-0-7167-0030-2 10126:978-0-387-94019-9 10059:978-0-262-01097-9 9890:Evans JW (1972). 9721:(10): 2061–2070. 9188:(6823): 1047–51. 8686:(5554): 799–802. 7790:978-0-12-373701-4 7473:10.1002/mus.20440 7226:978-3-540-74804-5 6522:978-0-470-03224-4 5737:, pp. 15–41. 5633:* FitzHugh, R in 5625:Reeke et al. 2005 5612:Hoppensteadt 1986 5429:, pp. 63–82. 5363:(20): R949–R954. 4977:, pp. 59–60. 4965:, pp. 52–53. 4933:978-0-262-11133-1 4844:, pp. 75–121 4807:, pp. 21–23. 4704:, pp. 19–20. 4564:, pp. 61–65. 4473:, pp. 69–79. 4377:(15): R585–R588. 4286:, pp. 26–28. 4123:978-1-4613-2717-2 3914:, pp. 89–90. 3397:to the eponymous 3391:resting potential 3337:dynamical systems 3042:As revealed by a 2915:John Carew Eccles 2883:Electrophysiology 2846: 2845: 2689:of multicellular 2613:Dionaea muscipula 2608:Dionaea muscipula 2457:Cardiac pacemaker 2341:neurotransmitters 2309:chemical synapses 2239:Chemical synapses 2167: 2166: 2095: 2035: 1988: 1654:refractory period 1648:Refractory period 1638:hyperpolarization 1481:positive feedback 1431:chemical synapses 1356:positive feedback 1321:refractory period 1270:cardiac pacemaker 1191:graded potentials 1010:synaptic vesicles 1006:neurotransmitters 859:Neurotransmission 853:Neurotransmission 832:protein synthesis 820:potassium channel 816:delayed rectifier 736:pyramidal neurons 644:graded potentials 620:positive feedback 616:resting potential 584:refractory period 440:positive feedback 406: 405: 398: 346:Biophysical basis 328:resting potential 240:action potentials 167:resting potential 11628: 11611:Membrane biology 11591:Electrochemistry 11448: 11446: 11435: 11434: 11425: 11415: 11413: 11408: 11395: 11374: 11355: 11331: 11312: 11290: 11267: 11257: 11232: 11213: 11185: 11184: 11182: 11180: 11165: 11159: 11158: 11156: 11154: 11130: 11124: 11123: 11121: 11119: 11104: 11098: 11097: 11095: 11093: 11078: 11072: 11071: 11069: 11067: 11052: 11046: 11045: 11043: 11011: 10996: 10959: 10924: 10896: 10885: 10850: 10812: 10777: 10742: 10703: 10668: 10633: 10616: 10578: 10543: 10505: 10476:Nerve and Muscle 10467: 10432: 10399:Junge D (1981). 10395: 10360: 10333: 10327: 10323: 10321: 10313: 10270: 10245: 10217: 10203: 10185: 10171: 10146: 10111: 10079: 10051: 10031: 10030: 10004: 9987:(5): R176–R179. 9976: 9970: 9969: 9952:(5): 1010–1014. 9941: 9935: 9934: 9913: 9911: 9887: 9881: 9880: 9864: 9840: 9824: 9787: 9777: 9745: 9739: 9738: 9709: 9699: 9659: 9653: 9652: 9642: 9602: 9596: 9595: 9558: 9548: 9515: 9509: 9508: 9498: 9481:(Pt 3): 665–83. 9466: 9460: 9459: 9426:(7172): 1043–9. 9415: 9409: 9408: 9372: 9366: 9365: 9355: 9323: 9317: 9316: 9306: 9271: 9265: 9264: 9228: 9222: 9221: 9202:10.1038/35059098 9176: 9158: 9156:10.1038/35059188 9126: 9120: 9119: 9082: 9037: 9019: 9002:(6763): 809–13. 8987: 8981: 8980: 8935: 8916:10.1038/35102009 8890: 8854: 8848: 8847: 8803: 8797: 8796: 8756: 8719: 8700:10.1038/260799a0 8672: 8666: 8665: 8655: 8616: 8610: 8609: 8597: 8591: 8590: 8580: 8545: 8539: 8538: 8503: 8497: 8496: 8460: 8454: 8453: 8417: 8411: 8410: 8377:(1227): 147–53. 8365: 8330: 8320: 8288: 8282: 8281: 8271: 8231: 8225: 8224: 8214: 8189: 8179: 8139: 8133: 8132: 8122: 8090: 8084: 8083: 8063: 8057: 8056: 8028: 8022: 8021: 8006: 8000: 7999: 7963: 7957: 7956: 7928: 7922: 7921: 7893: 7887: 7886: 7876: 7852: 7846: 7845: 7809: 7803: 7802: 7768: 7762: 7761: 7741: 7735: 7734: 7698: 7692: 7691: 7663: 7657: 7656: 7628: 7622: 7621: 7585: 7574: 7573: 7545: 7539: 7538: 7502: 7493: 7492: 7456: 7450: 7449: 7439: 7415: 7409: 7408: 7372: 7366: 7365: 7329: 7323: 7322: 7294: 7288: 7287: 7277: 7245: 7239: 7238: 7204: 7198: 7197: 7187: 7152: 7146: 7145: 7114: 7108: 7107: 7071: 7065: 7064: 7046: 7014: 7005: 7004: 6994: 6959: 6953: 6952: 6942: 6906: 6896: 6861: 6855: 6854: 6825: 6797: 6791: 6790: 6770: 6764: 6758: 6748: 6716: 6710: 6709: 6689: 6680: 6679: 6647: 6641: 6640: 6604: 6598: 6597: 6561: 6555: 6554: 6548: 6544: 6542: 6534: 6500: 6494: 6493: 6483: 6447: 6437: 6402: 6396: 6395: 6393: 6391: 6385: 6379:. Archived from 6347:(7087): 1060–3. 6338: 6329: 6323: 6322: 6312: 6276: 6266: 6230: 6220: 6184: 6174: 6138: 6128: 6089: 6074: 6073: 6063: 6031: 6022: 6021: 6002:10.1038/188495b0 5977: 5971: 5961: 5955: 5954: 5918: 5912: 5909: 5903: 5902: 5877:(6): 2998–3010. 5866: 5860: 5859: 5831: 5822: 5821: 5820: 5814: 5804: 5794: 5770: 5761:Journal articles 5755: 5744: 5738: 5728: 5722: 5721: 5681: 5675: 5654: 5648: 5647:, pp. 12–16 5621: 5615: 5609: 5603: 5602: 5592: 5560: 5554: 5548: 5542: 5532: 5526: 5525: 5519: 5511: 5485: 5479: 5465: 5459: 5448: 5442: 5436: 5430: 5424: 5418: 5417: 5397: 5391: 5390: 5380: 5348: 5342: 5336: 5330: 5323: 5317: 5306: 5300: 5299: 5289: 5249: 5243: 5238: 5232: 5231: 5195: 5176: 5175: 5165: 5125: 5116: 5115: 5079: 5073: 5072: 5028: 5022: 5021: 5011: 4993: 4984: 4978: 4972: 4966: 4960: 4954: 4953: 4915: 4909: 4895: 4886: 4875: 4869: 4863: 4857: 4851: 4845: 4838: 4832: 4826: 4820: 4814: 4808: 4802: 4796: 4790: 4784: 4778: 4769: 4763: 4757: 4747: 4741: 4735: 4726: 4716: 4705: 4699: 4686: 4680: 4667: 4653: 4647: 4641: 4635: 4624: 4618: 4600: 4589: 4571: 4565: 4559: 4553: 4547: 4541: 4535: 4529: 4523: 4517: 4511: 4502: 4496: 4490: 4480: 4474: 4460: 4454: 4453: 4443: 4411: 4405: 4404: 4386: 4362: 4356: 4355: 4345: 4335: 4311: 4305: 4304: 4293: 4287: 4281: 4275: 4269: 4263: 4253: 4247: 4246:, p. 47–68. 4233: 4227: 4221: 4208: 4194: 4183: 4180:Silverthorn 2010 4177: 4171: 4165: 4159: 4158: 4138: 4132: 4131: 4110:Black I (1984). 4107: 4101: 4100: 4082: 4076: 4075: 4049: 4034: 4033: 4023: 4013: 3989: 3983: 3977: 3971: 3965: 3959: 3941: 3930: 3924: 3915: 3909: 3894: 3888: 3867: 3866: 3864: 3862: 3842: 3836: 3835: 3825: 3808:(9): 2135–2145. 3793: 3787: 3786: 3752: 3743: 3737: 3736: 3734: 3732: 3722: 3716: 3715: 3695: 3689: 3688: 3678: 3646: 3626: 3607: 3601: 3593: 3494:mechanoreceptors 3458: 3399:Goldman equation 3395:David E. Goldman 3321:Julius Bernstein 3233:electric battery 3225:Alessandro Volta 3157:chemical weapons 2962:electronic noise 2861:and mimicked in 2719:AP duration (ms) 2716:AP increase (mV) 2704: 2461:Heart arrhythmia 2438:Other cell types 2393:terminates on a 2297:, respectively. 2263:neurotransmitter 2249:Neurotransmitter 2245:Chemical synapse 2190:and capacitance 2178: 2176: 2175: 2170: 2168: 2165: 2164: 2155: 2154: 2145: 2144: 2126: 2124: 2123: 2118: 2115: 2114: 2105: 2104: 2093: 2052: 2050: 2049: 2044: 2036: 2034: 2033: 2032: 2019: 2015: 2014: 2004: 2002: 2001: 1989: 1987: 1979: 1971: 1872:squid giant axon 1856: 1855: 1783:meter per second 1760:oligodendrocytes 1748:nodes of Ranvier 1448:compared to the 1338:Goldman equation 1328:membrane voltage 1223:horizontal cells 1207:neurotransmitter 1187:neurotransmitter 1062:neurotransmitter 1037:neurotransmitter 997:nodes of Ranvier 989:oligodendrocytes 952:dendritic spines 875: 847:cortical neurons 771:input resistance 728:neurotransmitter 716:nodes of Ranvier 702:, respectively. 676:ion transporters 401: 394: 390: 387: 381: 358: 350: 127:synaptic boutons 82:, which include 66:occurs when the 64:action potential 11636: 11635: 11631: 11630: 11629: 11627: 11626: 11625: 11616:Plant cognition 11566: 11565: 11561:Wayback Machine 11539:SourceForge.net 11462: 11461: 11450: 11444: 11442: 11439:This audio file 11436: 11429: 11420: 11417: 11411: 11410: 11406: 11403: 11398: 11392: 11371: 11352: 11328: 11309: 11287: 11229: 11210: 11193: 11191:Further reading 11188: 11178: 11176: 11167: 11166: 11162: 11152: 11150: 11131: 11127: 11117: 11115: 11106: 11105: 11101: 11091: 11089: 11080: 11079: 11075: 11065: 11063: 11054: 11053: 11049: 11012: 11008: 11004: 10999: 10977: 10940: 10905: 10866: 10831: 10793: 10758: 10723: 10684: 10649: 10597: 10559: 10524: 10486: 10448: 10413: 10376: 10349: 10325: 10324: 10315: 10314: 10286: 10226: 10127: 10060: 10039: 10034: 10002:10.1.1.133.3378 9981:Current Biology 9977: 9973: 9942: 9938: 9914: 9888: 9884: 9865: 9841: 9825: 9799:(11): 301–311. 9788: 9746: 9742: 9710: 9660: 9656: 9603: 9599: 9559: 9516: 9512: 9467: 9463: 9416: 9412: 9373: 9369: 9324: 9320: 9272: 9268: 9229: 9225: 9177: 9127: 9123: 9083: 9049:(6763): 813–7. 9038: 8988: 8984: 8947:(6935): 33–41. 8936: 8891: 8865:(5360): 69–77. 8855: 8851: 8814:(6902): 35–42. 8804: 8800: 8757: 8725:Pflügers Archiv 8720: 8673: 8669: 8617: 8613: 8598: 8594: 8546: 8542: 8504: 8500: 8461: 8457: 8418: 8414: 8366: 8354: 8331: 8289: 8285: 8232: 8228: 8190: 8140: 8136: 8091: 8087: 8064: 8060: 8029: 8025: 8007: 8003: 7964: 7960: 7929: 7925: 7894: 7890: 7853: 7849: 7810: 7806: 7791: 7769: 7765: 7758:10.1071/pp01017 7742: 7738: 7699: 7695: 7664: 7660: 7629: 7625: 7586: 7577: 7546: 7542: 7507:The Neurologist 7503: 7496: 7457: 7453: 7416: 7412: 7373: 7369: 7330: 7326: 7295: 7291: 7246: 7242: 7227: 7205: 7201: 7170:(873): 444–79. 7153: 7149: 7115: 7111: 7072: 7068: 7023:Current Biology 7015: 7008: 6960: 6956: 6925:(3–4): 476–95. 6907: 6862: 6858: 6826: 6798: 6794: 6771: 6767: 6717: 6713: 6690: 6683: 6648: 6644: 6605: 6601: 6578:10.1038/nrn1253 6562: 6558: 6546: 6545: 6536: 6535: 6523: 6501: 6497: 6448: 6403: 6399: 6389: 6387: 6383: 6336: 6330: 6326: 6277: 6231: 6185: 6139: 6090: 6077: 6032: 6025: 5988:(4749): 495–7. 5978: 5974: 5962: 5958: 5919: 5915: 5910: 5906: 5867: 5863: 5832: 5825: 5815: 5771: 5767: 5763: 5758: 5746:Getting, PA in 5745: 5741: 5729: 5725: 5682: 5678: 5665: 5655: 5651: 5642: 5632: 5622: 5618: 5610: 5606: 5561: 5557: 5549: 5545: 5533: 5529: 5513: 5512: 5500: 5486: 5482: 5466: 5462: 5449: 5445: 5437: 5433: 5425: 5421: 5414: 5398: 5394: 5357:Current Biology 5349: 5345: 5337: 5333: 5324: 5320: 5307: 5303: 5250: 5246: 5239: 5235: 5196: 5179: 5134:Current Biology 5126: 5119: 5080: 5076: 5029: 5025: 4991: 4985: 4981: 4973: 4969: 4961: 4957: 4934: 4916: 4912: 4896: 4889: 4876: 4872: 4864: 4860: 4856:, Figure 12.13. 4852: 4848: 4839: 4835: 4827: 4823: 4815: 4811: 4803: 4799: 4791: 4787: 4779: 4772: 4764: 4760: 4748: 4744: 4736: 4729: 4725:, pp. 4–5. 4721:, p. 151; 4717: 4708: 4700: 4689: 4681: 4670: 4662:, p. 134; 4654: 4650: 4642: 4638: 4625: 4621: 4601: 4592: 4572: 4568: 4560: 4556: 4548: 4544: 4536: 4532: 4524: 4520: 4512: 4505: 4497: 4493: 4485:, pp. 53; 4481: 4477: 4461: 4457: 4412: 4408: 4371:Current Biology 4363: 4359: 4312: 4308: 4295: 4294: 4290: 4282: 4278: 4270: 4266: 4254: 4250: 4234: 4230: 4222: 4211: 4195: 4186: 4178: 4174: 4166: 4162: 4155: 4139: 4135: 4124: 4108: 4104: 4097: 4083: 4079: 4064: 4050: 4037: 3990: 3986: 3980:Schmidt-Nielsen 3978: 3974: 3966: 3962: 3954:, p. 483; 3950:, p. 141; 3942: 3933: 3925: 3918: 3910: 3897: 3889: 3870: 3860: 3858: 3843: 3839: 3794: 3790: 3750: 3744: 3740: 3730: 3728: 3724: 3723: 3719: 3696: 3692: 3647: 3643: 3639: 3634: 3629: 3611:Purkinje fibers 3608: 3604: 3594: 3590: 3586: 3581: 3522: 3510:escape reflexes 3456: 3450: 3443: 3436: 3425: 3419: 3387:Nernst equation 3267:Carlo Matteucci 3227:to develop the 3173: 3091: 3075:Optical imaging 3035:or to voltage. 3033:sensitive to Ca 3009:input impedance 3001: 2994: 2987: 2969: 2940:Loligo forbesii 2885: 2879: 2651: 2584: 2578: 2550: 2542:Main articles: 2540: 2512:Purkinje fibers 2488:sinoatrial node 2463: 2447:Main articles: 2445: 2440: 2411:by the enzyme, 2385:, in which the 2379: 2367:Main articles: 2365: 2345:escape reflexes 2332: 2320:Main articles: 2318: 2287:botulinum toxin 2259: 2243:Main articles: 2241: 2236: 2224: 2213: 2195: 2188: 2160: 2156: 2150: 2146: 2143: 2135: 2132: 2131: 2110: 2106: 2100: 2096: 2085: 2082: 2081: 2072:and a position 2028: 2024: 2020: 2010: 2006: 2005: 2003: 1997: 1993: 1980: 1972: 1970: 1965: 1962: 1961: 1932: 1925: 1906: 1900: 1851: 1849: 1795:node of Ranvier 1791:node of Ranvier 1736:node of Ranvier 1724: 1716:Main articles: 1714: 1684: 1678: 1650: 1635: 1627: 1616: 1608: 1602: 1594: 1584: 1576: 1568: 1544: 1538: 1530: 1524: 1516: 1510: 1502: 1495: 1488: 1476: 1470: 1435:sensory neurons 1423: 1412: 1384: 1370: 1363: 1352: 1345: 1334: 1307: 1294:parasympathetic 1274:sinoatrial node 1249: 1243: 1163:sensory neurons 1159: 1153: 1151:Sensory neurons 1124: 1122:All-or-none law 1118: 1054: 1018: 929: 928: 927: 924: 923: 922: 917: 912: 907: 904: 900: 895: 890: 885: 880: 866: 861: 855: 795:calcium current 765:. How much the 755: 569: 564: 546: 472: 465: 402: 391: 385: 382: 371: 359: 348: 290:, known as the 288:plasma membrane 268: 212: 198:, the other by 180:sodium channels 163:plasma membrane 80:excitable cells 17: 12: 11: 5: 11634: 11624: 11623: 11618: 11613: 11608: 11603: 11598: 11593: 11588: 11583: 11578: 11564: 11563: 11551: 11541: 11532: 11527: 11522: 11517: 11508: 11490: 11481: 11472: 11451: 11437: 11430: 11418: 11405: 11404: 11402: 11401:External links 11399: 11397: 11396: 11390: 11375: 11369: 11356: 11350: 11332: 11326: 11313: 11307: 11291: 11285: 11268: 11233: 11227: 11214: 11208: 11194: 11192: 11189: 11187: 11186: 11160: 11125: 11099: 11073: 11047: 11005: 11003: 11000: 10998: 10997: 10975: 10960: 10938: 10925: 10903: 10886: 10864: 10851: 10829: 10813: 10791: 10778: 10756: 10743: 10721: 10704: 10682: 10669: 10647: 10634: 10617: 10595: 10579: 10557: 10544: 10522: 10506: 10484: 10468: 10446: 10433: 10411: 10396: 10374: 10361: 10347: 10334: 10326:|journal= 10284: 10271: 10246: 10224: 10204: 10172: 10147: 10125: 10112: 10080: 10058: 10040: 10038: 10035: 10033: 10032: 9971: 9936: 9902:(9): 877–885. 9882: 9740: 9654: 9617:(1): 193–213. 9597: 9510: 9461: 9410: 9367: 9318: 9266: 9239:(2): 394–401. 9223: 9121: 8982: 8902:(6859): 43–8. 8849: 8798: 8667: 8626:(March 1949). 8611: 8592: 8540: 8498: 8455: 8412: 8352: 8283: 8246:(6): 2532–46. 8226: 8205:(6): 3440–50. 8134: 8085: 8058: 8023: 8001: 7974:(11): 558–63. 7958: 7923: 7888: 7867:(3): 249–257. 7847: 7804: 7789: 7763: 7752:(7): 577–590. 7736: 7693: 7658: 7623: 7575: 7540: 7494: 7451: 7410: 7367: 7324: 7289: 7240: 7225: 7199: 7147: 7109: 7088:10.1038/nn1995 7082:(11): 1351–4. 7066: 7006: 6954: 6856: 6808:(6): 696–711. 6792: 6775:Am. J. Physiol 6765: 6731:(4): 473–507. 6711: 6681: 6642: 6599: 6572:(12): 968–80. 6556: 6547:|journal= 6521: 6495: 6420:(2): 183–210. 6397: 6324: 6249:(4): 497–506. 6099:(April 1952). 6075: 6023: 5972: 5956: 5913: 5904: 5861: 5823: 5764: 5762: 5759: 5757: 5756: 5754:, pp. 171–194. 5739: 5731:McCulloch 1988 5723: 5676: 5674:, pp. 135–169. 5649: 5631:, pp. 459–478. 5616: 5604: 5555: 5551:Bernstein 1912 5543: 5527: 5498: 5480: 5460: 5443: 5431: 5419: 5412: 5392: 5343: 5331: 5318: 5316:, pp. 333–344. 5301: 5244: 5233: 5206:(3): 220–234. 5177: 5117: 5090:(4): 573–584. 5074: 5023: 4979: 4967: 4955: 4932: 4910: 4887: 4885:, pp. 333–346. 4877:Waxman, SG in 4870: 4868:, p. 163. 4858: 4846: 4833: 4831:, p. 509. 4821: 4809: 4797: 4785: 4770: 4758: 4742: 4740:, p. 152. 4727: 4706: 4687: 4668: 4658:, p. 34; 4648: 4636: 4626:Goldin, AL in 4619: 4617:, p. 128. 4609:, p. 65; 4605:, p. 47; 4590: 4566: 4554: 4542: 4530: 4518: 4503: 4491: 4475: 4455: 4426:(3): 888–905. 4406: 4357: 4306: 4288: 4276: 4264: 4248: 4228: 4209: 4184: 4182:, p. 253. 4172: 4160: 4153: 4133: 4122: 4102: 4095: 4077: 4062: 4035: 3984: 3972: 3970:, p. 127. 3960: 3931: 3929:, p. 484. 3916: 3895: 3868: 3837: 3788: 3738: 3717: 3690: 3640: 3638: 3635: 3633: 3630: 3628: 3627: 3615:Purkinje cells 3602: 3587: 3585: 3582: 3580: 3579: 3574: 3569: 3564: 3559: 3554: 3549: 3544: 3539: 3534: 3532:Bioelectricity 3529: 3523: 3521: 3518: 3459:represent the 3448: 3441: 3434: 3421:Main article: 3418: 3415: 3371:patch clamping 3333:Louis Lapicque 3309:Ribbon diagram 3271:direct current 3241:direct-current 3195:feed into the 3181:Purkinje cells 3172: 3169: 3136:dinoflagellate 3090: 3087: 3046:electrode, an 2999: 2992: 2985: 2967: 2964:, the current 2951:Loligo pealeii 2878: 2875: 2851:speed of sound 2844: 2843: 2840: 2837: 2834: 2831: 2828: 2820: 2819: 2816: 2813: 2810: 2807: 2804: 2796: 2795: 2792: 2789: 2786: 2783: 2780: 2772: 2771: 2768: 2765: 2762: 2759: 2756: 2748: 2747: 2744: 2741: 2738: 2735: 2732: 2724: 2723: 2720: 2717: 2714: 2711: 2708: 2650: 2647: 2577: 2574: 2539: 2536: 2444: 2441: 2439: 2436: 2364: 2361: 2317: 2314: 2276:synaptic cleft 2240: 2237: 2235: 2232: 2222: 2211: 2193: 2186: 2180: 2179: 2163: 2159: 2153: 2149: 2142: 2139: 2128: 2127: 2113: 2109: 2103: 2099: 2092: 2089: 2054: 2053: 2042: 2039: 2031: 2027: 2023: 2018: 2013: 2009: 2000: 1996: 1992: 1986: 1983: 1978: 1975: 1969: 1930: 1923: 1902:Main article: 1899: 1896: 1713: 1710: 1680:Main article: 1677: 1674: 1649: 1646: 1633: 1625: 1615: 1612: 1606: 1600: 1592: 1582: 1574: 1567: 1564: 1542: 1536: 1528: 1522: 1514: 1508: 1500: 1493: 1486: 1474: 1468: 1421: 1411: 1408: 1382: 1368: 1361: 1350: 1343: 1332: 1312:depolarization 1306: 1303: 1282:natural rhythm 1245:Main article: 1242: 1239: 1231:ganglion cells 1227:amacrine cells 1213:, the initial 1157:Sensory neuron 1155:Main article: 1152: 1149: 1120:Main article: 1117: 1114: 1082:cable equation 1053: 1050: 1017: 1014: 1002:axon terminals 948:axon terminals 925: 918: 913: 908: 901: 896: 891: 886: 881: 876: 870: 869: 868: 867: 865: 862: 857:Main article: 854: 851: 812:inward current 799:sodium current 781:have a longer 754: 751: 732:synaptic cleft 724:axon terminals 640:all-or-nothing 580:repolarization 576:depolarization 544: 470: 463: 424: 423: 420: 417: 404: 403: 362: 360: 353: 347: 344: 267: 264: 253:consists of a 224:cell membranes 211: 208: 144:nerve impulses 102:cells such as 76:depolarization 70:of a specific 51:Repolarization 47:depolarization 15: 9: 6: 4: 3: 2: 11633: 11622: 11619: 11617: 11614: 11612: 11609: 11607: 11604: 11602: 11599: 11597: 11594: 11592: 11589: 11587: 11584: 11582: 11581:Neural coding 11579: 11577: 11574: 11573: 11571: 11562: 11558: 11555: 11552: 11549: 11545: 11542: 11540: 11536: 11533: 11531: 11528: 11526: 11523: 11521: 11518: 11516: 11512: 11509: 11506: 11502: 11498: 11494: 11491: 11489: 11485: 11482: 11480: 11476: 11473: 11471: 11467: 11464: 11463: 11459: 11455: 11440: 11393: 11387: 11383: 11382: 11376: 11372: 11366: 11362: 11357: 11353: 11351:0-8385-7701-6 11347: 11343: 11342: 11337: 11333: 11329: 11327:0-262-10053-3 11323: 11319: 11314: 11310: 11304: 11300: 11296: 11292: 11288: 11286:0-8147-1782-9 11282: 11278: 11274: 11269: 11265: 11261: 11256: 11251: 11247: 11243: 11239: 11234: 11230: 11228:0-7817-3944-6 11224: 11220: 11215: 11211: 11205: 11201: 11196: 11195: 11174: 11170: 11164: 11148: 11144: 11140: 11136: 11129: 11113: 11109: 11103: 11087: 11083: 11077: 11061: 11057: 11051: 11042: 11037: 11033: 11029: 11025: 11021: 11017: 11010: 11006: 10994: 10990: 10986: 10982: 10978: 10972: 10968: 10967: 10961: 10957: 10953: 10949: 10945: 10941: 10935: 10931: 10926: 10922: 10918: 10914: 10910: 10906: 10904:9780471824367 10900: 10895: 10894: 10887: 10883: 10879: 10875: 10871: 10867: 10861: 10857: 10852: 10848: 10844: 10840: 10836: 10832: 10826: 10822: 10818: 10814: 10810: 10806: 10802: 10798: 10794: 10788: 10784: 10779: 10775: 10771: 10767: 10763: 10759: 10753: 10749: 10744: 10740: 10736: 10732: 10728: 10724: 10718: 10714: 10710: 10705: 10701: 10697: 10693: 10689: 10685: 10679: 10675: 10670: 10666: 10662: 10658: 10654: 10650: 10644: 10640: 10635: 10631: 10627: 10623: 10618: 10614: 10610: 10606: 10602: 10598: 10592: 10588: 10584: 10580: 10576: 10572: 10568: 10564: 10560: 10554: 10550: 10545: 10541: 10537: 10533: 10529: 10525: 10519: 10515: 10511: 10507: 10503: 10499: 10495: 10491: 10487: 10481: 10477: 10473: 10469: 10465: 10461: 10457: 10453: 10449: 10443: 10439: 10434: 10430: 10426: 10422: 10418: 10414: 10408: 10404: 10403: 10397: 10393: 10389: 10385: 10381: 10377: 10371: 10367: 10362: 10358: 10354: 10350: 10344: 10340: 10335: 10331: 10319: 10311: 10307: 10303: 10299: 10295: 10291: 10287: 10281: 10277: 10272: 10268: 10264: 10260: 10256: 10252: 10247: 10243: 10239: 10235: 10231: 10227: 10221: 10216: 10215: 10209: 10205: 10201: 10197: 10193: 10189: 10184: 10183: 10177: 10173: 10169: 10165: 10161: 10157: 10153: 10148: 10144: 10140: 10136: 10132: 10128: 10122: 10118: 10113: 10109: 10105: 10101: 10097: 10093: 10089: 10085: 10081: 10077: 10073: 10069: 10065: 10061: 10055: 10050: 10049: 10042: 10041: 10028: 10024: 10020: 10016: 10012: 10008: 10003: 9998: 9994: 9990: 9986: 9982: 9975: 9967: 9963: 9959: 9955: 9951: 9947: 9940: 9932: 9928: 9924: 9920: 9910: 9905: 9901: 9897: 9893: 9886: 9878: 9874: 9870: 9869:Van der Pol B 9862: 9858: 9854: 9850: 9846: 9845:Van der Pol B 9838: 9834: 9830: 9829:Van der Pol B 9822: 9818: 9814: 9810: 9806: 9802: 9798: 9794: 9785: 9781: 9776: 9771: 9767: 9763: 9759: 9755: 9751: 9744: 9736: 9732: 9728: 9724: 9720: 9716: 9707: 9703: 9698: 9693: 9689: 9685: 9681: 9677: 9674:(6): 445–66. 9673: 9669: 9665: 9658: 9650: 9646: 9641: 9636: 9632: 9628: 9624: 9620: 9616: 9612: 9608: 9601: 9593: 9589: 9585: 9581: 9577: 9573: 9569: 9565: 9556: 9552: 9547: 9542: 9538: 9534: 9531:(5): 867–96. 9530: 9526: 9522: 9514: 9506: 9502: 9497: 9492: 9488: 9484: 9480: 9476: 9472: 9465: 9457: 9453: 9449: 9445: 9441: 9437: 9433: 9429: 9425: 9421: 9414: 9406: 9402: 9398: 9394: 9390: 9386: 9382: 9378: 9371: 9363: 9359: 9354: 9349: 9345: 9341: 9338:(3): 561–90. 9337: 9333: 9329: 9322: 9314: 9310: 9305: 9300: 9296: 9292: 9288: 9284: 9280: 9276: 9270: 9262: 9258: 9254: 9250: 9246: 9242: 9238: 9234: 9227: 9219: 9215: 9211: 9207: 9203: 9199: 9195: 9191: 9187: 9183: 9174: 9170: 9166: 9162: 9157: 9152: 9148: 9144: 9140: 9136: 9132: 9125: 9117: 9113: 9109: 9105: 9101: 9097: 9094:(2): 555–92. 9093: 9089: 9080: 9076: 9072: 9068: 9064: 9063:10.1038/45561 9060: 9056: 9052: 9048: 9044: 9035: 9031: 9027: 9023: 9018: 9017:10.1038/45552 9013: 9009: 9005: 9001: 8997: 8993: 8986: 8978: 8974: 8970: 8966: 8962: 8958: 8954: 8950: 8946: 8942: 8933: 8929: 8925: 8921: 8917: 8913: 8909: 8905: 8901: 8897: 8888: 8884: 8880: 8876: 8872: 8868: 8864: 8860: 8853: 8845: 8841: 8837: 8833: 8829: 8825: 8821: 8817: 8813: 8809: 8802: 8794: 8790: 8786: 8782: 8778: 8774: 8770: 8766: 8762: 8754: 8750: 8746: 8742: 8738: 8734: 8731:(2): 85–100. 8730: 8726: 8717: 8713: 8709: 8705: 8701: 8697: 8693: 8689: 8685: 8681: 8677: 8671: 8663: 8659: 8654: 8649: 8645: 8641: 8637: 8633: 8629: 8625: 8621: 8615: 8607: 8603: 8596: 8588: 8584: 8579: 8574: 8570: 8566: 8563:(5): 649–70. 8562: 8558: 8554: 8550: 8544: 8536: 8532: 8528: 8524: 8520: 8516: 8512: 8508: 8502: 8494: 8490: 8486: 8482: 8478: 8474: 8471:(4): 147–51. 8470: 8466: 8459: 8451: 8447: 8443: 8439: 8435: 8431: 8428:(10): 443–8. 8427: 8423: 8416: 8408: 8404: 8400: 8396: 8392: 8388: 8384: 8380: 8376: 8372: 8363: 8359: 8355: 8353:0-387-08326-X 8349: 8345: 8341: 8337: 8328: 8324: 8319: 8314: 8310: 8306: 8303:(6): 975–83. 8302: 8298: 8294: 8287: 8279: 8275: 8270: 8265: 8261: 8257: 8253: 8249: 8245: 8241: 8237: 8230: 8222: 8218: 8213: 8208: 8204: 8200: 8196: 8187: 8183: 8178: 8173: 8169: 8165: 8161: 8157: 8154:(12): 983–6. 8153: 8149: 8145: 8138: 8130: 8126: 8121: 8116: 8112: 8108: 8105:(4): 431–60. 8104: 8100: 8096: 8089: 8081: 8077: 8073: 8069: 8062: 8054: 8050: 8046: 8042: 8039:(3): 383–96. 8038: 8034: 8027: 8019: 8015: 8011: 8005: 7997: 7993: 7989: 7985: 7981: 7977: 7973: 7969: 7962: 7954: 7950: 7946: 7942: 7939:(2–3): 90–3. 7938: 7934: 7927: 7919: 7915: 7911: 7907: 7903: 7899: 7892: 7884: 7880: 7875: 7870: 7866: 7862: 7858: 7851: 7843: 7839: 7835: 7831: 7827: 7823: 7819: 7815: 7808: 7800: 7796: 7792: 7786: 7782: 7778: 7774: 7767: 7759: 7755: 7751: 7747: 7740: 7732: 7728: 7724: 7720: 7716: 7712: 7709:(3): 265–73. 7708: 7704: 7697: 7689: 7685: 7681: 7677: 7674:(4): 732–44. 7673: 7669: 7662: 7654: 7650: 7646: 7642: 7638: 7634: 7627: 7619: 7615: 7611: 7607: 7603: 7599: 7596:(2): 431–88. 7595: 7591: 7584: 7582: 7580: 7571: 7567: 7563: 7559: 7556:(1–2): 1–13. 7555: 7551: 7544: 7536: 7532: 7528: 7524: 7520: 7516: 7512: 7508: 7501: 7499: 7490: 7486: 7482: 7478: 7474: 7470: 7467:(4): 445–61. 7466: 7462: 7455: 7447: 7443: 7438: 7433: 7429: 7425: 7421: 7414: 7406: 7402: 7398: 7394: 7390: 7386: 7382: 7378: 7371: 7363: 7359: 7355: 7351: 7347: 7343: 7340:(2): 137–42. 7339: 7335: 7328: 7320: 7316: 7312: 7308: 7305:(5): 427–46. 7304: 7300: 7293: 7285: 7281: 7276: 7271: 7267: 7263: 7260:(4): 317–26. 7259: 7255: 7251: 7244: 7236: 7232: 7228: 7222: 7218: 7214: 7210: 7203: 7195: 7191: 7186: 7181: 7177: 7173: 7169: 7165: 7161: 7157: 7151: 7143: 7139: 7135: 7131: 7127: 7123: 7119: 7113: 7105: 7101: 7097: 7093: 7089: 7085: 7081: 7077: 7070: 7062: 7058: 7054: 7050: 7045: 7040: 7036: 7032: 7029:(1): R29-35. 7028: 7024: 7020: 7013: 7011: 7002: 6998: 6993: 6988: 6984: 6980: 6977:(1): 101–22. 6976: 6972: 6968: 6964: 6958: 6950: 6946: 6941: 6936: 6932: 6928: 6924: 6920: 6916: 6912: 6904: 6900: 6895: 6890: 6886: 6882: 6879:(3): 315–39. 6878: 6874: 6870: 6866: 6860: 6852: 6848: 6844: 6840: 6837:(5): 764–82. 6836: 6832: 6823: 6819: 6815: 6811: 6807: 6803: 6796: 6788: 6784: 6780: 6776: 6769: 6762: 6756: 6752: 6747: 6742: 6738: 6734: 6730: 6726: 6722: 6715: 6707: 6703: 6699: 6695: 6688: 6686: 6677: 6673: 6669: 6665: 6661: 6657: 6653: 6646: 6638: 6634: 6630: 6626: 6622: 6618: 6615:(5): 533–40. 6614: 6610: 6603: 6595: 6591: 6587: 6583: 6579: 6575: 6571: 6567: 6560: 6552: 6540: 6532: 6528: 6524: 6518: 6514: 6510: 6506: 6499: 6491: 6487: 6482: 6477: 6473: 6469: 6466:(2): 211–32. 6465: 6461: 6457: 6454:(July 1937). 6453: 6445: 6441: 6436: 6431: 6427: 6423: 6419: 6415: 6411: 6408:(July 1937). 6407: 6401: 6382: 6378: 6374: 6370: 6366: 6362: 6358: 6354: 6350: 6346: 6342: 6335: 6328: 6320: 6316: 6311: 6306: 6302: 6298: 6295:(4): 500–44. 6294: 6290: 6286: 6282: 6274: 6270: 6265: 6260: 6256: 6252: 6248: 6244: 6240: 6236: 6228: 6224: 6219: 6214: 6210: 6206: 6203:(4): 473–96. 6202: 6198: 6194: 6190: 6182: 6178: 6173: 6168: 6164: 6160: 6157:(4): 449–72. 6156: 6152: 6148: 6144: 6136: 6132: 6127: 6122: 6118: 6114: 6111:(4): 424–48. 6110: 6106: 6102: 6098: 6095:, Huxley AF, 6094: 6088: 6086: 6084: 6082: 6080: 6071: 6067: 6062: 6057: 6053: 6049: 6045: 6041: 6037: 6030: 6028: 6019: 6015: 6011: 6007: 6003: 5999: 5995: 5991: 5987: 5983: 5976: 5970: 5966: 5960: 5952: 5948: 5944: 5940: 5936: 5932: 5928: 5924: 5917: 5908: 5900: 5896: 5892: 5888: 5884: 5880: 5876: 5872: 5865: 5857: 5853: 5849: 5845: 5841: 5837: 5830: 5828: 5819: 5812: 5808: 5803: 5798: 5793: 5788: 5784: 5780: 5776: 5769: 5765: 5753: 5749: 5743: 5736: 5732: 5727: 5719: 5715: 5711: 5707: 5703: 5699: 5696:(1): 102–13. 5695: 5691: 5687: 5680: 5673: 5669: 5663: 5659: 5653: 5646: 5640: 5636: 5630: 5626: 5620: 5613: 5608: 5600: 5596: 5591: 5586: 5582: 5578: 5575:(2): 671–84. 5574: 5570: 5566: 5559: 5552: 5547: 5540: 5536: 5531: 5523: 5517: 5509: 5505: 5501: 5499:9781461950325 5495: 5491: 5484: 5477: 5473: 5469: 5464: 5457: 5453: 5450:Snell, FM in 5447: 5440: 5435: 5428: 5423: 5415: 5413:9781610693387 5409: 5405: 5404: 5396: 5388: 5384: 5379: 5374: 5370: 5366: 5362: 5358: 5354: 5347: 5340: 5335: 5328: 5322: 5315: 5311: 5305: 5297: 5293: 5288: 5283: 5279: 5275: 5271: 5267: 5264:(3): 139–45. 5263: 5259: 5255: 5248: 5242: 5237: 5229: 5225: 5221: 5217: 5213: 5209: 5205: 5201: 5194: 5192: 5190: 5188: 5186: 5184: 5182: 5173: 5169: 5164: 5159: 5155: 5151: 5147: 5143: 5140:(3): 286–95. 5139: 5135: 5131: 5124: 5122: 5113: 5109: 5105: 5101: 5097: 5093: 5089: 5085: 5078: 5070: 5066: 5062: 5058: 5054: 5050: 5046: 5042: 5039:(1): 203–14. 5038: 5034: 5027: 5019: 5015: 5010: 5005: 5001: 4997: 4990: 4983: 4976: 4971: 4964: 4959: 4951: 4947: 4943: 4939: 4935: 4929: 4925: 4921: 4914: 4907: 4903: 4899: 4894: 4892: 4884: 4880: 4874: 4867: 4862: 4855: 4850: 4843: 4840:Tasaki, I in 4837: 4830: 4825: 4818: 4813: 4806: 4801: 4794: 4789: 4783:, p. 56. 4782: 4777: 4775: 4768:, p. 37. 4767: 4762: 4755: 4751: 4746: 4739: 4734: 4732: 4724: 4720: 4715: 4713: 4711: 4703: 4698: 4696: 4694: 4692: 4685:, p. 49. 4684: 4679: 4677: 4675: 4673: 4665: 4661: 4657: 4652: 4646:, p. 49. 4645: 4640: 4633: 4629: 4623: 4616: 4612: 4608: 4604: 4599: 4597: 4595: 4587: 4583: 4579: 4575: 4570: 4563: 4558: 4551: 4546: 4540:, p. 38. 4539: 4534: 4527: 4522: 4515: 4510: 4508: 4500: 4495: 4488: 4484: 4479: 4472: 4468: 4464: 4459: 4451: 4447: 4442: 4437: 4433: 4429: 4425: 4421: 4417: 4410: 4402: 4398: 4394: 4390: 4385: 4380: 4376: 4372: 4368: 4361: 4353: 4349: 4344: 4339: 4334: 4329: 4325: 4321: 4317: 4310: 4302: 4298: 4292: 4285: 4280: 4273: 4268: 4261: 4257: 4252: 4245: 4241: 4237: 4232: 4225: 4220: 4218: 4216: 4214: 4206: 4202: 4198: 4193: 4191: 4189: 4181: 4176: 4170:, p. 11. 4169: 4164: 4156: 4154:9780080584621 4150: 4146: 4145: 4137: 4129: 4125: 4119: 4115: 4114: 4106: 4098: 4096:9780849388071 4092: 4088: 4081: 4073: 4069: 4065: 4063:9780080923208 4059: 4055: 4048: 4046: 4044: 4042: 4040: 4031: 4027: 4022: 4017: 4012: 4007: 4003: 3999: 3995: 3988: 3981: 3976: 3969: 3964: 3958:, p. 89. 3957: 3953: 3949: 3945: 3940: 3938: 3936: 3928: 3923: 3921: 3913: 3908: 3906: 3904: 3902: 3900: 3892: 3887: 3885: 3883: 3881: 3879: 3877: 3875: 3873: 3856: 3852: 3848: 3841: 3833: 3829: 3824: 3819: 3815: 3811: 3807: 3803: 3799: 3792: 3784: 3780: 3776: 3772: 3768: 3764: 3760: 3756: 3749: 3742: 3727: 3721: 3713: 3709: 3706:(2): 128–34. 3705: 3701: 3694: 3686: 3682: 3677: 3672: 3668: 3664: 3661:(4): 500–44. 3660: 3656: 3652: 3645: 3641: 3624: 3621:found in the 3620: 3616: 3612: 3606: 3599: 3592: 3588: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3524: 3517: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3470: 3466: 3462: 3455: 3451: 3444: 3437: 3429: 3424: 3414: 3412: 3408: 3404: 3401:in 1943. The 3400: 3396: 3392: 3388: 3383: 3381: 3377: 3372: 3368: 3364: 3360: 3355: 3354:voltage clamp 3351: 3350:Andrew Huxley 3346: 3342: 3338: 3334: 3330: 3326: 3322: 3314: 3313:lipid bilayer 3310: 3306: 3302: 3300: 3296: 3292: 3291:Camillo Golgi 3288: 3284: 3280: 3276: 3272: 3268: 3264: 3260: 3256: 3252: 3247: 3245: 3242: 3238: 3237:electric eels 3234: 3230: 3226: 3222: 3221:Luigi Galvani 3218: 3210: 3209:granule cells 3206: 3202: 3198: 3194: 3190: 3186: 3182: 3179:Image of two 3177: 3168: 3166: 3162: 3158: 3154: 3149: 3145: 3141: 3137: 3133: 3132: 3127: 3123: 3119: 3115: 3107: 3103: 3099: 3095: 3086: 3084: 3083:cardiomyocyte 3080: 3076: 3072: 3070: 3066: 3062: 3058: 3049: 3045: 3040: 3036: 3034: 3030: 3026: 3022: 3018: 3012: 3010: 3006: 3005:Faraday cages 3002: 2995: 2988: 2981: 2977: 2974: 2970: 2963: 2959: 2958:voltage clamp 2954: 2952: 2948: 2947: 2942: 2941: 2936: 2932: 2927: 2925: 2920: 2916: 2912: 2908: 2900: 2896: 2895: 2889: 2884: 2874: 2872: 2866: 2864: 2860: 2856: 2852: 2841: 2838: 2835: 2832: 2829: 2826: 2822: 2821: 2817: 2814: 2811: 2808: 2805: 2802: 2798: 2797: 2793: 2790: 2787: 2784: 2781: 2778: 2774: 2773: 2769: 2766: 2763: 2760: 2757: 2754: 2750: 2749: 2745: 2742: 2739: 2736: 2733: 2730: 2726: 2725: 2721: 2718: 2715: 2712: 2709: 2706: 2705: 2699: 2697: 2692: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2663:invertebrates 2660: 2656: 2646: 2644: 2643:proton ATPase 2638: 2636: 2635: 2634:Mimosa pudica 2630: 2625: 2620: 2616: 2614: 2610: 2609: 2603: 2600: 2597: 2592: 2588: 2583: 2573: 2571: 2567: 2563: 2559: 2555: 2549: 2545: 2535: 2533: 2529: 2528:beta blockers 2525: 2521: 2517: 2513: 2509: 2508:bundle of His 2505: 2501: 2497: 2493: 2489: 2484: 2482: 2473: 2467: 2462: 2458: 2454: 2450: 2435: 2433: 2429: 2425: 2421: 2418: 2414: 2410: 2406: 2405: 2400: 2399:acetylcholine 2396: 2392: 2388: 2384: 2378: 2374: 2370: 2360: 2358: 2354: 2350: 2346: 2342: 2338: 2331: 2327: 2323: 2310: 2306: 2302: 2298: 2296: 2292: 2288: 2284: 2283:tetanospasmin 2281: 2277: 2273: 2269: 2264: 2258: 2254: 2250: 2246: 2231: 2229: 2225: 2218: 2214: 2207: 2206: 2203: =  2202: 2199:the equation 2196: 2189: 2161: 2157: 2151: 2147: 2140: 2137: 2130: 2129: 2111: 2107: 2101: 2097: 2090: 2087: 2080: 2079: 2078: 2075: 2071: 2067: 2063: 2059: 2040: 2037: 2029: 2025: 2016: 2011: 1998: 1994: 1990: 1984: 1976: 1967: 1960: 1959: 1958: 1957: 1953: 1949: 1945: 1941: 1933: 1926: 1919: 1915: 1910: 1905: 1895: 1893: 1888: 1885: 1884:safety factor 1879: 1877: 1873: 1868: 1864: 1854: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1814: 1810: 1808: 1807:Andrew Huxley 1804: 1803:Ichiji Tasaki 1800: 1796: 1792: 1786: 1784: 1780: 1775: 1773: 1769: 1765: 1761: 1757: 1753: 1752:Schwann cells 1749: 1745: 1737: 1733: 1728: 1723: 1719: 1709: 1707: 1703: 1698: 1693: 1690: 1683: 1673: 1669: 1667: 1663: 1659: 1655: 1645: 1643: 1639: 1632: 1628: 1621: 1611: 1609: 1599: 1595: 1588: 1581: 1577: 1563: 1561: 1557: 1551: 1549: 1545: 1535: 1531: 1521: 1517: 1507: 1503: 1496: 1489: 1482: 1477: 1467: 1463: 1459: 1455: 1451: 1447: 1442: 1440: 1436: 1432: 1428: 1424: 1417: 1407: 1404: 1400: 1396: 1395:Andrew Huxley 1392: 1387: 1385: 1378: 1374: 1371: 1364: 1357: 1353: 1346: 1339: 1335: 1329: 1324: 1322: 1318: 1313: 1302: 1300: 1295: 1291: 1287: 1283: 1279: 1275: 1272:cells of the 1271: 1267: 1258: 1253: 1248: 1238: 1236: 1232: 1228: 1224: 1220: 1219:bipolar cells 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1158: 1148: 1144: 1142: 1138: 1134: 1129: 1123: 1113: 1111: 1110:gap junctions 1107: 1102: 1100: 1096: 1092: 1091:work together 1088: 1083: 1078: 1077:cell membrane 1074: 1070: 1067: 1063: 1059: 1046: 1042: 1038: 1033: 1029: 1027: 1023: 1013: 1011: 1007: 1003: 998: 994: 990: 986: 985:Schwann cells 982: 978: 974: 969: 965: 961: 957: 953: 949: 945: 940: 938: 934: 921: 920:Myelin sheath 916: 911: 910:Axon terminal 906: 899: 894: 889: 884: 879: 874: 860: 850: 848: 844: 839: 837: 833: 829: 828:RNA synthesis 823: 821: 817: 813: 809: 804: 800: 796: 791: 788: 784: 783:time constant 780: 776: 772: 768: 764: 760: 750: 748: 743: 741: 737: 733: 729: 725: 721: 717: 713: 709: 703: 701: 700: 696: 692: 688: 685: 681: 677: 673: 667: 665: 664:leak channels 661: 657: 653: 649: 645: 641: 635: 633: 629: 625: 621: 617: 613: 609: 605: 601: 597: 589: 585: 581: 577: 573: 572:resting state 567: 561: 557: 555: 551: 543: 538: 536: 532: 528: 524: 520: 516: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 469: 462: 458: 457:Andrew Huxley 454: 448: 446: 445:Hodgkin cycle 441: 432: 428: 421: 418: 415: 414: 413: 411: 400: 397: 389: 386:February 2014 379: 375: 369: 368: 363:This section 361: 357: 352: 351: 343: 341: 340:hyperpolarize 337: 333: 329: 324: 322: 318: 313: 309: 305: 301: 297: 293: 289: 285: 277: 276:cell membrane 272: 263: 261: 256: 255:lipid bilayer 252: 251:cell membrane 247: 245: 241: 237: 233: 229: 225: 216: 207: 205: 201: 197: 192: 190: 185: 181: 176: 172: 168: 164: 160: 155: 153: 149: 145: 141: 137: 133: 128: 124: 120: 116: 111: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 57: 56:axon terminal 52: 48: 44: 40: 36: 32: 28: 23: 19: 11547: 11496: 11380: 11360: 11340: 11317: 11298: 11276: 11248:(1): 59–90. 11245: 11241: 11218: 11199: 11177:. Retrieved 11163: 11151:. Retrieved 11142: 11138: 11128: 11116:. Retrieved 11102: 11090:. Retrieved 11076: 11064:. Retrieved 11050: 11023: 11020:Scholarpedia 11019: 11009: 10965: 10929: 10892: 10855: 10820: 10782: 10748:Neuroscience 10747: 10713:Neuroscience 10712: 10673: 10638: 10621: 10586: 10583:McCulloch WS 10548: 10513: 10475: 10437: 10401: 10365: 10338: 10275: 10250: 10213: 10181: 10151: 10116: 10091: 10087: 10047: 9984: 9980: 9974: 9949: 9945: 9939: 9922: 9919:Math. Biosci 9918: 9899: 9895: 9885: 9876: 9872: 9852: 9848: 9836: 9832: 9796: 9792: 9760:(1): 69–91. 9757: 9753: 9743: 9718: 9714: 9671: 9667: 9657: 9614: 9610: 9600: 9570:(5): 381–7. 9567: 9563: 9528: 9524: 9513: 9478: 9474: 9464: 9423: 9419: 9413: 9383:(1): 12–3P. 9380: 9376: 9370: 9335: 9331: 9321: 9289:(1): 28–60. 9286: 9282: 9269: 9236: 9232: 9226: 9185: 9181: 9138: 9134: 9124: 9091: 9087: 9046: 9042: 8999: 8995: 8985: 8944: 8940: 8899: 8895: 8862: 8858: 8852: 8811: 8807: 8801: 8771:(3): 44–51. 8768: 8764: 8728: 8724: 8683: 8679: 8670: 8638:(1): 37–77. 8635: 8631: 8614: 8605: 8601: 8595: 8560: 8556: 8543: 8518: 8514: 8501: 8468: 8464: 8458: 8425: 8421: 8415: 8374: 8370: 8335: 8300: 8296: 8286: 8243: 8239: 8229: 8202: 8198: 8151: 8147: 8137: 8102: 8098: 8088: 8071: 8067: 8061: 8036: 8032: 8026: 8017: 8013: 8004: 7971: 7967: 7961: 7936: 7932: 7926: 7901: 7891: 7864: 7860: 7850: 7817: 7813: 7807: 7772: 7766: 7749: 7745: 7739: 7706: 7702: 7696: 7671: 7667: 7661: 7639:(1): 13–28. 7636: 7632: 7626: 7593: 7589: 7553: 7549: 7543: 7513:(1): 20–32. 7510: 7506: 7464: 7460: 7454: 7430:(1): 132–8. 7427: 7423: 7413: 7383:(4): 351–8. 7380: 7376: 7370: 7337: 7333: 7327: 7302: 7298: 7292: 7257: 7253: 7243: 7208: 7202: 7167: 7163: 7150: 7125: 7121: 7112: 7079: 7075: 7069: 7026: 7022: 6974: 6970: 6957: 6922: 6918: 6876: 6872: 6859: 6834: 6830: 6805: 6801: 6795: 6778: 6774: 6768: 6763:, p. 78 6728: 6724: 6714: 6697: 6693: 6659: 6655: 6645: 6612: 6608: 6602: 6569: 6565: 6559: 6504: 6498: 6463: 6459: 6417: 6413: 6400: 6390:24 September 6388:. Retrieved 6381:the original 6344: 6340: 6327: 6292: 6288: 6246: 6242: 6200: 6196: 6154: 6150: 6108: 6104: 6046:(1): 37–60. 6043: 6039: 5985: 5981: 5975: 5959: 5929:(1): 57–63. 5926: 5922: 5916: 5907: 5874: 5870: 5864: 5846:(3): 192–7. 5843: 5839: 5782: 5779:PLOS Biology 5778: 5768: 5751: 5742: 5726: 5693: 5689: 5679: 5671: 5664:, pp. 29–49. 5661: 5652: 5641:, pp. 12–16. 5638: 5635:Schwann 1969 5628: 5619: 5607: 5572: 5568: 5558: 5546: 5538: 5530: 5489: 5483: 5468:Brazier 1961 5463: 5455: 5446: 5434: 5422: 5402: 5395: 5360: 5356: 5346: 5334: 5326: 5321: 5313: 5304: 5261: 5257: 5247: 5236: 5203: 5199: 5137: 5133: 5087: 5083: 5077: 5036: 5032: 5026: 4999: 4995: 4982: 4970: 4958: 4923: 4913: 4905: 4882: 4873: 4861: 4849: 4836: 4824: 4812: 4805:Stevens 1966 4800: 4788: 4761: 4754:Stevens 1966 4745: 4702:Stevens 1966 4651: 4644:Stevens 1966 4639: 4634:, pp. 43–58. 4631: 4622: 4615:Stevens 1966 4586:Stevens 1966 4569: 4557: 4550:Stevens 1966 4545: 4533: 4521: 4494: 4478: 4471:Stevens 1966 4458: 4423: 4419: 4409: 4374: 4370: 4360: 4323: 4319: 4309: 4300: 4291: 4279: 4267: 4251: 4244:Stevens 1966 4231: 4175: 4163: 4143: 4136: 4112: 4105: 4086: 4080: 4053: 4001: 3997: 3987: 3975: 3968:Stevens 1966 3963: 3859:. Retrieved 3851:Neuroscience 3850: 3840: 3805: 3801: 3791: 3758: 3754: 3741: 3729:. Retrieved 3720: 3703: 3699: 3693: 3658: 3654: 3644: 3617:, which are 3605: 3591: 3557:Frog battery 3474: 3461:conductances 3453: 3446: 3439: 3432: 3384: 3367:Bert Sakmann 3359:ion channels 3345:Bernard Katz 3341:Alan Hodgkin 3325:permeability 3318: 3299:neuroanatomy 3262: 3248: 3229:Voltaic pile 3214: 3204: 3184: 3183:(labeled as 3161:insecticides 3129: 3118:Tetrodotoxin 3111: 3098:Tetrodotoxin 3073: 3065:Bert Sakmann 3053: 3013: 2997: 2990: 2983: 2979: 2975: 2965: 2955: 2950: 2944: 2938: 2928: 2904: 2892: 2867: 2847: 2824: 2800: 2776: 2752: 2728: 2657:, including 2652: 2639: 2632: 2621: 2617: 2612: 2606: 2604: 2601: 2595: 2591:fungal cells 2585: 2551: 2490:provide the 2485: 2477: 2417:nerve agents 2402: 2395:muscle fiber 2391:motor neuron 2380: 2333: 2326:Gap junction 2260: 2227: 2220: 2209: 2204: 2200: 2191: 2184: 2181: 2073: 2069: 2065: 2061: 2057: 2055: 1940:cable theory 1937: 1928: 1921: 1904:Cable theory 1898:Cable theory 1889: 1880: 1860: 1852: 1845: 1841: 1837: 1833: 1829: 1787: 1776: 1741: 1696: 1694: 1685: 1670: 1661: 1657: 1651: 1640:, termed an 1630: 1623: 1617: 1604: 1597: 1590: 1586: 1579: 1572: 1569: 1559: 1555: 1552: 1548:rising phase 1547: 1540: 1533: 1532:is close to 1526: 1519: 1512: 1505: 1498: 1491: 1484: 1472: 1465: 1443: 1419: 1416:axon hillock 1413: 1388: 1380: 1376: 1372: 1366: 1359: 1348: 1341: 1330: 1325: 1308: 1262: 1167:ion channels 1160: 1145: 1125: 1103: 1087:axon hillock 1073:ion channels 1055: 1026:axon hillock 1019: 977:trigger zone 973:axon hillock 941: 930: 915:Schwann cell 893:Axon hillock 840: 824: 797:rather than 792: 756: 744: 704: 699:Acetabularia 697: 682:cations and 668: 636: 631: 627: 623: 593: 583: 579: 575: 571: 565: 541: 539: 534: 530: 526: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 474: 467: 460: 453:Alan Hodgkin 449: 437: 425: 407: 392: 383: 372:Please help 367:verification 364: 325: 317:axon hillock 300:ion channels 281: 248: 239: 221: 193: 171:depolarising 156: 151: 147: 143: 112: 92:muscle cells 84:animal cells 63: 61: 39:ion channels 18: 11271:Deutsch S, 11179:21 February 11118:21 February 11092:21 February 11066:21 February 11026:(9): 1349. 10084:Bernstein J 9855:: 763–775. 8507:Bernstein J 7820:(1): 51–9. 4975:Ganong 1991 4908:, pp. 9–62. 4879:Waxman 2007 4628:Waxman 2007 3504:and simple 3363:Erwin Neher 3187:) drawn by 3148:black mamba 3144:dendrotoxin 3114:neurotoxins 3089:Neurotoxins 3061:Erwin Neher 3057:patch clamp 3048:ion channel 3044:patch clamp 3027:containing 2973:capacitance 2931:giant axons 2782:Giant fiber 2777:Periplaneta 2775:Cockroach ( 2751:Earthworm ( 2671:vertebrates 2570:neurotoxins 2562:tropomyosin 2516:arrhythmias 2353:vertebrates 2280:neurotoxins 2234:Termination 1944:Lord Kelvin 1914:RC circuits 1768:vertebrates 1718:Myelination 1676:Propagation 1587:inactivated 1403:their model 1290:sympathetic 1235:optic nerve 1133:all-or-none 1066:presynaptic 993:glial cells 785:and larger 763:development 628:firing rate 588:inactivated 535:deactivated 531:inactivated 523:inactivated 519:deactivated 515:inactivated 507:deactivated 503:deactivated 499:inactivated 491:deactivated 483:inactivated 475:deactivated 244:plant cells 222:Nearly all 152:spike train 96:plant cells 11576:Capacitors 11570:Categories 11454:Audio help 11445:2005-06-22 10948:2008357317 10801:2005298022 10766:2007024950 10657:2008050369 10208:Bullock TH 10176:Bullock TH 9879:: 418–443. 9839:: 977–992. 9275:Hodgkin AL 8620:Hodgkin AL 8608:: 620–635. 7156:Hodgkin AL 7128:: 382–99. 6963:Rushton WA 6781:: 211–27. 6700:: 131–39. 6452:Hodgkin AL 6406:Hodgkin AL 6281:Hodgkin AL 6235:Hodgkin AL 6189:Hodgkin AL 6143:Hodgkin AL 6093:Hodgkin AL 5785:(2): e49. 5427:Junge 1981 4842:Field 1959 4723:Junge 1981 4582:Junge 1981 4499:Junge 1981 3956:Junge 1981 3912:Junge 1981 3761:(2): 188. 3632:References 3623:cerebellum 3508:, such as 3165:permethrin 3122:pufferfish 3102:pufferfish 3085:membrane. 3025:neurochips 2924:electrodes 2881:See also: 2833:−55 to −80 2809:−60 to −80 2734:Giant axon 2691:eukaryotes 2580:See also: 2554:sarcolemma 2504:ventricles 2409:hydrolyzed 2404:sarcolemma 2355:, and the 1863:micrometre 1836:(that is, 1566:Peak phase 1286:heart rate 1199:hair cells 1041:excitatory 1016:Initiation 968:eukaryotic 336:depolarize 132:beta cells 98:. Certain 11336:Kandel ER 11002:Web pages 10956:154760295 10809:489024131 10774:144771764 10739:806472664 10665:268788623 10630:429733931 10472:Keynes RD 10357:751129941 10328:ignored ( 10318:cite book 10294:0892-1253 10267:830755894 9997:CiteSeerX 9925:: 23–50. 9405:222188054 8932:205022645 8074:: 39–73. 7933:BioEssays 7535:211234081 7299:Biochimie 7142:178547827 7118:Kelvin WT 6911:Huxley AF 6865:Huxley AF 6759:See also 6549:ignored ( 6539:cite book 5516:cite book 5508:864592470 5104:1528-7092 5018:0019-5235 4072:762720374 4004:(1): 11. 3998:Membranes 3982:, p. 484. 3861:29 August 3637:Footnotes 3552:Chronaxie 3496:like the 3382:studies. 3263:reticulum 3193:dendrites 3146:from the 3140:red tides 3131:Gonyaulax 3128:from the 3126:saxitoxin 3120:from the 2753:Lumbricus 2710:Cell type 2532:verapamil 2524:lidocaine 2520:quinidine 2474:channels. 2432:malathion 2337:connexons 2274:into the 2162:ℓ 2138:λ 2088:τ 2038:− 2022:∂ 2008:∂ 1995:λ 1982:∂ 1974:∂ 1968:τ 1141:frequency 1128:amplitude 730:into the 608:potassium 527:activated 511:activated 495:activated 487:activated 479:activated 312:cell body 304:dendrites 296:ion pumps 184:Potassium 100:endocrine 11557:Archived 11456: · 11297:(2001). 11275:(1987). 11264:15561301 11173:Archived 11153:23 March 11147:Archived 11112:Archived 11086:Archived 11060:Archived 10985:75016379 10913:66015872 10874:68027513 10847:35744403 10839:96039295 10819:(1997). 10731:00059496 10692:79025719 10605:88002987 10585:(1988). 10567:68009252 10540:18384545 10532:88008279 10502:25204483 10494:90015167 10464:25204689 10456:92000179 10421:80018158 10392:12052275 10384:85011013 10310:23761261 10302:87642343 10259:60004587 10234:76003735 10192:65007965 10160:62001407 10143:30518469 10135:94017624 10108:11358569 10100:12027986 10086:(1912). 10076:15860311 10068:87003022 10027:11388348 10019:10713861 9966:20077648 9821:19149460 9784:18885679 9735:51648050 9706:19431309 9555:13823315 9505:11389676 9448:18075585 9397:13439598 9362:13806926 9313:14368574 9261:32516710 9253:13412736 9210:11234014 9165:11234048 9116:18629998 9108:10747201 9071:10617202 9026:10617201 8969:12721618 8924:11689936 8836:12214225 8753:12014433 8662:18128147 8587:19873125 8535:33229139 8509:(1902). 8485:10717671 8450:23394494 8407:11465181 8278:19289075 8129:12991232 8053:15410483 8020:: 253–8. 7988:12392930 7918:10101111 7883:17263772 7842:24190001 7799:17280895 7731:22063907 7653:14754423 7618:21823003 7610:15044680 7570:16337171 7527:17215724 7481:16228970 7446:17573397 7405:46371790 7362:22414506 7354:12397368 7319:10865130 7284:16840708 7235:18064409 7194:20281590 7104:12441377 7096:17965654 7061:10033356 7053:17208176 7001:14889433 6949:14825228 6903:16991863 6851:44315437 6755:19872151 6676:10395528 6637:45470194 6629:17923405 6594:14720760 6586:14682359 6531:16805421 6490:16994886 6444:16994885 6369:16625198 6319:12991237 6273:14946715 6227:14946714 6181:14946713 6135:14946712 6070:19873371 6010:13729365 5951:34131910 5943:15978667 5891:11731556 5856:Archived 5852:17515599 5811:16464129 5718:15326972 5710:25398183 5599:16407565 5387:27780067 5296:19516982 5228:29336976 5172:26804557 5061:17226028 4950:18384545 4942:88008279 4450:34346782 4393:16890514 4352:31105529 4128:Archived 4030:26821050 3855:Archived 3832:29378864 3700:Fed Proc 3685:12991237 3542:Bursting 3520:See also 3506:reflexes 3488:and the 3329:Ken Cole 3244:voltages 3112:Several 2675:reptiles 2673:such as 2665:such as 2629:metazoan 2596:chloride 2502:and the 2428:diazinon 2330:Connexin 2295:botulism 2268:vesicles 1596:towards 1299:bursting 1052:Dynamics 878:Dendrite 836:myocytes 775:channels 684:chloride 646:such as 210:Overview 136:pancreas 31:membrane 11513:at The 11443: ( 11414:minutes 11295:Hille B 11028:Bibcode 10993:1500233 10921:1175605 10700:5799924 10429:6486925 10242:2048177 9989:Bibcode 9801:Bibcode 9775:2213747 9697:1366333 9676:Bibcode 9649:7260316 9640:1327511 9619:Bibcode 9592:6789007 9584:1562643 9546:2195039 9496:1221895 9456:4344526 9428:Bibcode 9353:1363339 9304:1365754 9218:4430165 9190:Bibcode 9173:4371677 9143:Bibcode 9079:4417476 9051:Bibcode 9034:4353978 9004:Bibcode 8977:4347957 8949:Bibcode 8904:Bibcode 8887:9525859 8867:Bibcode 8859:Science 8844:4420877 8816:Bibcode 8793:1374932 8773:Bibcode 8761:Neher E 8745:6270629 8716:4204985 8708:1083489 8688:Bibcode 8676:Neher E 8653:1392331 8578:2142006 8549:Cole KS 8442:9347609 8399:6148754 8379:Bibcode 8327:5855511 8318:2195447 8269:2907679 8248:Bibcode 8221:3838314 8186:4429774 8177:1334592 8156:Bibcode 8120:1392415 8010:Cole KS 7996:1355280 7953:2541698 7834:9784585 7723:1664861 7489:1888352 7397:8844332 7275:2684670 7172:Bibcode 7031:Bibcode 6992:1392008 6940:1393015 6894:1392492 6822:8628858 6746:2140733 6481:1395062 6435:1395060 6377:1328840 6349:Bibcode 6310:1392413 6264:1392212 6218:1392209 6172:1392213 6126:1392219 6061:2142582 6018:4147174 5990:Bibcode 5899:2915815 5802:1363709 5590:6674426 5365:Bibcode 5287:2634039 5266:Bibcode 5208:Bibcode 5163:4751343 5142:Bibcode 5112:9246114 5069:5059716 5041:Bibcode 4898:Rall, W 4441:8461829 4401:8295969 4343:6492051 4326:: 160. 4021:4812417 3823:6596274 3783:5026557 3763:Bibcode 3712:6257554 3676:1392413 3619:neurons 3255:neurons 3171:History 3029:EOSFETs 2897:) were 2871:biofilm 2842:30–120 2812:110–130 2727:Squid ( 2683:Sponges 2679:mammals 2667:insects 2624:osmotic 2558:calcium 2481:calcium 2472:calcium 2291:tetanus 1952:Rushton 1948:Hodgkin 1918:neurite 1850:√ 1824:in the 1427:cations 1276:in the 964:nucleus 905:Ranvier 903:Node of 898:Nucleus 843:mitosis 808:Xenopus 787:voltage 745:In the 680:Calcium 612:cations 537:state. 236:neurons 228:voltage 140:insulin 134:of the 125:toward 88:neurons 11503:  11388:  11367:  11348:  11324:  11305:  11283:  11262:  11225:  11206:  10991:  10983:  10973:  10954:  10946:  10936:  10919:  10911:  10901:  10880:  10872:  10862:  10845:  10837:  10827:  10807:  10799:  10789:  10772:  10764:  10754:  10737:  10729:  10719:  10698:  10690:  10680:  10663:  10655:  10645:  10628:  10613:237280 10611:  10603:  10593:  10573:  10565:  10555:  10538:  10530:  10520:  10510:Koch C 10500:  10492:  10482:  10462:  10454:  10444:  10427:  10419:  10409:  10390:  10382:  10372:  10355:  10345:  10308:  10300:  10292:  10282:  10265:  10257:  10240:  10232:  10222:  10200:558128 10198:  10190:  10168:556863 10166:  10158:  10141:  10133:  10123:  10106:  10098:  10074:  10066:  10056:  10025:  10017:  9999:  9964:  9819:  9782:  9772:  9733:  9704:  9694:  9647:  9637:  9590:  9582:  9553:  9543:  9503:  9493:  9454:  9446:  9420:Nature 9403:  9395:  9360:  9350:  9311:  9301:  9259:  9251:  9216:  9208:  9182:Nature 9171:  9163:  9135:Nature 9114:  9106:  9077:  9069:  9043:Nature 9032:  9024:  8996:Nature 8975:  8967:  8941:Nature 8930:  8922:  8896:Nature 8885:  8842:  8834:  8808:Nature 8791:  8751:  8743:  8714:  8706:  8680:Nature 8660:  8650:  8624:Katz B 8585:  8575:  8533:  8493:393323 8491:  8483:  8448:  8440:  8405:  8397:  8362:335473 8360:  8350:  8325:  8315:  8276:  8266:  8219:  8184:  8174:  8127:  8117:  8051:  7994:  7986:  7951:  7916:  7881:  7840:  7832:  7797:  7787:  7729:  7721:  7688:130926 7686:  7651:  7616:  7608:  7568:  7533:  7525:  7487:  7479:  7444:  7403:  7395:  7360:  7352:  7317:  7282:  7272:  7233:  7223:  7192:  7140:  7102:  7094:  7059:  7051:  6999:  6989:  6947:  6937:  6901:  6891:  6849:  6820:  6753:  6743:  6674:  6635:  6627:  6592:  6584:  6529:  6519:  6488:  6478:  6442:  6432:  6375:  6367:  6341:Nature 6317:  6307:  6271:  6261:  6225:  6215:  6179:  6169:  6133:  6123:  6097:Katz B 6068:  6058:  6016:  6008:  5982:Nature 5949:  5941:  5897:  5889:  5850:  5809:  5799:  5716:  5708:  5597:  5587:  5506:  5496:  5410:  5385:  5294:  5284:  5226:  5170:  5160:  5110:  5102:  5067:  5059:  5033:Planta 5016:  4948:  4940:  4930:  4920:Koch C 4448:  4438:  4399:  4391:  4350:  4340:  4151:  4120:  4093:  4070:  4060:  4028:  4018:  3830:  3820:  3781:  3731:28 May 3710:  3683:  3673:  3609:These 3457:'s 3413:work. 3251:nerves 2836:80–110 2799:Frog ( 2788:80–104 2729:Loligo 2707:Animal 2687:phylum 2669:, and 2659:plants 2530:, and 2459:, and 2375:, and 2349:retina 2347:, the 2328:, and 2255:, and 2094:  2056:where 1772:shrimp 1758:, and 1744:myelin 1462:efflux 1377:closes 1305:Phases 1268:. The 1211:retina 1069:neuron 981:myelin 937:neuron 801:. The 759:neuron 687:anions 658:, and 600:sodium 481:, and 310:, and 175:sodium 148:spikes 146:" or " 35:neuron 11495:from 10882:51993 10090:[ 10037:Books 10023:S2CID 9962:S2CID 9817:S2CID 9731:S2CID 9588:S2CID 9452:S2CID 9401:S2CID 9257:S2CID 9214:S2CID 9169:S2CID 9112:S2CID 9075:S2CID 9030:S2CID 8973:S2CID 8928:S2CID 8840:S2CID 8749:S2CID 8712:S2CID 8531:S2CID 8489:S2CID 8446:S2CID 8403:S2CID 7992:S2CID 7838:S2CID 7727:S2CID 7614:S2CID 7531:S2CID 7485:S2CID 7401:S2CID 7358:S2CID 7138:S2CID 7100:S2CID 7057:S2CID 6847:S2CID 6818:S2CID 6633:S2CID 6590:S2CID 6384:(PDF) 6373:S2CID 6337:(PDF) 6014:S2CID 5947:S2CID 5895:S2CID 5714:S2CID 5108:S2CID 5065:S2CID 5002:(2). 4992:(PDF) 4397:S2CID 3779:S2CID 3751:(PDF) 3584:Notes 3259:cells 3217:frogs 3134:(the 2935:squid 2839:1–1.5 2825:Felis 2823:Cat ( 2818:7–30 2587:Plant 2500:atria 2424:tabun 2420:sarin 2389:of a 2357:heart 1822:axons 1373:opens 1278:heart 1183:touch 1179:smell 1022:axons 624:fires 86:like 11501:ISBN 11486:and 11386:ISBN 11365:ISBN 11346:ISBN 11322:ISBN 11303:ISBN 11281:ISBN 11260:PMID 11223:ISBN 11204:ISBN 11181:2010 11155:2013 11120:2010 11094:2010 11068:2010 10989:OCLC 10981:LCCN 10971:ISBN 10952:OCLC 10944:LCCN 10934:ISBN 10917:OCLC 10909:LCCN 10899:ISBN 10878:OCLC 10870:LCCN 10860:ISBN 10843:OCLC 10835:LCCN 10825:ISBN 10805:OCLC 10797:LCCN 10787:ISBN 10770:OCLC 10762:LCCN 10752:ISBN 10735:OCLC 10727:LCCN 10717:ISBN 10696:OCLC 10688:LCCN 10678:ISBN 10661:OCLC 10653:LCCN 10643:ISBN 10626:OCLC 10609:OCLC 10601:LCCN 10591:ISBN 10571:OCLC 10563:LCCN 10553:ISBN 10536:OCLC 10528:LCCN 10518:ISBN 10498:OCLC 10490:LCCN 10480:ISBN 10460:OCLC 10452:LCCN 10442:ISBN 10425:OCLC 10417:LCCN 10407:ISBN 10388:OCLC 10380:LCCN 10370:ISBN 10353:OCLC 10343:ISBN 10330:help 10306:OCLC 10298:LCCN 10290:ISSN 10280:ISBN 10263:OCLC 10255:LCCN 10238:OCLC 10230:LCCN 10220:ISBN 10196:OCLC 10188:LCCN 10164:OCLC 10156:LCCN 10139:OCLC 10131:LCCN 10121:ISBN 10104:OCLC 10096:LCCN 10072:OCLC 10064:LCCN 10054:ISBN 10015:PMID 9780:PMID 9702:PMID 9645:PMID 9580:PMID 9551:PMID 9501:PMID 9444:PMID 9393:PMID 9358:PMID 9309:PMID 9249:PMID 9206:PMID 9161:PMID 9104:PMID 9067:PMID 9022:PMID 8965:PMID 8920:PMID 8883:PMID 8832:PMID 8789:PMID 8741:PMID 8704:PMID 8658:PMID 8583:PMID 8481:PMID 8438:PMID 8395:PMID 8358:PMID 8348:ISBN 8323:PMID 8274:PMID 8217:PMID 8182:PMID 8125:PMID 8049:PMID 7984:PMID 7949:PMID 7914:PMID 7879:PMID 7830:PMID 7795:PMID 7785:ISBN 7719:PMID 7684:PMID 7649:PMID 7606:PMID 7566:PMID 7523:PMID 7477:PMID 7442:PMID 7393:PMID 7350:PMID 7315:PMID 7280:PMID 7231:PMID 7221:ISBN 7190:PMID 7092:PMID 7049:PMID 6997:PMID 6945:PMID 6899:PMID 6751:PMID 6672:PMID 6625:PMID 6582:PMID 6551:help 6527:PMID 6517:ISBN 6486:PMID 6440:PMID 6392:2019 6365:PMID 6315:PMID 6269:PMID 6223:PMID 6177:PMID 6131:PMID 6066:PMID 6006:PMID 5939:PMID 5887:PMID 5848:PMID 5807:PMID 5706:PMID 5595:PMID 5522:link 5504:OCLC 5494:ISBN 5408:ISBN 5383:PMID 5292:PMID 5224:PMID 5168:PMID 5100:ISSN 5057:PMID 5014:ISSN 4946:OCLC 4938:LCCN 4928:ISBN 4446:PMID 4389:PMID 4348:PMID 4149:ISBN 4118:ISBN 4091:ISBN 4068:OCLC 4058:ISBN 4026:PMID 3863:2017 3828:PMID 3733:2021 3708:PMID 3681:PMID 3438:and 3389:for 3365:and 3343:and 3207:are 3201:axon 3197:soma 3124:and 3063:and 3019:(10 2943:and 2909:and 2801:Rana 2743:0.75 2677:and 2589:and 2546:and 2430:and 2422:and 2387:axon 2293:and 2285:and 1950:and 1720:and 1393:and 1292:and 1221:and 1181:and 1173:and 1126:The 1043:and 944:soma 888:Axon 883:Soma 818:, a 695:alga 566:Key: 455:and 308:axon 298:and 123:axon 90:and 72:cell 27:axon 11537:at 11477:at 11468:at 11250:doi 11036:doi 10575:686 10007:doi 9954:doi 9927:doi 9904:doi 9857:doi 9809:doi 9770:PMC 9762:doi 9723:doi 9692:PMC 9684:doi 9635:PMC 9627:doi 9572:doi 9541:PMC 9533:doi 9491:PMC 9483:doi 9479:356 9436:doi 9424:450 9385:doi 9381:137 9348:PMC 9340:doi 9336:152 9299:PMC 9291:doi 9287:128 9241:doi 9198:doi 9186:409 9151:doi 9139:409 9096:doi 9059:doi 9047:402 9012:doi 9000:402 8957:doi 8945:423 8912:doi 8900:414 8875:doi 8863:280 8824:doi 8812:419 8781:doi 8769:266 8733:doi 8729:391 8696:doi 8684:260 8648:PMC 8640:doi 8636:108 8573:PMC 8565:doi 8523:doi 8473:doi 8430:doi 8387:doi 8375:222 8340:doi 8313:PMC 8305:doi 8264:PMC 8256:doi 8207:doi 8203:260 8172:PMC 8164:doi 8115:PMC 8107:doi 8103:117 8076:doi 8041:doi 7976:doi 7941:doi 7906:doi 7869:doi 7822:doi 7818:166 7777:doi 7754:doi 7711:doi 7707:124 7676:doi 7672:426 7641:doi 7598:doi 7558:doi 7554:366 7515:doi 7469:doi 7432:doi 7385:doi 7342:doi 7338:310 7307:doi 7270:PMC 7262:doi 7213:doi 7180:doi 7168:134 7130:doi 7084:doi 7039:doi 6987:PMC 6979:doi 6975:115 6935:PMC 6927:doi 6923:112 6889:PMC 6881:doi 6877:108 6839:doi 6835:245 6810:doi 6806:244 6783:doi 6779:127 6741:PMC 6733:doi 6702:doi 6698:127 6664:doi 6660:202 6617:doi 6574:doi 6509:doi 6476:PMC 6468:doi 6430:PMC 6422:doi 6357:doi 6345:440 6305:PMC 6297:doi 6293:117 6259:PMC 6251:doi 6247:116 6213:PMC 6205:doi 6201:116 6167:PMC 6159:doi 6155:116 6121:PMC 6113:doi 6109:116 6056:PMC 6048:doi 5998:doi 5986:188 5965:doi 5931:doi 5927:149 5879:doi 5797:PMC 5787:doi 5698:doi 5585:PMC 5577:doi 5373:doi 5282:PMC 5274:doi 5216:doi 5158:PMC 5150:doi 5092:doi 5049:doi 5037:226 5004:doi 4900:in 4436:PMC 4428:doi 4424:126 4379:doi 4338:PMC 4328:doi 4016:PMC 4006:doi 3818:PMC 3810:doi 3771:doi 3671:PMC 3663:doi 3659:117 3265:). 3219:by 3059:by 2815:1.0 2794:10 2791:0.4 2785:−70 2770:30 2767:1.0 2764:100 2761:−70 2746:35 2740:120 2737:−60 2351:of 1826:cat 1730:In 1437:or 1255:In 1195:ear 1161:In 1093:at 960:LTP 830:or 630:or 376:by 338:or 62:An 11572:: 11546:, 11412:10 11258:. 11246:88 11244:. 11240:. 11141:. 11137:. 11034:. 11022:. 11018:. 10987:. 10979:. 10950:. 10942:. 10915:. 10907:. 10876:. 10868:. 10841:. 10833:. 10803:. 10795:. 10768:. 10760:. 10733:. 10725:. 10711:. 10694:. 10686:. 10659:. 10651:. 10607:. 10599:. 10569:. 10561:. 10534:. 10526:. 10496:. 10488:. 10458:. 10450:. 10423:. 10415:. 10386:. 10378:. 10351:. 10322:: 10320:}} 10316:{{ 10304:. 10296:. 10288:. 10261:. 10236:. 10228:. 10194:. 10162:. 10137:. 10129:. 10102:. 10070:. 10062:. 10021:. 10013:. 10005:. 9995:. 9985:10 9983:. 9960:. 9950:13 9948:. 9923:37 9921:. 9915:* 9900:21 9898:. 9894:. 9877:14 9875:. 9866:* 9851:. 9842:* 9835:. 9826:* 9815:. 9807:. 9797:40 9795:. 9789:* 9778:. 9768:. 9758:32 9756:. 9752:. 9729:. 9719:50 9717:. 9711:* 9700:. 9690:. 9682:. 9670:. 9666:. 9643:. 9633:. 9625:. 9615:35 9613:. 9609:. 9586:. 9578:. 9568:66 9566:. 9560:* 9549:. 9539:. 9529:43 9527:. 9523:. 9517:* 9499:. 9489:. 9477:. 9473:. 9450:. 9442:. 9434:. 9422:. 9399:. 9391:. 9379:. 9356:. 9346:. 9334:. 9330:. 9307:. 9297:. 9285:. 9281:. 9255:. 9247:. 9237:23 9235:. 9212:. 9204:. 9196:. 9184:. 9178:* 9167:. 9159:. 9149:. 9137:. 9133:. 9110:. 9102:. 9092:80 9090:. 9084:* 9073:. 9065:. 9057:. 9045:. 9039:* 9028:. 9020:. 9010:. 8998:. 8994:. 8971:. 8963:. 8955:. 8943:. 8937:* 8926:. 8918:. 8910:. 8898:. 8892:* 8881:. 8873:. 8861:. 8838:. 8830:. 8822:. 8810:. 8787:. 8779:. 8767:. 8758:* 8747:. 8739:. 8727:. 8721:* 8710:. 8702:. 8694:. 8682:. 8656:. 8646:. 8634:. 8630:. 8622:, 8604:. 8581:. 8571:. 8561:22 8559:. 8555:. 8529:. 8519:92 8517:. 8513:. 8487:. 8479:. 8469:23 8467:. 8444:. 8436:. 8426:20 8424:. 8401:. 8393:. 8385:. 8373:. 8367:* 8356:. 8346:. 8332:* 8321:. 8311:. 8301:48 8299:. 8295:. 8272:. 8262:. 8254:. 8244:96 8242:. 8238:. 8215:. 8201:. 8197:. 8191:* 8180:. 8170:. 8162:. 8152:14 8150:. 8146:. 8123:. 8113:. 8101:. 8097:. 8072:35 8070:. 8047:. 8037:34 8035:. 8016:. 7990:. 7982:. 7972:25 7970:. 7947:. 7937:10 7935:. 7912:. 7900:. 7877:. 7865:30 7863:. 7859:. 7836:. 7828:. 7816:. 7793:. 7783:. 7750:28 7748:. 7725:. 7717:. 7705:. 7682:. 7670:. 7647:. 7637:11 7635:. 7612:. 7604:. 7594:84 7592:. 7578:^ 7564:. 7552:. 7529:. 7521:. 7511:13 7509:. 7497:^ 7483:. 7475:. 7465:33 7463:. 7440:. 7428:99 7426:. 7422:. 7399:. 7391:. 7381:28 7379:. 7356:. 7348:. 7336:. 7313:. 7303:82 7301:. 7278:. 7268:. 7258:12 7256:. 7252:. 7229:. 7219:. 7188:. 7178:. 7166:. 7162:. 7136:. 7124:. 7098:. 7090:. 7080:10 7078:. 7055:. 7047:. 7037:. 7027:17 7025:. 7021:. 7009:^ 6995:. 6985:. 6973:. 6969:. 6943:. 6933:. 6921:. 6917:. 6908:* 6897:. 6887:. 6875:. 6871:. 6845:. 6833:. 6827:* 6816:. 6804:. 6777:. 6749:. 6739:. 6727:. 6723:. 6696:. 6684:^ 6670:. 6658:. 6654:. 6631:. 6623:. 6613:17 6611:. 6588:. 6580:. 6568:. 6543:: 6541:}} 6537:{{ 6525:. 6515:. 6484:. 6474:. 6464:90 6462:. 6458:. 6449:* 6438:. 6428:. 6418:90 6416:. 6412:. 6371:. 6363:. 6355:. 6343:. 6339:. 6313:. 6303:. 6291:. 6287:. 6278:* 6267:. 6257:. 6245:. 6241:. 6232:* 6221:. 6211:. 6199:. 6195:. 6186:* 6175:. 6165:. 6153:. 6149:. 6140:* 6129:. 6119:. 6107:. 6103:. 6078:^ 6064:. 6054:. 6044:27 6042:. 6038:. 6026:^ 6012:. 6004:. 5996:. 5984:. 5945:. 5937:. 5925:. 5893:. 5885:. 5875:86 5873:. 5854:. 5842:. 5838:. 5826:^ 5805:. 5795:. 5781:. 5777:. 5750:, 5712:. 5704:. 5692:. 5688:. 5670:, 5660:, 5643:* 5637:, 5627:, 5593:. 5583:. 5573:26 5571:. 5567:. 5518:}} 5514:{{ 5502:. 5474:; 5470:; 5454:, 5381:. 5371:. 5361:26 5359:. 5355:. 5312:, 5290:. 5280:. 5272:. 5260:. 5256:. 5222:. 5214:. 5204:23 5202:. 5180:^ 5166:. 5156:. 5148:. 5138:26 5136:. 5132:. 5120:^ 5106:. 5098:. 5086:. 5063:. 5055:. 5047:. 5035:. 5012:. 5000:54 4998:. 4994:. 4944:. 4936:. 4904:, 4890:^ 4881:, 4773:^ 4730:^ 4709:^ 4690:^ 4671:^ 4630:, 4593:^ 4506:^ 4444:. 4434:. 4422:. 4418:. 4395:. 4387:. 4375:16 4373:. 4369:. 4346:. 4336:. 4324:13 4322:. 4318:. 4299:. 4212:^ 4187:^ 4126:. 4066:. 4038:^ 4024:. 4014:. 4000:. 3996:. 3934:^ 3919:^ 3898:^ 3871:^ 3849:. 3826:. 3816:. 3806:38 3804:. 3800:. 3777:. 3769:. 3759:39 3757:. 3753:. 3704:40 3702:. 3679:. 3669:. 3657:. 3653:. 3516:. 3246:. 3021:nm 2873:. 2865:. 2681:. 2661:, 2645:. 2572:. 2534:. 2526:, 2522:, 2455:, 2451:, 2434:. 2371:, 2359:. 2324:, 2251:, 2247:, 2205:CV 2064:, 1840:∝ 1583:Na 1562:. 1537:Na 1523:Na 1509:Na 1441:. 1433:, 1301:. 1237:. 1197:, 1101:. 1012:. 757:A 742:. 654:, 650:, 634:. 542:Na 477:, 468:Na 461:Na 306:, 262:. 191:. 49:. 11507:. 11460:) 11452:( 11447:) 11416:) 11409:( 11394:. 11373:. 11354:. 11330:. 11311:. 11289:. 11266:. 11252:: 11231:. 11212:. 11183:. 11157:. 11143:7 11122:. 11096:. 11070:. 11044:. 11038:: 11030:: 11024:1 10995:. 10958:. 10923:. 10884:. 10849:. 10811:. 10776:. 10741:. 10702:. 10667:. 10632:. 10615:. 10577:. 10542:. 10504:. 10466:. 10431:. 10394:. 10359:. 10332:) 10312:. 10269:. 10244:. 10202:. 10170:. 10145:. 10110:. 10078:. 10029:. 10009:: 9991:: 9968:. 9956:: 9933:. 9929:: 9912:. 9906:: 9863:. 9859:: 9853:6 9837:2 9823:. 9811:: 9803:: 9786:. 9764:: 9737:. 9725:: 9708:. 9686:: 9678:: 9672:1 9651:. 9629:: 9621:: 9594:. 9574:: 9557:. 9535:: 9507:. 9485:: 9458:. 9438:: 9430:: 9407:. 9387:: 9364:. 9342:: 9315:. 9293:: 9263:. 9243:: 9220:. 9200:: 9192:: 9175:. 9153:: 9145:: 9118:. 9098:: 9081:. 9061:: 9053:: 9036:. 9014:: 9006:: 8979:. 8959:: 8951:: 8934:. 8914:: 8906:: 8889:. 8877:: 8869:: 8846:. 8826:: 8818:: 8795:. 8783:: 8775:: 8755:. 8735:: 8718:. 8698:: 8690:: 8664:. 8642:: 8606:9 8589:. 8567:: 8537:. 8525:: 8495:. 8475:: 8452:. 8432:: 8409:. 8389:: 8381:: 8364:. 8342:: 8329:. 8307:: 8280:. 8258:: 8250:: 8223:. 8209:: 8188:. 8166:: 8158:: 8131:. 8109:: 8082:. 8078:: 8055:. 8043:: 8018:3 7998:. 7978:: 7955:. 7943:: 7920:. 7908:: 7885:. 7871:: 7844:. 7824:: 7801:. 7779:: 7760:. 7756:: 7733:. 7713:: 7690:. 7678:: 7655:. 7643:: 7620:. 7600:: 7572:. 7560:: 7537:. 7517:: 7491:. 7471:: 7448:. 7434:: 7407:. 7387:: 7364:. 7344:: 7321:. 7309:: 7286:. 7264:: 7237:. 7215:: 7196:. 7182:: 7174:: 7144:. 7132:: 7126:7 7106:. 7086:: 7063:. 7041:: 7033:: 7003:. 6981:: 6951:. 6929:: 6905:. 6883:: 6853:. 6841:: 6824:. 6812:: 6789:. 6785:: 6757:. 6735:: 6729:7 6708:. 6704:: 6678:. 6666:: 6639:. 6619:: 6596:. 6576:: 6570:4 6553:) 6533:. 6511:: 6492:. 6470:: 6446:. 6424:: 6394:. 6359:: 6351:: 6321:. 6299:: 6275:. 6253:: 6229:. 6207:: 6183:. 6161:: 6137:. 6115:: 6072:. 6050:: 6020:. 6000:: 5992:: 5967:: 5953:. 5933:: 5901:. 5881:: 5844:7 5813:. 5789:: 5783:4 5720:. 5700:: 5694:8 5614:. 5601:. 5579:: 5553:. 5524:) 5510:. 5478:. 5458:. 5441:. 5416:. 5389:. 5375:: 5367:: 5341:. 5298:. 5276:: 5268:: 5262:2 5230:. 5218:: 5210:: 5174:. 5152:: 5144:: 5114:. 5094:: 5088:4 5071:. 5051:: 5043:: 5020:. 5006:: 4952:. 4452:. 4430:: 4403:. 4381:: 4354:. 4330:: 4303:. 4274:. 4157:. 4099:. 4074:. 4032:. 4008:: 4002:6 3865:. 3834:. 3812:: 3785:. 3773:: 3765:: 3735:. 3714:. 3687:. 3665:: 3625:. 3471:. 3454:g 3449:m 3447:C 3442:m 3440:V 3435:m 3433:I 3211:. 3205:B 3185:A 3017:Å 3000:m 2998:V 2993:m 2991:V 2986:m 2984:V 2980:C 2976:C 2968:C 2966:I 2937:( 2827:) 2803:) 2779:) 2755:) 2731:) 2311:. 2228:λ 2223:m 2221:r 2212:i 2210:r 2201:Q 2194:m 2192:c 2187:m 2185:r 2158:r 2152:m 2148:r 2141:= 2112:m 2108:c 2102:m 2098:r 2091:= 2074:x 2070:t 2066:t 2062:x 2060:( 2058:V 2041:V 2030:2 2026:x 2017:V 2012:2 1999:2 1991:= 1985:t 1977:V 1931:i 1929:r 1924:e 1922:r 1853:d 1848:∝ 1846:v 1842:d 1838:v 1834:d 1830:v 1634:K 1631:E 1626:m 1624:V 1607:m 1605:V 1601:K 1598:E 1593:m 1591:V 1580:E 1575:m 1573:V 1543:m 1541:V 1534:E 1529:m 1527:V 1520:E 1515:m 1513:V 1506:E 1501:m 1499:V 1494:m 1492:V 1487:m 1485:V 1475:m 1473:V 1469:K 1466:E 1422:m 1420:V 1383:m 1381:V 1369:m 1367:V 1362:m 1360:V 1351:m 1349:V 1344:m 1342:E 1333:m 1331:V 706:( 545:V 517:→ 513:→ 509:→ 471:V 464:V 399:) 393:( 388:) 384:( 370:.

Index


axon
membrane
neuron
ion channels
threshold potential
depolarization
Repolarization
axon terminal
membrane potential
cell
depolarization
excitable cells
animal cells
neurons
muscle cells
plant cells
endocrine
pancreatic beta cells
anterior pituitary gland
cell–cell communication
saltatory conduction
axon
synaptic boutons
beta cells
pancreas
insulin
voltage-gated ion channels
plasma membrane
resting potential

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.