Knowledge

Cladogram

Source ๐Ÿ“

78:. There are many shapes of cladograms but they all have lines that branch off from other lines. The lines can be traced back to where they branch off. These branching off points represent a hypothetical ancestor (not an actual entity) which can be inferred to exhibit the traits shared among the terminal taxa above it. This hypothetical ancestor might then provide clues about the order of evolution of various features, adaptation, and other evolutionary narratives about ancestors. Although traditionally such cladograms were generated largely on the basis of morphological characters, 338:
algorithms, such as UPGMA and Neighbor-Joining, group by overall similarity, and treat both synapomorphies and symplesiomorphies as evidence of grouping, The resulting diagrams are phenograms, not cladograms, Similarly, the results of model-based methods (Maximum Likelihood or Bayesian approaches) that take into account both branching order and "branch length," count both synapomorphies and autapomorphies as evidence for or against grouping, The diagrams resulting from those sorts of analysis are not cladograms, either.
39: 2123: 204: 31: 157: 271:. If a bird, bat, and a winged insect were scored for the character, "presence of wings", a homoplasy would be introduced into the dataset, and this could potentially confound the analysis, possibly resulting in a false hypothesis of relationships. Of course, the only reason a homoplasy is recognizable in the first place is because there are other characters that imply a pattern of relationships that reveal its homoplastic distribution. 285: 104: 239:. States shared between the outgroup and some members of the in-group are symplesiomorphies; states that are present only in a subset of the in-group are synapomorphies. Note that character states unique to a single terminal (autapomorphies) do not provide evidence of grouping. The choice of an outgroup is a crucial step in cladistic analysis because different outgroups can produce trees with profoundly different topologies. 1800: 256:
should not be included as a character in a phylogenetic analysis as they do not contribute anything to our understanding of relationships. However, homoplasy is often not evident from inspection of the character itself (as in DNA sequence, for example), and is then detected by its incongruence (unparsimonious distribution) on a most-parsimonious cladogram. Note that characters that are homoplastic may still contain
2135: 1706: 214:(as shown in this heuristic example), but must be inferred from the pattern of shared states observed in the terminals. Given that each terminal in this example has a unique state, in reality we would not be able to infer anything conclusive about the ancestral states (other than the fact that the existence of unobserved states "A" and "C" would be unparsimonious inferences!) 466:
Besides reflecting the amount of homoplasy, the metric also reflects the number of taxa in the dataset, (to a lesser extent) the number of characters in a dataset, the degree to which each character carries phylogenetic information, and the fashion in which additive characters are coded, rendering it
255:
than common ancestry. The two main types of homoplasy are convergence (evolution of the "same" character in at least two distinct lineages) and reversion (the return to an ancestral character state). Characters that are obviously homoplastic, such as white fur in different lineages of Arctic mammals,
665:
The retention index (RI) was proposed as an improvement of the CI "for certain applications" This metric also purports to measure of the amount of homoplasy, but also measures how well synapomorphies explain the tree. It is calculated taking the (maximum number of changes on a tree minus the number
337:
A cladogram is the diagrammatic result of an analysis, which groups taxa on the basis of synapomorphies alone. There are many other phylogenetic algorithms that treat data somewhat differently, and result in phylogenetic trees that look like cladograms but are not cladograms. For example, phenetic
406:
Because of the astronomical number of possible cladograms, algorithms cannot guarantee that the solution is the overall best solution. A nonoptimal cladogram will be selected if the program settles on a local minimum rather than the desired global minimum. To help solve this problem, many cladogram
431:
The incongruence length difference test (ILD) is a measurement of how the combination of different datasets (e.g. morphological and molecular, plastid and nuclear genes) contributes to a longer tree. It is measured by first calculating the total tree length of each partition and summing them. Then
678:
This measures the amount of homoplasy observed on a tree relative to the maximum amount of homoplasy that could theoretically be present โ€“ 1 − (observed homoplasy excess) / (maximum homoplasy excess). A value of 1 indicates no homoplasy; 0 represents as much homoplasy as there would be in a
399:
Algorithms that perform optimization tasks (such as building cladograms) can be sensitive to the order in which the input data (the list of species and their characteristics) is presented. Inputting the data in various orders can cause the same algorithm to produce different "best" cladograms. In
454:
The consistency index (CI) measures the consistency of a tree to a set of data โ€“ a measure of the minimum amount of homoplasy implied by the tree. It is calculated by counting the minimum number of changes in a dataset and dividing it by the actual number of changes needed for the cladogram. A
669:
The rescaled consistency index (RC) is obtained by multiplying the CI by the RI; in effect this stretches the range of the CI such that its minimum theoretically attainable value is rescaled to 0, with its maximum remaining at 1. The homoplasy index (HI) is simply 1 − CI.
365:
Some algorithms are useful only when the characteristic data are molecular (DNA, RNA); other algorithms are useful only when the characteristic data are morphological. Other algorithms can be used when the characteristic data includes both molecular and morphological data.
69:
because it does not show how ancestors are related to descendants, nor does it show how much they have changed, so many differing evolutionary trees can be consistent with the same cladogram. A cladogram uses lines that branch off in different directions ending at a
361:
In general, cladogram generation algorithms must be implemented as computer programs, although some algorithms can be performed manually when the data sets are modest (for example, just a few species and a couple of characteristics).
432:
replicates are made by making randomly assembled partitions consisting of the original partitions. The lengths are summed. A p value of 0.01 is obtained for 100 replicates if 99 replicates have longer combined tree lengths.
173:, unicellular, etc.) or molecular (DNA, RNA, or other genetic information). Prior to the advent of DNA sequencing, cladistic analysis primarily used morphological data. Behavioral data (for animals) may also be used. 655: 1658:
Hoyal Cuthill, Jennifer (2015). "The size of the character state space affects the occurrence and detection of homoplasy: Modelling the probability of incompatibility for unordered phylogenetic characters".
474:
occupies a range from 1 to 1/ in binary characters with an even state distribution; its minimum value is larger when states are not evenly spread. In general, for a binary or non-binary character with
210:
in cladistics. This diagram indicates "A" and "C" as ancestral states, and "B", "D" and "E" as states that are present in terminal taxa. Note that in practice, ancestral conditions are not known
679:
fully random dataset, and negative values indicate more homoplasy still (and tend only to occur in contrived examples). The HER is presented as the best measure of homoplasy currently available.
184:
has become a more and more popular way to infer phylogenetic hypotheses. Using a parsimony criterion is only one of several methods to infer a phylogeny from molecular data. Approaches such as
446:
Some measures attempt to measure the amount of homoplasy in a dataset with reference to a tree, though it is not necessarily clear precisely what property these measures aim to quantify
188:, which incorporate explicit models of sequence evolution, are non-Hennigian ways to evaluate sequence data. Another powerful method of reconstructing phylogenies is the use of genomic 418:
is the direction of the base (or root) of a rooted phylogenetic tree or cladogram. A basal clade is the earliest clade (of a given taxonomic rank) to branch within a larger clade.
403:
Using different algorithms on a single data set can sometimes yield different "best" cladograms, because each algorithm may have a unique definition of what is "best".
513: 235:), because only synapomorphic character states provide evidence of grouping. This determination is usually done by comparison to the character states of one or more 1480:
Archie, J. W. (1989). "Homoplasy Excess Ratios: New Indices for Measuring Levels of Homoplasy in Phylogenetic Systematics and a Critique of the Consistency Index".
196:
that plagues sequence data. They are also generally assumed to have a low incidence of homoplasies because it was once thought that their integration into the
1522:"A formula for maximum possible steps in multistate characters: Isolating matrix parameter effects on measures of evolutionary convergence" 1448:
Archie, J. W.; Felsenstein, J. (1993). "The Number of Evolutionary Steps on Random and Minimum Length Trees for Random Evolutionary Data".
666:
of changes on the tree), and dividing by the (maximum number of changes on the tree minus the minimum number of changes in the dataset).
522: 263:
A well-known example of homoplasy due to convergent evolution would be the character, "presence of wings". Although the wings of birds,
1738: 169:
The characteristics used to create a cladogram can be roughly categorized as either morphological (synapsid skull, warm blooded,
918: 354:
to measure how consistent a candidate cladogram is with the data. Most cladogram algorithms use the mathematical techniques of
1269: 1187: 1078: 1024: 969: 944: 880:"Tree thinking, time and topology: Comments on the interpretation of tree diagrams in evolutionary/phylogenetic systematics" 1933: 396:
for a specific kind of cladogram generation algorithm and sometimes as an umbrella term for all phylogenetic algorithms.
1893: 1394: 1361: 393: 378: 324: 143: 1973: 90:
are now very commonly used in the generation of cladograms, either on their own or in combination with morphology.
1978: 1911: 806: 2139: 1988: 1918: 306: 125: 793:
Dayrat, Benoรฎt (Summer 2005). "Ancestor-Descendant Relationships and the Reconstruction of the Tree of Life".
1094:
Kalersjo, Mari; Albert, Victor A.; Farris, James S. (1999). "Homoplasy Increases Phylogenetic Structure".
1898: 1805: 1761: 1731: 1710: 87: 355: 302: 121: 17: 2088: 2014: 1336:
Archie, James W. (1996). "Measures of Homoplasy". In Sanderson, Michael J.; Hufford, Larry (eds.).
1968: 1766: 1058: 295: 114: 2166: 2127: 1851: 1724: 1261: 1255: 1070: 189: 477: 2103: 1781: 698: 415: 181: 1345: 1337: 1285:
Nixon, Kevin C. (1999). "The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis".
1062: 400:
these situations, the user should input the data in various orders and compare the results.
1940: 1846: 1668: 1569:
Sanderson, M. J.; Donoghue, M. J. (1989). "Patterns of variations in levels of homoplasy".
1413:
Kluge, A. G.; Farris, J. S. (1969). "Quantitative Phyletics and the Evolution of Anurans".
1377:
Chang, Joseph T.; Kim, Junhyong (1996). "The Measurement of Homoplasy: A Stochastic View".
1212: 441: 351: 267:, and insects serve the same function, each evolved independently, as can be seen by their 193: 75: 8: 1983: 1865: 408: 257: 1672: 1216: 998: 1906: 1860: 1776: 1640: 1628: 1586: 1551: 1497: 1430: 1386: 1353: 1310: 1298: 1236: 1160: 1111: 1107: 910: 818: 810: 775: 767: 735: 718: 386: 382: 185: 856: 426: 2161: 1834: 1684: 1632: 1594: 1543: 1538: 1521: 1390: 1357: 1302: 1265: 1228: 1183: 1152: 1074: 1063: 1020: 965: 940: 902: 898: 860: 840: 66: 1644: 1555: 1314: 1164: 1115: 914: 879: 822: 779: 411:
approach to increase the likelihood that the selected cladogram is the optimal one.
1923: 1877: 1676: 1624: 1578: 1533: 1489: 1457: 1422: 1382: 1349: 1294: 1240: 1220: 1142: 1103: 994: 894: 852: 802: 759: 750:
Foote, Mike (Spring 1996). "On the Probability of Ancestors in the Fossil Record".
730: 374: 1338: 2024: 1615:
Farris, J. S. (1989). "The retention index and the rescaled consistency index".
200:
was entirely random; this seems at least sometimes not to be the case, however.
1998: 1680: 177: 51: 763: 2155: 1993: 1963: 1870: 1747: 1520:
Hoyal Cuthill, Jennifer F.; Braddy, Simon J.; Donoghue, Philip C. J. (2010).
688: 370: 27:
Diagram used to show relations among groups of organisms with common origins
2098: 2044: 2039: 2034: 2019: 1827: 1822: 1688: 1636: 1598: 1547: 1461: 1306: 1156: 1040: 1012: 906: 864: 231: 225: 1232: 251:
is a character state that is shared by two or more taxa due to some cause
2093: 1786: 843:(2001). "Intraspecific gene genealogies: Trees grafting into networks". 1771: 1590: 1501: 1434: 814: 771: 693: 369:
Algorithms for cladograms or other types of phylogenetic trees include
347: 309: in this section. Unsourced material may be challenged and removed. 203: 128: in this section. Unsourced material may be challenged and removed. 62: 38: 1147: 1130: 156: 2108: 2072: 2067: 2062: 1957: 1224: 455:
consistency index can also be calculated for an individual character
248: 207: 170: 30: 1582: 1493: 1426: 284: 103: 1203:
Stewart, Caro-Beth (1993). "The powers and pitfalls of parsimony".
650:{\displaystyle (n.states-1)/(n.taxa-\lceil n.taxa/n.states\rceil )} 427:
Incongruence length difference test (or partition homogeneity test)
65:
to show relations among organisms. A cladogram is not, however, an
350:
available to identify the "best" cladogram. Most algorithms use a
268: 1716: 223:
Researchers must decide which character states are "ancestral" (
1799: 1705: 197: 1928: 1856: 985:
Wenzel, John W. (1992). "Behavioral homology and phylogeny".
71: 1519: 807:
10.1666/0094-8373(2005)031[0347:aratro]2.0.co;2
723:
Journal of Zoological Systematics and Evolutionary Research
1180:
Cladistics: The Theory and Practice of Parsimony Analysis
264: 83: 79: 192:, which are thought to be less prone to the problem of 164: 525: 480: 1795: 1610: 1608: 1475: 1473: 1471: 1093: 218: 1408: 1406: 937:
Biological Systematics: Principles and Applications
649: 507: 1605: 1568: 1515: 1513: 1511: 1468: 1447: 962:Techniques in Molecular Systematics and Evolution 719:"Cladistic analysis or cladistic classification?" 34:A horizontal cladogram, with the root to the left 2153: 1403: 42:Two vertical cladograms, the root at the bottom 1508: 838: 1732: 1657: 1330: 1328: 1326: 1324: 1257:Cladistics: A Practical Course in Systematics 1057: 641: 591: 1412: 1739: 1725: 1321: 274: 1537: 1146: 734: 673: 325:Learn how and when to remove this message 144:Learn how and when to remove this message 93: 1376: 1177: 202: 155: 37: 29: 1202: 959: 14: 2154: 1614: 1479: 1335: 1131:"What is a cladogram and what is not?" 1128: 1065:Developmental Plasticity and Evolution 1039: 1011: 984: 953: 877: 792: 435: 341: 1720: 1284: 1253: 978: 934: 871: 786: 749: 2134: 834: 832: 743: 716: 449: 307:adding citations to reliable sources 278: 126:adding citations to reliable sources 97: 999:10.1146/annurev.es.23.110192.002045 710: 165:Molecular versus morphological data 24: 1629:10.1111/j.1096-0031.1989.tb00573.x 1299:10.1111/j.1096-0031.1999.tb00277.x 1108:10.1111/j.1096-0031.1999.tb00400.x 736:10.1111/j.1439-0469.1974.tb00160.x 660: 392:Biologists sometimes use the term 61:"character") is a diagram used in 25: 2178: 1746: 1698: 928: 845:Trends in Ecology & Evolution 829: 219:Plesiomorphies and synapomorphies 2133: 2122: 2121: 1974:Phylogenetic comparative methods 1798: 1704: 1539:10.1111/j.1096-0031.2009.00270.x 1387:10.1016/b978-012618030-5/50009-5 1354:10.1016/B978-012618030-5/50008-3 924:from the original on 2017-09-21. 899:10.1111/j.1096-0031.2012.00423.x 283: 102: 1979:Phylogenetic niche conservatism 1651: 1562: 1441: 1370: 1278: 1247: 1196: 1171: 1122: 1087: 1069:. Oxford Univ. Press. pp.  1051: 1047:. University of Illinois Press. 1033: 294:needs additional citations for 180:has become cheaper and easier, 113:needs additional citations for 1661:Journal of Theoretical Biology 1450:Theoretical Population Biology 1260:. Oxford Univ. Press. p.  1005: 644: 567: 559: 526: 242: 74:, a group of organisms with a 13: 1: 857:10.1016/S0169-5347(00)02026-7 704: 421: 1129:Brower, Andrew V.Z. (2016). 7: 1899:Phylogenetic reconciliation 1806:Evolutionary biology portal 1762:Computational phylogenetics 1182:. Oxford University Press. 682: 519:occupies a range from 1 to 88:computational phylogenetics 10: 2183: 1681:10.1016/j.jtbi.2014.10.033 935:Schuh, Randall T. (2000). 439: 2117: 2089:Phylogenetic nomenclature 2081: 2055: 2007: 1949: 1886: 1815: 1793: 1754: 764:10.1017/S0094837300016146 229:) and which are derived ( 1059:West-Eberhard, Mary Jane 1045:Phylogenetic Systematics 508:{\displaystyle n.states} 1969:Molecular phylogenetics 1919:Distance-matrix methods 1767:Molecular phylogenetics 275:What is not a cladogram 190:retrotransposon markers 1989:Phylogenetics software 1903:Probabilistic methods 1852:Long branch attraction 1462:10.1006/tpbi.1993.1003 1178:Kitching, Ian (1998). 878:Podani, Jรกnos (2013). 674:Homoplasy Excess Ratio 651: 509: 215: 161: 94:Generating a cladogram 43: 35: 1782:Evolutionary taxonomy 1254:Foley, Peter (1993). 1017:Molecular Systematics 987:Annu. Rev. Ecol. Syst 960:DeSalle, Rob (2002). 699:Basal (phylogenetics) 652: 510: 440:Further information: 206: 182:molecular systematics 159: 41: 33: 1941:Three-taxon analysis 1847:Phylogenetic network 1713:at Wikimedia Commons 1381:. pp. 189โ€“203. 717:Mayr, Ernst (2009). 523: 478: 442:Convergent evolution 303:improve this article 122:improve this article 86:sequencing data and 76:last common ancestor 1984:Phylogenetic signal 1673:2015JThBi.366...24H 1217:1993Natur.361..603S 467:unfit for purpose. 436:Measuring homoplasy 409:simulated annealing 342:Cladogram selection 258:phylogenetic signal 1912:Bayesian inference 1907:Maximum likelihood 1482:Systematic Zoology 1415:Systematic Zoology 841:Crandall, Keith A. 647: 505: 387:Bayesian inference 383:maximum likelihood 358:and minimization. 346:There are several 216: 186:maximum likelihood 162: 160:Cladogram of birds 44: 36: 2149: 2148: 1894:Maximum parsimony 1887:Inference methods 1835:Phylogenetic tree 1709:Media related to 1271:978-0-19-857766-9 1189:978-0-19-850138-1 1148:10.1111/cla.12144 1080:978-0-19-512235-0 1026:978-0-87893-282-5 971:978-3-7643-6257-7 946:978-0-8014-3675-8 450:Consistency index 407:algorithms use a 335: 334: 327: 154: 153: 146: 67:evolutionary tree 16:(Redirected from 2174: 2137: 2136: 2125: 2124: 1924:Neighbor-joining 1878:Ghost population 1808: 1803: 1802: 1741: 1734: 1727: 1718: 1717: 1708: 1693: 1692: 1655: 1649: 1648: 1612: 1603: 1602: 1577:(8): 1781โ€“1795. 1566: 1560: 1559: 1541: 1517: 1506: 1505: 1477: 1466: 1465: 1445: 1439: 1438: 1410: 1401: 1400: 1374: 1368: 1367: 1343: 1332: 1319: 1318: 1282: 1276: 1275: 1251: 1245: 1244: 1225:10.1038/361603a0 1200: 1194: 1193: 1175: 1169: 1168: 1150: 1126: 1120: 1119: 1091: 1085: 1084: 1068: 1055: 1049: 1048: 1037: 1031: 1030: 1009: 1003: 1002: 982: 976: 975: 957: 951: 950: 932: 926: 925: 923: 884: 875: 869: 868: 836: 827: 826: 790: 784: 783: 747: 741: 740: 738: 714: 656: 654: 653: 648: 616: 566: 514: 512: 511: 506: 375:neighbor-joining 330: 323: 319: 316: 310: 287: 279: 149: 142: 138: 135: 129: 106: 98: 21: 2182: 2181: 2177: 2176: 2175: 2173: 2172: 2171: 2152: 2151: 2150: 2145: 2113: 2077: 2051: 2025:Symplesiomorphy 2003: 1945: 1882: 1811: 1804: 1797: 1791: 1755:Relevant fields 1750: 1745: 1701: 1696: 1656: 1652: 1613: 1606: 1583:10.2307/2409392 1567: 1563: 1518: 1509: 1494:10.2307/2992286 1478: 1469: 1446: 1442: 1427:10.2307/2412407 1411: 1404: 1397: 1375: 1371: 1364: 1333: 1322: 1283: 1279: 1272: 1252: 1248: 1211:(6413): 603โ€“7. 1201: 1197: 1190: 1176: 1172: 1127: 1123: 1092: 1088: 1081: 1056: 1052: 1038: 1034: 1027: 1010: 1006: 983: 979: 972: 958: 954: 947: 933: 929: 921: 882: 876: 872: 839:Posada, David; 837: 830: 791: 787: 748: 744: 715: 711: 707: 685: 676: 663: 661:Retention index 612: 562: 524: 521: 520: 518: 479: 476: 475: 473: 462: 452: 444: 438: 429: 424: 344: 331: 320: 314: 311: 300: 288: 277: 245: 221: 167: 150: 139: 133: 130: 119: 107: 96: 28: 23: 22: 15: 12: 11: 5: 2180: 2170: 2169: 2164: 2147: 2146: 2144: 2143: 2131: 2118: 2115: 2114: 2112: 2111: 2106: 2101: 2096: 2091: 2085: 2083: 2079: 2078: 2076: 2075: 2070: 2065: 2059: 2057: 2053: 2052: 2050: 2049: 2048: 2047: 2042: 2037: 2029: 2028: 2027: 2022: 2011: 2009: 2005: 2004: 2002: 2001: 1999:Phylogeography 1996: 1991: 1986: 1981: 1976: 1971: 1966: 1961: 1953: 1951: 1950:Current topics 1947: 1946: 1944: 1943: 1938: 1937: 1936: 1931: 1926: 1916: 1915: 1914: 1909: 1901: 1896: 1890: 1888: 1884: 1883: 1881: 1880: 1875: 1874: 1873: 1863: 1854: 1849: 1844: 1843: 1842: 1832: 1831: 1830: 1819: 1817: 1816:Basic concepts 1813: 1812: 1810: 1809: 1794: 1792: 1790: 1789: 1784: 1779: 1774: 1769: 1764: 1758: 1756: 1752: 1751: 1744: 1743: 1736: 1729: 1721: 1715: 1714: 1700: 1699:External links 1697: 1695: 1694: 1650: 1623:(4): 417โ€“419. 1604: 1561: 1507: 1488:(3): 253โ€“269. 1467: 1440: 1402: 1395: 1369: 1362: 1320: 1293:(4): 407โ€“414. 1277: 1270: 1246: 1195: 1188: 1170: 1141:(5): 573โ€“576. 1121: 1086: 1079: 1050: 1032: 1025: 1004: 977: 970: 964:. Birkhauser. 952: 945: 927: 893:(3): 315โ€“327. 870: 828: 785: 742: 708: 706: 703: 702: 701: 696: 691: 684: 681: 675: 672: 662: 659: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 615: 611: 608: 605: 602: 599: 596: 593: 590: 587: 584: 581: 578: 575: 572: 569: 565: 561: 558: 555: 552: 549: 546: 543: 540: 537: 534: 531: 528: 516: 504: 501: 498: 495: 492: 489: 486: 483: 471: 460: 451: 448: 437: 434: 428: 425: 423: 420: 416:basal position 343: 340: 333: 332: 291: 289: 282: 276: 273: 244: 241: 232:synapomorphies 226:plesiomorphies 220: 217: 178:DNA sequencing 166: 163: 152: 151: 110: 108: 101: 95: 92: 26: 9: 6: 4: 3: 2: 2179: 2168: 2167:Phylogenetics 2165: 2163: 2160: 2159: 2157: 2142: 2141: 2132: 2130: 2129: 2120: 2119: 2116: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2086: 2084: 2080: 2074: 2071: 2069: 2066: 2064: 2061: 2060: 2058: 2054: 2046: 2043: 2041: 2038: 2036: 2033: 2032: 2030: 2026: 2023: 2021: 2018: 2017: 2016: 2013: 2012: 2010: 2006: 2000: 1997: 1995: 1994:Phylogenomics 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1964:DNA barcoding 1962: 1960: 1959: 1955: 1954: 1952: 1948: 1942: 1939: 1935: 1934:Least squares 1932: 1930: 1927: 1925: 1922: 1921: 1920: 1917: 1913: 1910: 1908: 1905: 1904: 1902: 1900: 1897: 1895: 1892: 1891: 1889: 1885: 1879: 1876: 1872: 1871:Ghost lineage 1869: 1868: 1867: 1864: 1862: 1858: 1855: 1853: 1850: 1848: 1845: 1841: 1838: 1837: 1836: 1833: 1829: 1826: 1825: 1824: 1821: 1820: 1818: 1814: 1807: 1801: 1796: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1759: 1757: 1753: 1749: 1748:Phylogenetics 1742: 1737: 1735: 1730: 1728: 1723: 1722: 1719: 1712: 1707: 1703: 1702: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1654: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1611: 1609: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1565: 1557: 1553: 1549: 1545: 1540: 1535: 1532:(1): 98โ€“102. 1531: 1527: 1523: 1516: 1514: 1512: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1474: 1472: 1463: 1459: 1455: 1451: 1444: 1436: 1432: 1428: 1424: 1420: 1416: 1409: 1407: 1398: 1396:9780126180305 1392: 1388: 1384: 1380: 1373: 1365: 1363:9780126180305 1359: 1355: 1351: 1347: 1342: 1341: 1331: 1329: 1327: 1325: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1281: 1273: 1267: 1263: 1259: 1258: 1250: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1199: 1191: 1185: 1181: 1174: 1166: 1162: 1158: 1154: 1149: 1144: 1140: 1136: 1132: 1125: 1117: 1113: 1109: 1105: 1101: 1097: 1090: 1082: 1076: 1072: 1067: 1066: 1060: 1054: 1046: 1042: 1041:Hennig, Willi 1036: 1028: 1022: 1018: 1014: 1013:Hillis, David 1008: 1000: 996: 992: 988: 981: 973: 967: 963: 956: 948: 942: 938: 931: 920: 916: 912: 908: 904: 900: 896: 892: 888: 881: 874: 866: 862: 858: 854: 850: 846: 842: 835: 833: 824: 820: 816: 812: 808: 804: 801:(3): 347โ€“53. 800: 796: 789: 781: 777: 773: 769: 765: 761: 758:(2): 141โ€“51. 757: 753: 746: 737: 732: 728: 724: 720: 713: 709: 700: 697: 695: 692: 690: 689:Phylogenetics 687: 686: 680: 671: 667: 658: 638: 635: 632: 629: 626: 623: 620: 617: 613: 609: 606: 603: 600: 597: 594: 588: 585: 582: 579: 576: 573: 570: 563: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 502: 499: 496: 493: 490: 487: 484: 481: 468: 464: 458: 447: 443: 433: 419: 417: 412: 410: 404: 401: 397: 395: 390: 388: 384: 380: 376: 372: 371:least squares 367: 363: 359: 357: 353: 349: 339: 329: 326: 318: 308: 304: 298: 297: 292:This section 290: 286: 281: 280: 272: 270: 266: 261: 259: 254: 250: 240: 238: 234: 233: 228: 227: 213: 209: 205: 201: 199: 195: 191: 187: 183: 179: 174: 172: 158: 148: 145: 137: 127: 123: 117: 116: 111:This section 109: 105: 100: 99: 91: 89: 85: 81: 77: 73: 68: 64: 60: 57:"branch" and 56: 53: 49: 40: 32: 19: 2138: 2126: 2099:Sister group 2082:Nomenclature 2045:Autapomorphy 2040:Synapomorphy 2020:Plesiomorphy 2008:Group traits 1956: 1839: 1828:Cladogenesis 1823:Phylogenesis 1664: 1660: 1653: 1620: 1616: 1574: 1570: 1564: 1529: 1525: 1485: 1481: 1453: 1449: 1443: 1418: 1414: 1378: 1372: 1339: 1334:reviewed in 1290: 1286: 1280: 1256: 1249: 1208: 1204: 1198: 1179: 1173: 1138: 1134: 1124: 1099: 1095: 1089: 1064: 1053: 1044: 1035: 1016: 1007: 990: 986: 980: 961: 955: 936: 930: 890: 886: 873: 851:(1): 37โ€“45. 848: 844: 798: 795:Paleobiology 794: 788: 755: 752:Paleobiology 751: 745: 726: 722: 712: 677: 668: 664: 469: 465: 456: 453: 445: 430: 413: 405: 402: 398: 391: 368: 364: 360: 356:optimization 345: 336: 321: 315:January 2021 312: 301:Please help 296:verification 293: 262: 252: 246: 236: 230: 224: 222: 211: 175: 168: 140: 131: 120:Please help 115:verification 112: 58: 54: 47: 45: 2094:Crown group 2056:Group types 1787:Systematics 1421:(1): 1โ€“32. 1344:. pp.  993:: 361โ€“381. 459:, denoted c 243:Homoplasies 2156:Categories 1772:Cladistics 1711:Cladograms 1617:Cladistics 1526:Cladistics 1287:Cladistics 1135:Cladistics 1096:Cladistics 1019:. Sinaur. 887:Cladistics 729:: 94โ€“128. 705:References 694:Dendrogram 422:Statistics 348:algorithms 134:April 2016 63:cladistics 18:Cladograms 2109:Supertree 2073:Polyphyly 2068:Paraphyly 2063:Monophyly 2035:Apomorphy 2015:Primitive 1958:PhyloCode 1840:Cladogram 1667:: 24โ€“32. 1571:Evolution 1456:: 52โ€“79. 1379:Homoplasy 1340:Homoplasy 1102:: 91โ€“93. 642:⌉ 592:⌈ 589:− 554:− 394:parsimony 379:parsimony 249:homoplasy 237:outgroups 208:Apomorphy 194:reversion 171:notochord 48:cladogram 2162:Diagrams 2128:Category 2031:Derived 1777:Taxonomy 1689:25451518 1645:84287895 1637:34933481 1599:28564338 1556:53320612 1548:34875753 1315:85720264 1307:34902938 1165:85725091 1157:34740305 1116:85905559 1061:(2003). 1043:(1966). 1015:(1996). 919:Archived 915:53357985 907:34818822 865:11146143 823:54988538 780:89032582 683:See also 212:a priori 2140:Commons 1866:Lineage 1669:Bibcode 1591:2409392 1502:2992286 1435:2412407 1241:4350103 1233:8437621 1213:Bibcode 815:4096939 772:2401114 269:anatomy 1687:  1643:  1635:  1597:  1589:  1554:  1546:  1500:  1433:  1393:  1360:  1348:โ€“188. 1313:  1305:  1268:  1239:  1231:  1205:Nature 1186:  1163:  1155:  1114:  1077:  1073:โ€“376. 1023:  968:  943:  913:  905:  863:  821:  813:  778:  770:  385:, and 352:metric 198:genome 59:gramma 55:clados 50:(from 2104:Basal 1929:UPGMA 1861:Grade 1857:Clade 1641:S2CID 1587:JSTOR 1552:S2CID 1498:JSTOR 1431:JSTOR 1311:S2CID 1237:S2CID 1161:S2CID 1112:S2CID 922:(PDF) 911:S2CID 883:(PDF) 819:S2CID 811:JSTOR 776:S2CID 768:JSTOR 253:other 72:clade 52:Greek 1685:PMID 1633:PMID 1595:PMID 1544:PMID 1391:ISBN 1358:ISBN 1303:PMID 1266:ISBN 1229:PMID 1184:ISBN 1153:PMID 1075:ISBN 1021:ISBN 966:ISBN 941:ISBN 903:PMID 861:PMID 414:The 265:bats 82:and 1859:vs 1677:doi 1665:366 1625:doi 1579:doi 1534:doi 1490:doi 1458:doi 1423:doi 1383:doi 1350:doi 1346:153 1295:doi 1221:doi 1209:361 1143:doi 1104:doi 1071:353 995:doi 895:doi 853:doi 803:doi 760:doi 731:doi 515:, c 305:by 176:As 124:by 84:RNA 80:DNA 2158:: 1683:. 1675:. 1663:. 1639:. 1631:. 1619:. 1607:^ 1593:. 1585:. 1575:43 1573:. 1550:. 1542:. 1530:26 1528:. 1524:. 1510:^ 1496:. 1486:38 1484:. 1470:^ 1454:43 1452:. 1429:. 1419:18 1417:. 1405:^ 1389:. 1356:. 1323:^ 1309:. 1301:. 1291:15 1289:. 1264:. 1262:66 1235:. 1227:. 1219:. 1207:. 1159:. 1151:. 1139:32 1137:. 1133:. 1110:. 1100:15 1098:. 991:23 989:. 939:. 917:. 909:. 901:. 891:29 889:. 885:. 859:. 849:16 847:. 831:^ 817:. 809:. 799:31 797:. 774:. 766:. 756:22 754:. 727:12 725:. 721:. 657:. 463:. 389:. 381:, 377:, 373:, 260:. 247:A 46:A 1740:e 1733:t 1726:v 1691:. 1679:: 1671:: 1647:. 1627:: 1621:5 1601:. 1581:: 1558:. 1536:: 1504:. 1492:: 1464:. 1460:: 1437:. 1425:: 1399:. 1385:: 1366:. 1352:: 1317:. 1297:: 1274:. 1243:. 1223:: 1215:: 1192:. 1167:. 1145:: 1118:. 1106:: 1083:. 1029:. 1001:. 997:: 974:. 949:. 897:: 867:. 855:: 825:. 805:: 782:. 762:: 739:. 733:: 645:) 639:s 636:e 633:t 630:a 627:t 624:s 621:. 618:n 614:/ 610:a 607:x 604:a 601:t 598:. 595:n 586:a 583:x 580:a 577:t 574:. 571:n 568:( 564:/ 560:) 557:1 551:s 548:e 545:t 542:a 539:t 536:s 533:. 530:n 527:( 517:i 503:s 500:e 497:t 494:a 491:t 488:s 485:. 482:n 472:i 470:c 461:i 457:i 328:) 322:( 317:) 313:( 299:. 147:) 141:( 136:) 132:( 118:. 20:)

Index

Cladograms


Greek
cladistics
evolutionary tree
clade
last common ancestor
DNA
RNA
computational phylogenetics

verification
improve this article
adding citations to reliable sources
Learn how and when to remove this message

notochord
DNA sequencing
molecular systematics
maximum likelihood
retrotransposon markers
reversion
genome

Apomorphy
plesiomorphies
synapomorphies
homoplasy
phylogenetic signal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘