Knowledge

Chemical reaction network theory

Source đź“ť

1916:
One of the main problems of chemical reaction network theory is the connection between network structure and properties of dynamics. This connection is important even for linear systems, for example, the simple cycle with equal interaction weights has the slowest decay of the oscillations among all
2565:
The quasi steady state approximation or QSS (some of the species, very often these are some of intermediates or radicals, exist in relatively small amounts; they reach quickly their QSS concentrations, and then follow, as dependent quantities, the dynamics of these other species remaining close to
1793:
Results regarding stable periodic solutions attempt to rule out "unusual" behaviour. If a given chemical reaction network admits a stable periodic solution, then some initial conditions will converge to an infinite cycle of oscillating reactant concentrations. For some parameter values it may even
2557:
Modelling of large reaction networks meets various difficulties: the models include too many unknown parameters and high dimension makes the modelling computationally expensive. The model reduction methods were developed together with the first theories of complex chemical reactions. Three simple
919: 136:. The paper of R. Aris in this journal was communicated to the journal by C. Truesdell. It opened the series of papers of other authors (which were communicated already by R. Aris). The well known papers of this series are the works of Frederick J. Krambeck, Roy Jackson, 318: 1134:
For physical reasons, it is usually assumed that reactant concentrations cannot be negative, and that each reaction only takes place if all its reactants are present, i.e. all have non-zero concentration. For mathematical reasons, it is usually assumed that
764: 1784:
in population dynamics can go extinct for some (or all) initial conditions. Similar questions are of interests to chemists and biochemists, i.e. if a given reactant was present to start with, can it ever be completely used up?
3031: 775: 2040: 1226:
These results relate to whether a chemical reaction network can produce significantly different behaviour depending on the initial concentrations of its constituent reactants. This has applications in e.g. modelling
3005:
M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chemical Engineering Science. 1987 31, 42(10), 2229-2268.
2475: 144:
and others, published in the 1970s. In his second "prolegomena" paper, R. Aris mentioned the work of N.Z. Shapiro, L.S. Shapley (1965), where an important part of his scientific program was realized.
2338: 2144: 1920:
For nonlinear systems, many connections between structure and dynamics have been discovered. First of all, these are results about stability. For some classes of networks, explicit construction of
1752:
are the intermediates on the surface (adatoms, adsorbed molecules or radicals). This system may have two stable steady states of the surface for the same concentrations of the gaseous components.
1179:), and that increasing the concentration of a reactant increases the rate of any reactions that use it up. This second assumption is compatible with all physically reasonable kinetics, including 192: 187: 2562:
The quasi-equilibrium (or pseudo-equilibrium, or partial equilibrium) approximation (a fraction of reactions approach their equilibrium fast enough and, after that, remain almost equilibrated).
1231:
switches—a high concentration of a key chemical at steady state could represent a biological process being "switched on" whereas a low concentration would represent being "switched off".
2539: 2573:
or bottleneck is a relatively small part of the reaction network, in the simplest cases it is a single reaction, which rate is a good approximation to the reaction rate of the whole network.
502:
Mathematical modelling of chemical reaction networks usually focuses on what happens to the concentrations of the various chemicals involved as time passes. Following the example above, let
1890: 1493: 1336: 1427: 978:. The number of molecules of each reactant used up each time a reaction occurs is constant, as is the number of molecules produced of each product. These numbers are referred to as the 3015: 1764:
models) tend to be subject to random background noise, an unstable steady state solution is unlikely to be observed in practice. Instead of them, stable oscillations or other types of
2660:
F.J. Krambeck, The mathematical structure of chemical kinetics in homogeneous single-phase systems, Archive for Rational Mechanics and Analysis, 1970, Volume 38, Issue 5, pp 317-347,
1034: 2705:
R. Aris, Prolegomena to the rational analysis of systems of chemical reactions II. Some addenda, Archive for Rational Mechanics and Analysis, 1968, Volume 27, Issue 5, pp 356-364
976: 1554: 137: 2268: 2238: 1662: 615: 485: 449: 2371: 1750: 1728: 1706: 1630: 1608: 1576: 576: 540: 402: 366: 1684: 659: 2170: 1218:
As chemical reaction network theory is a diverse and well-established area of research, there is a significant variety of results. Some key areas are outlined below.
1083: 1063: 2201: 2067: 1162: 1116: 2651:
R. Aris, Prolegomena to the rational analysis of systems of chemical reactions, Archive for Rational Mechanics and Analysis, 1965, Volume 19, Issue 2, pp 81-99.
1806:. The simplest catalytic oscillator (nonlinear self-oscillations without autocatalysis) can be produced from the catalytic trigger by adding a "buffer" step. 670: 914:{\displaystyle {\dot {x}}\equiv {\frac {dx}{dt}}=\left({\begin{array}{c}{\frac {da}{dt}}\\{\frac {db}{dt}}\\{\frac {dc}{dt}}\\\vdots \end{array}}\right).} 1235: 2776: 2073:-th component. The theorem about systems without interactions between different components states that if a network consists of reactions of the form 1942: 85:
Three eras of chemical dynamics can be revealed in the flux of research and publications. These eras may be associated with leaders: the first is the
108:
was searching for the general law of chemical reaction related to specific chemical properties. The term "chemical dynamics" belongs to van’t Hoff.
3032:
Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph.
2804: 336:
form a reaction network. The reactions are represented by the arrows. The reactants appear to the left of the arrows, in this example they are
2888: 111:
The Semenov-Hinshelwood focus was an explanation of critical phenomena observed in many chemical systems, in particular in flames. A concept
2688: 132: 1802:
behaviour. While stable periodic solutions are unusual in real-world chemical reaction networks, well-known examples exist, such as the
1924:
is possible without apriori assumptions about special relations between rate constants. Two results of this type are well known: the
617:, and so on. Since all of these concentrations will not in general remain constant, they can be written as a function of time e.g. 2966:
V.I. Bykov, G.S. Yablonskii, V.F. Kim, "On the simple model of kinetic self-oscillations in catalytic reaction of CO oxidation",
2382: 147:
Since then, the chemical reaction network theory has been further developed by a large number of researchers internationally.
2273: 2076: 313:{\displaystyle {\begin{aligned}{\ce {{2H2}+ O2}}&{\ce {-> 2H2O}}\\{\ce {{C}+ O2}}&{\ce {-> CO2}}\end{aligned}}} 34:
systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in
2566:
the QSS). The QSS is defined as the steady state under the condition that the concentrations of other species do not change.
2905:
I. Otero-Muras, J. R. Banga and A. A. Alonso, "Characterizing multistationarity regimes in biochemical reaction networks",
1760:
Stability determines whether a given steady state solution is likely to be observed in reality. Since real systems (unlike
1191:
kinetics. Sometimes further assumptions are made about reaction rates, e.g. that all reactions obey mass action kinetics.
2627: 2577:
The quasi-equilibrium approximation and the quasi steady state methods were developed further into the methods of slow
2714:
N.Z. Shapiro, L.S. Shapley, Mass action law and the Gibbs free energy function, SIAM J. Appl. Math. 16 (1965) 353–375.
2480: 982:
of the reaction, and the difference between the two (i.e. the overall number of molecules used up or produced) is the
1803: 1512: 2755:
M. Mincheva and D. Siegel, "Nonnegativity and positiveness of solutions to mass action reaction–diffusion systems",
1935:
The deficiency zero theorem gives sufficient conditions for the existence of the Lyapunov function in the classical
2886:
E. Feliu, M. Knudsen and C. Wiuf., "Signaling cascades: Consequences of varying substrate and phosphatase levels",
2615: 1814: 1450: 1250: 1171:
It is also commonly assumed that no reaction features the same chemical as both a reactant and a product (i.e. no
3062: 2841: 928: 105: 86: 2738:
H. Kunze and D. Siegel, "Monotonicity properties of chemical reactions with a single initial bimolecular step",
2603:Ăśber simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme 1359: 2773: 1184: 992: 2996:
B.L. Clarke, Theorems on chemical network stability. The Journal of Chemical Physics. 1975, 62(3), 773-775.
2858: 1188: 58:
Dynamical properties of reaction networks were studied in chemistry and physics after the invention of the
2725: 495:
and neither of the products are used in the reactions, the set of reactants and the set of products are
937: 168: 118:
Aris’ activity was concentrated on the detailed systematization of mathematical ideas and approaches.
115:
elaborated by these researchers influenced many sciences, especially nuclear physics and engineering.
94: 79: 3016:
Thermodynamic function analogue for reactions proceeding without interaction of various substances
1521: 2585:. The methods of limiting steps gave rise to many methods of the analysis of the reaction graph. 2243: 2210: 1207: 2343: 1635: 585: 458: 419: 1733: 1711: 1689: 1613: 1581: 1559: 1119: 1040: 620: 549: 513: 375: 339: 47: 1667: 986:. This means that the equation representing the chemical reaction network can be rewritten as 2839:
M. Domijan and M. Kirkilionis, "Bistability and oscillations in chemical reaction networks",
2582: 2570: 2149: 1936: 1068: 1048: 39: 1799: 2179: 2045: 1795: 1761: 1043: 101:
era. The "eras" may be distinguished based on the main focuses of the scientific leaders:
1138: 1092: 8: 2926:, T.A. Akramov, "Multiplicity of the Steady State in Heterogeneous Catalytic Reactions", 1777: 925: 492: 23: 759:{\displaystyle x(t)=\left({\begin{array}{c}a(t)\\b(t)\\c(t)\\\vdots \end{array}}\right)} 2943: 2923: 2862: 2578: 1180: 127: 67: 59: 27: 1921: 1123: 172: 160: 2374: 931: 90: 71: 63: 43: 2948:"The simplest catalytic mechanism permitting several steady states of the surface" 2780: 1165: 141: 123: 122:
The mathematical discipline "chemical reaction network theory" was originated by
98: 2035:{\displaystyle G(c)=\sum _{i}c_{i}\left(\ln {\frac {c_{i}}{c_{i}^{*}}}-1\right)} 488: 112: 1908:
where (BZ) is an intermediate that does not participate in the main reaction.
70:(1901), development of the quantitative theory of chemical chain reactions by 3056: 1686:
is the "adsorption place" on the surface of the solid catalyst (for example,
1239: 1176: 979: 507: 496: 2822:
G. Craciun and C. Pantea, "Identifiability of chemical reaction networks",
1195: 35: 2270:
are non-negative integers) and allows the stoichiometric conservation law
2616:
Some Problems Relating to Chain Reactions and to the Theory of Combustion
1199: 2947: 2602: 1930:
theorem about systems without interactions between different components
1122:
where each output value represents a reaction rate, referred to as the
176: 2802:
properties, injectivity and stability in chemical reaction systems",
1765: 1172: 75: 31: 822: 2984: 2867:"Extended detailed balance for systems with irreversible reactions" 2796: 2639: 1203: 369: 2866: 2723:
P. Érdi and J. Tóth, "Mathematical models of chemical reactions",
1781: 1228: 416:). The products appear to the right of the arrows, here they are 164: 3047: 2983:
A.N. Gorban, N. Jarman, E. Steur, C. van Leeuwen, I.Yu. Tyukin,
2642:, Mathematical Modelling of Natural Phenomena 10(5) (2015), 1–5. 413: 405: 126:, a famous expert in chemical engineering, with the support of 2669:
F. J. M. Horn and R. Jackson, "General Mass Action Kinetics",
2686:
M. Feinberg, "Complex balancing in general kinetic systems",
1911: 452: 2987:
Math. Model. Nat. Phenom. Vol. 10, No. 3, 2015, pp. 212–231.
2605:, Monatshefte fĂĽr Chemie / Chemical Monthly 32(8), 849--906. 2470:{\displaystyle \sum _{i}m_{i}|c_{i}^{1}(t)-c_{i}^{2}(t)|} 1788: 1650: 1596: 1536: 1266: 600: 564: 528: 473: 434: 390: 354: 302: 282: 252: 228: 211: 62:. The essential steps in this study were introduction of 3034:
Current Opinion in Chemical Engineering 2018 21C, 48-59.
3018:, Chemical Engineering Science, 1986 41(11), 2739-2745. 3048:
Specialist wiki on the mathematics of reaction networks
2333:{\displaystyle M(c)=\sum _{i}m_{i}c_{i}={\text{const}}} 2139:{\displaystyle n_{k}A_{i}\to \sum _{j}\beta _{kj}A_{j}} 1065:
represents the net stoichiometry of a reaction, and so
2505: 1851: 1396: 1301: 694: 2483: 2385: 2346: 2276: 2246: 2213: 2182: 2152: 2079: 2048: 1945: 1817: 1736: 1714: 1692: 1670: 1638: 1616: 1584: 1562: 1524: 1453: 1362: 1253: 1141: 1095: 1071: 1051: 995: 940: 778: 673: 623: 588: 552: 516: 461: 422: 378: 342: 190: 46:
due to the interesting problems that arise from the
664:These variables can then be combined into a vector 2533: 2469: 2365: 2332: 2262: 2232: 2195: 2164: 2138: 2061: 2034: 1884: 1744: 1722: 1700: 1678: 1656: 1624: 1602: 1570: 1548: 1487: 1421: 1330: 1242:that allows multiplicity of steady states (1976): 1156: 1110: 1077: 1057: 1028: 970: 913: 758: 653: 609: 570: 534: 479: 443: 396: 360: 312: 155:A chemical reaction network (often abbreviated to 1859: 1858: 1841: 1840: 1404: 1403: 1386: 1385: 1309: 1308: 1291: 1290: 130:, the founder and editor-in-chief of the journal 3054: 2534:{\displaystyle c^{1}(t)\;{\mbox{and}}\;c^{2}(t)} 1917:linear systems with the same number of states. 3026: 3024: 1885:{\displaystyle {\ce {{B}+ Z <=> (BZ)}}} 1755: 1488:{\displaystyle {\ce {{AZ}+BZ -> {AB}+2Z}}} 1331:{\displaystyle {\ce {{A2}+2Z <=> 2AZ}}} 769:and their evolution with time can be written 2772:P. De Leenheer, D. Angeli and E. D. Sontag, 491:). In this example, since the reactions are 3014:A.N. Gorban, V.I. Bykov, G.S. Yablonskii, 1238:is the simplest catalytic reaction without 133:Archive for Rational Mechanics and Analysis 3021: 2511: 2503: 1912:Network structure and dynamical properties 1422:{\displaystyle {\ce {{B}+Z <=> BZ}}} 1221: 2628:Chemical Kinetics in the Past Few Decades 1480: 1323: 1276: 241: 200: 2795:M. Banaji, P. Donnell and S. Baigent, " 1834: 1789:Existence of stable periodic solutions 1379: 1284: 1210:concentration of reactants, and so on. 3055: 1029:{\displaystyle {\dot {x}}=\Gamma V(x)} 66:for the complex chemical reactions by 42:. It has also attracted interest from 2985:Leaders do not Look Back, or do They? 2785:J. Math. Chem.', 41(3):295–314, 2007. 2774:"Monotone chemical reaction networks" 1129: 1898: 1808: 1501: 1444: 1435: 1353: 1344: 1244: 326: 181: 171:the set of reactants), and a set of 97:era and the third is definitely the 2549:) monotonically decreases in time. 1213: 74:(1934), development of kinetics of 13: 2552: 1072: 1052: 1011: 89:era, the second may be called the 14: 3074: 3041: 2640:Three Waves of Chemical Dynamics 2558:basic ideas have been invented: 20:Chemical reaction network theory 3008: 2999: 2990: 2977: 2960: 2942:V.I. Bykov, V.I. Elokhin, G.S. 2936: 2922:M.G. Slin'ko, V.I. Bykov, G.S. 2916: 2899: 2880: 2852: 2833: 2816: 2789: 2766: 2749: 2732: 2717: 2708: 971:{\displaystyle {\dot {x}}=f(x)} 934:, commonly written in the form 582:represent the concentration of 546:represent the concentration of 2699: 2680: 2663: 2654: 2645: 2632: 2620: 2608: 2595: 2528: 2522: 2500: 2494: 2463: 2459: 2453: 2432: 2426: 2407: 2286: 2280: 2100: 1955: 1949: 1877: 1871: 1861: 1836: 1804:Belousov–Zhabotinsky reactions 1771: 1466: 1406: 1381: 1311: 1286: 1151: 1145: 1105: 1099: 1023: 1017: 965: 959: 738: 732: 722: 716: 706: 700: 683: 677: 648: 642: 633: 627: 289: 235: 1: 2626:Hinshelwood's Nobel Lecture 2588: 1776:Persistence has its roots in 1549:{\displaystyle {\ce {A2, B}}} 2871:Chemical Engineering Science 2638:A.N. Gorban, G.S. Yablonsky 2176:is the number of reactions, 2069:is the concentration of the 30:the behaviour of real-world 7: 2726:Manchester University Press 2263:{\displaystyle \beta _{kj}} 2233:{\displaystyle n_{k}\geq 1} 1657:{\displaystyle {\ce {CO2}}} 1166:continuously differentiable 610:{\displaystyle {\ce {H2O}}} 480:{\displaystyle {\ce {CO2}}} 444:{\displaystyle {\ce {H2O}}} 175:. For example, the pair of 167:, a set of products (often 150: 16:Area of applied mathematics 10: 3079: 2952:React. Kinet. Catal. Lett. 2689:Arch. Rational Mech. Anal. 2614:Semyonov's Nobel Lecture 2366:{\displaystyle m_{i}>0} 1756:Stability of steady states 1745:{\displaystyle {\ce {BZ}}} 1723:{\displaystyle {\ce {AZ}}} 1701:{\displaystyle {\ce {Pt}}} 1625:{\displaystyle {\ce {CO}}} 1603:{\displaystyle {\ce {O2}}} 1571:{\displaystyle {\ce {AB}}} 1194:Other assumptions include 571:{\displaystyle {\ce {O2}}} 535:{\displaystyle {\ce {H2}}} 397:{\displaystyle {\ce {O2}}} 361:{\displaystyle {\ce {H2}}} 138:Friedrich Josef Maria Horn 82:, and many other results. 53: 1679:{\displaystyle {\ce {Z}}} 1039:Here, each column of the 654:{\displaystyle a(t),b(t)} 1578:are gases (for example, 1515:of catalytic oxidation. 924:This is an example of a 542:in the surrounding air, 80:Cyril Norman Hinshelwood 2601:Wegscheider, R. (1901) 2165:{\displaystyle k\leq r} 1926:deficiency zero theorem 1222:Number of steady states 1078:{\displaystyle \Gamma } 1058:{\displaystyle \Gamma } 48:mathematical structures 3063:Mathematical chemistry 2671:Archive Rational Mech. 2535: 2477:between two solutions 2471: 2367: 2334: 2264: 2234: 2197: 2166: 2140: 2063: 2036: 1886: 1746: 1724: 1702: 1680: 1658: 1626: 1604: 1572: 1550: 1511:This is the classical 1489: 1423: 1332: 1158: 1120:vector-valued function 1112: 1079: 1059: 1030: 972: 915: 760: 655: 611: 572: 536: 481: 445: 398: 362: 314: 2928:Dokl. Akad. Nauk SSSR 2583:singular perturbation 2536: 2472: 2373:), then the weighted 2368: 2335: 2265: 2235: 2198: 2196:{\displaystyle A_{i}} 2167: 2141: 2064: 2062:{\displaystyle c_{i}} 2037: 1887: 1747: 1725: 1703: 1681: 1659: 1627: 1605: 1573: 1551: 1490: 1424: 1333: 1159: 1113: 1080: 1060: 1031: 973: 916: 761: 656: 612: 573: 537: 482: 446: 399: 363: 315: 40:theoretical chemistry 2974:(3) (1978), 637–639. 2957:(2) (1976), 191–198. 2889:Adv. Exp. Med. Biol. 2813:(6):1523–1547, 2007. 2481: 2383: 2344: 2274: 2244: 2211: 2180: 2150: 2077: 2046: 1943: 1815: 1734: 1712: 1690: 1668: 1636: 1614: 1582: 1560: 1522: 1513:adsorption mechanism 1451: 1360: 1251: 1157:{\displaystyle V(x)} 1139: 1111:{\displaystyle V(x)} 1093: 1087:stoichiometry matrix 1069: 1049: 993: 938: 776: 671: 621: 586: 550: 514: 459: 420: 376: 340: 188: 2579:invariant manifolds 2452: 2425: 2018: 1847: 1780:. A non-persistent 1778:population dynamics 1652: 1598: 1538: 1392: 1297: 1268: 602: 566: 530: 475: 436: 392: 356: 304: 284: 254: 230: 213: 44:pure mathematicians 24:applied mathematics 2849:(4):467–501, 2009. 2779:2014-08-12 at the 2746:(4):339–344, 2002. 2581:and computational 2531: 2509: 2467: 2438: 2411: 2395: 2363: 2330: 2301: 2260: 2230: 2193: 2162: 2136: 2112: 2059: 2032: 2004: 1970: 1922:Lyapunov functions 1882: 1866: 1742: 1720: 1698: 1676: 1654: 1640: 1622: 1600: 1586: 1568: 1546: 1526: 1485: 1419: 1411: 1328: 1316: 1256: 1154: 1130:Common assumptions 1108: 1075: 1055: 1026: 968: 911: 902: 756: 750: 651: 607: 590: 568: 554: 532: 518: 477: 463: 441: 424: 394: 380: 358: 344: 310: 308: 292: 272: 242: 218: 201: 128:Clifford Truesdell 68:Rudolf Wegscheider 60:law of mass action 2892:(Adv Syst Biol), 2877::5388–5399, 2011. 2763::1135–1145, 2007. 2508: 2386: 2328: 2292: 2203:is the symbol of 2103: 2019: 1961: 1906: 1905: 1876: 1868: 1829: 1822: 1740: 1718: 1696: 1674: 1643: 1620: 1589: 1566: 1544: 1529: 1509: 1508: 1483: 1472: 1465: 1458: 1443: 1442: 1417: 1413: 1374: 1367: 1352: 1351: 1326: 1318: 1279: 1259: 1236:catalytic trigger 1234:For example, the 1208:spatially uniform 1005: 984:net stoichiometry 950: 891: 867: 843: 812: 788: 605: 593: 557: 521: 466: 439: 427: 383: 347: 334: 333: 295: 275: 267: 257: 245: 221: 204: 26:that attempts to 3070: 3035: 3028: 3019: 3012: 3006: 3003: 2997: 2994: 2988: 2981: 2975: 2964: 2958: 2940: 2934: 2933:(4) (1976), 876. 2920: 2914: 2913:(7):e39194,2012. 2903: 2897: 2884: 2878: 2856: 2850: 2837: 2831: 2820: 2814: 2793: 2787: 2770: 2764: 2753: 2747: 2736: 2730: 2721: 2715: 2712: 2706: 2703: 2697: 2684: 2678: 2667: 2661: 2658: 2652: 2649: 2643: 2636: 2630: 2624: 2618: 2612: 2606: 2599: 2540: 2538: 2537: 2532: 2521: 2520: 2510: 2506: 2493: 2492: 2476: 2474: 2473: 2468: 2466: 2451: 2446: 2424: 2419: 2410: 2405: 2404: 2394: 2372: 2370: 2369: 2364: 2356: 2355: 2339: 2337: 2336: 2331: 2329: 2326: 2321: 2320: 2311: 2310: 2300: 2269: 2267: 2266: 2261: 2259: 2258: 2239: 2237: 2236: 2231: 2223: 2222: 2202: 2200: 2199: 2194: 2192: 2191: 2171: 2169: 2168: 2163: 2145: 2143: 2142: 2137: 2135: 2134: 2125: 2124: 2111: 2099: 2098: 2089: 2088: 2068: 2066: 2065: 2060: 2058: 2057: 2041: 2039: 2038: 2033: 2031: 2027: 2020: 2017: 2012: 2003: 2002: 1993: 1980: 1979: 1969: 1900: 1891: 1889: 1888: 1883: 1881: 1880: 1874: 1869: 1867: 1865: 1864: 1857: 1849: 1848: 1846: 1839: 1831: 1827: 1823: 1820: 1809: 1751: 1749: 1748: 1743: 1741: 1738: 1729: 1727: 1726: 1721: 1719: 1716: 1707: 1705: 1704: 1699: 1697: 1694: 1685: 1683: 1682: 1677: 1675: 1672: 1663: 1661: 1660: 1655: 1653: 1651: 1648: 1641: 1631: 1629: 1628: 1623: 1621: 1618: 1609: 1607: 1606: 1601: 1599: 1597: 1594: 1587: 1577: 1575: 1574: 1569: 1567: 1564: 1555: 1553: 1552: 1547: 1545: 1542: 1537: 1534: 1527: 1503: 1494: 1492: 1491: 1486: 1484: 1481: 1473: 1470: 1463: 1459: 1456: 1445: 1437: 1428: 1426: 1425: 1420: 1418: 1415: 1414: 1412: 1410: 1409: 1402: 1394: 1393: 1391: 1384: 1376: 1372: 1368: 1365: 1354: 1346: 1337: 1335: 1334: 1329: 1327: 1324: 1319: 1317: 1315: 1314: 1307: 1299: 1298: 1296: 1289: 1281: 1277: 1269: 1267: 1264: 1257: 1245: 1214:Types of results 1185:Michaelis–Menten 1163: 1161: 1160: 1155: 1117: 1115: 1114: 1109: 1084: 1082: 1081: 1076: 1064: 1062: 1061: 1056: 1035: 1033: 1032: 1027: 1007: 1006: 998: 977: 975: 974: 969: 952: 951: 943: 932:dynamical system 920: 918: 917: 912: 907: 903: 892: 890: 882: 874: 868: 866: 858: 850: 844: 842: 834: 826: 813: 811: 803: 795: 790: 789: 781: 765: 763: 762: 757: 755: 751: 660: 658: 657: 652: 616: 614: 613: 608: 606: 603: 601: 598: 591: 581: 577: 575: 574: 569: 567: 565: 562: 555: 545: 541: 539: 538: 533: 531: 529: 526: 519: 505: 486: 484: 483: 478: 476: 474: 471: 464: 450: 448: 447: 442: 440: 437: 435: 432: 425: 411: 403: 401: 400: 395: 393: 391: 388: 381: 367: 365: 364: 359: 357: 355: 352: 345: 328: 319: 317: 316: 311: 309: 305: 303: 300: 293: 285: 283: 280: 273: 268: 265: 258: 255: 253: 250: 243: 231: 229: 226: 219: 214: 212: 209: 202: 182: 72:Nikolay Semyonov 64:detailed balance 3078: 3077: 3073: 3072: 3071: 3069: 3068: 3067: 3053: 3052: 3044: 3039: 3038: 3029: 3022: 3013: 3009: 3004: 3000: 2995: 2991: 2982: 2978: 2968:Doklady AN USSR 2965: 2961: 2941: 2937: 2921: 2917: 2904: 2900: 2885: 2881: 2857: 2853: 2838: 2834: 2821: 2817: 2794: 2790: 2781:Wayback Machine 2771: 2767: 2754: 2750: 2737: 2733: 2722: 2718: 2713: 2709: 2704: 2700: 2696::187–194, 1972. 2685: 2681: 2668: 2664: 2659: 2655: 2650: 2646: 2637: 2633: 2625: 2621: 2613: 2609: 2600: 2596: 2591: 2555: 2553:Model reduction 2516: 2512: 2504: 2488: 2484: 2482: 2479: 2478: 2462: 2447: 2442: 2420: 2415: 2406: 2400: 2396: 2390: 2384: 2381: 2380: 2351: 2347: 2345: 2342: 2341: 2325: 2316: 2312: 2306: 2302: 2296: 2275: 2272: 2271: 2251: 2247: 2245: 2242: 2241: 2218: 2214: 2212: 2209: 2208: 2187: 2183: 2181: 2178: 2177: 2151: 2148: 2147: 2130: 2126: 2117: 2113: 2107: 2094: 2090: 2084: 2080: 2078: 2075: 2074: 2053: 2049: 2047: 2044: 2043: 2013: 2008: 1998: 1994: 1992: 1985: 1981: 1975: 1971: 1965: 1944: 1941: 1940: 1914: 1870: 1860: 1853: 1852: 1850: 1842: 1835: 1833: 1832: 1830: 1819: 1818: 1816: 1813: 1812: 1791: 1774: 1758: 1737: 1735: 1732: 1731: 1715: 1713: 1710: 1709: 1693: 1691: 1688: 1687: 1671: 1669: 1666: 1665: 1649: 1644: 1639: 1637: 1634: 1633: 1617: 1615: 1612: 1611: 1595: 1590: 1585: 1583: 1580: 1579: 1563: 1561: 1558: 1557: 1535: 1530: 1525: 1523: 1520: 1519: 1469: 1455: 1454: 1452: 1449: 1448: 1405: 1398: 1397: 1395: 1387: 1380: 1378: 1377: 1375: 1364: 1363: 1361: 1358: 1357: 1310: 1303: 1302: 1300: 1292: 1285: 1283: 1282: 1280: 1265: 1260: 1255: 1254: 1252: 1249: 1248: 1224: 1216: 1140: 1137: 1136: 1132: 1094: 1091: 1090: 1070: 1067: 1066: 1050: 1047: 1046: 997: 996: 994: 991: 990: 942: 941: 939: 936: 935: 901: 900: 894: 893: 883: 875: 873: 870: 869: 859: 851: 849: 846: 845: 835: 827: 825: 821: 817: 804: 796: 794: 780: 779: 777: 774: 773: 749: 748: 742: 741: 726: 725: 710: 709: 693: 689: 672: 669: 668: 622: 619: 618: 599: 594: 589: 587: 584: 583: 579: 563: 558: 553: 551: 548: 547: 543: 527: 522: 517: 515: 512: 511: 503: 472: 467: 462: 460: 457: 456: 433: 428: 423: 421: 418: 417: 409: 389: 384: 379: 377: 374: 373: 353: 348: 343: 341: 338: 337: 307: 306: 301: 296: 288: 286: 281: 276: 264: 263: 260: 259: 251: 246: 234: 232: 227: 222: 210: 205: 196: 195: 191: 189: 186: 185: 153: 142:Martin Feinberg 124:Rutherford Aris 113:chain reactions 56: 17: 12: 11: 5: 3076: 3066: 3065: 3051: 3050: 3043: 3042:External links 3040: 3037: 3036: 3020: 3007: 2998: 2989: 2976: 2959: 2935: 2915: 2898: 2879: 2851: 2842:J. Math. Biol. 2832: 2824:J. Math. Chem. 2815: 2807:J. Appl. Math. 2788: 2765: 2757:J. Math. Chem. 2748: 2740:J. Math. Chem. 2731: 2716: 2707: 2698: 2679: 2662: 2653: 2644: 2631: 2619: 2607: 2593: 2592: 2590: 2587: 2575: 2574: 2567: 2563: 2554: 2551: 2541:with the same 2530: 2527: 2524: 2519: 2515: 2502: 2499: 2496: 2491: 2487: 2465: 2461: 2458: 2455: 2450: 2445: 2441: 2437: 2434: 2431: 2428: 2423: 2418: 2414: 2409: 2403: 2399: 2393: 2389: 2362: 2359: 2354: 2350: 2324: 2319: 2315: 2309: 2305: 2299: 2295: 2291: 2288: 2285: 2282: 2279: 2257: 2254: 2250: 2229: 2226: 2221: 2217: 2207:th component, 2190: 2186: 2161: 2158: 2155: 2133: 2129: 2123: 2120: 2116: 2110: 2106: 2102: 2097: 2093: 2087: 2083: 2056: 2052: 2030: 2026: 2023: 2016: 2011: 2007: 2001: 1997: 1991: 1988: 1984: 1978: 1974: 1968: 1964: 1960: 1957: 1954: 1951: 1948: 1913: 1910: 1904: 1903: 1894: 1892: 1879: 1873: 1863: 1856: 1845: 1838: 1826: 1790: 1787: 1773: 1770: 1757: 1754: 1647: 1593: 1541: 1533: 1507: 1506: 1497: 1495: 1479: 1476: 1468: 1462: 1441: 1440: 1431: 1429: 1408: 1401: 1390: 1383: 1371: 1350: 1349: 1340: 1338: 1322: 1313: 1306: 1295: 1288: 1275: 1272: 1263: 1223: 1220: 1215: 1212: 1153: 1150: 1147: 1144: 1131: 1128: 1107: 1104: 1101: 1098: 1085:is called the 1074: 1054: 1037: 1036: 1025: 1022: 1019: 1016: 1013: 1010: 1004: 1001: 967: 964: 961: 958: 955: 949: 946: 922: 921: 910: 906: 899: 896: 895: 889: 886: 881: 878: 872: 871: 865: 862: 857: 854: 848: 847: 841: 838: 833: 830: 824: 823: 820: 816: 810: 807: 802: 799: 793: 787: 784: 767: 766: 754: 747: 744: 743: 740: 737: 734: 731: 728: 727: 724: 721: 718: 715: 712: 711: 708: 705: 702: 699: 696: 695: 692: 688: 685: 682: 679: 676: 650: 647: 644: 641: 638: 635: 632: 629: 626: 597: 561: 525: 506:represent the 489:carbon dioxide 470: 431: 387: 351: 332: 331: 322: 320: 299: 291: 287: 279: 271: 262: 261: 249: 240: 237: 233: 225: 217: 208: 199: 194: 193: 159:) comprises a 152: 149: 120: 119: 116: 109: 55: 52: 22:is an area of 15: 9: 6: 4: 3: 2: 3075: 3064: 3061: 3060: 3058: 3049: 3046: 3045: 3033: 3027: 3025: 3017: 3011: 3002: 2993: 2986: 2980: 2973: 2970:(Chemistry) 2969: 2963: 2956: 2953: 2949: 2945: 2939: 2932: 2929: 2925: 2919: 2912: 2908: 2902: 2896::81–94, 2012. 2895: 2891: 2890: 2883: 2876: 2872: 2868: 2864: 2860: 2855: 2848: 2844: 2843: 2836: 2829: 2825: 2819: 2812: 2808: 2806: 2801: 2799: 2792: 2786: 2782: 2778: 2775: 2769: 2762: 2758: 2752: 2745: 2741: 2735: 2728: 2727: 2720: 2711: 2702: 2695: 2691: 2690: 2683: 2676: 2672: 2666: 2657: 2648: 2641: 2635: 2629: 2623: 2617: 2611: 2604: 2598: 2594: 2586: 2584: 2580: 2572: 2571:limiting step 2568: 2564: 2561: 2560: 2559: 2550: 2548: 2544: 2525: 2517: 2513: 2497: 2489: 2485: 2456: 2448: 2443: 2439: 2435: 2429: 2421: 2416: 2412: 2401: 2397: 2391: 2387: 2379: 2377: 2360: 2357: 2352: 2348: 2322: 2317: 2313: 2307: 2303: 2297: 2293: 2289: 2283: 2277: 2255: 2252: 2248: 2227: 2224: 2219: 2215: 2206: 2188: 2184: 2175: 2159: 2156: 2153: 2131: 2127: 2121: 2118: 2114: 2108: 2104: 2095: 2091: 2085: 2081: 2072: 2054: 2050: 2028: 2024: 2021: 2014: 2009: 2005: 1999: 1995: 1989: 1986: 1982: 1976: 1972: 1966: 1962: 1958: 1952: 1946: 1938: 1933: 1931: 1927: 1923: 1918: 1909: 1902: 1895: 1893: 1854: 1843: 1824: 1811: 1810: 1807: 1805: 1801: 1797: 1796:quasiperiodic 1786: 1783: 1779: 1769: 1767: 1763: 1762:deterministic 1753: 1645: 1591: 1539: 1531: 1516: 1514: 1505: 1498: 1496: 1477: 1474: 1460: 1447: 1446: 1439: 1432: 1430: 1399: 1388: 1369: 1356: 1355: 1348: 1341: 1339: 1320: 1304: 1293: 1273: 1270: 1261: 1247: 1246: 1243: 1241: 1240:autocatalysis 1237: 1232: 1230: 1219: 1211: 1209: 1205: 1201: 1197: 1192: 1190: 1186: 1182: 1178: 1177:autocatalysis 1174: 1169: 1167: 1148: 1142: 1127: 1125: 1121: 1102: 1096: 1088: 1045: 1042: 1020: 1014: 1008: 1002: 999: 989: 988: 987: 985: 981: 980:stoichiometry 962: 956: 953: 947: 944: 933: 930: 927: 908: 904: 897: 887: 884: 879: 876: 863: 860: 855: 852: 839: 836: 831: 828: 818: 814: 808: 805: 800: 797: 791: 785: 782: 772: 771: 770: 752: 745: 735: 729: 719: 713: 703: 697: 690: 686: 680: 674: 667: 666: 665: 662: 645: 639: 636: 630: 624: 595: 559: 523: 509: 508:concentration 500: 498: 494: 490: 468: 454: 429: 415: 407: 385: 371: 349: 330: 323: 321: 297: 277: 269: 247: 238: 223: 215: 206: 197: 184: 183: 180: 178: 174: 170: 166: 162: 158: 148: 145: 143: 139: 135: 134: 129: 125: 117: 114: 110: 107: 104: 103: 102: 100: 96: 92: 88: 83: 81: 78:reactions by 77: 73: 69: 65: 61: 51: 49: 45: 41: 37: 33: 29: 25: 21: 3030:A.N.Gorban, 3010: 3001: 2992: 2979: 2971: 2967: 2962: 2954: 2951: 2938: 2930: 2927: 2918: 2910: 2906: 2901: 2893: 2887: 2882: 2874: 2870: 2859:A. N. Gorban 2854: 2846: 2840: 2835: 2827: 2823: 2818: 2810: 2803: 2797: 2791: 2784: 2768: 2760: 2756: 2751: 2743: 2739: 2734: 2724: 2719: 2710: 2701: 2693: 2687: 2682: 2674: 2670: 2665: 2656: 2647: 2634: 2622: 2610: 2597: 2576: 2556: 2546: 2542: 2375: 2204: 2173: 2070: 1934: 1929: 1925: 1919: 1915: 1907: 1896: 1792: 1775: 1768:may appear. 1759: 1517: 1510: 1499: 1433: 1342: 1233: 1225: 1217: 1196:mass balance 1193: 1170: 1133: 1086: 1038: 983: 923: 768: 663: 501: 493:irreversible 335: 324: 169:intersecting 156: 154: 146: 131: 121: 84: 57: 36:biochemistry 19: 18: 2340:(where all 1937:free energy 1772:Persistence 1202:, constant 1200:temperature 1198:, constant 1181:mass action 95:Hinshelwood 87:van 't Hoff 2944:Yablonskii 2924:Yablonskii 2861:and G. S. 2677::81, 1972. 2589:References 1899:reaction 5 1766:attractors 1502:reaction 4 1436:reaction 3 1345:reaction 2 1229:biological 929:autonomous 926:continuous 327:reaction 1 179:reactions 177:combustion 106:van’t Hoff 50:involved. 2863:Yablonsky 2830::1, 2008. 2436:− 2388:∑ 2294:∑ 2249:β 2225:≥ 2157:≤ 2115:β 2105:∑ 2101:→ 2022:− 2015:∗ 1990:⁡ 1963:∑ 1862:⇀ 1855:− 1844:− 1837:↽ 1467:⟶ 1407:⇀ 1400:− 1389:− 1382:↽ 1312:⇀ 1305:− 1294:− 1287:↽ 1173:catalysis 1073:Γ 1053:Γ 1012:Γ 1003:˙ 948:˙ 898:⋮ 792:≡ 786:˙ 746:⋮ 290:⟶ 236:⟶ 173:reactions 165:reactants 76:catalytic 3057:Category 2907:PLoS ONE 2777:Archived 2378:distance 2172:, where 2042:, where 1928:and the 1794:exhibit 1204:pressure 1124:kinetics 1041:constant 497:disjoint 370:hydrogen 151:Overview 32:chemical 2729:, 1989. 1800:chaotic 1782:species 661:, etc. 91:Semenov 54:History 2800:matrix 2240:, and 1518:Here, 1044:matrix 455:) and 414:carbon 408:) and 406:oxygen 2327:const 2146:(for 1939:form 1118:is a 453:water 28:model 2805:SIAM 2569:The 2358:> 1730:and 1632:and 1556:and 1189:Hill 1187:and 99:Aris 38:and 2972:242 2931:226 2894:736 2507:and 1798:or 1708:), 1664:), 1175:or 1164:is 510:of 372:), 163:of 161:set 157:CRN 3059:: 3023:^ 2950:, 2946:, 2875:66 2873:, 2869:, 2865:, 2847:59 2845:, 2828:44 2826:, 2811:67 2809:, 2783:, 2761:42 2759:, 2744:31 2742:, 2694:49 2692:, 2675:47 2673:, 1987:ln 1932:. 1875:BZ 1739:BZ 1717:AZ 1695:Pt 1642:CO 1619:CO 1610:, 1565:AB 1471:AB 1464:BZ 1457:AZ 1416:BZ 1325:AZ 1206:, 1183:, 1168:. 1126:. 1089:. 578:, 499:. 465:CO 294:CO 140:, 2955:4 2911:7 2909:, 2798:P 2547:c 2545:( 2543:M 2529:) 2526:t 2523:( 2518:2 2514:c 2501:) 2498:t 2495:( 2490:1 2486:c 2464:| 2460:) 2457:t 2454:( 2449:2 2444:i 2440:c 2433:) 2430:t 2427:( 2422:1 2417:i 2413:c 2408:| 2402:i 2398:m 2392:i 2376:L 2361:0 2353:i 2349:m 2323:= 2318:i 2314:c 2308:i 2304:m 2298:i 2290:= 2287:) 2284:c 2281:( 2278:M 2256:j 2253:k 2228:1 2220:k 2216:n 2205:i 2189:i 2185:A 2174:r 2160:r 2154:k 2132:j 2128:A 2122:j 2119:k 2109:j 2096:i 2092:A 2086:k 2082:n 2071:i 2055:i 2051:c 2029:) 2025:1 2010:i 2006:c 2000:i 1996:c 1983:( 1977:i 1973:c 1967:i 1959:= 1956:) 1953:c 1950:( 1947:G 1901:) 1897:( 1878:) 1872:( 1828:Z 1825:+ 1821:B 1673:Z 1646:2 1592:2 1588:O 1543:B 1540:, 1532:2 1528:A 1504:) 1500:( 1482:Z 1478:2 1475:+ 1461:+ 1438:) 1434:( 1373:Z 1370:+ 1366:B 1347:) 1343:( 1321:2 1278:Z 1274:2 1271:+ 1262:2 1258:A 1152:) 1149:x 1146:( 1143:V 1106:) 1103:x 1100:( 1097:V 1024:) 1021:x 1018:( 1015:V 1009:= 1000:x 966:) 963:x 960:( 957:f 954:= 945:x 909:. 905:) 888:t 885:d 880:c 877:d 864:t 861:d 856:b 853:d 840:t 837:d 832:a 829:d 819:( 815:= 809:t 806:d 801:x 798:d 783:x 753:) 739:) 736:t 733:( 730:c 723:) 720:t 717:( 714:b 707:) 704:t 701:( 698:a 691:( 687:= 684:) 681:t 678:( 675:x 649:) 646:t 643:( 640:b 637:, 634:) 631:t 628:( 625:a 604:O 596:2 592:H 580:c 560:2 556:O 544:b 524:2 520:H 504:a 487:( 469:2 451:( 438:O 430:2 426:H 412:( 410:C 404:( 386:2 382:O 368:( 350:2 346:H 329:) 325:( 298:2 278:2 274:O 270:+ 266:C 256:O 248:2 244:H 239:2 224:2 220:O 216:+ 207:2 203:H 198:2 93:–

Index

applied mathematics
model
chemical
biochemistry
theoretical chemistry
pure mathematicians
mathematical structures
law of mass action
detailed balance
Rudolf Wegscheider
Nikolay Semyonov
catalytic
Cyril Norman Hinshelwood
van 't Hoff
Semenov
Hinshelwood
Aris
van’t Hoff
chain reactions
Rutherford Aris
Clifford Truesdell
Archive for Rational Mechanics and Analysis
Friedrich Josef Maria Horn
Martin Feinberg
set
reactants
intersecting
reactions
combustion
hydrogen

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑