Knowledge

Borromean rings

Source 📝

1229: 1259:, linked to form Borromean rings and resembling a three-dimensional version of the valknut. A common design for a folding wooden tripod consists of three pieces carved from a single piece of wood, with each piece consisting of two lengths of wood, the legs and upper sides of the tripod, connected by two segments of wood that surround an elongated central hole in the piece. Another of the three pieces passes through each of these holes, linking the three pieces together in the Borromean rings pattern. Tripods of this form have been described as coming from Indian or African hand crafts. 31: 330: 368: 563: 726: 714: 352: 433: 1214: 4095: 253:, a drawing of curves in the plane with crossings marked to indicate which curve or part of a curve passes above or below at each crossing. Such a drawing can be transformed into a system of curves in three-dimensional space by embedding the plane into space and deforming the curves drawn on it above or below the embedded plane at each crossing, as indicated in the diagram. The commonly-used diagram for the Borromean rings consists of three equal 986: 4107: 1198: 765:. If one assumes that two of the circles touch at their two crossing points, then they lie in either a plane or a sphere. In either case, the third circle must pass through this plane or sphere four times, without lying in it, which is impossible. Another argument for the impossibility of circular realizations, by 527:
In medieval and renaissance Europe, a number of visual signs consist of three elements interlaced together in the same way that the Borromean rings are shown interlaced (in their conventional two-dimensional depiction), but with individual elements that are not closed loops. Examples of such symbols
273:
between above and below when considered in consecutive order around each circle; another equivalent way to describe the over-under relation between the three circles is that each circle passes over a second circle at both of their crossings, and under the third circle at both of their crossings. Two
827:
that any three unknotted simple closed curves in space, not all circles, can be combined without scaling to form the Borromean rings. After Jason Cantarella suggested a possible counterexample, Hugh Nelson Howards weakened the conjecture to apply to any three planar curves that are not all circles.
795:
in Euclidean space may be combined, after a suitable scaling transformation, to form the Borromean rings. If all three polygons are planar, then scaling is not needed. In particular, because the Borromean rings can be realized by three triangles, the minimum number of sides possible for each of its
668:
colorings that only use one color. For standard diagram of the Borromean rings, on the other hand, the same pairs of arcs meet at two undercrossings, forcing the arcs that cross over them to have the same color as each other, from which it follows that the only colorings that meet the crossing
855:
avoids self-intersections. The minimum ropelength of the Borromean rings has not been proven, but the smallest value that has been attained is realized by three copies of a 2-lobed planar curve. Although it resembles an earlier candidate for minimum ropelength, constructed from four
589:, a link that cannot be separated but that falls apart into separate unknotted loops as soon as any one of its components is removed. There are infinitely many Brunnian links, and infinitely many three-curve Brunnian links, of which the Borromean rings are the simplest. 3229:
Veliks, Janis; Seifert, Helen M.; Frantz, Derik K.; Klosterman, Jeremy K.; Tseng, Jui-Chang; Linden, Anthony; Siegel, Jay S. (2016), "Towards the molecular Borromean link with three unequal rings: double-threaded ruthenium(ii) ring-in-ring complexes",
1293:
to construct a set of rings in one step from 18 components. Borromean ring structures have been used to describe noble metal clusters shielded by a surface layer of thiolate ligands. A library of Borromean networks has been synthesized by design by
3142:
Natarajan, Ganapati; Mathew, Ammu; Negishi, Yuichi; Whetten, Robert L.; Pradeep, Thalappil (2015-12-02), "A unified framework for understanding the structure and modifications of atomically precise monolayer protected gold clusters",
1013:
metric of finite volume. Although hyperbolic links are now considered plentiful, the Borromean rings were one of the earliest examples to be proved hyperbolic, in the 1970s, and this link complement was a central example in the video
142:
and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a
783:: no matter how close to being circular their shape may be, as long as they are not perfectly circular, they can form Borromean links if suitably positioned. A realization of the Borromean rings by three mutually perpendicular 3258:
Kraemer, T.; Mark, M.; Waldburger, P.; Danzl, J. G.; Chin, C.; Engeser, B.; Lange, A. D.; Pilch, K.; Jaakkola, A.; NĂ€gerl, H.-C.; Grimm, R. (2006), "Evidence for Efimov quantum states in an ultracold gas of caesium atoms",
466:
found inspiration in the Borromean rings as a model for his topology of human subjectivity, with each ring representing a fundamental Lacanian component of reality (the "real", the "imaginary", and the "symbolic").
837: 287:, the Borromean rings are denoted with the code "L6a4"; the notation means that this is a link with six crossings and an alternating diagram, the fourth of five alternating 6-crossing links identified by 1094: 2641:
Uberti, R.; Janse van Rensburg, E. J.; Orlandini, E.; Tesi, M. C.; Whittington, S. G. (1998), "Minimal links in the cubic lattice", in Whittington, Stuart G.; Sumners, Witt De; Lodge, Timothy (eds.),
1027:
Hyperbolic manifolds can be decomposed in a canonical way into gluings of hyperbolic polyhedra (the Epstein–Penner decomposition) and for the Borromean complement this decomposition consists of two
2340:
write that this reference "seems to incorrectly deal only with the case that the three-dimensional configuration has a projection homeomorphic to" the conventional three-circle drawing of the link.
205:. It is impossible to realize them using circles in three-dimensional space, but it has been conjectured that they may be realized by copies of any non-circular simple closed curve in space. In 851:
of a knot or link is the shortest length of flexible rope (of radius one) that can realize it. Mathematically, such a realization can be described by a smooth curve whose radius-one
918: 151:
at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing.
669:
conditions violate the condition of using more than one color. Because the trivial link has many valid colorings and the Borromean rings have none, they cannot be equivalent.
889: 864:, making it shorter by a fraction of a percent than the piecewise-circular realization. It is this realization, conjectured to minimize ropelength, that was used for the 828:
On the other hand, although there are infinitely many Brunnian links with three links, the Borromean rings are the only one that can be formed from three convex curves.
773:
to transform any three circles so that one of them becomes a line, making it easier to argue that the other two circles do not link with it to form the Borromean rings.
971: 1114: 646: 429:; like the Borromean rings these three triangles are linked and not pairwise linked, but this crossing pattern describes a different link than the Borromean rings. 745:
The Borromean rings are typically drawn with their rings projecting to circles in the plane of the drawing, but three-dimensional circular Borromean rings are an
945: 1138: 666: 448:. A 13th-century French manuscript depicting the Borromean rings labeled as unity in trinity was lost in a fire in the 1940s, but reproduced in an 1843 book by 2890:], Mathematisches Institut, Georg-August-UniversitĂ€t Göttingen: Seminars Winter Term 2004/2005, Göttingen: UniversitĂ€tsdrucke Göttingen, pp. 93–98, 1306:. In order to access the molecular Borromean ring consisting of three unequal cycles a step-by-step synthesis was proposed by Jay S. Siegel and coworkers. 1927: 692:. They are the simplest alternating algebraic link which does not have a diagram that is simultaneously alternating and algebraic. It follows from the 516: 502: 2354: 1177: 1267: 761:
that no Brunnian link can be exactly circular. For three rings in their conventional Borromean arrangement, this can be seen from considering the
444:
The Borromean rings have been used in different contexts to indicate strength in unity. In particular, some have used the design to symbolize the
278:) taking one to another, and the Borromean rings may refer to any link that is equivalent in this sense to the standard diagram for this link. 1713: 1321:, a stable atomic nucleus consisting of three groups of particles that would be unstable in pairs. Another analog of the Borromean rings in 2407: 2142: 1734: 700:
of the Borromean rings (the fewest crossings in any of their link diagrams) is 6, the number of crossings in their alternating diagram.
611:) as the color of the overcrossing arc, and so that at least two colors are used. The number of colorings meeting these conditions is a 421:
in Japan is also decorated with a motif of the Borromean rings, in their conventional circular form. A stone pillar in the 6th-century
3183:(2017), "Halogen bonded Borromean networks by design: topology invariance and metric tuning in a library of multi-component systems", 4153: 1330: 3399: 813: 539:
Some knot-theoretic links contain multiple Borromean rings configurations; one five-loop link of this type is used as a symbol in
1041: 171: 3472: 3029: 2731: 2692: 1976: 1563: 1453: 1313:, and consists of three bound particles that are not pairwise bound. The existence of such states was predicted by physicist 1247:
knot is essentially a 3-dimensional representation of the Borromean rings, albeit with three layers, in most cases. Sculptor
997:
formed from two ideal octahedra, seen repeatedly in this view. The rings are infinitely far away, at the octahedron vertices.
462:
was inspired by similar images, although Dante does not detail the geometric arrangement of these circles. The psychoanalyst
4138: 4040: 4143: 3145: 1492:
Cromwell, Peter; Beltrami, Elisabetta; Rampichini, Marta (March 1998), "The Borromean rings", The mathematical tourist,
1463: 4148: 3959: 1184:
are all 1). Therefore, these primes have been called a "proper Borromean triple modulo 2" or "mod 2 Borromean primes".
648:
colorings, obtained from its standard diagram by choosing a color independently for each component and discarding the
1655: 2955:
Chichak, Kelly S.; Cantrill, Stuart J.; Pease, Anthony R.; Chiu, Sheng-Hsien; Cave, Gareth W. V.; Atwood, Jerry L.;
2847: 2569: 2510: 2280: 1433: 865: 841: 680:
has crossings that alternate between passing over and under each curve, in order along the curve. They are also an
512: 3506: 2813: 3325: 2239: 1996: 1580: 1494: 452:. Didron and others have speculated that the description of the Trinity as three equal circles in canto 33 of 3954: 3949: 3825: 2960: 2514: 2311: 2196: 1650:, Mathematics Lecture Series, vol. 7 (2nd ed.), Publish or Perish, Inc., Houston, TX, p. 425, 697: 313: 300: 71: 41: 2675:(1979), "An elliptical path from parabolic representations to hyperbolic structures", in Fenn, Roger (ed.), 1768:
Bruns, Carson J.; Stoddart, J. Fraser (2011), "The mechanical bond: A work of art", in Fabbrizzi, L. (ed.),
1317:, in 1970, and confirmed by multiple experiments beginning in 2006. This phenomenon is closely related to a 4111: 3526: 2672: 1910: 1708: 894: 383:
The name "Borromean rings" comes from the use of these rings, in the form of three linked circles, in the
4163: 4158: 3588: 2573: 2379: 2063: 2037: 860:
of radius two, it is slightly modified from that shape, and is composed from 42 smooth pieces defined by
749:: it is not possible to form the Borromean rings from circles in three-dimensional space. More generally 316:
for the Borromean rings, ".1", is an abbreviated description of the standard link diagram for this link.
3185: 2645:, IMA Volumes in Mathematics and its Applications, vol. 103, New York: Springer, pp. 89–100, 2362: 1322: 780: 977:
in the same way that the representation by golden rectangles is inscribed in the regular icosahedron.
449: 299:, extending earlier listings in the 1920s by Alexander and Briggs, the Borromean rings were given the 3658: 3653: 3594: 3465: 2041: 1263: 1234: 1228: 871: 2764: 2581: 2120: 1248: 1035: 490: 474:, and are still used by the Ballantine brand beer, now distributed by the current brand owner, the 81: 3786: 3344: 2194:
Nanyes, Ollie (October 1993), "An elementary proof that the Borromean rings are non-splittable",
974: 2916:
Morishita, Masanori (2010), "Analogies between knots and primes, 3-manifolds and number rings",
4000: 3969: 3342:
Tanaka, K. (2010), "Observation of a Large Reaction Cross Section in the Drip-Line Nucleus C",
2522: 2462:
Burgiel, H.; Franzblau, D. S.; Gutschera, K. R. (1996), "The mystery of the linked triangles",
2405:
Howards, Hugh Nelson (2013), "Forming the Borromean rings out of arbitrary polygonal unknots",
1994:
Glick, Ned (September 1999), "The 3-ring symbol of Ballantine Beer", The mathematical tourist,
1290: 950: 486: 3441: 3019: 2719: 1645: 1437: 1099: 3830: 2956: 2230: 1964: 1843:, Proceedings of the 2nd International Katachi U Symmetry Symposium, Part 1 (Tsukuba, 1999), 1798:
Lakshminarayan, Arul (May 2007), "Borromean triangles and prime knots in an ancient temple",
1282: 1141: 1010: 618: 475: 422: 374: 288: 190:, both of which have three components bound to each other although no two of them are bound. 162:, but designs based on the Borromean rings have been used in many cultures, including by the 99: 836: 607:
so that at each crossing, the two colors at the undercrossing have the same average (modulo
4133: 4099: 3870: 3458: 3353: 3280: 3179:
Kumar, Vijith; Pilati, Tullio; Terraneo, Giancarlo; Meyer, Franck; Metrangolo, Pierangelo;
3101: 2977: 2939: 2903: 2867: 2741: 2726:, Graduate Texts in Mathematics, vol. 149 (2nd ed.), Springer, pp. 459–461, 2702: 2658: 2620: 2600: 2555: 2493: 2464: 2438: 2375: 2262: 2173: 1896: 1856: 1704: 1690: 1665: 1601: 1545: 1252: 1117: 923:
For a discrete analogue of ropelength, the shortest representation using only edges of the
852: 689: 615:, independent of the diagram chosen for the link. A trivial link with three components has 574: 426: 407: 343: 312:", meaning that this is the second of three 6-crossing 3-component links to be listed. The 258: 3066: 1873: 1732:
Schoeck, Richard J. (Spring 1968), "Mathematics and the languages of literary criticism",
1578:
Chamberland, Marc; Herman, Eugene A. (2015), "Rock-paper-scissors meets Borromean rings",
1541: 8: 3907: 3890: 3404: 2124: 2046: 1800: 1271: 1161: 994: 776:
However, the Borromean rings can be realized using ellipses. These may be taken to be of
758: 545: 507: 329: 234: 135: 30: 3357: 3284: 3105: 2981: 2850:; Montesinos, José María (1983), "The Whitehead link, the Borromean rings and the knot 9 2677:
Topology of Low-Dimensional Manifolds: Proceedings of the Second Sussex Conference, 1977
2604: 1309:
In physics, a quantum-mechanical analog of Borromean rings is called a halo state or an
930: 810:
Are there three unknotted curves, not all circles, that cannot form the Borromean rings?
592:
There are a number of ways of seeing that the Borromean rings are linked. One is to use
3928: 3875: 3489: 3485: 3377: 3304: 3270: 3207: 3125: 3001: 2925: 2789: 2781: 2624: 2590: 2531: 2481: 2442: 2416: 2328: 2213: 2177: 2151: 2099: 2013: 1946: 1817: 1751: 1678: 1605: 1511: 1165: 1144:. The complement of the Borromean rings is universal, in the sense that every closed 3- 1123: 1031: 770: 713: 651: 601: 471: 249:
It is common in mathematics publications that define the Borromean rings to do so as a
139: 2140:
Bai, Sheng; Wang, Weibiao (2020), "New criteria and constructions of Brunnian links",
2038:"Surfaces with edges linked in the same way as the three rings of a well-known design" 1441: 295:
with up to 13 crossings. In the tables of knots and links in Dale Rolfsen's 1976 book
261:, close enough together that their interiors have a common intersection (such as in a 4025: 3974: 3924: 3880: 3840: 3835: 3753: 3369: 3296: 3212: 3162: 3117: 3045: 3025: 2993: 2968: 2727: 2688: 2446: 2309:
Lindström, Bernt; Zetterström, Hans-Olov (1991), "Borromean circles are impossible",
2181: 2017: 1972: 1821: 1781: 1681:(1970), "An enumeration of knots and links, and some of their algebraic properties", 1651: 1559: 1515: 1449: 1318: 861: 777: 746: 533: 425:
in India shows three equilateral triangles rotated from each other to form a regular
391: 266: 187: 155: 51: 3005: 2793: 485:
to include the Borromean rings was a catalog of knots and links compiled in 1876 by
367: 4060: 3885: 3781: 3516: 3381: 3365: 3361: 3308: 3288: 3261: 3239: 3202: 3194: 3180: 3154: 3129: 3109: 3092: 2985: 2891: 2809: 2773: 2680: 2646: 2608: 2541: 2477: 2473: 2426: 2320: 2289: 2275: 2248: 2205: 2161: 2091: 2005: 1884: 1809: 1773: 1743: 1589: 1551: 1503: 1352: 1295: 1244: 1204: 1028: 784: 750: 732: 693: 673: 562: 270: 222: 202: 148: 114: 2628: 2234: 1840: 1609: 274:
links are said to be equivalent if there is a continuous deformation of space (an
4020: 3984: 3919: 3865: 3820: 3813: 3703: 3498: 3423: 3321: 2935: 2899: 2863: 2737: 2698: 2654: 2616: 2551: 2489: 2434: 2371: 2258: 2169: 1892: 1852: 1686: 1661: 1597: 1555: 1467: 1181: 1021: 1006: 1002: 990: 924: 529: 498: 453: 437: 275: 230: 118: 3450: 3090:
Mao, C.; Sun, W.; Seeman, N. C. (1997), "Assembly of Borromean rings from DNA",
2650: 1888: 725: 418: 4080: 3979: 3941: 3860: 3773: 3648: 3640: 3600: 3431: 2823: 2350: 2033: 1630: 1149: 766: 681: 612: 593: 566: 494: 395: 283: 226: 210: 3427: 3419: 3411: 2881: 2612: 2430: 2165: 1813: 1593: 4127: 4015: 3803: 3796: 3791: 3166: 3158: 2895: 2294: 2253: 1694:; see description of notation, pp. 332–333, and second line of table, p. 348. 1537: 1460: 1314: 1303: 1220: 685: 586: 570: 540: 463: 457: 218: 2989: 2546: 432: 4030: 4010: 3914: 3897: 3693: 3630: 3373: 3300: 3216: 2997: 1785: 1310: 1299: 1169: 857: 820: 797: 762: 677: 384: 262: 250: 238: 183: 159: 144: 61: 3121: 2679:, Lecture Notes in Mathematics, vol. 722, Springer, pp. 99–133, 1213: 478:. For this reason they have sometimes been called the "Ballantine rings". 166:
and in Japan. They have been used in Christian symbolism as a sign of the
4045: 3808: 3713: 3582: 3562: 3552: 3544: 3536: 3481: 3435: 3415: 3275: 1883:, Boston Studies in the Philosophy of Science, Springer, pp. 53–59, 1777: 1256: 788: 736: 582: 482: 414: 388: 351: 206: 198: 127: 3292: 2103: 1950: 1772:, Topics in Current Chemistry, vol. 323, Springer, pp. 19–72, 569:
diagram for the Borromean rings. The vertical dotted black midline is a
4065: 4050: 4005: 3902: 3855: 3850: 3845: 3675: 3572: 3244: 3198: 2785: 2684: 2485: 2332: 2217: 2009: 1507: 848: 824: 802: 791:
by connecting three opposite pairs of its edges. Every three unknotted
292: 178:. Physical instances of the Borromean rings have been made from linked 2817: 1755: 1683:
Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)
4070: 3738: 3113: 2640: 2595: 2536: 2095: 2777: 2324: 2209: 398:. The link itself is much older and has appeared in the form of the 4055: 3665: 3073:, Centre for the Popularisation of Maths, University of Wales, 2002 2156: 1747: 1197: 1145: 1016: 985: 411: 209:, the Borromean rings can be proved to be linked by counting their 163: 158:, who used the circular form of these rings as an element of their 2930: 2421: 2061:
Gardner, Martin (September 1978), "The Toroids of Dr. Klonefake",
1446:
Bridges Leeuwarden: Mathematics, Music, Art, Architecture, Culture
1172:
in which one considers links between primes. The triple of primes
2278:; Skora, Richard (1987), "Strange actions of groups on spheres", 1279: 792: 519:
in Madrid, Spain to use a new logo based on the Borromean rings.
445: 401: 358: 337: 194: 167: 4075: 3723: 3683: 254: 2108:
the stone bears also representations of three horns interlaced
1373: 3964: 3228: 3141: 1326: 1266:
are the molecular counterparts of Borromean rings, which are
193:
Geometrically, the Borromean rings may be realized by linked
600:, colorings of the arcs of a link diagram with the integers 4035: 1962: 1376: 1364: 1286: 3257: 2508: 1625: 1491: 1358: 1089:{\displaystyle 16\Lambda (\pi /4)=8G\approx 7.32772\dots } 241:
have analogous linking properties to the Borromean rings.
2888:
Massey products in the Galois cohomology of number fields
2461: 1275: 179: 3178: 2954: 2567: 2055:
The Unexpected Hanging and Other Mathematical Diversions
927:, the minimum length for the Borromean rings is exactly 2883:
Masseyprodukte in der Galoiskohomologie von Zahlkörpern
1915:(in French), Paris: Imprimerie Royale, pp. 568–569 1544:(2018), "Chapter 15: The Borromean Rings Don't Exist", 3326:"Strange physical theory proved after nearly 40 years" 2845: 3046:"Gathering clues from Margot's extraordinary objects" 2053:
Gardner, Martin (1991), "Knots and Borromean Rings",
1963:
Ragland-Sullivan, Ellie; Milovanovic, Dragan (2004),
1438:"The Borromean Rings: A video about the New IMU logo" 1379: 1126: 1102: 1044: 953: 947:. This is the length of a representation using three 933: 897: 891:, while the best proven lower bound on the length is 874: 654: 621: 2308: 1881:
Potentiality, Entanglement and Passion-at-a-Distance
1361: 1355: 1370: 1367: 1005:: the space surrounding the Borromean rings (their 182:or other molecules, and they have analogues in the 2509:Cantarella, Jason; Fu, Joseph H. G.; Kusner, Rob; 1879:, in Cohen, R. S.; Horne, M.; Stachel, J. (eds.), 1270:. In 1997, biologist Chengde Mao and coworkers of 1132: 1108: 1088: 965: 939: 912: 883: 660: 640: 3480: 1577: 1219:Borromean ring knitting project by knot theorist 4125: 2808: 1448:, London: Tarquin Publications, pp. 63–70, 1268:mechanically-interlocked molecular architectures 585:, the Borromean rings are a simple example of a 154:The Borromean rings are named after the Italian 149:alternatingly crossing over and under each other 1180:is −1) but are pairwise unlinked modulo 2 (the 804: 501:for the Borromean rings in his September 1961 " 399: 335: 3400:"A few of my favorite spaces: Borromean rings" 2574:"On the minimum ropelength of knots and links" 2504: 2502: 2235:"On the algebraic part of an alternating link" 2229: 1797: 1274:succeeded in constructing a set of rings from 3466: 2274: 2057:, University of Chicago Press, pp. 24–33 1925: 1767: 1714:Proceedings of the Royal Society of Edinburgh 1536: 754: 719:Realization of Borromean rings using ellipses 522: 517:25th International Congress of Mathematicians 3089: 2819:The Geometry and Topology of Three-Manifolds 2713: 2711: 2457: 2455: 2408:Journal of Knot Theory and Its Ramifications 2400: 2398: 2337: 2143:Journal of Knot Theory and Its Ramifications 1431: 2950: 2948: 2499: 1735:The Journal of Aesthetics and Art Criticism 1550:(6th ed.), Springer, pp. 99–106, 1461:The Borromean Rings: A new logo for the IMU 3473: 3459: 2515:"Criticality for the Gehring link problem" 2302: 2028: 2026: 1703: 552: 493:, the Borromean rings were popularized by 244: 29: 3320: 3274: 3243: 3206: 2929: 2915: 2909: 2839: 2804: 2802: 2717: 2708: 2594: 2561: 2545: 2535: 2452: 2420: 2395: 2343: 2293: 2252: 2223: 2155: 1874:"Borromean entanglement of the GHZ state" 1791: 1697: 1487: 1485: 1483: 1481: 1479: 16:Three linked but pairwise separated rings 3314: 3135: 2945: 2643:Topology and Geometry in Polymer Science 2349: 2133: 1989: 1987: 1902: 1761: 1408:The Pronunciation of 10,000 Proper Names 1187: 984: 835: 561: 431: 361:, adapted from a 13th-century manuscript 319: 265:or the three circles used to define the 170:, and in modern commerce as the logo of 3335: 3222: 3172: 3059: 3043: 3037: 2747: 2634: 2404: 2268: 2139: 2113: 2071: 2060: 2052: 2032: 2023: 1871: 1834: 1832: 1830: 1731: 1725: 1643: 1620: 1618: 1571: 814:(more unsolved problems in mathematics) 4126: 3341: 3251: 3050:Tewkesbury Historical Society Bulletin 3017: 3011: 2873: 2799: 2754:Abbott, Steve (July 1997), "Review of 2753: 2568:Cantarella, Jason; Kusner, Robert B.; 2193: 2187: 2129:(4th ed.), March 1970, p. 43 2078:Baird, Joseph L. (1970), "Unferth the 1965:"Introduction: Topologically Speaking" 1926:Saiber, Arielle; Mbirika, aBa (2013), 1908: 1867: 1865: 1838: 1685:, Oxford: Pergamon, pp. 329–358, 1677: 1637: 1532: 1530: 1528: 1526: 1524: 1476: 980: 197:, or (using the vertices of a regular 3454: 2879: 2671: 2665: 2077: 2067:, vol. 2, no. 5, p. 29 1993: 1984: 1956: 1919: 1671: 1427: 1425: 1423: 1421: 1419: 1417: 1415: 4106: 3397: 2299:; see in particular Lemma 3.2, p. 89 1827: 1615: 913:{\displaystyle 12\pi \approx 37.699} 417:dating back to the 7th century. The 138:in three-dimensional space that are 3428:Neon Knots and Borromean Beer Rings 3398:Lamb, Evelyn (September 30, 2016), 3146:The Journal of Physical Chemistry C 3083: 2724:Foundations of Hyperbolic Manifolds 1862: 1709:"On a case of interlacing surfaces" 1521: 1325:involves the entanglement of three 684:, a link that can be decomposed by 470:The rings were used as the logo of 174:, giving them the alternative name 13: 3446:, International Mathematical Union 1412: 1103: 1048: 14: 4175: 3391: 3018:Ashley, Clifford Warren (1993) , 2856:Seminario MatemĂĄtico de Barcelona 1909:Didron, Adolphe NapolĂ©on (1843), 1331:Greenberger–Horne–Zeilinger state 973:integer rectangles, inscribed in 753: and Richard Skora ( 4154:Non-tricolorable knots and links 4105: 4094: 4093: 2720:"The Borromean rings complement" 2281:Journal of Differential Geometry 1472:International Mathematical Union 1351: 1227: 1212: 1196: 1155: 866:International Mathematical Union 842:International Mathematical Union 800:of the Borromean rings is nine. 757:) proved using four-dimensional 724: 712: 513:International Mathematical Union 366: 350: 328: 1038:of the Borromean complement is 805:Unsolved problem in mathematics 3960:Dowker–Thistlethwaite notation 3366:10.1103/PhysRevLett.104.062701 2478:10.1080/0025570x.1996.11996399 2240:Pacific Journal of Mathematics 1997:The Mathematical Intelligencer 1841:"Are Borromean links so rare?" 1581:The Mathematical Intelligencer 1495:The Mathematical Intelligencer 1400: 1343: 1164:, there is an analogy between 1065: 1051: 884:{\displaystyle \approx 58.006} 787:can be found within a regular 543:, based on a depiction in the 1: 2822:, p. 165, archived from 2312:American Mathematical Monthly 2197:American Mathematical Monthly 1969:Lacan: Topologically Speaking 1393: 1251:has made artworks with three 831: 703: 557: 257:centered at the points of an 2513:; Wrinkle, Nancy C. (2006), 1556:10.1007/978-3-662-57265-8_15 573:separating the diagram into 7: 4139:Alternating knots and links 3232:Organic Chemistry Frontiers 2961:"Molecular Borromean rings" 2718:Ratcliffe, John G. (2006), 2651:10.1007/978-1-4612-1712-1_9 1889:10.1007/978-94-017-2732-7_4 1459:; see the video itself at " 672:The Borromean rings are an 10: 4180: 4144:Hyperbolic knots and links 3024:, Doubleday, p. 354, 2814:"7. Computation of volume" 2363:The Mathematical Scientist 2338:Gunn & Sullivan (2008) 1839:Jablan, Slavik V. (1999), 1323:quantum information theory 1020:, produced in 1991 by the 1001:The Borromean rings are a 993:of the Borromean rings, a 523:Partial and multiple rings 4149:Unfibered knots and links 4089: 3993: 3950:Alexander–Briggs notation 3937: 3772: 3674: 3639: 3497: 3067:"African Borromean Rings" 2613:10.1007/s00222-002-0234-y 2431:10.1142/S0218216513500831 2231:Thistlethwaite, Morwen B. 2166:10.1142/S0218216520430087 1814:10.1007/s12045-007-0049-7 1594:10.1007/s00283-014-9499-4 1406:Mackey & Mackay 1922 1264:molecular Borromean rings 1235:Molecular Borromean rings 1176:are linked modulo 2 (the 966:{\displaystyle 2\times 4} 301:Alexander–Briggs notation 113: 108: 98: 80: 70: 60: 50: 40: 28: 23: 3159:10.1021/acs.jpcc.5b08193 3021:The Ashley Book of Knots 2896:10.11588/heidok.00004418 2765:The Mathematical Gazette 2582:Inventiones Mathematicae 2254:10.2140/pjm.1991.151.317 2064:Asimov's Science Fiction 1336: 1109:{\displaystyle \Lambda } 676:, as their conventional 491:recreational mathematics 410:with parallel sides, on 373:Linked triangles in the 357:Symbol of the Christian 4041:List of knots and links 3589:Kinoshita–Terasaka knot 3412:Borromean Olympic Rings 3345:Physical Review Letters 2990:10.1126/science.1096914 2547:10.2140/gt.2006.10.2055 2523:Geometry & Topology 1912:Iconographie ChrĂ©tienne 1872:Aravind, P. K. (1997), 751:Michael H. Freedman 641:{\displaystyle n^{3}-n} 553:Mathematical properties 450:Adolphe NapolĂ©on Didron 400: 336: 245:Definition and notation 2760:Supplement to Not Knot 2295:10.4310/jdg/1214440725 1644:Rolfsen, Dale (1990), 1291:coordination chemistry 1134: 1110: 1090: 998: 967: 941: 914: 885: 844: 662: 642: 578: 441: 440:of the Borromean rings 3831:Finite type invariant 3324:(December 16, 2009), 3071:Mathematics and Knots 3044:Freeman, Jim (2015), 2880:Vogel, Denis (2005), 1705:Crum Brown, Alexander 1440:, in Sarhangi, Reza; 1253:equilateral triangles 1188:Physical realizations 1135: 1111: 1091: 988: 968: 942: 915: 886: 839: 663: 643: 565: 476:Pabst Brewing Company 435: 423:Marundeeswarar Temple 408:equilateral triangles 375:Marundeeswarar Temple 344:Stora Hammars I stone 320:History and symbolism 289:Morwen Thistlethwaite 237:, certain triples of 217:. As links, they are 2848:Lozano, MarĂ­a Teresa 2662:; see Table 2, p. 97 2465:Mathematics Magazine 2355:"On Borromean rings" 2336:. Note however that 2276:Freedman, Michael H. 1778:10.1007/128_2011_296 1547:Proofs from THE BOOK 1124: 1118:Lobachevsky function 1100: 1042: 1009:) admits a complete 975:Jessen's icosahedron 951: 931: 895: 872: 868:logo. Its length is 853:tubular neighborhood 847:In knot theory, the 652: 619: 259:equilateral triangle 140:topologically linked 136:simple closed curves 4001:Alexander's theorem 3405:Scientific American 3358:2010PhRvL.104f2701T 3293:10.1038/nature04626 3285:2006Natur.440..315K 3153:(49): 27768–27785, 3106:1997Natur.386..137M 2982:2004Sci...304.1308C 2976:(5675): 1308–1312, 2957:Stoddart, J. Fraser 2605:2002InMat.150..257C 2415:(14): 1350083, 15, 2150:(13): 2043008, 27, 2126:Principia Discordia 2047:Scientific American 1770:Beauty in Chemistry 1272:New York University 1162:arithmetic topology 995:hyperbolic manifold 981:Hyperbolic geometry 759:hyperbolic geometry 546:Principia Discordia 508:Scientific American 235:arithmetic topology 4164:Impossible objects 4159:Geometric topology 3402:, Roots of Unity, 3245:10.1039/c6qo00025h 3199:10.1039/C6SC04478F 2918:Sugaku Expositions 2685:10.1007/BFb0063194 2042:Mathematical Games 2036:(September 1961), 2010:10.1007/bf03025332 1542:Ziegler, GĂŒnter M. 1508:10.1007/bf03024401 1466:2021-03-08 at the 1298:and coworkers via 1142:Catalan's constant 1130: 1106: 1086: 999: 963: 940:{\displaystyle 36} 937: 910: 881: 862:elliptic integrals 845: 771:inversive geometry 658: 638: 579: 503:Mathematical Games 481:The first work of 442: 4121: 4120: 3975:Reidemeister move 3841:Khovanov homology 3836:Hyperbolic volume 3420:Borromean ribbons 3269:(7082): 315–318, 3181:Resnati, Giuseppe 3100:(6621): 137–138, 3031:978-0-385-04025-9 2846:Hilden, Hugh M.; 2733:978-0-387-33197-3 2694:978-3-540-09506-4 2570:Sullivan, John M. 2511:Sullivan, John M. 1978:978-1-892746-76-4 1707:(December 1885), 1565:978-3-662-57265-8 1455:978-0-9665201-9-4 1434:Sullivan, John M. 1319:Borromean nucleus 1285:and coworkers at 1152:over this space. 1133:{\displaystyle G} 1032:regular octahedra 785:golden rectangles 778:arbitrarily small 747:impossible object 733:golden rectangles 661:{\displaystyle n} 534:Diana of Poitiers 291:in a list of all 269:). Its crossings 267:Reuleaux triangle 203:golden rectangles 156:House of Borromeo 124: 123: 52:Hyperbolic volume 4171: 4109: 4108: 4097: 4096: 4061:Tait conjectures 3764: 3763: 3749: 3748: 3734: 3733: 3626: 3625: 3611: 3610: 3595:(−2,3,7) pretzel 3475: 3468: 3461: 3452: 3451: 3447: 3408: 3385: 3384: 3339: 3333: 3332: 3322:Moskowitz, Clara 3318: 3312: 3311: 3278: 3276:cond-mat/0512394 3255: 3249: 3248: 3247: 3226: 3220: 3219: 3210: 3193:(3): 1801–1810, 3186:Chemical Science 3176: 3170: 3169: 3139: 3133: 3132: 3114:10.1038/386137b0 3087: 3081: 3080: 3079: 3078: 3063: 3057: 3056: 3041: 3035: 3034: 3015: 3009: 3008: 2965: 2959:(May 28, 2004), 2952: 2943: 2942: 2933: 2913: 2907: 2906: 2877: 2871: 2870: 2854:are universal", 2843: 2837: 2836: 2835: 2834: 2828: 2810:William Thurston 2806: 2797: 2796: 2772:(491): 340–342, 2751: 2745: 2744: 2715: 2706: 2705: 2669: 2663: 2661: 2638: 2632: 2631: 2598: 2578: 2565: 2559: 2558: 2549: 2539: 2530:(4): 2055–2116, 2519: 2506: 2497: 2496: 2459: 2450: 2449: 2424: 2402: 2393: 2392: 2391: 2390: 2384: 2378:, archived from 2359: 2347: 2341: 2335: 2306: 2300: 2298: 2297: 2272: 2266: 2265: 2256: 2227: 2221: 2220: 2191: 2185: 2184: 2159: 2137: 2131: 2130: 2117: 2111: 2110: 2096:10.2307/43631234 2075: 2069: 2068: 2058: 2050: 2030: 2021: 2020: 1991: 1982: 1981: 1960: 1954: 1953: 1945:(131): 237–272, 1940: 1923: 1917: 1916: 1906: 1900: 1899: 1878: 1869: 1860: 1859: 1836: 1825: 1824: 1795: 1789: 1788: 1765: 1759: 1758: 1729: 1723: 1722: 1701: 1695: 1693: 1675: 1669: 1668: 1641: 1635: 1622: 1613: 1612: 1575: 1569: 1568: 1534: 1519: 1518: 1489: 1474: 1458: 1442:SĂ©quin, Carlo H. 1429: 1410: 1404: 1387: 1386: 1385: 1382: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1347: 1296:Giuseppe Resnati 1231: 1216: 1200: 1182:Legendre symbols 1175: 1139: 1137: 1136: 1131: 1115: 1113: 1112: 1107: 1095: 1093: 1092: 1087: 1061: 972: 970: 969: 964: 946: 944: 943: 938: 919: 917: 916: 911: 890: 888: 887: 882: 819:More generally, 806: 728: 716: 694:Tait conjectures 674:alternating link 667: 665: 664: 659: 647: 645: 644: 639: 631: 630: 610: 605: 597: 499:Seifert surfaces 405: 370: 354: 341: 332: 311: 310: 214: 188:Borromean nuclei 176:Ballantine rings 94: 93: 33: 21: 20: 4179: 4178: 4174: 4173: 4172: 4170: 4169: 4168: 4124: 4123: 4122: 4117: 4085: 3989: 3955:Conway notation 3939: 3933: 3920:Tricolorability 3768: 3762: 3759: 3758: 3757: 3747: 3744: 3743: 3742: 3732: 3729: 3728: 3727: 3719: 3709: 3699: 3689: 3670: 3649:Composite knots 3635: 3624: 3621: 3620: 3619: 3616:Borromean rings 3609: 3606: 3605: 3604: 3578: 3568: 3558: 3548: 3540: 3532: 3522: 3512: 3493: 3479: 3443:Borromean Rings 3440: 3424:Tadashi Tokieda 3394: 3389: 3388: 3340: 3336: 3319: 3315: 3256: 3252: 3227: 3223: 3177: 3173: 3140: 3136: 3088: 3084: 3076: 3074: 3065: 3064: 3060: 3042: 3038: 3032: 3016: 3012: 2963: 2953: 2946: 2914: 2910: 2878: 2874: 2853: 2844: 2840: 2832: 2830: 2826: 2807: 2800: 2778:10.2307/3619248 2752: 2748: 2734: 2716: 2709: 2695: 2670: 2666: 2639: 2635: 2576: 2566: 2562: 2517: 2507: 2500: 2460: 2453: 2403: 2396: 2388: 2386: 2382: 2357: 2351:Tverberg, Helge 2348: 2344: 2325:10.2307/2323803 2307: 2303: 2273: 2269: 2228: 2224: 2210:10.2307/2324788 2192: 2188: 2138: 2134: 2119: 2118: 2114: 2076: 2072: 2051:, reprinted as 2034:Gardner, Martin 2031: 2024: 1992: 1985: 1979: 1971:, Other Press, 1961: 1957: 1938: 1924: 1920: 1907: 1903: 1876: 1870: 1863: 1837: 1828: 1796: 1792: 1766: 1762: 1730: 1726: 1702: 1698: 1676: 1672: 1658: 1647:Knots and Links 1642: 1638: 1626:Borromean rings 1623: 1616: 1576: 1572: 1566: 1535: 1522: 1490: 1477: 1468:Wayback Machine 1456: 1432:Gunn, Charles; 1430: 1413: 1405: 1401: 1396: 1391: 1390: 1354: 1350: 1348: 1344: 1339: 1283:Fraser Stoddart 1241: 1240: 1239: 1238: 1237: 1232: 1224: 1223: 1217: 1209: 1208: 1201: 1190: 1173: 1158: 1125: 1122: 1121: 1101: 1098: 1097: 1057: 1043: 1040: 1039: 1022:Geometry Center 1007:link complement 1003:hyperbolic link 983: 952: 949: 948: 932: 929: 928: 925:integer lattice 896: 893: 892: 873: 870: 869: 834: 817: 816: 811: 808: 743: 742: 741: 740: 739: 729: 721: 720: 717: 706: 698:crossing number 653: 650: 649: 626: 622: 620: 617: 616: 608: 603: 595: 560: 555: 530:Snoldelev stone 525: 515:decided at the 511:. In 2006, the 497:, who featured 472:Ballantine beer 438:Seifert surface 406:, three linked 381: 380: 379: 378: 377: 371: 363: 362: 355: 347: 346: 333: 322: 314:Conway notation 309: 306: 305: 304: 297:Knots and Links 276:ambient isotopy 247: 212: 172:Ballantine beer 132:Borromean rings 92: 89: 88: 87: 72:Conway notation 36: 24:Borromean rings 17: 12: 11: 5: 4177: 4167: 4166: 4161: 4156: 4151: 4146: 4141: 4136: 4119: 4118: 4116: 4115: 4103: 4090: 4087: 4086: 4084: 4083: 4081:Surgery theory 4078: 4073: 4068: 4063: 4058: 4053: 4048: 4043: 4038: 4033: 4028: 4023: 4018: 4013: 4008: 4003: 3997: 3995: 3991: 3990: 3988: 3987: 3982: 3980:Skein relation 3977: 3972: 3967: 3962: 3957: 3952: 3946: 3944: 3935: 3934: 3932: 3931: 3925:Unknotting no. 3922: 3917: 3912: 3911: 3910: 3900: 3895: 3894: 3893: 3888: 3883: 3878: 3873: 3863: 3858: 3853: 3848: 3843: 3838: 3833: 3828: 3823: 3818: 3817: 3816: 3806: 3801: 3800: 3799: 3789: 3784: 3778: 3776: 3770: 3769: 3767: 3766: 3760: 3751: 3745: 3736: 3730: 3721: 3717: 3711: 3707: 3701: 3697: 3691: 3687: 3680: 3678: 3672: 3671: 3669: 3668: 3663: 3662: 3661: 3656: 3645: 3643: 3637: 3636: 3634: 3633: 3628: 3622: 3613: 3607: 3598: 3592: 3586: 3580: 3576: 3570: 3566: 3560: 3556: 3550: 3546: 3542: 3538: 3534: 3530: 3524: 3520: 3514: 3510: 3503: 3501: 3495: 3494: 3478: 3477: 3470: 3463: 3455: 3449: 3448: 3438: 3432:Clifford Stoll 3409: 3393: 3392:External links 3390: 3387: 3386: 3334: 3313: 3250: 3238:(6): 667–672, 3221: 3171: 3134: 3082: 3058: 3036: 3030: 3010: 2944: 2908: 2872: 2851: 2838: 2812:(March 2002), 2798: 2746: 2732: 2707: 2693: 2664: 2633: 2589:(2): 257–286, 2560: 2498: 2451: 2394: 2342: 2319:(4): 340–341, 2301: 2267: 2247:(2): 317–333, 2222: 2204:(8): 786–789, 2186: 2132: 2112: 2070: 2022: 1983: 1977: 1955: 1918: 1901: 1861: 1851:(4): 269–277, 1826: 1790: 1760: 1748:10.2307/429121 1742:(3): 367–376, 1724: 1696: 1670: 1656: 1636: 1631:The Knot Atlas 1614: 1570: 1564: 1538:Aigner, Martin 1520: 1475: 1454: 1411: 1398: 1397: 1395: 1392: 1389: 1388: 1341: 1340: 1338: 1335: 1262:In chemistry, 1233: 1226: 1225: 1218: 1211: 1210: 1202: 1195: 1194: 1193: 1192: 1191: 1189: 1186: 1157: 1154: 1150:branched cover 1129: 1105: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1060: 1056: 1053: 1050: 1047: 982: 979: 962: 959: 956: 936: 909: 906: 903: 900: 880: 877: 833: 830: 812: 809: 803: 767:Helge Tverberg 730: 723: 722: 718: 711: 710: 709: 708: 707: 705: 702: 686:Conway spheres 682:algebraic link 657: 637: 634: 629: 625: 613:knot invariant 567:Algebraic link 559: 556: 554: 551: 532:horns and the 524: 521: 495:Martin Gardner 396:Northern Italy 372: 365: 364: 356: 349: 348: 334: 327: 326: 325: 324: 323: 321: 318: 307: 284:The Knot Atlas 246: 243: 122: 121: 111: 110: 106: 105: 102: 100:Thistlethwaite 96: 95: 90: 84: 78: 77: 74: 68: 67: 64: 58: 57: 54: 48: 47: 44: 38: 37: 34: 26: 25: 15: 9: 6: 4: 3: 2: 4176: 4165: 4162: 4160: 4157: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4131: 4129: 4114: 4113: 4104: 4102: 4101: 4092: 4091: 4088: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4022: 4019: 4017: 4016:Conway sphere 4014: 4012: 4009: 4007: 4004: 4002: 3999: 3998: 3996: 3992: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3961: 3958: 3956: 3953: 3951: 3948: 3947: 3945: 3943: 3936: 3930: 3926: 3923: 3921: 3918: 3916: 3913: 3909: 3906: 3905: 3904: 3901: 3899: 3896: 3892: 3889: 3887: 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3868: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3815: 3812: 3811: 3810: 3807: 3805: 3802: 3798: 3795: 3794: 3793: 3790: 3788: 3787:Arf invariant 3785: 3783: 3780: 3779: 3777: 3775: 3771: 3755: 3752: 3740: 3737: 3725: 3722: 3715: 3712: 3705: 3702: 3695: 3692: 3685: 3682: 3681: 3679: 3677: 3673: 3667: 3664: 3660: 3657: 3655: 3652: 3651: 3650: 3647: 3646: 3644: 3642: 3638: 3632: 3629: 3617: 3614: 3602: 3599: 3596: 3593: 3590: 3587: 3584: 3581: 3574: 3571: 3564: 3561: 3554: 3551: 3549: 3543: 3541: 3535: 3528: 3525: 3518: 3515: 3508: 3505: 3504: 3502: 3500: 3496: 3491: 3487: 3483: 3476: 3471: 3469: 3464: 3462: 3457: 3456: 3453: 3445: 3444: 3439: 3437: 3433: 3429: 3426:, 2016), and 3425: 3421: 3417: 3413: 3410: 3407: 3406: 3401: 3396: 3395: 3383: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3352:(6): 062701, 3351: 3347: 3346: 3338: 3331: 3327: 3323: 3317: 3310: 3306: 3302: 3298: 3294: 3290: 3286: 3282: 3277: 3272: 3268: 3264: 3263: 3254: 3246: 3241: 3237: 3233: 3225: 3218: 3214: 3209: 3204: 3200: 3196: 3192: 3188: 3187: 3182: 3175: 3168: 3164: 3160: 3156: 3152: 3148: 3147: 3138: 3131: 3127: 3123: 3119: 3115: 3111: 3107: 3103: 3099: 3095: 3094: 3086: 3072: 3068: 3062: 3055: 3051: 3047: 3040: 3033: 3027: 3023: 3022: 3014: 3007: 3003: 2999: 2995: 2991: 2987: 2983: 2979: 2975: 2971: 2970: 2962: 2958: 2951: 2949: 2941: 2937: 2932: 2927: 2923: 2919: 2912: 2905: 2901: 2897: 2893: 2889: 2885: 2884: 2876: 2869: 2865: 2861: 2857: 2849: 2842: 2829:on 2020-07-27 2825: 2821: 2820: 2815: 2811: 2805: 2803: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2766: 2761: 2757: 2750: 2743: 2739: 2735: 2729: 2725: 2721: 2714: 2712: 2704: 2700: 2696: 2690: 2686: 2682: 2678: 2674: 2673:Riley, Robert 2668: 2660: 2656: 2652: 2648: 2644: 2637: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2597: 2592: 2588: 2584: 2583: 2575: 2571: 2564: 2557: 2553: 2548: 2543: 2538: 2533: 2529: 2525: 2524: 2516: 2512: 2505: 2503: 2495: 2491: 2487: 2483: 2479: 2475: 2472:(2): 94–102, 2471: 2467: 2466: 2458: 2456: 2448: 2444: 2440: 2436: 2432: 2428: 2423: 2418: 2414: 2410: 2409: 2401: 2399: 2385:on 2021-03-16 2381: 2377: 2373: 2369: 2365: 2364: 2356: 2352: 2346: 2339: 2334: 2330: 2326: 2322: 2318: 2314: 2313: 2305: 2296: 2291: 2287: 2283: 2282: 2277: 2271: 2264: 2260: 2255: 2250: 2246: 2242: 2241: 2236: 2232: 2226: 2219: 2215: 2211: 2207: 2203: 2199: 2198: 2190: 2183: 2179: 2175: 2171: 2167: 2163: 2158: 2153: 2149: 2145: 2144: 2136: 2128: 2127: 2122: 2116: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2066: 2065: 2056: 2049: 2048: 2043: 2039: 2035: 2029: 2027: 2019: 2015: 2011: 2007: 2003: 1999: 1998: 1990: 1988: 1980: 1974: 1970: 1966: 1959: 1952: 1948: 1944: 1943:Dante Studies 1937: 1935: 1931: 1922: 1914: 1913: 1905: 1898: 1894: 1890: 1886: 1882: 1875: 1868: 1866: 1858: 1854: 1850: 1846: 1842: 1835: 1833: 1831: 1823: 1819: 1815: 1811: 1807: 1803: 1802: 1794: 1787: 1783: 1779: 1775: 1771: 1764: 1757: 1753: 1749: 1745: 1741: 1737: 1736: 1728: 1720: 1716: 1715: 1710: 1706: 1700: 1692: 1688: 1684: 1680: 1679:Conway, J. H. 1674: 1667: 1663: 1659: 1657:0-914098-16-0 1653: 1649: 1648: 1640: 1633: 1632: 1627: 1621: 1619: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1582: 1574: 1567: 1561: 1557: 1553: 1549: 1548: 1543: 1539: 1533: 1531: 1529: 1527: 1525: 1517: 1513: 1509: 1505: 1501: 1497: 1496: 1488: 1486: 1484: 1482: 1480: 1473: 1469: 1465: 1462: 1457: 1451: 1447: 1443: 1439: 1435: 1428: 1426: 1424: 1422: 1420: 1418: 1416: 1409: 1403: 1399: 1384: 1346: 1342: 1334: 1332: 1328: 1324: 1320: 1316: 1315:Vitaly Efimov 1312: 1307: 1305: 1304:self-assembly 1301: 1297: 1292: 1288: 1284: 1281: 1277: 1273: 1269: 1265: 1260: 1258: 1254: 1250: 1249:John Robinson 1246: 1245:monkey's fist 1236: 1230: 1222: 1221:Laura Taalman 1215: 1206: 1205:monkey's fist 1199: 1185: 1183: 1179: 1174:(13, 61, 937) 1171: 1170:prime numbers 1167: 1163: 1156:Number theory 1153: 1151: 1147: 1143: 1127: 1119: 1083: 1080: 1077: 1074: 1071: 1068: 1062: 1058: 1054: 1045: 1037: 1033: 1030: 1025: 1023: 1019: 1018: 1012: 1008: 1004: 996: 992: 987: 978: 976: 960: 957: 954: 934: 926: 921: 907: 904: 901: 898: 878: 875: 867: 863: 859: 858:circular arcs 854: 850: 843: 838: 829: 826: 822: 815: 801: 799: 794: 790: 786: 782: 779: 774: 772: 768: 764: 760: 756: 752: 748: 738: 735:in a regular 734: 731:Three linked 727: 715: 701: 699: 695: 691: 687: 683: 679: 675: 670: 655: 635: 632: 627: 623: 614: 606: 599: 590: 588: 587:Brunnian link 584: 576: 572: 571:Conway sphere 568: 564: 550: 548: 547: 542: 541:Discordianism 537: 535: 531: 520: 518: 514: 510: 509: 504: 500: 496: 492: 488: 484: 479: 477: 473: 468: 465: 464:Jacques Lacan 461: 460: 455: 451: 447: 439: 434: 430: 428: 424: 420: 416: 413: 409: 404: 403: 397: 393: 390: 386: 376: 369: 360: 353: 345: 340: 339: 331: 317: 315: 302: 298: 294: 290: 286: 285: 279: 277: 272: 268: 264: 260: 256: 252: 242: 240: 239:prime numbers 236: 232: 228: 224: 220: 216: 208: 204: 200: 196: 191: 189: 185: 181: 177: 173: 169: 165: 161: 157: 152: 150: 146: 141: 137: 133: 129: 120: 116: 112: 107: 103: 101: 97: 85: 83: 79: 75: 73: 69: 65: 63: 59: 55: 53: 49: 45: 43: 39: 32: 27: 22: 19: 4110: 4098: 4026:Double torus 4011:Braid theory 3826:Crossing no. 3821:Crosscap no. 3615: 3507:Figure-eight 3442: 3403: 3349: 3343: 3337: 3330:Live Science 3329: 3316: 3266: 3260: 3253: 3235: 3231: 3224: 3190: 3184: 3174: 3150: 3144: 3137: 3097: 3091: 3085: 3075:, retrieved 3070: 3061: 3053: 3049: 3039: 3020: 3013: 2973: 2967: 2921: 2917: 2911: 2887: 2882: 2875: 2862:(1): 19–28, 2859: 2855: 2841: 2831:, retrieved 2824:the original 2818: 2769: 2763: 2759: 2755: 2749: 2723: 2676: 2667: 2642: 2636: 2596:math/0103224 2586: 2580: 2563: 2537:math/0402212 2527: 2521: 2469: 2463: 2412: 2406: 2387:, retrieved 2380:the original 2370:(1): 57–60, 2367: 2361: 2345: 2316: 2310: 2304: 2285: 2279: 2270: 2244: 2238: 2225: 2201: 2195: 2189: 2147: 2141: 2135: 2125: 2115: 2107: 2087: 2083: 2079: 2073: 2062: 2054: 2045: 2004:(4): 15–16, 2001: 1995: 1968: 1958: 1942: 1933: 1929: 1921: 1911: 1904: 1880: 1848: 1844: 1808:(5): 41–47, 1805: 1799: 1793: 1769: 1763: 1739: 1733: 1727: 1718: 1712: 1699: 1682: 1673: 1646: 1639: 1629: 1588:(2): 20–25, 1585: 1579: 1573: 1546: 1502:(1): 53–62, 1499: 1493: 1471: 1445: 1407: 1402: 1345: 1311:Efimov state 1308: 1300:halogen bond 1261: 1255:made out of 1242: 1178:RĂ©dei symbol 1159: 1026: 1015: 1000: 922: 846: 840:Logo of the 821:Matthew Cook 818: 798:stick number 781:eccentricity 775: 763:link diagram 744: 678:link diagram 671: 591: 580: 544: 538: 526: 506: 505:" column in 480: 469: 458: 443: 419:ƌmiwa Shrine 415:image stones 389:aristocratic 385:coat of arms 382: 296: 282: 280: 263:Venn diagram 251:link diagram 248: 201:) by linked 192: 184:Efimov state 175: 160:coat of arms 153: 145:Venn diagram 131: 125: 82:A–B notation 42:Crossing no. 18: 4134:Knot theory 3861:Linking no. 3782:Alternating 3583:Conway knot 3563:Carrick mat 3517:Three-twist 3482:Knot theory 3436:Numberphile 3416:Brady Haran 2924:(1): 1–30, 2090:(1): 1–12, 2084:Medium Ævum 2059:; see also 1928:"The Three 1349:Pronounced 1278:. In 2003, 1257:sheet metal 825:conjectured 796:loops, the 789:icosahedron 737:icosahedron 583:knot theory 536:crescents. 483:knot theory 293:prime links 223:alternating 207:knot theory 199:icosahedron 128:mathematics 115:alternating 56:7.327724753 4128:Categories 4021:Complement 3985:Tabulation 3942:operations 3866:Polynomial 3856:Link group 3851:Knot group 3814:Invertible 3792:Bridge no. 3774:Invariants 3704:Cinquefoil 3573:Perko pair 3499:Hyperbolic 3077:2021-02-12 2833:2012-01-17 2389:2021-03-16 2157:2006.10290 1394:References 1011:hyperbolic 991:complement 849:ropelength 832:Ropelength 704:Ring shape 598:-colorings 558:Linkedness 487:Peter Tait 394:family in 231:hyperbolic 215:-colorings 134:are three 119:hyperbolic 3915:Stick no. 3871:Alexander 3809:Chirality 3754:Solomon's 3714:Septafoil 3641:Satellite 3601:Whitehead 3527:Stevedore 3434:, 2018), 3418:, 2012), 3167:1932-7447 2931:0904.3399 2447:119674622 2422:1406.3370 2288:: 75–98, 2182:219792382 2121:"Mandala" 2018:123311380 1822:120259064 1801:Resonance 1721:: 382–386 1516:189888135 1289:utilised 1104:Λ 1084:… 1078:≈ 1055:π 1049:Λ 958:× 905:≈ 902:π 876:≈ 696:that the 690:2-tangles 633:− 575:2-tangles 427:enneagram 271:alternate 227:algebraic 62:Stick no. 4100:Category 3970:Mutation 3938:Notation 3891:Kauffman 3804:Brunnian 3797:2-bridge 3666:Knot sum 3597:(12n242) 3374:20366816 3301:16541068 3217:28694953 3006:45191675 2998:15166376 2794:64589738 2756:Not Knot 2572:(2002), 2353:(2010), 2233:(1991), 2104:43631234 1951:43490498 1934:Paradiso 1786:22183145 1464:Archived 1444:(eds.), 1436:(2008), 1146:manifold 1017:Not Knot 793:polygons 528:are the 459:Paradiso 392:Borromeo 219:Brunnian 195:ellipses 164:Norsemen 4112:Commons 4031:Fibered 3929:problem 3898:Pretzel 3876:Bracket 3694:Trefoil 3631:L10a140 3591:(11n42) 3585:(11n34) 3553:Endless 3382:7951719 3354:Bibcode 3309:4379828 3281:Bibcode 3208:5477818 3130:4321733 3122:9062186 3102:Bibcode 2978:Bibcode 2969:Science 2940:2605747 2904:2206880 2868:0747855 2786:3619248 2742:2249478 2703:0547459 2659:1655039 2621:1933586 2601:Bibcode 2556:2284052 2494:1394792 2486:2690662 2439:3190121 2376:2668444 2333:2323803 2263:1132393 2218:2324788 2174:4213076 1897:1739812 1857:1770213 1691:0258014 1666:1277811 1602:3356112 1329:in the 1302:driven 1280:chemist 1116:is the 1081:7.32772 769:, uses 602:modulo 446:Trinity 402:valknut 387:of the 359:Trinity 338:Valknut 255:circles 168:Trinity 4076:Writhe 4046:Ribbon 3881:HOMFLY 3724:Unlink 3684:Unknot 3659:Square 3654:Granny 3380:  3372:  3307:  3299:  3262:Nature 3215:  3205:  3165:  3128:  3120:  3093:Nature 3028:  3004:  2996:  2938:  2902:  2866:  2792:  2784:  2740:  2730:  2701:  2691:  2657:  2629:730891 2627:  2619:  2554:  2492:  2484:  2445:  2437:  2374:  2331:  2261:  2216:  2180:  2172:  2102:  2016:  1975:  1949:  1895:  1855:  1820:  1784:  1756:429121 1754:  1689:  1664:  1654:  1610:558993 1608:  1600:  1562:  1514:  1452:  1327:qubits 1096:where 1036:volume 1034:. The 908:37.699 879:58.006 229:, and 130:, the 117:, 4066:Twist 4051:Slice 4006:Berge 3994:Other 3965:Flype 3903:Prime 3886:Jones 3846:Genus 3676:Torus 3490:links 3486:knots 3378:S2CID 3305:S2CID 3271:arXiv 3126:S2CID 3002:S2CID 2964:(PDF) 2926:arXiv 2886:[ 2827:(PDF) 2790:S2CID 2782:JSTOR 2625:S2CID 2591:arXiv 2577:(PDF) 2532:arXiv 2518:(PDF) 2482:JSTOR 2443:S2CID 2417:arXiv 2383:(PDF) 2358:(PDF) 2329:JSTOR 2214:JSTOR 2178:S2CID 2152:arXiv 2100:JSTOR 2014:S2CID 1947:JSTOR 1939:(PDF) 1877:(PDF) 1845:Forma 1818:S2CID 1752:JSTOR 1606:S2CID 1512:S2CID 1337:Notes 1166:knots 1148:is a 1029:ideal 688:into 489:. In 454:Dante 412:Norse 233:. In 109:Other 4071:Wild 4036:Knot 3940:and 3927:and 3908:list 3739:Hopf 3488:and 3370:PMID 3297:PMID 3213:PMID 3163:ISSN 3118:PMID 3026:ISBN 2994:PMID 2758:and 2728:ISBN 2689:ISBN 2080:ĂŸyle 1973:ISBN 1930:Giri 1782:PMID 1652:ISBN 1560:ISBN 1470:" , 1450:ISBN 1287:UCLA 1207:knot 1168:and 1120:and 989:The 823:has 755:1987 594:Fox 211:Fox 186:and 104:L6a4 35:L6a4 4056:Sum 3577:161 3575:(10 3362:doi 3350:104 3289:doi 3267:440 3240:doi 3203:PMC 3195:doi 3155:doi 3151:119 3110:doi 3098:386 2986:doi 2974:304 2892:doi 2774:doi 2762:", 2681:doi 2647:doi 2609:doi 2587:150 2542:doi 2474:doi 2427:doi 2321:doi 2290:doi 2249:doi 2245:151 2206:doi 2202:100 2162:doi 2092:doi 2082:", 2006:doi 1936:33" 1932:of 1885:doi 1810:doi 1774:doi 1744:doi 1628:", 1590:doi 1552:doi 1504:doi 1276:DNA 1160:In 1140:is 581:In 456:'s 342:on 281:In 180:DNA 126:In 4130:: 3756:(4 3741:(2 3726:(0 3716:(7 3706:(5 3696:(3 3686:(0 3618:(6 3603:(5 3567:18 3565:(8 3555:(7 3529:(6 3519:(5 3509:(4 3376:, 3368:, 3360:, 3348:, 3328:, 3303:, 3295:, 3287:, 3279:, 3265:, 3234:, 3211:, 3201:, 3189:, 3161:, 3149:, 3124:, 3116:, 3108:, 3096:, 3069:, 3054:24 3052:, 3048:, 3000:, 2992:, 2984:, 2972:, 2966:, 2947:^ 2936:MR 2934:, 2922:23 2920:, 2900:MR 2898:, 2864:MR 2860:34 2858:, 2852:46 2816:, 2801:^ 2788:, 2780:, 2770:81 2768:, 2738:MR 2736:, 2722:, 2710:^ 2699:MR 2697:, 2687:, 2655:MR 2653:, 2623:, 2617:MR 2615:, 2607:, 2599:, 2585:, 2579:, 2552:MR 2550:, 2540:, 2528:10 2526:, 2520:, 2501:^ 2490:MR 2488:, 2480:, 2470:69 2468:, 2454:^ 2441:, 2435:MR 2433:, 2425:, 2413:22 2411:, 2397:^ 2372:MR 2368:35 2366:, 2360:, 2327:, 2317:98 2315:, 2286:25 2284:, 2259:MR 2257:, 2243:, 2237:, 2212:, 2200:, 2176:, 2170:MR 2168:, 2160:, 2148:29 2146:, 2123:, 2106:, 2098:, 2088:39 2086:, 2044:, 2040:, 2025:^ 2012:, 2002:21 2000:, 1986:^ 1967:, 1941:, 1893:MR 1891:, 1864:^ 1853:MR 1849:14 1847:, 1829:^ 1816:, 1806:12 1804:, 1780:, 1750:, 1740:26 1738:, 1719:13 1717:, 1711:, 1687:MR 1662:MR 1660:, 1617:^ 1604:, 1598:MR 1596:, 1586:37 1584:, 1558:, 1540:; 1523:^ 1510:, 1500:20 1498:, 1478:^ 1414:^ 1374:iː 1365:oʊ 1333:. 1243:A 1203:A 1046:16 1024:. 935:36 920:. 899:12 549:. 436:A 303:"6 225:, 221:, 147:, 76:.1 3765:) 3761:1 3750:) 3746:1 3735:) 3731:1 3720:) 3718:1 3710:) 3708:1 3700:) 3698:1 3690:) 3688:1 3627:) 3623:2 3612:) 3608:1 3579:) 3569:) 3559:) 3557:4 3547:3 3545:6 3539:2 3537:6 3533:) 3531:1 3523:) 3521:2 3513:) 3511:1 3492:) 3484:( 3474:e 3467:t 3460:v 3430:( 3422:( 3414:( 3364:: 3356:: 3291:: 3283:: 3273:: 3242:: 3236:3 3197:: 3191:8 3157:: 3112:: 3104:: 2988:: 2980:: 2928:: 2894:: 2776:: 2683:: 2649:: 2611:: 2603:: 2593:: 2544:: 2534:: 2476:: 2429:: 2419:: 2323:: 2292:: 2251:: 2208:: 2164:: 2154:: 2094:: 2008:: 1887:: 1812:: 1776:: 1746:: 1634:. 1624:" 1592:: 1554:: 1506:: 1383:/ 1380:n 1377:ə 1371:m 1368:ˈ 1362:r 1359:ɒ 1356:b 1353:/ 1128:G 1075:G 1072:8 1069:= 1066:) 1063:4 1059:/ 1052:( 961:4 955:2 807:: 656:n 636:n 628:3 624:n 609:n 604:n 596:n 577:. 308:2 213:n 91:2 86:6 66:9 46:6

Index


Crossing no.
Hyperbolic volume
Stick no.
Conway notation
A–B notation
Thistlethwaite
alternating
hyperbolic
mathematics
simple closed curves
topologically linked
Venn diagram
alternatingly crossing over and under each other
House of Borromeo
coat of arms
Norsemen
Trinity
Ballantine beer
DNA
Efimov state
Borromean nuclei
ellipses
icosahedron
golden rectangles
knot theory
Fox n-colorings
Brunnian
alternating
algebraic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑