Knowledge

Knot theory

Source 📝

262: 3378:, also called the Dowker notation or code, for a knot is a finite sequence of even integers. The numbers are generated by following the knot and marking the crossings with consecutive integers. Since each crossing is visited twice, this creates a pairing of even integers with odd integers. An appropriate sign is given to indicate over and undercrossing. For example, in this figure the knot diagram has crossings labelled with the pairs (1,6) (3,−12) (5,2) (7,8) (9,−4) and (11,−10). The Dowker–Thistlethwaite notation for this labelling is the sequence: 6, −12, 2, 8, −4, −10. A knot diagram has more than one possible Dowker notation, and there is a well-understood ambiguity when reconstructing a knot from a Dowker–Thistlethwaite notation. 20: 3089:): consider a planar projection of each knot and suppose these projections are disjoint. Find a rectangle in the plane where one pair of opposite sides are arcs along each knot while the rest of the rectangle is disjoint from the knots. Form a new knot by deleting the first pair of opposite sides and adjoining the other pair of opposite sides. The resulting knot is a sum of the original knots. Depending on how this is done, two different knots (but no more) may result. This ambiguity in the sum can be eliminated regarding the knots as 1409: 1595: 3367: 2277: 2372: 1578:
finitely many times when an "event" or "catastrophe" occurs, such as when more than two strands cross at a point or multiple strands become tangent at a point. A close inspection will show that complicated events can be eliminated, leaving only the simplest events: (1) a "kink" forming or being straightened out; (2) two strands becoming tangent at a point and passing through; and (3) three strands crossing at a point. These are precisely the Reidemeister moves (
2289: 212: 5772: 1781: 1564: 2356: 36: 452: 3066: 1547: 1535: 5784: 3154: 3462:, similar to the Dowker–Thistlethwaite notation, represents a knot with a sequence of integers. However, rather than every crossing being represented by two different numbers, crossings are labeled with only one number. When the crossing is an overcrossing, a positive number is listed. At an undercrossing, a negative number. For example, the trefoil knot in Gauss code can be given as: 1,−2,3,−1,2,−3 443: 3264:). This famous error would propagate when Dale Rolfsen added a knot table in his influential text, based on Conway's work. Conway's 1970 paper on knot theory also contains a typographical duplication on its non-alternating 11-crossing knots page and omits 4 examples — 2 previously listed in D. Lombardero's 1968 Princeton senior thesis and 2 more subsequently discovered by 2420:
A knot in three dimensions can be untied when placed in four-dimensional space. This is done by changing crossings. Suppose one strand is behind another as seen from a chosen point. Lift it into the fourth dimension, so there is no obstacle (the front strand having no component there); then slide it
3440:
Any link admits such a description, and it is clear this is a very compact notation even for very large crossing number. There are some further shorthands usually used. The last example is usually written 8*3:2 0, where the ones are omitted and kept the number of dots excepting the dots at the end.
2403:
neighborhoods of the link. By thickening the link in a standard way, the horoball neighborhoods of the link components are obtained. Even though the boundary of a neighborhood is a torus, when viewed from inside the link complement, it looks like a sphere. Each link component shows up as infinitely
1577:
The proof that diagrams of equivalent knots are connected by Reidemeister moves relies on an analysis of what happens under the planar projection of the movement taking one knot to another. The movement can be arranged so that almost all of the time the projection will be a knot diagram, except at
1625:). For example, if the invariant is computed from a knot diagram, it should give the same value for two knot diagrams representing equivalent knots. An invariant may take the same value on two different knots, so by itself may be incapable of distinguishing all knots. An elementary invariant is 2407:
This pattern, the horoball pattern, is itself a useful invariant. Other hyperbolic invariants include the shape of the fundamental parallelogram, length of shortest geodesic, and volume. Modern knot and link tabulation efforts have utilized these invariants effectively. Fast computers and clever
140:
Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a
1300:
These two notions of knot equivalence agree exactly about which knots are equivalent: Two knots that are equivalent under the orientation-preserving homeomorphism definition are also equivalent under the ambient isotopy definition, because any orientation-preserving homeomorphisms of
3123:). For oriented knots, this decomposition is also unique. Higher-dimensional knots can also be added but there are some differences. While you cannot form the unknot in three dimensions by adding two non-trivial knots, you can in higher dimensions, at least when one considers 3315:). The notation simply organizes knots by their crossing number. One writes the crossing number with a subscript to denote its order amongst all knots with that crossing number. This order is arbitrary and so has no special significance (though in each number of crossings the 2404:
many spheres (of one color) as there are infinitely many light rays from the observer to the link component. The fundamental parallelogram (which is indicated in the picture), tiles both vertically and horizontally and shows how to extend the pattern of spheres infinitely.
3134:
approach. This is done by combining basic units called soft contacts using five operations (Parallel, Series, Cross, Concerted, and Sub). The approach is applicable to open chains as well and can also be extended to include the so-called hard contacts.
3444:
Conway's pioneering paper on the subject lists up to 10-vertex basic polyhedra of which he uses to tabulate links, which have become standard for those links. For a further listing of higher vertex polyhedra, there are nonstandard choices available.
3419:
regions. Such a polyhedron is denoted first by the number of vertices then a number of asterisks which determine the polyhedron's position on a list of basic polyhedra. For example, 10** denotes the second 10-vertex polyhedron on Conway's list.
862: 3233:). The development of knot theory due to Alexander, Reidemeister, Seifert, and others eased the task of verification and tables of knots up to and including 9 crossings were published by Alexander–Briggs and Reidemeister in the late 1920s. 1330:
to itself is the final stage of an ambient isotopy starting from the identity. Conversely, two knots equivalent under the ambient isotopy definition are also equivalent under the orientation-preserving homeomorphism definition, because the
3323:). Links are written by the crossing number with a superscript to denote the number of components and a subscript to denote its order within the links with the same number of components and crossings. Thus the trefoil knot is notated 3 3252:). This verified the list of knots of at most 11 crossings and a new list of links up to 10 crossings. Conway found a number of omissions but only one duplication in the Tait–Little tables; however he missed the duplicates called the 2424:
In fact, in four dimensions, any non-intersecting closed loop of one-dimensional string is equivalent to an unknot. First "push" the loop into a three-dimensional subspace, which is always possible, though technical to explain.
2303:
of each other (take a diagram of the trefoil given above and change each crossing to the other way to get the mirror image). These are not equivalent to each other, meaning that they are not amphichiral. This was shown by
1432:). At each crossing, to be able to recreate the original knot, the over-strand must be distinguished from the under-strand. This is often done by creating a break in the strand going underneath. The resulting diagram is an 2027:. To check that these rules give an invariant of an oriented link, one should determine that the polynomial does not change under the three Reidemeister moves. Many important knot polynomials can be defined in this way. 988: 3561:
Adams, Colin; Crawford, Thomas; DeMeo, Benjamin; Landry, Michael; Lin, Alex Tong; Montee, MurphyKate; Park, Seojung; Venkatesh, Saraswathi; Yhee, Farrah (2015), "Knot projections with a single multi-crossing",
715: 1420:
A useful way to visualise and manipulate knots is to project the knot onto a plane—think of the knot casting a shadow on the wall. A small change in the direction of projection will ensure that it is
276:
who explicitly noted the importance of topological features when discussing the properties of knots related to the geometry of position. Mathematical studies of knots began in the 19th century with
2265: 2054: 4946:
Menasco and Thistlethwaite's handbook surveys a mix of topics relevant to current research trends in a manner accessible to advanced undergraduates but of interest to professional researchers.
2142: 2098: 2067: 2044: 2155: 2132: 2111: 2088: 2018: 560: 4790:). Adams is informal and accessible for the most part to high schoolers. Lickorish is a rigorous introduction for graduate students, covering a nice mix of classical and modern topics. ( 1111: 4983:
This is an online version of an exhibition developed for the 1989 Royal Society "PopMath RoadShow". Its aim was to use knots to present methods of mathematics to the general public.
230:
objects together, knots have interested humans for their aesthetics and spiritual symbolism. Knots appear in various forms of Chinese artwork dating from several centuries BC (see
59:
which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "
3093:, i.e. having a preferred direction of travel along the knot, and requiring the arcs of the knots in the sum are oriented consistently with the oriented boundary of the rectangle. 1505:, demonstrated that two knot diagrams belonging to the same knot can be related by a sequence of three kinds of moves on the diagram, shown below. These operations, now called the 1216: 1061: 621:
is to give a precise definition of when two knots should be considered the same even when positioned quite differently in space. A formal mathematical definition is that two knots
1479:
is a type of projection in which, instead of forming double points, all strands of the knot meet at a single crossing point, connected to it by loops forming non-nested "petals".
2816: 1775: 2951: 2922: 2885: 2856: 2777: 2687: 2646: 2533: 2504: 2475: 1328: 1271: 1140: 131: 102: 460:
On the left, the unknot, and a knot equivalent to it. It can be more difficult to determine whether complex knots, such as the one on the right, are equivalent to the unknot.
3427:
substituted into it (each vertex is oriented so there is no arbitrary choice in substitution). Each such tangle has a notation consisting of numbers and + or − signs.
764: 1540: 2731: 772: 659: 604: 3023: 1181: 300:'s creation of the first knot tables for complete classification. Tait, in 1885, published a table of knots with up to ten crossings, and what came to be known as the 3177:, p. 28). The sequence of the number of prime knots of a given crossing number, up to crossing number 16, is 0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 3049: 2613: 1906: 2991: 1839: 1812: 1717:, which consist of one or more knots entangled with each other. The concepts explained above for knots, e.g. diagrams and Reidemeister moves, also hold for links. 1026: 916: 889: 1868: 3430:
An example is 1*2 −3 2. The 1* denotes the only 1-vertex basic polyhedron. The 2 −3 2 is a sequence describing the continued fraction associated to a
2312:). But the Alexander–Conway polynomial of each kind of trefoil will be the same, as can be seen by going through the computation above with the mirror image. The 1355: 3437:
A more complicated example is 8*3.1.2 0.1.1.1.1.1 Here again 8* refers to a basic polyhedron with 8 vertices. The periods separate the notation for each tangle.
1926: 1291: 496: 3304: 1498: 3352:'s original and subsequent knot tables, and differences in approach to correcting this error in knot tables and other publications created after this point. 2270:
Since the Alexander–Conway polynomial is a knot invariant, this shows that the trefoil is not equivalent to the unknot. So the trefoil really is "knotted".
4826: 2421:
forward, and drop it back, now in front. Analogies for the plane would be lifting a string up off the surface, or removing a dot from inside a circle.
1376:). Nonetheless, these algorithms can be extremely time-consuming, and a major issue in the theory is to understand how hard this problem really is ( 4171: 2536: 4799: 3265: 3211:). While exponential upper and lower bounds for this sequence are known, it has not been proven that this sequence is strictly increasing ( 2656:). Thus the codimension of a smooth knot can be arbitrarily large when not fixing the dimension of the knotted sphere; however, any smooth 925: 2540: 137:); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself. 3208: 2343:. The hyperbolic structure depends only on the knot so any quantity computed from the hyperbolic structure is then a knot invariant ( 3165:. Knot tables generally include only prime knots, and only one entry for a knot and its mirror image (even if they are different) ( 769:
What this definition of knot equivalence means is that two knots are equivalent when there is a continuous family of homeomorphisms
1724:
one in which every component of the link has a preferred direction indicated by an arrow. For a given crossing of the diagram, let
4778:
There are a number of introductions to knot theory. A classical introduction for graduate students or advanced undergraduates is (
2391:
Geometry lets us visualize what the inside of a knot or link complement looks like by imagining light rays as traveling along the
1660:
and hyperbolic invariants were discovered. These aforementioned invariants are only the tip of the iceberg of modern knot theory.
1648:, which can be computed from the Alexander invariant, a module constructed from the infinite cyclic cover of the knot complement ( 670: 3111:
if it is non-trivial and cannot be written as the knot sum of two non-trivial knots. A knot that can be written as such a sum is
2399:. The inhabitant of this link complement is viewing the space from near the red component. The balls in the picture are views of 2030:
The following is an example of a typical computation using a skein relation. It computes the Alexander–Conway polynomial of the
261: 5149: 4965: 4938: 4909: 4889: 4866: 4842: 4817: 4338: 4312: 4250: 4216: 4152: 4120: 4060: 3869: 3812: 3552: 3169:). The number of nontrivial knots of a given crossing number increases rapidly, making tabulation computationally difficult ( 2175: 176:
To gain further insight, mathematicians have generalized the knot concept in several ways. Knots can be considered in other
5717: 864:
of space onto itself, such that the last one of them carries the first knot onto the second knot. (In detail: Two knots
5636: 4597: 3375: 3361: 614:
to be equivalent if the knot can be pushed about smoothly, without intersecting itself, to coincide with another knot.
470:
line segment, wrapping it around itself arbitrarily, and then fusing its two free ends together to form a closed loop (
2738: 273: 5815: 3503: 1357:(final) stage of the ambient isotopy must be an orientation-preserving homeomorphism carrying one knot to the other. 304:. This record motivated the early knot theorists, but knot theory eventually became part of the emerging subject of 289: 154:, a "quantity" which is the same when computed from different descriptions of a knot. Important invariants include 3708:. Leibniz Int. Proc. Inform. Vol. 164. Schloss Dagstuhl–Leibniz-Zentrum fĂŒr Informatik. pp. 25:1–25:17. 3218:
The first knot tables by Tait, Little, and Kirkman used knot diagrams, although Tait also used a precursor to the
1937: 512: 5183: 3241: 3229:
The early tables attempted to list all knots of at most 10 crossings, and all alternating knots of 11 crossings (
1695: 1436:
with the additional data of which strand is over and which is under at each crossing. (These diagrams are called
422: 1066: 4794:) is suitable for undergraduates who know point-set topology; knowledge of algebraic topology is not required. 2580:), although this is no longer a requirement for smoothly knotted spheres. In fact, there are smoothly knotted 2444:
Since a knot can be considered topologically a 1-dimensional sphere, the next generalization is to consider a
5631: 5626: 5502: 3855: 3609: 3544: 3393: 3387: 3162: 222:
Archaeologists have discovered that knot tying dates back to prehistoric times. Besides their uses such as
5788: 5203: 3963: 1186: 1031: 331:. This would be the main approach to knot theory until a series of breakthroughs transformed the subject. 2276: 5265: 3536: 3268:. Less famous is the duplicate in his 10 crossing link table: 2.-2.-20.20 is the mirror of 8*-20:-20. . 3073:
Two knots can be added by cutting both knots and joining the pairs of ends. The operation is called the
2339:(i.e., the set of points of 3-space not on the knot) admits a geometric structure, in particular that of 169:, which are knots of several components entangled with each other. More than six billion knots and links 3465:
Gauss code is limited in its ability to identify knots. This problem is partially addressed with by the
2786: 2428:
Four-dimensional space occurs in classical knot theory, however, and an important topic is the study of
2288: 4579: 3861: 3478: 3300: 1727: 1494: 316: 4754: 2927: 2898: 2861: 2832: 2753: 2663: 2622: 2509: 2480: 2451: 1304: 1221: 1116: 107: 104:. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of 78: 5335: 5330: 5271: 5142: 3922: 2563: 2408:
methods of obtaining these invariants make calculating these invariants, in practice, a simple task (
857:{\displaystyle \{h_{t}:\mathbb {R} ^{3}\rightarrow \mathbb {R} ^{3}\ \mathrm {for} \ 0\leq t\leq 1\}} 382:. A plethora of knot invariants have been invented since then, utilizing sophisticated tools such as 343: 293: 5014:
Silliman, Robert H. (December 1963), "William Thomson: Smoke Rings and Nineteenth-Century Atomism",
720: 4588: 3157:
A table of prime knots up to seven crossings. The knots are labeled with Alexander–Briggs notation
2692: 2166:(unlink of two components) = 0, since the first two polynomials are of the unknot and thus equal. 5463: 4761:. Accessed February 2016. Richard Elwes points out a common mistake in describing the Perko pair. 3271:
In the late 1990s Hoste, Thistlethwaite, and Weeks tabulated all the knots through 16 crossings (
624: 246:
have made repeated appearances in different cultures, often representing strength in unity. The
141:
fundamental problem in knot theory is determining when two descriptions represent the same knot.
3173:, p. 20). Tabulation efforts have succeeded in enumerating over 6 billion knots and links ( 5677: 5646: 4980: 4583: 3821:
Doll, Helmut; Hoste, Jim (1991), "A tabulation of oriented links. With microfiche supplement",
1777:
be the oriented link diagrams resulting from changing the diagram as indicated in the figure:
662: 565: 324: 206: 145: 19: 4953: 2996: 1145: 421:). Knot theory may be crucial in the construction of quantum computers, through the model of 413:, strings with both ends fixed in place, have been effectively used in studying the action of 5507: 4926: 4514:
Marc Lackenby announces a new unknot recognition algorithm that runs in quasi-polynomial time
4075: 4010: 3349: 2535:
onto itself taking the embedded 2-sphere to the standard "round" embedding of the 2-sphere.
402: 375: 3411:
The notation describes how to construct a particular link diagram of the link. Start with a
3028: 2583: 2299:
Actually, there are two trefoil knots, called the right and left-handed trefoils, which are
1876: 5810: 5776: 5547: 5135: 5107: 4710: 4669: 4628: 4518: 4420: 4226: 4208: 3982: 3951: 3830: 3734: 3593: 3408:). The advantage of this notation is that it reflects some properties of the knot or link. 3401: 2964: 1817: 1790: 1687: 1645: 1433: 993: 894: 867: 410: 394: 379: 328: 277: 165:
The original motivation for the founders of knot theory was to create a table of knots and
4574:
Levine, J.; Orr, K (2000), "A survey of applications of surgery to knot and link theory",
3222:. Different notations have been invented for knots which allow more efficient tabulation ( 1844: 1841:, depending on the chosen crossing's configuration. Then the Alexander–Conway polynomial, 393:
In the last several decades of the 20th century, scientists became interested in studying
8: 5584: 5567: 5111: 4998: 4015: 3725: 3466: 3312: 3144: 2340: 1691: 1657: 1334: 507: 339: 247: 5049: 4731: 4714: 4698: 4673: 4632: 4424: 3986: 3834: 3738: 374:, and others, revealed deep connections between knot theory and mathematical methods in 5605: 5552: 5166: 5162: 5039: 5031: 4659: 4618: 4467: 4436: 4360: 4344: 4190: 4158: 4130: 4092: 4052: 4032: 3998: 3972: 3906: 3804: 3792: 3781: 3701: 3678: 3662: 3631: 3597: 3571: 3397: 3237: 2780: 2734: 1911: 1714: 1449: 1441: 1421: 1413: 1385: 1276: 607: 481: 297: 266: 182: 166: 52: 4603:— An introductory article to high dimensional knots and links for the advanced readers 4381: 3994: 3878: 3843: 3746: 3626: 5702: 5651: 5601: 5557: 5517: 5512: 5430: 5043: 4961: 4934: 4905: 4885: 4875: 4862: 4852: 4838: 4813: 4736: 4593: 4356: 4348: 4334: 4308: 4295: 4246: 4212: 4162: 4148: 4116: 4056: 3939: 3865: 3808: 3795:(1970), "An enumeration of knots and links, and some of their algebraic properties", 3785: 3750: 3692: 3666: 3601: 3548: 2316:
polynomial can in fact distinguish between the left- and right-handed trefoil knots (
1637: 1502: 1488: 4440: 4036: 2733:
is unknotted. The notion of a knot has further generalisations in mathematics, see:
5737: 5562: 5458: 5193: 5023: 4803: 4726: 4718: 4677: 4459: 4428: 4389: 4326: 4290: 4269: 4238: 4180: 4140: 4108: 4084: 4048: 4024: 4002: 3990: 3931: 3898: 3838: 3800: 3773: 3742: 3709: 3687: 3654: 3621: 3581: 3508: 3493: 3488: 3424: 3276: 3131: 2328: 1683: 1476: 1453: 371: 355: 335: 301: 281: 239: 231: 155: 5121: 2053: 5697: 5661: 5596: 5542: 5497: 5490: 5380: 5292: 5175: 5120:— software for low-dimensional topology with native support for knots and links. 5095: 4899: 4879: 4856: 4807: 4408: 4222: 4202: 4134: 3947: 3589: 3518: 3431: 3219: 3148: 2396: 2381: 2362: 2336: 2332: 2141: 2097: 2066: 2043: 1669: 1641: 1626: 1397: 1294: 347: 243: 170: 134: 72: 5127: 4112: 3714: 2395:
of the geometry. An example is provided by the picture of the complement of the
2154: 2131: 2110: 2087: 5757: 5656: 5618: 5537: 5450: 5325: 5317: 5277: 5059: 4722: 4492: 3917: 3673: 3642: 3483: 2958: 2384:
complement from the perspective of an inhabitant living near the red component.
2024: 1675: 1608: 1601: 1594: 1408: 1369: 387: 351: 150: 5117: 4242: 4144: 3585: 2546:
The mathematical technique called "general position" implies that for a given
5804: 5692: 5480: 5473: 5468: 4404: 4070: 3943: 3541:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
3498: 3257: 2308:, before the invention of knot polynomials, using group theoretical methods ( 1393: 665: 414: 383: 367: 359: 251: 216: 4043:
Hoste, Jim (2005). "The Enumeration and Classification of Knots and Links".
1656:). In the late 20th century, invariants such as "quantum" knot polynomials, 5707: 5687: 5591: 5574: 5370: 5307: 5083: 4740: 4636:— An introductory article to high dimensional knots and links for beginners 4447: 3851: 3754: 3308: 3116: 2031: 611: 235: 28: 24: 4330: 3366: 401:
and other polymers. Knot theory can be used to determine if a molecule is
144:
A complete algorithmic solution to this problem exists, which has unknown
5722: 5485: 5390: 5259: 5239: 5229: 5221: 5213: 4994: 3441:
For an algebraic knot such as in the first example, 1* is often omitted.
3434:. One inserts this tangle at the vertex of the basic polyhedron 1*. 3101: 3097: 2436:. A notorious open problem asks whether every slice knot is also ribbon. 2433: 2300: 255: 4682: 4647: 4512: 3857:
When topology meets chemistry: A topological look at molecular chirality
2371: 2122:
of two components) and an unknot. The unlink takes a bit of sneakiness:
1613:
A knot invariant is a "quantity" that is the same for equivalent knots (
211: 5742: 5727: 5682: 5579: 5532: 5527: 5522: 5352: 5249: 5055: 4471: 4432: 4273: 4194: 4096: 4028: 3935: 3910: 3777: 3658: 3635: 3513: 3459: 3454: 3345: 3320: 3316: 3284: 3253: 3105: 2429: 2365:
are a link with the property that removing one ring unlinks the others.
1679: 1633: 320: 227: 177: 159: 5035: 4281:
Simon, Jonathan (1986), "Topological chirality of certain molecules",
1563: 1546: 1534: 5747: 5415: 5072: 4830: 4812:, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter, 3977: 3958: 2075: 1365: 983:{\displaystyle H:\mathbb {R} ^{3}\times \rightarrow \mathbb {R} ^{3}} 503: 467: 64: 4463: 4185: 4088: 3920:(1962), "Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I", 3902: 2118:
gives a link deformable to one with 0 crossings (it is actually the
5732: 5342: 5027: 4664: 4555: 3761: 3236:
The first major verification of this work was done in the 1960s by
3060: 2745: 2619:-dimensional space; e.g., there is a smoothly knotted 3-sphere in 2566: 2445: 2400: 2392: 2305: 1475:), or in which all of the reducible crossings have been removed. A 1428:, where the "shadow" of the knot crosses itself once transversely ( 312: 305: 187: 44: 4623: 3706:
36th International Symposium on Computational Geometry (SoCG 2020)
3576: 4699:"A tile model of circuit topology for self-entangled biopolymers" 4139:, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, 2377: 2355: 1780: 1703: 451: 39:
A knot diagram of the trefoil knot, the simplest non-trivial knot
35: 3299:
This is the most traditional notation, due to the 1927 paper of
3065: 2506:). Such an embedding is knotted if there is no homeomorphism of 1713:
The Alexander–Conway polynomial is actually defined in terms of
5752: 5400: 5360: 5101: 4648:"Circuit Topology for Bottom-Up Engineering of Molecular Knots" 2119: 1929: 1381: 68: 60: 3723:
Collins, Graham (April 2006), "Computing with Quantum Knots",
1452:.) Analogously, knotted surfaces in 4-space can be related to 272:
A mathematical theory of knots was first developed in 1771 by
5641: 4697:
Flapan, Erica; Mashaghi, Alireza; Wong, Helen (1 June 2023).
3416: 3153: 2034:. The yellow patches indicate where the relation is applied. 1539: 606:. Topologists consider knots and other entanglements such as 499: 223: 3961:(1998), "Algorithms for recognizing knots and 3-manifolds", 3370:
A knot diagram with crossings labelled for a Dowker sequence
1598:
A 3D print depicting the complement of the figure eight knot
710:{\displaystyle h\colon \mathbb {R} ^{3}\to \mathbb {R} ^{3}} 5712: 3203: 56: 4576:
Surveys on Surgery Theory: Papers Dedicated to C.T.C. Wall
2078:. Applying the relation to the Hopf link where indicated, 1396:
announced a new unknot recognition algorithm that runs in
442: 4169:
Perko, Kenneth (1974), "On the classification of knots",
3115:. There is a prime decomposition for knots, analogous to 398: 350:, enabling the use of geometry in defining new, powerful 319:, and others—studied knots from the point of view of the 173:
since the beginnings of knot theory in the 19th century.
4646:
Golovnev, Anatoly; Mashaghi, Alireza (7 December 2021).
4561: 4235:
Die eindeutige Zerlegbarkeit eines Knotens in Primknoten
4008: 3560: 3275:). In 2003 Rankin, Flint, and Schermann, tabulated the 3272: 3230: 3166: 311:
These topologists in the early part of the 20th century—
5092:— software to investigate geometric properties of knots 5089: 3085:
of two knots. This can be formally defined as follows (
2439: 1493:
In 1927, working with this diagrammatic form of knots,
5052:
of a modern recreation of Tait's smoke ring experiment
4103:
Kontsevich, M. (1993). "Vassiliev's knot invariants".
4013:; Weeks, Jeffrey (1998), "The First 1,701,935 Knots", 3161:
Traditionally, knots have been catalogued in terms of
2260:{\displaystyle C(\mathrm {trefoil} )=1+z(0+z)=1+z^{2}} 4924: 4543: 3240:, who not only developed a new notation but also the 3031: 2999: 2967: 2930: 2901: 2864: 2835: 2789: 2756: 2695: 2666: 2625: 2586: 2512: 2483: 2454: 2178: 1940: 1914: 1879: 1847: 1820: 1793: 1730: 1368:
exist to solve this problem, with the first given by
1337: 1307: 1279: 1224: 1189: 1148: 1119: 1069: 1034: 996: 928: 897: 870: 775: 723: 673: 627: 568: 515: 484: 366:, pp. 71–89), and subsequent contributions from 148:. In practice, knots are often distinguished using a 110: 81: 4531: 4260:
Silver, Daniel (2006). "Knot Theory's Odd Origins".
4073:(1965), "A classification of differentiable knots", 3645:; King, Henry C. (1981), "All knots are algebraic", 3612:(1991), "Hyperbolic invariants of knots and links", 3607: 2409: 5086:— detailed info on individual knots in knot tables 5078:Table of Knot Invariants and Knot Theory Resources 4696: 3504:Contact geometry#Legendrian submanifolds and knots 3043: 3017: 2985: 2945: 2916: 2879: 2850: 2810: 2771: 2725: 2681: 2640: 2607: 2527: 2498: 2469: 2259: 2023:The second rule is what is often referred to as a 2012: 1920: 1900: 1862: 1833: 1806: 1769: 1520:Move a strand completely over or under a crossing. 1349: 1322: 1285: 1265: 1210: 1175: 1134: 1105: 1055: 1020: 982: 910: 883: 856: 758: 709: 653: 598: 554: 490: 125: 96: 5157: 3614:Transactions of the American Mathematical Society 3355: 2543:are two typical families of such 2-sphere knots. 1870:, is recursively defined according to the rules: 5802: 4645: 4172:Proceedings of the American Mathematical Society 1364:, is determining the equivalence of two knots. 180:and objects other than circles can be used; see 4409:"Quantum field theory and the Jones polynomial" 2562:), the sphere should be unknotted. In general, 215:Intricate Celtic knotwork in the 1200-year-old 186:. For example, a higher-dimensional knot is an 5104:— online database and image generator of knots 4798: 4578:, Annals of mathematics studies, vol. 1, 5143: 5003:Proceedings of the Royal Society of Edinburgh 4782:). Other good texts from the references are ( 2477:) embedded in 4-dimensional Euclidean space ( 1694:. A variant of the Alexander polynomial, the 397:in order to understand knotting phenomena in 3676:(1995), "On the Vassiliev knot invariants", 3564:Journal of Knot Theory and Its Ramifications 3415:, a 4-valent connected planar graph with no 3294: 2013:{\displaystyle C(L_{+})=C(L_{-})+zC(L_{0}).} 851: 776: 555:{\displaystyle K\colon \to \mathbb {R} ^{3}} 5066: 4323:Quantum Invariants of Knots and 3-Manifolds 4207:, Mathematics Lecture Series, vol. 7, 3641: 3344:are ambiguous, due to the discovery of the 2819: 1600:by François GuĂ©ritaud, Saul Schleimer, and 63:"). In mathematical language, a knot is an 5150: 5136: 4960:, Simon & Schuster, pp. 203–218, 4825: 4549: 4450:(1963), "Unknotting combinatorial balls", 4379: 4107:. ADVSOV. Vol. 16. pp. 137–150. 4102: 3797:Computational Problems in Abstract Algebra 1106:{\displaystyle H(x,t)\in \mathbb {R} ^{3}} 466:A knot is created by beginning with a one- 294:theory that atoms were knots in the aether 23:Examples of different knots including the 4787: 4773: 4730: 4681: 4663: 4622: 4587: 4573: 4537: 4355: 4302: 4294: 4184: 4129: 3976: 3877: 3842: 3820: 3764:(1914), "Die beiden Kleeblattschlingen", 3713: 3691: 3672: 3625: 3575: 3336:. Alexander–Briggs names in the range 10 3256:, which would only be noticed in 1974 by 3249: 2933: 2904: 2867: 2838: 2792: 2759: 2669: 2649: 2628: 2515: 2486: 2457: 2317: 1707: 1649: 1618: 1583: 1579: 1310: 1198: 1122: 1093: 1043: 970: 937: 809: 794: 697: 682: 542: 475: 363: 113: 84: 5013: 4897: 4874: 4851: 4791: 4232: 3365: 3152: 3130:Knots can also be constructed using the 3120: 3064: 2323: 1632:"Classical" knot invariants include the 1593: 1517:Move one strand completely over another. 1463:is a knot diagram in which there are no 1407: 562:, with the only "non-injectivity" being 260: 210: 34: 18: 4993: 4779: 4200: 3722: 3311:in his knot table (see image above and 1653: 1622: 1429: 1380:). The special case of recognizing the 426: 5803: 5124:of prime knots with up to 19 crossings 4615:Introduction to high dimensional knots 4491:As first sketched using the theory of 4446: 4403: 4320: 4259: 4069: 3850: 3791: 3699: 3405: 3288: 3273:Hoste, Thistlethwaite & Weeks 1998 3245: 3231:Hoste, Thistlethwaite & Weeks 1998 3167:Hoste, Thistlethwaite & Weeks 1998 3025:cases are well studied, and so is the 2653: 2577: 1514:Twist and untwist in either direction. 1360:The basic problem of knot theory, the 418: 285: 5131: 4951: 4783: 4612: 4496: 4280: 4168: 4042: 3916: 3535: 3280: 3261: 3223: 3212: 3174: 3170: 3086: 2344: 2169:Putting all this together will show: 1787:The original diagram might be either 1614: 1482: 1389: 1211:{\displaystyle x\in \mathbb {R} ^{3}} 1056:{\displaystyle x\in \mathbb {R} ^{3}} 922:if there exists a continuous mapping 471: 406: 254:lavished entire pages with intricate 5783: 5098:— software to create images of knots 4954:"Ch. 8: Unreasonable Effectiveness?" 4500: 3957: 3760: 2739:isotopy classification of embeddings 2440:Knotting spheres of higher dimension 2415: 2309: 1424:except at the double points, called 1377: 1373: 3138: 2576: + 2)-dimensional space ( 1720:Consider an oriented link diagram, 1663: 1412:Tenfold Knottiness, plate IX, from 432: 13: 4884:(4th ed.), World Scientific, 4768: 3885: − 1)-spheres in 6 3805:10.1016/B978-0-08-012975-4.50034-5 3608:Adams, Colin; Hildebrand, Martin; 3381: 3096:The knot sum of oriented knots is 2811:{\displaystyle \mathbb {R} ^{n+1}} 2410:Adams, Hildebrand & Weeks 1991 2204: 2201: 2198: 2195: 2192: 2189: 2186: 1779: 1698:, is a polynomial in the variable 1682:. Well-known examples include the 1589: 829: 826: 823: 14: 5827: 4974: 3844:10.1090/S0025-5718-1991-1094946-4 3747:10.1038/scientificamerican0406-56 3627:10.1090/s0002-9947-1991-0994161-2 3396:for knots and links, named after 3127:knots in codimension at least 3. 2554:-dimensional Euclidean space, if 1770:{\displaystyle L_{+},L_{-},L_{0}} 342:into the study of knots with the 197:+2)-dimensional Euclidean space. 5782: 5771: 5770: 5114:function for investigating knots 4499:. For a more recent survey, see 4053:10.1016/B978-044451452-3/50006-X 3283:). In 2020 Burton tabulated all 2946:{\displaystyle \mathbb {R} ^{m}} 2917:{\displaystyle \mathbb {S} ^{n}} 2880:{\displaystyle \mathbb {R} ^{m}} 2851:{\displaystyle \mathbb {S} ^{n}} 2772:{\displaystyle \mathbb {S} ^{n}} 2682:{\displaystyle \mathbb {R} ^{n}} 2641:{\displaystyle \mathbb {R} ^{6}} 2528:{\displaystyle \mathbb {R} ^{4}} 2499:{\displaystyle \mathbb {R} ^{4}} 2470:{\displaystyle \mathbb {S} ^{2}} 2370: 2354: 2287: 2275: 2153: 2140: 2130: 2109: 2096: 2086: 2065: 2052: 2042: 1562: 1545: 1538: 1533: 1403: 1323:{\displaystyle \mathbb {R} ^{3}} 1266:{\displaystyle H(K_{1},1)=K_{2}} 1135:{\displaystyle \mathbb {R} ^{3}} 498:is a "simple closed curve" (see 450: 441: 126:{\displaystyle \mathbb {R} ^{3}} 97:{\displaystyle \mathbb {E} ^{3}} 4747: 4305:Knots, mathematics with a twist 3054: 1524: 423:topological quantum computation 274:Alexandre-ThĂ©ophile Vandermonde 5637:Dowker–Thistlethwaite notation 4904:, Cambridge University Press, 4861:, Princeton University Press, 4690: 4639: 4606: 4567: 4505: 4485: 4136:An Introduction to Knot Theory 3799:, Pergamon, pp. 329–358, 3376:Dowker–Thistlethwaite notation 3362:Dowker–Thistlethwaite notation 3356:Dowker–Thistlethwaite notation 2602: 2587: 2558:is large enough (depending on 2294:The right-handed trefoil knot. 2235: 2223: 2208: 2182: 2004: 1991: 1979: 1966: 1957: 1944: 1889: 1883: 1857: 1851: 1247: 1228: 1164: 1152: 1085: 1073: 1015: 1003: 965: 962: 950: 804: 759:{\displaystyle h(K_{1})=K_{2}} 740: 727: 692: 661:are equivalent if there is an 593: 587: 578: 572: 537: 534: 522: 346:. Many knots were shown to be 1: 4755:The Revenge of the Perko Pair 3995:10.1016/S0960-0779(97)00109-4 3545:American Mathematical Society 3524: 3448: 3388:Conway notation (knot theory) 2783:with isolated singularity in 2282:The left-handed trefoil knot. 1388:, is of particular interest ( 478:). Simply, we can say a knot 405:(has a "handedness") or not ( 162:, and hyperbolic invariants. 4987: 4478: 4380:Weisstein, Eric W. (2013a). 4321:Turaev, Vladimir G. (2016). 4307:, Harvard University Press, 4296:10.1016/0040-9383(86)90041-8 3964:Chaos, Solitons and Fractals 3702:"The Next 350 Million Knots" 3700:Burton, Benjamin A. (2020). 3693:10.1016/0040-9383(95)93237-2 3400:, is based on the theory of 2726:{\displaystyle 2n-3k-3>0} 7: 4898:Cromwell, Peter R. (2004), 4835:Introduction to Knot Theory 3715:10.4230/LIPIcs.SoCG.2020.25 3472: 3242:Alexander–Conway polynomial 1696:Alexander–Conway polynomial 1416:'s article "On Knots", 1884 654:{\displaystyle K_{1},K_{2}} 16:Study of mathematical knots 10: 5832: 4918: 4723:10.1038/s41598-023-35771-8 4580:Princeton University Press 4517:, Mathematical Institute, 4303:Sossinsky, Alexei (2002), 3862:Cambridge University Press 3529: 3479:List of knot theory topics 3452: 3385: 3359: 3142: 3058: 1667: 1606: 1486: 265:The first knot tabulator, 204: 200: 5766: 5670: 5627:Alexander–Briggs notation 5614: 5449: 5351: 5316: 5174: 4243:10.1007/978-3-642-45813-2 4145:10.1007/978-1-4612-0691-0 3923:Mathematische Zeitschrift 3586:10.1142/S021821651550011X 3295:Alexander–Briggs notation 3287:with up to 19 crossings ( 2074:gives the unknot and the 1570: 1561: 599:{\displaystyle K(0)=K(1)} 133:upon itself (known as an 5816:Low-dimensional topology 5067:Knot tables and software 4233:Schubert, Horst (1949). 4131:Lickorish, W. B. Raymond 3423:Each vertex then has an 3018:{\displaystyle m>n+2} 1176:{\displaystyle H(x,0)=x} 502:) — that is: a "nearly" 178:three-dimensional spaces 5718:List of knots and links 5266:Kinoshita–Terasaka knot 4981:"Mathematics and Knots" 4958:Is God a Mathematician? 4931:Handbook of Knot Theory 4113:10.1090/advsov/016.2/04 4045:Handbook of Knot Theory 3119:and composite numbers ( 2820:Akbulut & King 1981 1674:A knot polynomial is a 354:. The discovery of the 344:hyperbolization theorem 5056:History of knot theory 4927:Thistlethwaite, Morwen 4774:Introductory textbooks 4361:"Reduced Knot Diagram" 4201:Rolfsen, Dale (1976), 4011:Thistlethwaite, Morwen 3371: 3327:and the Hopf link is 2 3307:and later extended by 3279:through 22 crossings ( 3158: 3070: 3045: 3044:{\displaystyle n>1} 3019: 2987: 2947: 2918: 2881: 2852: 2812: 2773: 2727: 2683: 2642: 2609: 2608:{\displaystyle (4k-1)} 2529: 2500: 2471: 2446:two-dimensional sphere 2331:proved many knots are 2261: 2014: 1928:is any diagram of the 1922: 1902: 1901:{\displaystyle C(O)=1} 1864: 1835: 1808: 1784: 1771: 1604: 1448:when they represent a 1440:when they represent a 1417: 1351: 1324: 1287: 1267: 1212: 1177: 1136: 1113:is a homeomorphism of 1107: 1057: 1022: 990:such that a) for each 984: 912: 885: 858: 760: 711: 663:orientation-preserving 655: 600: 556: 492: 269: 250:monks who created the 219: 207:History of knot theory 127: 98: 40: 32: 5508:Finite type invariant 5058:(on the home page of 4952:Livio, Mario (2009), 4925:Menasco, William W.; 4452:Annals of Mathematics 4331:10.1515/9783110435221 4211:: Publish or Perish, 4105:I. M. Gelfand Seminar 4076:Annals of Mathematics 3891:Annals of Mathematics 3766:Mathematische Annalen 3369: 3350:Charles Newton Little 3250:Doll & Hoste 1991 3156: 3068: 3046: 3020: 2988: 2986:{\displaystyle m=n+2} 2948: 2919: 2882: 2853: 2813: 2774: 2728: 2684: 2643: 2610: 2530: 2501: 2472: 2324:Hyperbolic invariants 2262: 2015: 1923: 1903: 1865: 1836: 1834:{\displaystyle L_{-}} 1809: 1807:{\displaystyle L_{+}} 1783: 1772: 1597: 1411: 1398:quasi-polynomial time 1352: 1325: 1288: 1268: 1213: 1178: 1137: 1108: 1058: 1023: 1021:{\displaystyle t\in } 985: 913: 911:{\displaystyle K_{2}} 886: 884:{\displaystyle K_{1}} 859: 761: 712: 656: 601: 557: 493: 376:statistical mechanics 264: 224:recording information 214: 128: 99: 38: 22: 4995:Thomson, Sir William 4613:Ogasa, Eiji (2013), 4519:University of Oxford 4382:"Reducible Crossing" 4209:Berkeley, California 4047:. pp. 209–232. 3647:Comment. Math. Helv. 3514:Necktie § Knots 3029: 2997: 2965: 2928: 2899: 2862: 2833: 2787: 2754: 2693: 2664: 2660:-sphere embedded in 2623: 2584: 2572:form knots only in ( 2510: 2481: 2452: 2176: 1938: 1912: 1877: 1863:{\displaystyle C(z)} 1845: 1818: 1791: 1728: 1688:Alexander polynomial 1658:Vassiliev invariants 1646:Alexander polynomial 1501:, and independently 1499:Garland Baird Briggs 1434:immersed plane curve 1392:). In February 2021 1335: 1305: 1277: 1222: 1187: 1146: 1117: 1067: 1032: 994: 926: 895: 868: 773: 721: 671: 625: 566: 513: 482: 380:quantum field theory 329:Alexander polynomial 323:and invariants from 278:Carl Friedrich Gauss 108: 79: 55:. While inspired by 5678:Alexander's theorem 5112:Wolfram Mathematica 4827:Crowell, Richard H. 4715:2023NatSR..13.8889F 4683:10.3390/sym13122353 4674:2021Symm...13.2353G 4633:2013arXiv1304.6053O 4425:1989CMaPh.121..351W 4016:Math. Intelligencer 3987:1998CSF.....9..569H 3881:(1962), "Knotted (4 3835:1991MaCom..57..747D 3739:2006SciAm.294d..56C 3726:Scientific American 3467:extended Gauss code 3313:List of prime knots 3145:List of prime knots 3077:, or sometimes the 2341:hyperbolic geometry 2335:, meaning that the 2162:which implies that 1692:Kauffman polynomial 1529: 1473:removable crossings 1465:reducible crossings 1372:in the late 1960s ( 1362:recognition problem 1350:{\displaystyle t=1} 1028:the mapping taking 508:continuous function 340:hyperbolic geometry 334:In the late 1970s, 327:theory such as the 191:-dimensional sphere 171:have been tabulated 27:(top left) and the 4876:Kauffman, Louis H. 4853:Kauffman, Louis H. 4759:RichardElwes.co.uk 4703:Scientific Reports 4433:10.1007/BF01217730 4357:Weisstein, Eric W. 4274:10.1511/2006.2.158 4262:American Scientist 4029:10.1007/BF03025227 3936:10.1007/BF01162369 3778:10.1007/BF01563732 3659:10.1007/BF02566217 3570:(3): 1550011, 30, 3398:John Horton Conway 3372: 3301:James W. Alexander 3238:John Horton Conway 3159: 3071: 3041: 3015: 2983: 2943: 2914: 2891:-link consists of 2877: 2848: 2829:-knot is a single 2808: 2781:real-algebraic set 2769: 2744:Every knot in the 2735:Knot (mathematics) 2723: 2679: 2638: 2605: 2525: 2496: 2467: 2380:'s cusp view: the 2257: 2010: 1918: 1898: 1860: 1831: 1804: 1785: 1767: 1605: 1527:Reidemeister moves 1525: 1507:Reidemeister moves 1483:Reidemeister moves 1418: 1414:Peter Guthrie Tait 1386:unknotting problem 1347: 1320: 1283: 1273:. Such a function 1263: 1208: 1173: 1132: 1103: 1053: 1018: 980: 908: 881: 854: 756: 707: 651: 596: 552: 488: 298:Peter Guthrie Tait 288:). In the 1860s, 280:, who defined the 270: 267:Peter Guthrie Tait 220: 183:knot (mathematics) 123: 94: 53:mathematical knots 41: 33: 5798: 5797: 5652:Reidemeister move 5518:Khovanov homology 5513:Hyperbolic volume 4999:"On Vortex Atoms" 4967:978-0-7432-9405-8 4940:978-0-444-51452-3 4911:978-0-521-54831-1 4891:978-981-4383-00-4 4881:Knots and Physics 4868:978-0-691-08435-0 4844:978-0-387-90272-2 4819:978-3-11-008675-1 4804:Zieschang, Heiner 4562:Adams et al. 2015 4454:, Second Series, 4413:Comm. Math. Phys. 4340:978-3-11-043522-1 4314:978-0-674-00944-8 4252:978-3-540-01419-5 4218:978-0-914098-16-4 4154:978-0-387-98254-0 4122:978-0-8218-4117-4 4079:, Second Series, 4062:978-0-444-51452-3 3893:, Second Series, 3871:978-0-521-66254-3 3814:978-0-08-012975-4 3554:978-0-8218-3678-1 3305:Garland B. Briggs 3277:alternating knots 2779:is the link of a 2416:Higher dimensions 1921:{\displaystyle O} 1638:fundamental group 1575: 1574: 1503:Kurt Reidemeister 1489:Reidemeister move 1454:immersed surfaces 1286:{\displaystyle H} 835: 821: 491:{\displaystyle K} 71:in 3-dimensional 5823: 5786: 5785: 5774: 5773: 5738:Tait conjectures 5441: 5440: 5426: 5425: 5411: 5410: 5303: 5302: 5288: 5287: 5272:(−2,3,7) pretzel 5152: 5145: 5138: 5129: 5128: 5046: 5010: 4970: 4943: 4914: 4894: 4871: 4848: 4822: 4762: 4751: 4745: 4744: 4734: 4694: 4688: 4687: 4685: 4667: 4643: 4637: 4635: 4626: 4610: 4604: 4602: 4591: 4571: 4565: 4559: 4553: 4547: 4541: 4535: 4529: 4528: 4527: 4526: 4509: 4503: 4489: 4474: 4443: 4400: 4398: 4396: 4376: 4374: 4372: 4352: 4317: 4299: 4298: 4277: 4256: 4229: 4197: 4188: 4165: 4126: 4099: 4066: 4039: 4005: 3980: 3971:(4–5): 569–581, 3954: 3913: 3879:Haefliger, AndrĂ© 3874: 3847: 3846: 3829:(196): 747–761, 3817: 3788: 3757: 3719: 3717: 3696: 3695: 3669: 3638: 3629: 3604: 3579: 3557: 3509:Knots and graphs 3494:Quantum topology 3489:Circuit topology 3425:algebraic tangle 3413:basic polyhedron 3335: 3334: 3319:comes after the 3206: 3200: 3199: 3196: 3190: 3189: 3183: 3182: 3139:Tabulating knots 3132:circuit topology 3069:Adding two knots 3050: 3048: 3047: 3042: 3024: 3022: 3021: 3016: 2992: 2990: 2989: 2984: 2952: 2950: 2949: 2944: 2942: 2941: 2936: 2923: 2921: 2920: 2915: 2913: 2912: 2907: 2886: 2884: 2883: 2878: 2876: 2875: 2870: 2857: 2855: 2854: 2849: 2847: 2846: 2841: 2817: 2815: 2814: 2809: 2807: 2806: 2795: 2778: 2776: 2775: 2770: 2768: 2767: 2762: 2732: 2730: 2729: 2724: 2688: 2686: 2685: 2680: 2678: 2677: 2672: 2647: 2645: 2644: 2639: 2637: 2636: 2631: 2614: 2612: 2611: 2606: 2564:piecewise-linear 2534: 2532: 2531: 2526: 2524: 2523: 2518: 2505: 2503: 2502: 2497: 2495: 2494: 2489: 2476: 2474: 2473: 2468: 2466: 2465: 2460: 2374: 2358: 2333:hyperbolic knots 2329:William Thurston 2291: 2279: 2266: 2264: 2263: 2258: 2256: 2255: 2207: 2157: 2144: 2134: 2113: 2100: 2090: 2069: 2056: 2046: 2019: 2017: 2016: 2011: 2003: 2002: 1978: 1977: 1956: 1955: 1927: 1925: 1924: 1919: 1907: 1905: 1904: 1899: 1869: 1867: 1866: 1861: 1840: 1838: 1837: 1832: 1830: 1829: 1813: 1811: 1810: 1805: 1803: 1802: 1776: 1774: 1773: 1768: 1766: 1765: 1753: 1752: 1740: 1739: 1684:Jones polynomial 1664:Knot polynomials 1566: 1549: 1542: 1537: 1530: 1477:petal projection 1356: 1354: 1353: 1348: 1329: 1327: 1326: 1321: 1319: 1318: 1313: 1292: 1290: 1289: 1284: 1272: 1270: 1269: 1264: 1262: 1261: 1240: 1239: 1217: 1215: 1214: 1209: 1207: 1206: 1201: 1182: 1180: 1179: 1174: 1142:onto itself; b) 1141: 1139: 1138: 1133: 1131: 1130: 1125: 1112: 1110: 1109: 1104: 1102: 1101: 1096: 1062: 1060: 1059: 1054: 1052: 1051: 1046: 1027: 1025: 1024: 1019: 989: 987: 986: 981: 979: 978: 973: 946: 945: 940: 917: 915: 914: 909: 907: 906: 890: 888: 887: 882: 880: 879: 863: 861: 860: 855: 833: 832: 819: 818: 817: 812: 803: 802: 797: 788: 787: 765: 763: 762: 757: 755: 754: 739: 738: 716: 714: 713: 708: 706: 705: 700: 691: 690: 685: 660: 658: 657: 652: 650: 649: 637: 636: 619:knot equivalence 605: 603: 602: 597: 561: 559: 558: 553: 551: 550: 545: 497: 495: 494: 489: 454: 445: 433:Knot equivalence 372:Maxim Kontsevich 356:Jones polynomial 348:hyperbolic knots 336:William Thurston 302:Tait conjectures 282:linking integral 240:Tibetan Buddhism 232:Chinese knotting 156:knot polynomials 132: 130: 129: 124: 122: 121: 116: 103: 101: 100: 95: 93: 92: 87: 51:is the study of 5831: 5830: 5826: 5825: 5824: 5822: 5821: 5820: 5801: 5800: 5799: 5794: 5762: 5666: 5632:Conway notation 5616: 5610: 5597:Tricolorability 5445: 5439: 5436: 5435: 5434: 5424: 5421: 5420: 5419: 5409: 5406: 5405: 5404: 5396: 5386: 5376: 5366: 5347: 5326:Composite knots 5312: 5301: 5298: 5297: 5296: 5293:Borromean rings 5286: 5283: 5282: 5281: 5255: 5245: 5235: 5225: 5217: 5209: 5199: 5189: 5170: 5156: 5069: 4990: 4977: 4968: 4941: 4929:, eds. (2005), 4921: 4912: 4901:Knots and Links 4892: 4869: 4845: 4820: 4776: 4771: 4769:Further reading 4766: 4765: 4752: 4748: 4695: 4691: 4644: 4640: 4611: 4607: 4600: 4572: 4568: 4560: 4556: 4550:Weisstein 2013a 4548: 4544: 4536: 4532: 4524: 4522: 4511: 4510: 4506: 4493:Haken manifolds 4490: 4486: 4481: 4464:10.2307/1970538 4448:Zeeman, Erik C. 4394: 4392: 4370: 4368: 4341: 4315: 4253: 4219: 4204:Knots and Links 4186:10.2307/2040074 4155: 4123: 4089:10.2307/1970561 4063: 3918:Haken, Wolfgang 3903:10.2307/1970208 3872: 3815: 3793:Conway, John H. 3674:Bar-Natan, Dror 3643:Akbulut, Selman 3555: 3532: 3527: 3519:Lamp cord trick 3475: 3457: 3451: 3432:rational tangle 3394:Conway notation 3390: 3384: 3382:Conway notation 3364: 3358: 3343: 3339: 3333: 3330: 3329: 3328: 3326: 3297: 3220:Dowker notation 3202: 3197: 3194: 3192: 3187: 3185: 3180: 3178: 3163:crossing number 3151: 3149:Knot tabulation 3141: 3063: 3057: 3030: 3027: 3026: 2998: 2995: 2994: 2966: 2963: 2962: 2937: 2932: 2931: 2929: 2926: 2925: 2908: 2903: 2902: 2900: 2897: 2896: 2871: 2866: 2865: 2863: 2860: 2859: 2842: 2837: 2836: 2834: 2831: 2830: 2796: 2791: 2790: 2788: 2785: 2784: 2763: 2758: 2757: 2755: 2752: 2751: 2694: 2691: 2690: 2673: 2668: 2667: 2665: 2662: 2661: 2632: 2627: 2626: 2624: 2621: 2620: 2585: 2582: 2581: 2537:Suspended knots 2519: 2514: 2513: 2511: 2508: 2507: 2490: 2485: 2484: 2482: 2479: 2478: 2461: 2456: 2455: 2453: 2450: 2449: 2442: 2418: 2397:Borromean rings 2389: 2388: 2387: 2386: 2385: 2382:Borromean rings 2375: 2367: 2366: 2363:Borromean rings 2359: 2337:knot complement 2326: 2295: 2292: 2283: 2280: 2251: 2247: 2185: 2177: 2174: 2173: 1998: 1994: 1973: 1969: 1951: 1947: 1939: 1936: 1935: 1913: 1910: 1909: 1878: 1875: 1874: 1846: 1843: 1842: 1825: 1821: 1819: 1816: 1815: 1798: 1794: 1792: 1789: 1788: 1761: 1757: 1748: 1744: 1735: 1731: 1729: 1726: 1725: 1672: 1670:Knot polynomial 1666: 1642:knot complement 1636:, which is the 1627:tricolorability 1611: 1599: 1592: 1590:Knot invariants 1523: 1495:J. W. Alexander 1491: 1485: 1461:reduced diagram 1406: 1336: 1333: 1332: 1314: 1309: 1308: 1306: 1303: 1302: 1295:ambient isotopy 1293:is known as an 1278: 1275: 1274: 1257: 1253: 1235: 1231: 1223: 1220: 1219: 1202: 1197: 1196: 1188: 1185: 1184: 1147: 1144: 1143: 1126: 1121: 1120: 1118: 1115: 1114: 1097: 1092: 1091: 1068: 1065: 1064: 1047: 1042: 1041: 1033: 1030: 1029: 995: 992: 991: 974: 969: 968: 941: 936: 935: 927: 924: 923: 902: 898: 896: 893: 892: 875: 871: 869: 866: 865: 822: 813: 808: 807: 798: 793: 792: 783: 779: 774: 771: 770: 750: 746: 734: 730: 722: 719: 718: 701: 696: 695: 686: 681: 680: 672: 669: 668: 645: 641: 632: 628: 626: 623: 622: 567: 564: 563: 546: 541: 540: 514: 511: 510: 483: 480: 479: 464: 463: 462: 461: 457: 456: 455: 447: 446: 435: 352:knot invariants 317:J. W. Alexander 256:Celtic knotwork 244:Borromean rings 209: 203: 135:ambient isotopy 117: 112: 111: 109: 106: 105: 88: 83: 82: 80: 77: 76: 73:Euclidean space 17: 12: 11: 5: 5829: 5819: 5818: 5813: 5796: 5795: 5793: 5792: 5780: 5767: 5764: 5763: 5761: 5760: 5758:Surgery theory 5755: 5750: 5745: 5740: 5735: 5730: 5725: 5720: 5715: 5710: 5705: 5700: 5695: 5690: 5685: 5680: 5674: 5672: 5668: 5667: 5665: 5664: 5659: 5657:Skein relation 5654: 5649: 5644: 5639: 5634: 5629: 5623: 5621: 5612: 5611: 5609: 5608: 5602:Unknotting no. 5599: 5594: 5589: 5588: 5587: 5577: 5572: 5571: 5570: 5565: 5560: 5555: 5550: 5540: 5535: 5530: 5525: 5520: 5515: 5510: 5505: 5500: 5495: 5494: 5493: 5483: 5478: 5477: 5476: 5466: 5461: 5455: 5453: 5447: 5446: 5444: 5443: 5437: 5428: 5422: 5413: 5407: 5398: 5394: 5388: 5384: 5378: 5374: 5368: 5364: 5357: 5355: 5349: 5348: 5346: 5345: 5340: 5339: 5338: 5333: 5322: 5320: 5314: 5313: 5311: 5310: 5305: 5299: 5290: 5284: 5275: 5269: 5263: 5257: 5253: 5247: 5243: 5237: 5233: 5227: 5223: 5219: 5215: 5211: 5207: 5201: 5197: 5191: 5187: 5180: 5178: 5172: 5171: 5155: 5154: 5147: 5140: 5132: 5126: 5125: 5115: 5105: 5099: 5093: 5087: 5084:The Knot Atlas 5081: 5068: 5065: 5064: 5063: 5060:Andrew Ranicki 5053: 5047: 5028:10.1086/349764 5022:(4): 461–474, 5011: 4989: 4986: 4985: 4984: 4976: 4975:External links 4973: 4972: 4971: 4966: 4949: 4948: 4947: 4939: 4920: 4917: 4916: 4915: 4910: 4895: 4890: 4872: 4867: 4849: 4843: 4823: 4818: 4800:Burde, Gerhard 4788:Lickorish 1997 4775: 4772: 4770: 4767: 4764: 4763: 4746: 4689: 4638: 4605: 4599:978-0691049380 4598: 4589:10.1.1.64.4359 4566: 4554: 4542: 4538:Weisstein 2013 4530: 4504: 4483: 4482: 4480: 4477: 4476: 4475: 4458:(3): 501–526, 4444: 4419:(3): 351–399, 4405:Witten, Edward 4401: 4377: 4353: 4339: 4318: 4313: 4300: 4289:(2): 229–235, 4278: 4257: 4251: 4230: 4217: 4198: 4166: 4153: 4127: 4121: 4100: 4071:Levine, Jerome 4067: 4061: 4040: 4006: 3955: 3914: 3897:(3): 452–466, 3875: 3870: 3848: 3818: 3813: 3789: 3772:(3): 402–413, 3758: 3720: 3697: 3686:(2): 423–472, 3670: 3653:(3): 339–351, 3639: 3610:Weeks, Jeffrey 3605: 3558: 3553: 3531: 3528: 3526: 3523: 3522: 3521: 3516: 3511: 3506: 3501: 3496: 3491: 3486: 3484:Molecular knot 3481: 3474: 3471: 3453:Main article: 3450: 3447: 3386:Main article: 3383: 3380: 3360:Main article: 3357: 3354: 3341: 3337: 3331: 3324: 3296: 3293: 3201:... (sequence 3140: 3137: 3059:Main article: 3056: 3053: 3040: 3037: 3034: 3014: 3011: 3008: 3005: 3002: 2982: 2979: 2976: 2973: 2970: 2959:natural number 2940: 2935: 2911: 2906: 2874: 2869: 2845: 2840: 2805: 2802: 2799: 2794: 2766: 2761: 2722: 2719: 2716: 2713: 2710: 2707: 2704: 2701: 2698: 2676: 2671: 2650:Haefliger 1962 2635: 2630: 2604: 2601: 2598: 2595: 2592: 2589: 2522: 2517: 2493: 2488: 2464: 2459: 2441: 2438: 2417: 2414: 2376: 2369: 2368: 2360: 2353: 2352: 2351: 2350: 2349: 2325: 2322: 2318:Lickorish 1997 2297: 2296: 2293: 2286: 2284: 2281: 2274: 2268: 2267: 2254: 2250: 2246: 2243: 2240: 2237: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2206: 2203: 2200: 2197: 2194: 2191: 2188: 2184: 2181: 2160: 2159: 2116: 2115: 2072: 2071: 2057:) +  2047:) =  2025:skein relation 2021: 2020: 2009: 2006: 2001: 1997: 1993: 1990: 1987: 1984: 1981: 1976: 1972: 1968: 1965: 1962: 1959: 1954: 1950: 1946: 1943: 1933: 1917: 1897: 1894: 1891: 1888: 1885: 1882: 1859: 1856: 1853: 1850: 1828: 1824: 1801: 1797: 1764: 1760: 1756: 1751: 1747: 1743: 1738: 1734: 1708:Lickorish 1997 1706:coefficients ( 1676:knot invariant 1668:Main article: 1665: 1662: 1650:Lickorish 1997 1619:Lickorish 1997 1609:Knot invariant 1607:Main article: 1602:Henry Segerman 1591: 1588: 1584:Lickorish 1997 1580:Sossinsky 2002 1573: 1572: 1568: 1567: 1559: 1558: 1555: 1551: 1550: 1543: 1522: 1521: 1518: 1515: 1511: 1487:Main article: 1484: 1481: 1405: 1402: 1370:Wolfgang Haken 1346: 1343: 1340: 1317: 1312: 1282: 1260: 1256: 1252: 1249: 1246: 1243: 1238: 1234: 1230: 1227: 1205: 1200: 1195: 1192: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1129: 1124: 1100: 1095: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1050: 1045: 1040: 1037: 1017: 1014: 1011: 1008: 1005: 1002: 999: 977: 972: 967: 964: 961: 958: 955: 952: 949: 944: 939: 934: 931: 905: 901: 878: 874: 853: 850: 847: 844: 841: 838: 831: 828: 825: 816: 811: 806: 801: 796: 791: 786: 782: 778: 753: 749: 745: 742: 737: 733: 729: 726: 704: 699: 694: 689: 684: 679: 676: 648: 644: 640: 635: 631: 595: 592: 589: 586: 583: 580: 577: 574: 571: 549: 544: 539: 536: 533: 530: 527: 524: 521: 518: 487: 476:Sossinsky 2002 459: 458: 449: 448: 440: 439: 438: 437: 436: 434: 431: 395:physical knots 388:Floer homology 384:quantum groups 364:Sossinsky 2002 205:Main article: 202: 199: 151:knot invariant 120: 115: 91: 86: 15: 9: 6: 4: 3: 2: 5828: 5817: 5814: 5812: 5809: 5808: 5806: 5791: 5790: 5781: 5779: 5778: 5769: 5768: 5765: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5716: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5693:Conway sphere 5691: 5689: 5686: 5684: 5681: 5679: 5676: 5675: 5673: 5669: 5663: 5660: 5658: 5655: 5653: 5650: 5648: 5645: 5643: 5640: 5638: 5635: 5633: 5630: 5628: 5625: 5624: 5622: 5620: 5613: 5607: 5603: 5600: 5598: 5595: 5593: 5590: 5586: 5583: 5582: 5581: 5578: 5576: 5573: 5569: 5566: 5564: 5561: 5559: 5556: 5554: 5551: 5549: 5546: 5545: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5504: 5501: 5499: 5496: 5492: 5489: 5488: 5487: 5484: 5482: 5479: 5475: 5472: 5471: 5470: 5467: 5465: 5464:Arf invariant 5462: 5460: 5457: 5456: 5454: 5452: 5448: 5432: 5429: 5417: 5414: 5402: 5399: 5392: 5389: 5382: 5379: 5372: 5369: 5362: 5359: 5358: 5356: 5354: 5350: 5344: 5341: 5337: 5334: 5332: 5329: 5328: 5327: 5324: 5323: 5321: 5319: 5315: 5309: 5306: 5294: 5291: 5279: 5276: 5273: 5270: 5267: 5264: 5261: 5258: 5251: 5248: 5241: 5238: 5231: 5228: 5226: 5220: 5218: 5212: 5205: 5202: 5195: 5192: 5185: 5182: 5181: 5179: 5177: 5173: 5168: 5164: 5160: 5153: 5148: 5146: 5141: 5139: 5134: 5133: 5130: 5123: 5119: 5116: 5113: 5109: 5108:KnotData.html 5106: 5103: 5100: 5097: 5094: 5091: 5088: 5085: 5082: 5080: 5079: 5075: 5071: 5070: 5061: 5057: 5054: 5051: 5048: 5045: 5041: 5037: 5033: 5029: 5025: 5021: 5017: 5012: 5008: 5004: 5000: 4996: 4992: 4991: 4982: 4979: 4978: 4969: 4963: 4959: 4955: 4950: 4945: 4944: 4942: 4936: 4932: 4928: 4923: 4922: 4913: 4907: 4903: 4902: 4896: 4893: 4887: 4883: 4882: 4877: 4873: 4870: 4864: 4860: 4859: 4854: 4850: 4846: 4840: 4836: 4832: 4828: 4824: 4821: 4815: 4811: 4810: 4805: 4801: 4797: 4796: 4795: 4793: 4792:Cromwell 2004 4789: 4785: 4781: 4760: 4756: 4750: 4742: 4738: 4733: 4728: 4724: 4720: 4716: 4712: 4708: 4704: 4700: 4693: 4684: 4679: 4675: 4671: 4666: 4661: 4657: 4653: 4649: 4642: 4634: 4630: 4625: 4620: 4616: 4609: 4601: 4595: 4590: 4585: 4581: 4577: 4570: 4563: 4558: 4551: 4546: 4539: 4534: 4520: 4516: 4515: 4508: 4502: 4498: 4494: 4488: 4484: 4473: 4469: 4465: 4461: 4457: 4453: 4449: 4445: 4442: 4438: 4434: 4430: 4426: 4422: 4418: 4414: 4410: 4406: 4402: 4391: 4387: 4383: 4378: 4366: 4362: 4358: 4354: 4350: 4346: 4342: 4336: 4332: 4328: 4324: 4319: 4316: 4310: 4306: 4301: 4297: 4292: 4288: 4284: 4279: 4275: 4271: 4267: 4263: 4258: 4254: 4248: 4244: 4240: 4236: 4231: 4228: 4224: 4220: 4214: 4210: 4206: 4205: 4199: 4196: 4192: 4187: 4182: 4178: 4174: 4173: 4167: 4164: 4160: 4156: 4150: 4146: 4142: 4138: 4137: 4132: 4128: 4124: 4118: 4114: 4110: 4106: 4101: 4098: 4094: 4090: 4086: 4082: 4078: 4077: 4072: 4068: 4064: 4058: 4054: 4050: 4046: 4041: 4038: 4034: 4030: 4026: 4022: 4018: 4017: 4012: 4007: 4004: 4000: 3996: 3992: 3988: 3984: 3979: 3974: 3970: 3966: 3965: 3960: 3956: 3953: 3949: 3945: 3941: 3937: 3933: 3929: 3925: 3924: 3919: 3915: 3912: 3908: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3876: 3873: 3867: 3863: 3859: 3858: 3853: 3852:Flapan, Erica 3849: 3845: 3840: 3836: 3832: 3828: 3824: 3819: 3816: 3810: 3806: 3802: 3798: 3794: 3790: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3759: 3756: 3752: 3748: 3744: 3740: 3736: 3732: 3728: 3727: 3721: 3716: 3711: 3707: 3703: 3698: 3694: 3689: 3685: 3681: 3680: 3675: 3671: 3668: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3637: 3633: 3628: 3623: 3619: 3615: 3611: 3606: 3603: 3599: 3595: 3591: 3587: 3583: 3578: 3573: 3569: 3565: 3559: 3556: 3550: 3546: 3542: 3538: 3534: 3533: 3520: 3517: 3515: 3512: 3510: 3507: 3505: 3502: 3500: 3499:Ribbon theory 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3476: 3470: 3468: 3463: 3461: 3456: 3446: 3442: 3438: 3435: 3433: 3428: 3426: 3421: 3418: 3414: 3409: 3407: 3403: 3399: 3395: 3389: 3379: 3377: 3368: 3363: 3353: 3351: 3347: 3322: 3318: 3314: 3310: 3306: 3302: 3292: 3290: 3286: 3282: 3278: 3274: 3269: 3267: 3266:Alain Caudron 3263: 3259: 3258:Kenneth Perko 3255: 3251: 3247: 3243: 3239: 3234: 3232: 3227: 3225: 3221: 3216: 3214: 3210: 3205: 3176: 3172: 3168: 3164: 3155: 3150: 3146: 3136: 3133: 3128: 3126: 3122: 3121:Schubert 1949 3118: 3114: 3110: 3109: 3103: 3099: 3094: 3092: 3088: 3084: 3080: 3079:connected sum 3076: 3067: 3062: 3052: 3038: 3035: 3032: 3012: 3009: 3006: 3003: 3000: 2980: 2977: 2974: 2971: 2968: 2960: 2956: 2938: 2909: 2894: 2890: 2872: 2858:embedded in 2843: 2828: 2823: 2821: 2803: 2800: 2797: 2782: 2764: 2750: 2748: 2742: 2740: 2736: 2720: 2717: 2714: 2711: 2708: 2705: 2702: 2699: 2696: 2674: 2659: 2655: 2651: 2633: 2618: 2615:-spheres in 6 2599: 2596: 2593: 2590: 2579: 2575: 2571: 2569: 2565: 2561: 2557: 2553: 2549: 2544: 2542: 2538: 2520: 2491: 2462: 2447: 2437: 2435: 2431: 2426: 2422: 2413: 2411: 2405: 2402: 2398: 2394: 2383: 2379: 2373: 2364: 2357: 2348: 2346: 2342: 2338: 2334: 2330: 2321: 2319: 2315: 2311: 2307: 2302: 2301:mirror images 2290: 2285: 2278: 2273: 2272: 2271: 2252: 2248: 2244: 2241: 2238: 2232: 2229: 2226: 2220: 2217: 2214: 2211: 2179: 2172: 2171: 2170: 2167: 2165: 2156: 2151: 2148: 2143: 2138: 2133: 2128: 2125: 2124: 2123: 2121: 2112: 2107: 2104: 2099: 2094: 2089: 2084: 2081: 2080: 2079: 2077: 2068: 2063: 2060: 2055: 2050: 2045: 2040: 2037: 2036: 2035: 2033: 2028: 2026: 2007: 1999: 1995: 1988: 1985: 1982: 1974: 1970: 1963: 1960: 1952: 1948: 1941: 1934: 1931: 1915: 1895: 1892: 1886: 1880: 1873: 1872: 1871: 1854: 1848: 1826: 1822: 1799: 1795: 1782: 1778: 1762: 1758: 1754: 1749: 1745: 1741: 1736: 1732: 1723: 1718: 1716: 1711: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1671: 1661: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1630: 1628: 1624: 1620: 1616: 1610: 1603: 1596: 1587: 1585: 1581: 1569: 1565: 1560: 1556: 1553: 1552: 1548: 1544: 1541: 1536: 1532: 1531: 1528: 1519: 1516: 1513: 1512: 1510: 1508: 1504: 1500: 1496: 1490: 1480: 1478: 1474: 1470: 1466: 1462: 1457: 1455: 1451: 1447: 1446:link diagrams 1443: 1439: 1438:knot diagrams 1435: 1431: 1427: 1423: 1415: 1410: 1404:Knot diagrams 1401: 1399: 1395: 1394:Marc Lackenby 1391: 1387: 1384:, called the 1383: 1379: 1375: 1371: 1367: 1363: 1358: 1344: 1341: 1338: 1315: 1298: 1296: 1280: 1258: 1254: 1250: 1244: 1241: 1236: 1232: 1225: 1203: 1193: 1190: 1170: 1167: 1161: 1158: 1155: 1149: 1127: 1098: 1088: 1082: 1079: 1076: 1070: 1048: 1038: 1035: 1012: 1009: 1006: 1000: 997: 975: 959: 956: 953: 947: 942: 932: 929: 921: 903: 899: 876: 872: 848: 845: 842: 839: 836: 814: 799: 789: 784: 780: 767: 751: 747: 743: 735: 731: 724: 702: 687: 677: 674: 667: 666:homeomorphism 664: 646: 642: 638: 633: 629: 620: 615: 613: 609: 590: 584: 581: 575: 569: 547: 531: 528: 525: 519: 516: 509: 505: 501: 485: 477: 473: 469: 453: 444: 430: 428: 424: 420: 416: 415:topoisomerase 412: 408: 404: 400: 396: 391: 389: 385: 381: 377: 373: 369: 368:Edward Witten 365: 361: 360:Vaughan Jones 357: 353: 349: 345: 341: 337: 332: 330: 326: 322: 318: 314: 309: 307: 303: 299: 295: 291: 287: 283: 279: 275: 268: 263: 259: 257: 253: 252:Book of Kells 249: 245: 241: 237: 233: 229: 225: 218: 217:Book of Kells 213: 208: 198: 196: 193:embedded in ( 192: 190: 185: 184: 179: 174: 172: 168: 163: 161: 157: 153: 152: 147: 142: 138: 136: 118: 89: 74: 70: 66: 62: 58: 54: 50: 46: 37: 30: 26: 21: 5787: 5775: 5703:Double torus 5688:Braid theory 5503:Crossing no. 5498:Crosscap no. 5184:Figure-eight 5158: 5077: 5073: 5019: 5015: 5006: 5002: 4957: 4933:, Elsevier, 4930: 4900: 4880: 4857: 4837:. Springer. 4834: 4808: 4780:Rolfsen 1976 4777: 4758: 4749: 4706: 4702: 4692: 4658:(12): 2353. 4655: 4651: 4641: 4614: 4608: 4575: 4569: 4557: 4545: 4533: 4523:, retrieved 4521:, 2021-02-03 4513: 4507: 4497:Haken (1962) 4487: 4455: 4451: 4416: 4412: 4393:. Retrieved 4385: 4369:. Retrieved 4364: 4322: 4304: 4286: 4282: 4265: 4261: 4234: 4203: 4179:(2): 262–6, 4176: 4170: 4135: 4104: 4083:(1): 15–50, 4080: 4074: 4044: 4023:(4): 33–48, 4020: 4014: 4009:Hoste, Jim; 3978:math/9712269 3968: 3962: 3927: 3921: 3894: 3890: 3886: 3882: 3856: 3826: 3822: 3796: 3769: 3765: 3733:(4): 56–63, 3730: 3724: 3705: 3683: 3677: 3650: 3646: 3617: 3613: 3567: 3563: 3540: 3537:Adams, Colin 3464: 3458: 3443: 3439: 3436: 3429: 3422: 3412: 3410: 3391: 3373: 3309:Dale Rolfsen 3298: 3270: 3235: 3228: 3217: 3160: 3129: 3124: 3112: 3107: 3095: 3090: 3082: 3078: 3074: 3072: 3055:Adding knots 2954: 2924:embedded in 2892: 2888: 2826: 2824: 2746: 2743: 2657: 2616: 2573: 2567: 2559: 2555: 2551: 2547: 2545: 2443: 2434:ribbon knots 2427: 2423: 2419: 2406: 2390: 2327: 2313: 2298: 2269: 2168: 2163: 2161: 2149: 2146: 2136: 2126: 2117: 2105: 2102: 2092: 2082: 2073: 2061: 2058: 2048: 2038: 2032:trefoil knot 2029: 2022: 1786: 1721: 1719: 1712: 1699: 1673: 1654:Rolfsen 1976 1631: 1623:Rolfsen 1976 1612: 1576: 1526: 1506: 1492: 1472: 1468: 1464: 1460: 1458: 1456:in 3-space. 1445: 1437: 1430:Rolfsen 1976 1425: 1419: 1361: 1359: 1299: 919: 768: 618: 617:The idea of 616: 465: 427:Collins 2006 392: 333: 310: 271: 242:, while the 236:endless knot 221: 194: 188: 181: 175: 164: 149: 143: 139: 48: 42: 29:trefoil knot 25:trivial knot 5811:Knot theory 5538:Linking no. 5459:Alternating 5260:Conway knot 5240:Carrick mat 5194:Three-twist 5159:Knot theory 4709:(1): 8889. 4501:Hass (1998) 3860:, Outlook, 3823:Math. Comp. 3620:(1): 1–56, 3406:Conway 1970 3289:Burton 2020 3285:prime knots 3246:Conway 1970 3102:associative 3098:commutative 3083:composition 2961:. Both the 2895:-copies of 2654:Levine 1965 2578:Zeeman 1963 2550:-sphere in 2430:slice knots 468:dimensional 419:Flapan 2000 338:introduced 290:Lord Kelvin 286:Silver 2006 238:appears in 160:knot groups 49:knot theory 5805:Categories 5698:Complement 5662:Tabulation 5619:operations 5543:Polynomial 5533:Link group 5528:Knot group 5491:Invertible 5469:Bridge no. 5451:Invariants 5381:Cinquefoil 5250:Perko pair 5176:Hyperbolic 4831:Fox, Ralph 4784:Adams 2004 4665:2106.03925 4525:2021-02-03 4268:(2): 158. 3959:Hass, Joel 3930:: 89–120, 3525:References 3460:Gauss code 3455:Gauss code 3449:Gauss code 3346:Perko pair 3321:torus knot 3317:twist knot 3281:Hoste 2005 3262:Perko 1974 3254:Perko pair 3224:Hoste 2005 3213:Adams 2004 3175:Hoste 2005 3171:Hoste 2005 3143:See also: 3087:Adams 2004 2541:spun knots 2345:Adams 2004 1690:, and the 1680:polynomial 1678:that is a 1644:, and the 1634:knot group 1615:Adams 2004 1586:, ch. 1). 1582:, ch. 3) ( 1422:one-to-one 1390:Hoste 2005 1366:Algorithms 920:equivalent 472:Adams 2004 407:Simon 1986 321:knot group 146:complexity 31:(below it) 5592:Stick no. 5548:Alexander 5486:Chirality 5431:Solomon's 5391:Septafoil 5318:Satellite 5278:Whitehead 5204:Stevedore 5102:Knoutilus 5096:Knotscape 5044:144988108 4624:1304.6053 4584:CiteSeerX 4479:Footnotes 4386:MathWorld 4367:. Wolfram 4365:MathWorld 4349:118682559 4163:122824389 3944:0025-5874 3889:-space", 3786:120452571 3762:Dehn, Max 3667:120218312 3602:119320887 3577:1208.5742 3113:composite 2712:− 2703:− 2597:− 2393:geodesics 2310:Dehn 1914 2076:Hopf link 1975:− 1827:− 1750:− 1571:Type III 1426:crossings 1378:Hass 1998 1374:Hass 1998 1218:; and c) 1194:∈ 1089:∈ 1039:∈ 1001:∈ 966:→ 948:× 846:≤ 840:≤ 805:→ 693:→ 678:: 538:→ 520:: 504:injective 362:in 1984 ( 65:embedding 5777:Category 5647:Mutation 5615:Notation 5568:Kauffman 5481:Brunnian 5474:2-bridge 5343:Knot sum 5274:(12n242) 5090:KnotPlot 5074:KnotInfo 5009:: 94–105 4997:(1867), 4878:(2013), 4858:On Knots 4855:(1987), 4833:(1977). 4806:(1985), 4741:37264056 4732:10235088 4652:Symmetry 4441:14951363 4407:(1989), 4359:(2013). 4283:Topology 4133:(1997), 4037:18027155 3854:(2000), 3755:16596880 3679:Topology 3539:(2004), 3473:See also 3106:knot is 3091:oriented 3075:knot sum 3061:Knot sum 2993:and the 2953:, where 2570:-spheres 2401:horoball 2306:Max Dehn 1557:Type II 1469:nugatory 1183:for all 417:on DNA ( 325:homology 313:Max Dehn 306:topology 45:topology 5789:Commons 5708:Fibered 5606:problem 5575:Pretzel 5553:Bracket 5371:Trefoil 5308:L10a140 5268:(11n42) 5262:(11n34) 5230:Endless 4988:History 4919:Surveys 4786:) and ( 4711:Bibcode 4670:Bibcode 4629:Bibcode 4472:1970538 4421:Bibcode 4390:Wolfram 4227:0515288 4195:2040074 4097:1970561 4003:7381505 3983:Bibcode 3952:0160196 3911:1970208 3831:Bibcode 3735:Bibcode 3636:2001854 3594:3342136 3530:Sources 3402:tangles 3207:in the 3204:A002863 2749:-sphere 2378:SnapPea 1908:(where 1704:integer 1640:of the 1509:, are: 411:Tangles 296:led to 234:). The 201:History 5753:Writhe 5723:Ribbon 5558:HOMFLY 5401:Unlink 5361:Unknot 5336:Square 5331:Granny 5122:Tables 5118:Regina 5042:  5036:228151 5034:  4964:  4937:  4908:  4888:  4865:  4841:  4816:  4739:  4729:  4596:  4586:  4470:  4439:  4347:  4337:  4311:  4249:  4225:  4215:  4193:  4161:  4151:  4119:  4095:  4059:  4035:  4001:  3950:  3942:  3909:  3868:  3811:  3784:  3753:  3665:  3634:  3600:  3592:  3551:  3125:smooth 3051:case. 2120:unlink 1930:unknot 1686:, the 1554:Type I 1467:(also 1382:unknot 834:  820:  612:braids 403:chiral 248:Celtic 69:circle 61:unknot 5743:Twist 5728:Slice 5683:Berge 5671:Other 5642:Flype 5580:Prime 5563:Jones 5523:Genus 5353:Torus 5167:links 5163:knots 5050:Movie 5040:S2CID 5032:JSTOR 4809:Knots 4660:arXiv 4619:arXiv 4468:JSTOR 4437:S2CID 4395:8 May 4371:8 May 4345:S2CID 4191:JSTOR 4159:S2CID 4093:JSTOR 4033:S2CID 3999:S2CID 3973:arXiv 3907:JSTOR 3782:S2CID 3663:S2CID 3632:JSTOR 3598:S2CID 3572:arXiv 3417:digon 3340:to 10 3117:prime 3108:prime 2957:is a 2887:. An 2689:with 2314:Jones 1715:links 1702:with 717:with 608:links 500:Curve 228:tying 167:links 67:of a 57:knots 5748:Wild 5713:Knot 5617:and 5604:and 5585:list 5416:Hopf 5165:and 5016:Isis 4962:ISBN 4935:ISBN 4906:ISBN 4886:ISBN 4863:ISBN 4839:ISBN 4814:ISBN 4737:PMID 4594:ISBN 4397:2013 4373:2013 4335:ISBN 4309:ISBN 4247:ISBN 4213:ISBN 4149:ISBN 4117:ISBN 4081:1982 4057:ISBN 3940:ISSN 3866:ISBN 3809:ISBN 3751:PMID 3549:ISBN 3392:The 3374:The 3303:and 3209:OEIS 3147:and 3104:. A 3100:and 3036:> 3004:> 2718:> 2539:and 2432:and 2361:The 2145:) + 2135:) = 2101:) + 2091:) = 1722:i.e. 1497:and 1450:link 1444:and 1442:knot 918:are 891:and 610:and 506:and 386:and 378:and 226:and 5733:Sum 5254:161 5252:(10 5024:doi 4757:", 4727:PMC 4719:doi 4678:doi 4495:by 4460:doi 4429:doi 4417:121 4327:doi 4291:doi 4270:doi 4239:doi 4181:doi 4141:doi 4109:doi 4085:doi 4049:doi 4025:doi 3991:doi 3932:doi 3899:doi 3839:doi 3801:doi 3774:doi 3743:doi 3731:294 3710:doi 3688:doi 3655:doi 3622:doi 3618:326 3582:doi 3348:in 3342:166 3338:162 3291:). 3248:) ( 3226:). 3215:). 3198:705 3195:388 3188:293 3186:253 3181:972 3081:or 2825:An 2822:). 2652:) ( 2412:). 2347:). 2320:). 1814:or 1710:). 1621:) ( 1617:) ( 1471:or 1297:.) 1063:to 474:) ( 429:). 409:). 399:DNA 358:by 292:'s 43:In 5807:: 5433:(4 5418:(2 5403:(0 5393:(7 5383:(5 5373:(3 5363:(0 5295:(6 5280:(5 5244:18 5242:(8 5232:(7 5206:(6 5196:(5 5186:(4 5110:— 5076:: 5038:, 5030:, 5020:54 5018:, 5007:VI 5005:, 5001:, 4956:, 4829:; 4802:; 4735:. 4725:. 4717:. 4707:13 4705:. 4701:. 4676:. 4668:. 4656:13 4654:. 4650:. 4627:, 4617:, 4592:, 4582:, 4466:, 4456:78 4435:, 4427:, 4415:, 4411:, 4388:. 4384:. 4363:. 4343:. 4333:. 4325:. 4287:25 4285:, 4266:94 4264:. 4245:. 4237:. 4223:MR 4221:, 4189:, 4177:45 4175:, 4157:, 4147:, 4115:. 4091:, 4055:. 4031:, 4021:20 4019:, 3997:, 3989:, 3981:, 3967:, 3948:MR 3946:, 3938:, 3928:80 3926:, 3905:, 3895:75 3864:, 3837:, 3827:57 3825:, 3807:, 3780:, 3770:75 3768:, 3749:, 3741:, 3729:, 3704:. 3684:34 3682:, 3661:, 3651:56 3649:, 3630:, 3616:, 3596:, 3590:MR 3588:, 3580:, 3568:24 3566:, 3547:, 3543:, 3469:. 3191:, 3184:, 3179:46 2741:. 2737:, 1652:)( 1629:. 1459:A 1400:. 766:. 390:. 370:, 315:, 308:. 258:. 158:, 75:, 47:, 5442:) 5438:1 5427:) 5423:1 5412:) 5408:1 5397:) 5395:1 5387:) 5385:1 5377:) 5375:1 5367:) 5365:1 5304:) 5300:2 5289:) 5285:1 5256:) 5246:) 5236:) 5234:4 5224:3 5222:6 5216:2 5214:6 5210:) 5208:1 5200:) 5198:2 5190:) 5188:1 5169:) 5161:( 5151:e 5144:t 5137:v 5062:) 5026:: 4847:. 4753:" 4743:. 4721:: 4713:: 4686:. 4680:: 4672:: 4662:: 4631:: 4621:: 4564:. 4552:. 4540:. 4462:: 4431:: 4423:: 4399:. 4375:. 4351:. 4329:: 4293:: 4276:. 4272:: 4255:. 4241:: 4183:: 4143:: 4125:. 4111:: 4087:: 4065:. 4051:: 4027:: 3993:: 3985:: 3975:: 3969:9 3934:: 3901:: 3887:k 3883:k 3841:: 3833:: 3803:: 3776:: 3745:: 3737:: 3718:. 3712:: 3690:: 3657:: 3624:: 3584:: 3574:: 3404:( 3332:1 3325:1 3260:( 3244:( 3193:1 3039:1 3033:n 3013:2 3010:+ 3007:n 3001:m 2981:2 2978:+ 2975:n 2972:= 2969:m 2955:k 2939:m 2934:R 2910:n 2905:S 2893:k 2889:n 2873:m 2868:R 2844:n 2839:S 2827:n 2818:( 2804:1 2801:+ 2798:n 2793:R 2765:n 2760:S 2747:n 2721:0 2715:3 2709:k 2706:3 2700:n 2697:2 2675:n 2670:R 2658:k 2648:( 2634:6 2629:R 2617:k 2603:) 2600:1 2594:k 2591:4 2588:( 2574:n 2568:n 2560:n 2556:m 2552:m 2548:n 2521:4 2516:R 2492:4 2487:R 2463:2 2458:S 2448:( 2253:2 2249:z 2245:+ 2242:1 2239:= 2236:) 2233:z 2230:+ 2227:0 2224:( 2221:z 2218:+ 2215:1 2212:= 2209:) 2205:l 2202:i 2199:o 2196:f 2193:e 2190:r 2187:t 2183:( 2180:C 2164:C 2158:) 2152:( 2150:C 2147:z 2139:( 2137:C 2129:( 2127:C 2114:) 2108:( 2106:C 2103:z 2095:( 2093:C 2085:( 2083:C 2070:) 2064:( 2062:C 2059:z 2051:( 2049:C 2041:( 2039:C 2008:. 2005:) 2000:0 1996:L 1992:( 1989:C 1986:z 1983:+ 1980:) 1971:L 1967:( 1964:C 1961:= 1958:) 1953:+ 1949:L 1945:( 1942:C 1932:) 1916:O 1896:1 1893:= 1890:) 1887:O 1884:( 1881:C 1858:) 1855:z 1852:( 1849:C 1823:L 1800:+ 1796:L 1763:0 1759:L 1755:, 1746:L 1742:, 1737:+ 1733:L 1700:z 1345:1 1342:= 1339:t 1316:3 1311:R 1281:H 1259:2 1255:K 1251:= 1248:) 1245:1 1242:, 1237:1 1233:K 1229:( 1226:H 1204:3 1199:R 1191:x 1171:x 1168:= 1165:) 1162:0 1159:, 1156:x 1153:( 1150:H 1128:3 1123:R 1099:3 1094:R 1086:) 1083:t 1080:, 1077:x 1074:( 1071:H 1049:3 1044:R 1036:x 1016:] 1013:1 1010:, 1007:0 1004:[ 998:t 976:3 971:R 963:] 960:1 957:, 954:0 951:[ 943:3 938:R 933:: 930:H 904:2 900:K 877:1 873:K 852:} 849:1 843:t 837:0 830:r 827:o 824:f 815:3 810:R 800:3 795:R 790:: 785:t 781:h 777:{ 752:2 748:K 744:= 741:) 736:1 732:K 728:( 725:h 703:3 698:R 688:3 683:R 675:h 647:2 643:K 639:, 634:1 630:K 594:) 591:1 588:( 585:K 582:= 579:) 576:0 573:( 570:K 548:3 543:R 535:] 532:1 529:, 526:0 523:[ 517:K 486:K 425:( 284:( 195:n 189:n 119:3 114:R 90:3 85:E

Index


trivial knot
trefoil knot

topology
mathematical knots
knots
unknot
embedding
circle
Euclidean space
ambient isotopy
complexity
knot invariant
knot polynomials
knot groups
links
have been tabulated
three-dimensional spaces
knot (mathematics)
n-dimensional sphere
History of knot theory

Book of Kells
recording information
tying
Chinese knotting
endless knot
Tibetan Buddhism
Borromean rings

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑