Knowledge

Associative substitution

Source đź“ť

168: 278:
of cobalt(III) ammine halide complexes are deceptive, appearing to be associative but proceeding by an alternative pathway. The hydrolysis of follows second order kinetics: the rate increases linearly with concentration of hydroxide as well as the starting complex. Based on this information, the
311:
and R. G. Wilkins, is a mechanism and rate law in coordination chemistry governing associative substitution reactions of octahedral complexes. It was discovered for substitution by ammonia of a chromium-(III) hexaaqua complex. The key feature of the mechanism is an initial rate-determining
262:(η to η). Nitric oxide typically binds to metals to make a linear MNO arrangement, wherein the nitrogen oxide is said to donate 3e to the metal. In the course of substitution reactions, the MNO unit can bend, converting the 3e linear NO ligand to a 1e bent NO ligand. 241:
In special situations, some ligands participate in substitution reactions leading to associative pathways. These ligands can adopt multiple motifs for binding to the metal, each of which involves a different number of electrons "donated." A classic case is the
179:
In many substitution reactions, well-defined intermediates are not observed, when the rate of such processes are influenced by the nature of the entering ligand, the pathway is called associative interchange, abbreviated
128:
Y that in a subsequent step dissociates one of their ligands. Dissociation of Y results in no detectable net reaction, but dissociation of X results in net substitution, giving the 16e complex MX
209:
pathway. The electrostatically held nucleophile can exchange positions with a ligand in the first coordination sphere, resulting in net substitution. An illustrative process comes from the "
637:
M. Eigen, R. G. Wilkins: Mechanisms of Inorganic Reactions. In: Advances in Chemistry Series. Nr. 49, 1965, S. 55. American Chemical Society, Washington, D. C.
484:
is 0.0202 dmmol for neutral particles at a distance of 200 pm. The result of the rate law is that at high concentrations of Y, the rate approximates k
279:
reactions would appear to proceed via nucleophilic attack of hydroxide at cobalt. Studies show, however, that the hydroxide deprotonates one NH
187:. Representative is the interchange of bulk and coordinated water in . In contrast, the slightly more compact ion exchanges water via the 54:. Intermediate pathways exist between the pure associative and pure dissociative pathways, these are called interchange mechanisms. 716: 683: 667: 662:
R. G. Wilkins "Kinetics and Mechanism of Reactions of Transition Metal Complexes," 2nd Edition, VCH, Weinheim, 1991.
587: 558: 529: 105: 721: 711: 651: 450: 113: 202:
Polycationic complexes tend to form ion pairs with anions and these ion pairs often undergo reactions via the
731: 726: 695:
Atkins, P. W. (2006). Shriver & Atkins inorganic chemistry. 4th ed. Oxford: Oxford University Press
70: 47: 646:
Basolo, F.; Pearson, R. G. "Mechanisms of Inorganic Reactions." John Wiley and Son: New York: 1967.
254:"slips' from pentahapto (η) coordination to trihapto (η). Other pi-ligands behave in this way, e.g. 141: 89:, the associative pathway is desirable because the binding event, and hence the selectivity of the 31: 603:
Helm, Lothar; Merbach, André E. (2005). "Inorganic and Bioinorganic Solvent Exchange Mechanisms".
499:(and thus a faster pre-equilibrium) are obtained for large, oppositely-charged ions in solution. 255: 69:
followed by loss of another ligand. Complexes that undergo associative substitution are either
385:
Leading to the final form of the rate law, using the steady-state approximation (d / dt = 0),
678:
G. L. Miessler and D. A. Tarr “Inorganic Chemistry” 3rd Ed, Pearson/Prentice Hall publisher,
437:
represents the minimum distance of approach between complex and ligand in solution (in cm), N
137: 133: 98: 86: 66: 35: 8: 474: 251: 145: 140:
is negative, which indicates an increase in order in the system. These reactions follow
576: 547: 518: 109: 679: 663: 647: 620: 583: 554: 525: 442: 413:
comes from the Fuoss-Eigen equation proposed independently by Eigen and R. M. Fuoss:
90: 58: 43: 23: 612: 292: 284: 243: 121: 82: 409:
A further insight into the pre-equilibrium step and its equilibrium constant K
340:
The subsequent dissociation to form product is governed by a rate constant k:
104:
Examples of associative mechanisms are commonly found in the chemistry of 16e
705: 308: 149: 74: 288: 624: 446: 51: 39: 259: 220: 62: 320:
and incoming ligand Y. This equilibrium is represented by the constant K
275: 616: 291:, the chloride spontaneously dissociates. This pathway is called the 94: 78: 157: 549:
Kinetics and Mechanism of Reactions of Transition Metal Complexes
210: 247: 27: 213:" (reaction with an anion) of chromium(III) hexaaquo complex: 16:
Process of exchange of ligands between coordination compounds
356:
A simple derivation of the Eigen-Wilkins rate law follows:
167: 473:
Where z is the charge number of each species and ε is the
495:. The Eigen-Fuoss equation shows that higher values of K 287:
of the starting complex, i.e., . In this monovalent
120:) bind the incoming (substituting) ligand Y to form 575: 546: 517: 307:The Eigen-Wilkins mechanism, named after chemists 174: 703: 312:pre-equilibrium to form an encounter complex ML 93:, depends not only on the nature of the metal 515: 573: 488:while at low concentrations the result is kK 449:and T is the reaction temperature. V is the 161: 602: 302: 57:Associative pathways are characterized by 30:. The terminology is typically applied to 236: 197: 73:or contain a ligand that can change its 582:(3rd ed.). Pearson/Prentice Hall. 544: 404: 704: 574:Miessler, G. L.; Tarr, D. A. (2004). 516:Basolo, F.; Pearson, R. G. (1967). 13: 265: 166: 14: 743: 520:Mechanisms of Inorganic Reactions 524:. New York: John Wiley and Son. 144:: the rate of the appearance of 132:Y. The first step is typically 553:(2nd ed.). Weinheim: VCH. 175:Associative interchange pathway 65:to give a discrete, detectable 689: 672: 656: 640: 631: 596: 567: 538: 509: 453:of the ions at that distance: 451:electrostatic potential energy 1: 502: 77:to the metal, e.g. change in 22:describes a pathway by which 7: 46:. The opposite pathway is 10: 748: 71:coordinatively unsaturated 50:, being analogous to the 48:dissociative substitution 717:Organometallic chemistry 20:Associative substitution 545:Wilkins, R. G. (1991). 303:Eigen-Wilkins mechanism 162:Eigen–Wilkins Mechanism 116:. These compounds (MX 722:Coordination chemistry 712:Substitution reactions 237:Special ligand effects 198:Effects of ion pairing 171: 108:metal complexes, e.g. 36:coordination complexes 480:A typical value for K 170: 142:second order kinetics 138:entropy of activation 87:homogeneous catalysis 405:Eigen-Fuoss equation 114:tetrachloroplatinate 38:, but resembles the 732:Reaction mechanisms 578:Inorganic Chemistry 475:vacuum permittivity 316:-Y from reactant ML 283:ligand to give the 226:{, NCS} ⇌ + H 160:is governed by the 727:Chemical reactions 172: 617:10.1021/cr030726o 443:Avogadro constant 274:The rate for the 61:of the attacking 44:organic chemistry 739: 696: 693: 687: 676: 670: 660: 654: 644: 638: 635: 629: 628: 611:(6): 1923–1959. 600: 594: 593: 581: 571: 565: 564: 552: 542: 536: 535: 523: 513: 134:rate determining 124:intermediates MX 97:but also on the 85:ligand (NO). In 81:or bending of a 747: 746: 742: 741: 740: 738: 737: 736: 702: 701: 700: 699: 694: 690: 677: 673: 661: 657: 645: 641: 636: 632: 601: 597: 590: 572: 568: 561: 543: 539: 532: 514: 510: 505: 498: 494: 491: 487: 483: 464: 460: 440: 428: 420: 412: 407: 399: 395: 392: 381: 369: 363: 351: 347: 335: 331: 323: 319: 315: 305: 296: 282: 272: 269: 239: 229: 208: 200: 193: 186: 177: 155: 148:depends on the 131: 127: 122:pentacoordinate 119: 110:Vaska's complex 17: 12: 11: 5: 745: 735: 734: 729: 724: 719: 714: 698: 697: 688: 671: 655: 639: 630: 595: 588: 566: 559: 537: 530: 507: 506: 504: 501: 496: 492: 489: 485: 481: 471: 470: 462: 458: 438: 431: 430: 426: 418: 410: 406: 403: 402: 401: 397: 393: 390: 383: 382: 379: 376: 372: 371: 367: 364: 361: 354: 353: 349: 345: 338: 337: 333: 329: 321: 317: 313: 304: 301: 294: 285:conjugate base 280: 271: 267: 264: 244:indenyl effect 238: 235: 234: 233: 232: 231: 227: 224: 206: 199: 196: 191: 184: 176: 173: 153: 129: 125: 117: 83:nitrogen oxide 32:organometallic 15: 9: 6: 4: 3: 2: 744: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 709: 707: 692: 685: 684:0-13-035471-6 681: 675: 669: 668:1-56081-125-0 665: 659: 653: 649: 643: 634: 626: 622: 618: 614: 610: 606: 599: 591: 589:0-13-035471-6 585: 580: 579: 570: 562: 560:1-56081-125-0 556: 551: 550: 541: 533: 531:0-471-05545-X 527: 522: 521: 512: 508: 500: 478: 476: 468: 456: 455: 454: 452: 448: 444: 436: 424: 416: 415: 414: 388: 387: 386: 377: 374: 373: 365: 359: 358: 357: 343: 342: 341: 327: 326: 325: 310: 309:Manfred Eigen 300: 298: 297:1cB mechanism 290: 286: 277: 270:1cB mechanism 263: 261: 258:(η to η) and 257: 253: 249: 245: 225: 222: 218: 217: 216: 215: 214: 212: 205: 195: 190: 183: 169: 165: 163: 159: 151: 150:concentration 147: 143: 139: 135: 123: 115: 111: 107: 106:square planar 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 55: 53: 49: 45: 41: 40:Sn2 mechanism 37: 33: 29: 25: 21: 691: 674: 658: 642: 633: 608: 604: 598: 577: 569: 548: 540: 519: 511: 479: 472: 466: 447:gas constant 434: 432: 422: 408: 384: 355: 339: 306: 273: 246:in which an 240: 203: 201: 188: 181: 178: 136:. Thus, the 103: 67:intermediate 56: 26:interchange 19: 18: 445:, R is the 260:naphthalene 156:and Y. The 63:nucleophile 52:Sn1 pathway 706:Categories 652:047105545X 503:References 429:exp(-V/RT) 425:/3000) x N 276:hydrolysis 252:reversibly 223:⇌ {, NCS} 605:Chem. Rev 389:rate = kK 378:rate = kK 348:-Y → ML 99:substrate 79:hapticity 24:compounds 625:15941206 396:/ (1 + K 375:rate = k 332:+ Y ⇌ ML 158:rate law 95:catalyst 91:reaction 441:is the 352:Y + L 250:ligand 248:indenyl 211:anation 146:product 75:bonding 59:binding 28:ligands 682:  666:  650:  623:  586:  557:  528:  433:Where 289:cation 457:V = z 421:= (4Ď€ 256:allyl 152:of MX 680:ISBN 664:ISBN 648:ISBN 621:PMID 584:ISBN 555:ISBN 526:ISBN 465:e/4Ď€ 112:and 34:and 613:doi 609:105 493:tot 486:tot 394:tot 368:tot 360:= K 221:SCN 219:+ 42:in 708:: 619:. 607:. 477:. 370:- 366:= 344:ML 336:-Y 328:ML 324:: 299:. 194:. 101:. 686:. 627:. 615:: 592:. 563:. 534:. 497:E 490:E 482:E 469:ε 467:a 463:2 461:z 459:1 439:A 435:a 427:A 423:a 419:E 417:K 411:E 400:) 398:E 391:E 380:E 362:E 350:5 346:6 334:6 330:6 322:E 318:6 314:6 295:N 293:S 281:3 268:N 266:S 230:O 228:2 207:a 204:I 192:d 189:I 185:a 182:I 164:. 154:4 130:3 126:4 118:4

Index

compounds
ligands
organometallic
coordination complexes
Sn2 mechanism
organic chemistry
dissociative substitution
Sn1 pathway
binding
nucleophile
intermediate
coordinatively unsaturated
bonding
hapticity
nitrogen oxide
homogeneous catalysis
reaction
catalyst
substrate
square planar
Vaska's complex
tetrachloroplatinate
pentacoordinate
rate determining
entropy of activation
second order kinetics
product
concentration
rate law
Eigen–Wilkins Mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑