Knowledge

SN2 reaction

Source 📝

260: 299: 390: 223: 790: 416:: nucleophilicity increases with increasing negative charge and decreasing electronegativity. For example, OH is a better nucleophile than water, and I is a better nucleophile than Br (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases up a column of the periodic table as there is no hydrogen bonding between the solvent and nucleophile; in this case nucleophilicity mirrors basicity. I would therefore be a weaker nucleophile than Br because it is a weaker base. Verdict - A strong/anionic nucleophile always favours S 351: 591: 31: 572: 193: 734:
2 not possible) by Schleyer and co-workers, the use of azide (an excellent nucleophile but very poor leaving group) by Weiner and Sneen, the development of sulfonate leaving groups (non-nucleophilic good leaving groups), and the demonstration of significant experimental problems in the initial claim
704:
Many reactions studied are solvolysis reactions where a solvent molecule (often an alcohol) is the nucleophile. While still a second order reaction mechanistically, the reaction is kinetically first order as the concentration of the nucleophile–the solvent molecule, is effectively constant during
1416:
and because it requires charged reaction products for detection the nucleophile is fitted with an additional sulfonate anionic group, non-reactive and well separated from the other anion. The product ratio of substitution and elimination product can be measured from the intensity their relative
586:
2 reaction in which the leaving group can also act as a nucleophile. In this reaction, the substrate has a halogen atom exchanged with another halogen. As the negative charge is more-or-less stabilized on both halides, the reaction occurs at equilibrium.
1323:
The 2-Adamantyl System, a Standard for Limiting Solvolysis in a Secondary Substrate J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M Harris, R. C. Bingham, D. J. Raber, R. E. Hill, P. v. R. Schleyer, J. Am. Chem. Soc.,; 1970; 92, pp 1240-42 (Article); doi:
729:
1 mechanism invariably involve the use of bromide (or other good nucleophile) as the leaving group have confused the understanding of alkyl nucleophilic substitution reactions at secondary carbons for 80 years. Work with the 2-adamantyl system
295:. For example, 1-bromo-1-fluoroethane can undergo nucleophilic attack to form 1-fluoroethan-1-ol, with the nucleophile being an HO group. In this case, if the reactant is levorotatory, then the product would be dextrorotatory, and vice versa. 338:
at the central carbon, i.e. those that do not have as much sterically hindering substituents nearby. Methyl and primary substrates react the fastest, followed by secondary substrates. Tertiary substrates do not react via the
712:
2 reaction on a substrate molecule. If the substrate is chiral, this inverts the configuration of the substrate before solvolysis, leading to a racemized product–the product that would be expected from an
377:
between the reaction centre and the adjacent pi system stabilizes the transition state. Because they destabilize the positive charge in the carbocation intermediate, electron-withdrawing groups favor the
1300:
W.A. Cowdrey; E.D. Hughes; C.K. Ingold; S. Masterman; A.D. Scott (1937). "Relation of Steric orientation to Mechanism in Substitution Involving Halogen Atoms and Simple or Substituted Hydroxyl Groups".
739:
1 mechanism in the solvolysis of optically active 2-bromooctane by Hughes et al. have demonstrated conclusively that secondary substrates go exclusively (except in unusual but predictable cases) by the
1333:
A Clarification of the Mechanism of Solvolysis of 2-Octyl Sulfonates. Stereochemical Considerations; H. Weiner, R. A. Sneen, J. Am. Chem. Soc.,; 1965; 87 pp 287-91; (Article) doi: 10.1021/ja01080a026
634:, furnish a weaker nucleophile. In contrast, polar aprotic solvents can only weakly interact with the nucleophile, and thus, are to a lesser extent able to reduce the strength of the nucleophile. 1342:
A Clarification of the Mechanism of Solvolysis of 2-Octyl Sulfonates. Kinetic Considerations; H. Weiner, R. A. Sneen, J. Am. Chem. Soc.; 1965; 87 pp 292-96; (Article) doi: 10.1021/ja01080a027
602:
The solvent affects the rate of reaction because solvents may or may not surround a nucleophile, thus hindering or not hindering its approach to the carbon atom. Polar aprotic solvents, like
229:
To achieve optimal orbital overlap, the nucleophile attacks 180° relative to the leaving group, resulting in the leaving group being pushed off the opposite side and the product formed with
630:, etc. In parallel, solvation also has a significant impact on the intrinsic strength of the nucleophile, in which strong interactions between solvent and the nucleophile, found for polar 412:, on the other hand, is a strong base, but a poor nucleophile, because of its three methyl groups hindering its approach to the carbon. Nucleophile strength is also affected by charge and 815:
substrate, isopropyl bromide reacts with 55% substitution. In general, gas phase reactions and solution phase reactions of this type follow the same trends, even though in the first,
181:(often denoted X). The formation of the C–Nu bond, due to attack by the nucleophile (denoted Nu), occurs concertedly with the breakage of the C–X bond. The reaction occurs through a 298: 843:. When the chloride ions have sufficient velocity, the initial collision of it with the methyl iodide molecule causes the methyl iodide to spin around once before the actual S 614:
to the nucleophile, hindering it from attacking the carbon with the leaving group. A polar aprotic solvent with low dielectric constant or a hindered dipole end will favour S
1351:
Homogeneous Hydrolysis and Alcoholysis of β-n-Octyl halides, E. D. Hughes, C. K. Ingold, S. Masterman, J. Chem. Soc.; 1937; pp 1196–1201; (Article) doi: 10.1039/JR9370001196
721:
2 rate constant 100-250 times higher than the rate constant for ethanol. Thus, after only a few percent solvolysis of an enantiospecific substrate, it becomes racemic.
811:
bromide, substitution is disfavored and elimination is the predominant reaction. Other factors favoring elimination are the strength of the base. With the less basic
510:), serve as good anionic leaving groups because electronegativity stabilizes additional electron density; the fluoride exception is due to its strong bond to carbon. 768:. This pathway is favored with sterically hindered nucleophiles. Elimination reactions are usually favoured at elevated temperatures because of increased 207:
between the nucleophile and substrate. The reaction occurs only when the occupied lone pair orbital of the nucleophile donates electrons to the unfilled
259: 1290:
1 Involvement in the Solvolysis of Secondary Alkyl Compounds, T. J. Murphy, J. Chem. Educ.; 2009; 86(4) pp 519-24; (Article) doi: 10.1021/ed041p678
1031: 327:
2 reaction to occur more quickly, the nucleophile must easily access the sigma antibonding orbital between the central carbon and leaving group.
1512: 1959: 700:
1 reaction. There are two factors which complicate determining the mechanism of nucleophilic substitution reactions at secondary carbons:
1429:
J. Mikosch, S. Trippel, C. Eichhorn, R. Otto, U. Lourderaj, J. X. Zhang, W. L. Hase, M. Weidemüller, and R. Wester Science 11 January
139:, is that the displacement of the leaving group, which is the rate-determining step, is separate from the nucleophilic attack in S 789: 405:
anion, for example, is both a strong base and nucleophile because it is a methyl nucleophile, and is thus very much unhindered.
1361: 486:), are good examples because of their positive charge when bonded to the carbon center prior to nucleophilic attack. Halides ( 1238:
Vermeeren, Pascal; Hansen, Thomas; Jansen, Paul; Swart, Marcel; Hamlin, Trevor A.; Bickelhaupt, F. Matthias (December 2020).
1060: 1007: 940: 717:
1 mechanism. In the case of a bromide leaving group in alcoholic solvent Cowdrey et al. have shown that bromide can have an S
215:. Throughout the course of the reaction, a p orbital forms at the reaction center as the result of the transition from the 764:: the incoming anion can act as a base rather than as a nucleophile, abstracting a proton and leading to formation of the 692:
It has been shown that except in uncommon (but predictable cases) primary and secondary substrates go exclusively by the S
1724: 1601: 708:
In reactions where the leaving group is also a good nucleophile (bromide for instance) the leaving group can perform an S
1558: 881: 343:
2 pathway, as the greater steric hindrance between the nucleophile and nearby groups of the substrate will leave the S
1865: 1505: 1077:"Nucleophilic Substitution (SN2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent" 871: 436:
that comes from breaking its bond with the carbon center. This leaving group ability trend corresponds well to the
1773: 1768: 1578: 1473: 876: 19:"SN2" redirects here. For slush nitrogen, the mixture of solid and liquid nitrogen sometimes abbreviated as SN 1938: 1933: 1389: 208: 382:
2 reaction. Electron-donating groups favor leaving-group displacement and are more likely to react via the S
1964: 1498: 1050: 57:
yielding dimethylsulfonium. Note that the attacking group attacks from the backside of the leaving group
1903: 1593: 437: 253: 1240:"A Unified Framework for Understanding Nucleophilicity and Protophilicity in the S N 2/E2 Competition" 1134:"Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects" 1630: 1530: 116: 1860: 315:
The four factors that affect the rate of the reaction, in the order of decreasing importance, are:
151: 1189:
Hansen, Thomas; Roozee, Jasper C.; Bickelhaupt, F. Matthias; Hamlin, Trevor A. (4 February 2022).
681:
2 the nucleophile forces off the leaving group in the limiting step. In other words, the rate of S
1908: 1709: 1413: 861: 406: 280: 1663: 389: 1893: 1825: 1683: 1673: 904: 651: 647: 369:
1, allylic and benzylic carbocations are stabilized by delocalizing the positive charge. In S
222: 170: 124: 89: 1470:
Surprise From SN2 Snapshots Ion velocity measurements unveil additional unforeseen mechanism
1888: 1616: 866: 761: 579: 230: 108: 34: 323:
The substrate plays the most important part in determining the rate of the reaction. For S
8: 1898: 1830: 1815: 1758: 306:
2 mechanism of 1-bromo-1-fluoroethane with one of the carbon atoms being a chiral centre.
186: 155: 1481: 654:
depends on the nucleophile concentration, as well as the concentration of substrate, .
1923: 1693: 1522: 1264: 1239: 1215: 1190: 1166: 1133: 1109: 1076: 1025: 216: 97: 73: 1132:
Hamlin, Trevor A.; van Beek, Bas; Wolters, Lando P.; Bickelhaupt, F. Matthias (2018).
1918: 1913: 1875: 1820: 1739: 1719: 1655: 1269: 1220: 1171: 1153: 1114: 1096: 1056: 1013: 1003: 936: 781: 677:
1 reaction the nucleophile attacks after the rate-limiting step is over, whereas in S
623: 619: 413: 374: 77: 689:
2 reaction rate depends on the concentration of both the substrate and nucleophile.
1850: 1799: 1753: 1454: 1434: 1397: 1386:
Gas Phase Studies of the Competition between Substitution and Elimination Reactions
1306: 1259: 1251: 1210: 1202: 1161: 1145: 1104: 1088: 971: 804: 433: 350: 292: 288: 182: 705:
the reaction. This type of reaction is often called a pseudo first order reaction.
1928: 1840: 1789: 962: 816: 603: 284: 174: 975: 252:. Reactions such as this, with an alkoxide as the nucleophile, are known as the 30: 1635: 1624: 631: 607: 590: 335: 24: 1299: 1017: 957: 1953: 1883: 1855: 1763: 1714: 1688: 1157: 1100: 856: 836: 800: 753: 658: 611: 401:
Like the substrate, steric hindrance affects the nucleophile's strength. The
212: 204: 93: 1490: 1458: 1438: 1206: 1835: 1641: 1538: 1273: 1255: 1224: 1175: 1149: 1118: 1092: 997: 886: 777: 276: 132: 42: 1794: 1729: 1310: 1046: 685:
1 reactions depend only on the concentration of the substrate while the S
518: 120: 85: 50: 514: 248:
group as the nucleophile and a halide as the leaving group, forming an
237: 1401: 1362:"Elimination Reactions Are Favored By Heat — Master Organic Chemistry" 772:. This effect can be demonstrated in the gas-phase reaction between a 571: 1845: 803:, the reaction product is predominantly the substitution product. As 773: 550: 542: 402: 245: 167: 150:
2 reaction can be considered as an organic-chemistry analogue of the
123:
mechanism, which means both the reacting species are involved in the
1075:
Hamlin, Trevor A.; Swart, Marcel; Bickelhaupt, F. Matthias (2018).
812: 808: 534: 526: 505: 487: 468: 769: 627: 558: 493: 178: 1131: 1052:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
725:
The examples in textbooks of secondary substrates going by the S
432:
2 reactions. A good leaving group must be able to stabilize the
958:"Synthesis of the Bioherbicidal Fungus Metabolite Macrocidin A" 765: 499: 476: 192: 935:(2nd ed.). Oxford: Oxford University Press. p. 330. 131:
2 from the other major type of nucleophilic substitution, the
1748: 1188: 1044: 464: 310: 249: 177:, stable leaving group attached to it, which is frequently a 92:-hybridised carbon atom via a backside attack, all while the 1453:
John I. Brauman (11 January 2008) Science 319 (5860), 168.
835:
observed in a gas-phase reaction between chloride ions and
513:
Leaving group reactivity of alcohols can be increased with
1237: 1191:"How Solvation Influences the S N 2 versus E2 Competition" 618:
2 manner of nucleophilic substitution reaction. Examples:
1568: 931:
Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2012).
895: 357:
Substrates with adjacent pi C=C systems can favor both S
827:
A development attracting attention in 2008 concerns a S
240:, involves an intramolecular ring closing step via an S 1074: 996:
CURTIS, CLIFF. MURGATROYD, JASON. SCOTT, DAVE (2019).
1482:
http://pubsapp.acs.org/cen/news/86/i02/8602notw1.html
956:
Hasse, Robert; Schobert, Rainer (November 28, 2016).
428:
Good leaving groups on the substrate lead to faster S
236:
For example, the synthesis of macrocidin A, a fungal
999:
Edexcel international a level chemistry student book
930: 334:
2 occurs more quickly with substrates that are more
807:around the electrophilic center increases, as with 606:, are better solvents for this reaction than polar 696:2 mechanism while tertiary substrates go via the S 460:value, the faster the leaving group is displaced. 1951: 1055:(6th ed.), New York: Wiley-Interscience, 926: 924: 922: 920: 1520: 1506: 955: 233:of tetrahedral geometry at the central atom. 1030:: CS1 maint: multiple names: authors list ( 917: 219:of the reactants to those of the products. 1513: 1499: 1427:Imaging Nucleophilic Substitution Dynamics 311:Factors affecting the rate of the reaction 1263: 1214: 1165: 1108: 793:Competition experiment between SN2 and E2 463:Leaving groups that are neutral, such as 446:of the leaving group's conjugate acid (p 420:2 manner of nucleophillic substitution. 29: 822: 96:detaches from the reaction center in a 1952: 1539:Unimolecular nucleophilic substitution 995: 847:2 displacement mechanism takes place. 665:This is a key difference between the S 1549:Bimolecular nucleophilic substitution 1494: 1451:PERSPECTIVES CHEMISTRY: Not So Simple 271:If the substrate that is undergoing S 166:The reaction most often occurs at an 161: 62:Bimolecular nucleophilic substitution 637: 1960:Nucleophilic substitution reactions 1602:Electrophilic aromatic substitution 610:because polar protic solvents will 211:between the central carbon and the 115:" indicates that the reaction is a 13: 1569:Nucleophilic internal substitution 1559:Nucleophilic aromatic substitution 882:Nucleophilic aromatic substitution 788: 589: 570: 388: 349: 297: 258: 221: 191: 14: 1976: 1396:; 36(11) pp 848 - 857; (Article) 747: 189:and approximately sp-hybridised. 119:, and "2" that it proceeds via a 1195:The Journal of Organic Chemistry 872:Neighbouring group participation 839:with a special technique called 423: 291:) may occur; this is called the 185:in which the reaction center is 1725:Lindemann–Hinshelwood mechanism 1474:Chemical & Engineering News 1463: 1444: 1420: 1406: 1379: 1354: 1345: 1336: 1327: 1317: 1293: 541:). Poor leaving groups include 263:Synthesis of macrocidin A via S 1774:Outer sphere electron transfer 1769:Inner sphere electron transfer 1579:Nucleophilic acyl substitution 1366:www.masterorganicchemistry.com 1280: 1244:Chemistry – A European Journal 1231: 1182: 1138:Chemistry – A European Journal 1125: 1068: 1038: 989: 949: 877:Nucleophilic acyl substitution 841:crossed molecular beam imaging 396: 203:2 reaction can be viewed as a 1: 1939:Diffusion-controlled reaction 1390:Accounts of Chemical Research 910: 100:(i.e. simultaneous) fashion. 35:Ball-and-stick representation 318: 7: 1594:Electrophilic substitutions 976:10.1021/acs.orglett.6b03240 850: 347:1 reaction to occur first. 10: 1981: 1904:Energy profile (chemistry) 1866:More O'Ferrall–Jencks plot 1531:Nucleophilic substitutions 597: 254:Williamson ether synthesis 18: 16:Organic chemistry reaction 1934:Michaelis–Menten kinetics 1874: 1808: 1782: 1738: 1702: 1654: 1615: 1592: 1529: 1480:Volume 86, Number 2 p. 9 117:nucleophilic substitution 1861:Potential energy surface 1740:Electron/Proton transfer 1625:Unimolecular elimination 504:, with the exception of 152:associative substitution 1909:Transition state theory 1710:Intramolecular reaction 1636:Bimolecular elimination 1459:10.1126/science.1152387 1439:10.1126/science.1150238 1414:electrospray ionization 1207:10.1021/acs.joc.1c02354 862:Christopher Kelk Ingold 88:forms a new bond to an 1703:Unimolecular reactions 1664:Electrophilic addition 1412:The technique used is 1256:10.1002/chem.202003831 1150:10.1002/chem.201706075 1093:10.1002/cphc.201701363 794: 780:taking place inside a 673:2 mechanisms. In the S 594: 575: 393: 354: 307: 268: 226: 209:σ* antibonding orbital 196: 173:carbon center with an 127:. What distinguishes S 58: 1894:Rate-determining step 1826:Reactive intermediate 1684:Free-radical addition 1674:Nucleophilic addition 1617:Elimination reactions 1002:. : EDEXCEL Limited. 905:Substitution reaction 792: 652:rate-determining step 593: 574: 392: 353: 336:sterically accessible 301: 262: 225: 205:HOMO–LUMO interaction 195: 125:rate-determining step 111:of the mechanism: "S 84:2 reaction, a strong 33: 1889:Equilibrium constant 1311:10.1039/JR9370001252 867:Finkelstein reaction 833:roundabout mechanism 823:Roundabout mechanism 580:Finkelstein reaction 279:, then inversion of 109:Hughes-Ingold symbol 1965:Reaction mechanisms 1899:Reaction coordinate 1831:Radical (chemistry) 1816:Elementary reaction 1759:Grotthuss mechanism 1523:reaction mechanisms 1324:10.1021/ja00478a031 1250:(67): 15538–15548. 1045:Smith, Michael B.; 756:taking place with S 156:inorganic chemistry 1924:Arrhenius equation 1694:Oxidative addition 1656:Addition reactions 795: 595: 576: 453:); the lower its p 394: 355: 308: 269: 244:2 reaction with a 227: 217:molecular orbitals 197: 162:Reaction mechanism 154:from the field of 76:that is common in 74:reaction mechanism 59: 1947: 1946: 1919:Activated complex 1914:Activation energy 1876:Chemical kinetics 1821:Reaction dynamics 1720:Photodissociation 1402:10.1021/ar020042n 1144:(22): 5927–5938. 1087:(11): 1315–1330. 1062:978-0-471-72091-1 1009:978-1-292-24472-3 970:(24): 6352–6355. 942:978-0-19-927029-3 933:Organic chemistry 782:mass spectrometer 638:Reaction kinetics 624:dimethylformamide 620:dimethylsulfoxide 414:electronegativity 365:2 reactions. In S 275:2 reaction has a 267:2 etherification. 78:organic chemistry 1972: 1851:Collision theory 1800:Matrix isolation 1754:Harpoon reaction 1631:E1cB-elimination 1515: 1508: 1501: 1492: 1491: 1485: 1484:, video included 1467: 1461: 1448: 1442: 1424: 1418: 1410: 1404: 1383: 1377: 1376: 1374: 1372: 1358: 1352: 1349: 1343: 1340: 1334: 1331: 1325: 1321: 1315: 1314: 1297: 1291: 1284: 1278: 1277: 1267: 1235: 1229: 1228: 1218: 1201:(3): 1805–1813. 1186: 1180: 1179: 1169: 1129: 1123: 1122: 1112: 1072: 1066: 1065: 1042: 1036: 1035: 1029: 1021: 993: 987: 986: 984: 982: 953: 947: 946: 928: 819:are eliminated. 805:steric hindrance 642:The rate of an S 567: 556: 548: 540: 532: 524: 508: 502: 496: 490: 485: 474: 434:electron density 373:2, however, the 293:Walden inversion 289:optical activity 183:transition state 107:2 refers to the 1980: 1979: 1975: 1974: 1973: 1971: 1970: 1969: 1950: 1949: 1948: 1943: 1929:Eyring equation 1870: 1841:Stereochemistry 1804: 1790:Solvent effects 1778: 1734: 1698: 1679: 1669: 1650: 1645: 1611: 1607: 1588: 1584: 1574: 1564: 1554: 1544: 1525: 1519: 1489: 1488: 1468: 1464: 1449: 1445: 1425: 1421: 1417:molecular ions. 1411: 1407: 1384: 1380: 1370: 1368: 1360: 1359: 1355: 1350: 1346: 1341: 1337: 1332: 1328: 1322: 1318: 1298: 1294: 1289: 1285: 1281: 1236: 1232: 1187: 1183: 1130: 1126: 1073: 1069: 1063: 1043: 1039: 1023: 1022: 1010: 994: 990: 980: 978: 963:Organic Letters 954: 950: 943: 929: 918: 913: 899: 890: 853: 846: 830: 825: 817:solvent effects 760:2 reactions is 759: 750: 743: 738: 733: 728: 720: 716: 711: 699: 695: 688: 684: 680: 676: 672: 668: 645: 640: 632:protic solvents 617: 608:protic solvents 604:tetrahydrofuran 600: 585: 566: 562: 554: 546: 538: 530: 522: 506: 500: 494: 488: 484: 480: 472: 459: 452: 444: 431: 426: 419: 399: 385: 381: 372: 368: 364: 360: 346: 342: 333: 326: 321: 313: 305: 285:stereochemistry 274: 266: 243: 202: 187:pentacoordinate 175:electronegative 164: 149: 142: 136: 130: 114: 106: 83: 72:) is a type of 69: 54: 46: 40: 28: 22: 17: 12: 11: 5: 1978: 1968: 1967: 1962: 1945: 1944: 1942: 1941: 1936: 1931: 1926: 1921: 1916: 1911: 1906: 1901: 1896: 1891: 1886: 1880: 1878: 1872: 1871: 1869: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1812: 1810: 1809:Related topics 1806: 1805: 1803: 1802: 1797: 1792: 1786: 1784: 1783:Medium effects 1780: 1779: 1777: 1776: 1771: 1766: 1761: 1756: 1751: 1745: 1743: 1736: 1735: 1733: 1732: 1727: 1722: 1717: 1712: 1706: 1704: 1700: 1699: 1697: 1696: 1691: 1686: 1681: 1677: 1671: 1667: 1660: 1658: 1652: 1651: 1649: 1648: 1643: 1639: 1633: 1628: 1621: 1619: 1613: 1612: 1610: 1609: 1605: 1598: 1596: 1590: 1589: 1587: 1586: 1582: 1576: 1572: 1566: 1562: 1556: 1552: 1546: 1542: 1535: 1533: 1527: 1526: 1518: 1517: 1510: 1503: 1495: 1487: 1486: 1462: 1443: 1419: 1405: 1388:Scott Gronert 1378: 1353: 1344: 1335: 1326: 1316: 1292: 1287: 1279: 1230: 1181: 1124: 1067: 1061: 1037: 1008: 988: 948: 941: 915: 914: 912: 909: 908: 907: 902: 897: 893: 888: 884: 879: 874: 869: 864: 859: 852: 849: 844: 828: 824: 821: 797: 796: 762:E2 elimination 757: 749: 748:E2 competition 746: 741: 736: 731: 726: 723: 722: 718: 714: 709: 706: 697: 693: 686: 682: 678: 674: 670: 666: 663: 662: 646:2 reaction is 643: 639: 636: 615: 599: 596: 583: 564: 482: 457: 450: 442: 429: 425: 422: 417: 398: 395: 383: 379: 370: 366: 362: 358: 344: 340: 331: 324: 320: 317: 312: 309: 303: 272: 264: 241: 200: 163: 160: 147: 140: 134: 128: 112: 104: 81: 67: 52: 44: 41:2 reaction of 38: 25:slush nitrogen 20: 15: 9: 6: 4: 3: 2: 1977: 1966: 1963: 1961: 1958: 1957: 1955: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1884:Rate equation 1882: 1881: 1879: 1877: 1873: 1867: 1864: 1862: 1859: 1857: 1856:Arrow pushing 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1813: 1811: 1807: 1801: 1798: 1796: 1793: 1791: 1788: 1787: 1785: 1781: 1775: 1772: 1770: 1767: 1765: 1764:Marcus theory 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1746: 1744: 1741: 1737: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1715:Isomerization 1713: 1711: 1708: 1707: 1705: 1701: 1695: 1692: 1690: 1689:Cycloaddition 1687: 1685: 1682: 1675: 1672: 1665: 1662: 1661: 1659: 1657: 1653: 1647: 1640: 1637: 1634: 1632: 1629: 1626: 1623: 1622: 1620: 1618: 1614: 1603: 1600: 1599: 1597: 1595: 1591: 1580: 1577: 1570: 1567: 1560: 1557: 1550: 1547: 1540: 1537: 1536: 1534: 1532: 1528: 1524: 1516: 1511: 1509: 1504: 1502: 1497: 1496: 1493: 1483: 1479: 1475: 1472:Carmen Drahl 1471: 1466: 1460: 1456: 1452: 1447: 1440: 1436: 1433:319: 183-186 1432: 1428: 1423: 1415: 1409: 1403: 1399: 1395: 1391: 1387: 1382: 1367: 1363: 1357: 1348: 1339: 1330: 1320: 1312: 1308: 1305:: 1252–1271. 1304: 1303:J. Chem. Soc. 1296: 1283: 1275: 1271: 1266: 1261: 1257: 1253: 1249: 1245: 1241: 1234: 1226: 1222: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1185: 1177: 1173: 1168: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1128: 1120: 1116: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1071: 1064: 1058: 1054: 1053: 1048: 1041: 1033: 1027: 1019: 1015: 1011: 1005: 1001: 1000: 992: 977: 973: 969: 965: 964: 959: 952: 944: 938: 934: 927: 925: 923: 921: 916: 906: 903: 901: 894: 892: 885: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 857:Arrow pushing 855: 854: 848: 842: 838: 837:methyl iodide 834: 820: 818: 814: 810: 806: 802: 801:ethyl bromide 791: 787: 786: 785: 783: 779: 778:alkyl bromide 776:and a simple 775: 771: 767: 763: 755: 754:side reaction 745: 744:2 mechanism. 707: 703: 702: 701: 690: 660: 657: 656: 655: 653: 649: 635: 633: 629: 625: 621: 613: 612:hydrogen bond 609: 605: 592: 588: 581: 573: 569: 560: 552: 544: 536: 528: 520: 516: 511: 509: 503: 497: 491: 478: 470: 466: 461: 456: 449: 445: 441: 435: 424:Leaving group 421: 415: 411: 409: 404: 391: 387: 376: 352: 348: 337: 328: 316: 300: 296: 294: 290: 286: 282: 281:configuration 278: 277:chiral centre 261: 257: 255: 251: 247: 239: 234: 232: 224: 220: 218: 214: 213:leaving group 210: 206: 194: 190: 188: 184: 180: 176: 172: 169: 159: 157: 153: 144: 138: 126: 122: 118: 110: 101: 99: 95: 94:leaving group 91: 87: 79: 75: 71: 63: 56: 48: 36: 32: 26: 1836:Molecularity 1548: 1477: 1476:January 14, 1469: 1465: 1450: 1446: 1441:(in Reports) 1430: 1426: 1422: 1408: 1393: 1385: 1381: 1369:. Retrieved 1365: 1356: 1347: 1338: 1329: 1319: 1302: 1295: 1286:Absence of S 1282: 1247: 1243: 1233: 1198: 1194: 1184: 1141: 1137: 1127: 1084: 1081:ChemPhysChem 1080: 1070: 1051: 1047:March, Jerry 1040: 998: 991: 981:December 30, 979:. Retrieved 967: 961: 951: 932: 840: 832: 826: 798: 751: 724: 691: 664: 648:second order 641: 601: 577: 512: 462: 454: 447: 439: 427: 407: 400: 356: 329: 322: 314: 270: 235: 228: 198: 165: 145: 102: 65: 61: 60: 1795:Cage effect 1730:RRKM theory 1646:elimination 397:Nucleophile 386:1 pathway. 375:conjugation 121:bimolecular 86:nucleophile 1954:Categories 1018:1084791738 911:References 891:1 reaction 517:, such as 515:sulfonates 238:metabolite 137:1 reaction 103:The name S 80:. In the S 1846:Catalysis 1742:reactions 1158:1521-3765 1101:1439-7641 1026:cite book 774:phenolate 752:A common 650:, as the 551:alkoxides 543:hydroxide 410:-Butoxide 403:methoxide 319:Substrate 246:phenoxide 231:inversion 168:aliphatic 98:concerted 1371:13 April 1274:32866336 1225:34932346 1176:29457865 1119:29542853 1049:(2007), 851:See also 813:benzoate 809:isobutyl 582:is one S 535:mesylate 527:triflate 519:tosylate 469:alcohols 37:of the S 1265:7756690 1216:8822482 1167:5947303 1110:6001448 770:entropy 735:of an S 669:1 and S 628:acetone 598:Solvent 557:), and 533:), and 475:), and 361:1 and S 179:halogen 1521:Basic 1272:  1262:  1223:  1213:  1174:  1164:  1156:  1117:  1107:  1099:  1059:  1016:  1006:  939:  766:alkene 559:amides 498:, and 477:amines 23:, see 1749:Redox 1585:Acyl) 799:With 465:water 250:ether 199:The S 146:The S 49:with 1638:(E2) 1627:(E1) 1478:2008 1431:2008 1394:2003 1373:2018 1270:PMID 1221:PMID 1172:PMID 1154:ISSN 1115:PMID 1097:ISSN 1057:ISBN 1032:link 1014:OCLC 1004:ISBN 983:2023 937:ISBN 578:The 481:R−NH 473:R−OH 408:tert 287:and 1608:Ar) 1565:Ar) 1455:doi 1435:doi 1398:doi 1307:doi 1260:PMC 1252:doi 1211:PMC 1203:doi 1162:PMC 1146:doi 1105:PMC 1089:doi 972:doi 661:= k 568:). 549:), 539:OMs 531:OTf 525:), 523:OTs 143:1. 1956:: 1676:(A 1666:(A 1604:(S 1581:(S 1575:i) 1571:(S 1561:(S 1555:2) 1551:(S 1545:1) 1541:(S 1392:; 1364:. 1268:. 1258:. 1248:26 1246:. 1242:. 1219:. 1209:. 1199:87 1197:. 1193:. 1170:. 1160:. 1152:. 1142:24 1140:. 1136:. 1113:. 1103:. 1095:. 1085:19 1083:. 1079:. 1028:}} 1024:{{ 1012:. 968:18 966:. 960:. 919:^ 831:2 784:: 730:(S 626:, 622:, 563:NR 555:OR 547:OH 495:Br 492:, 489:Cl 467:, 458:aH 451:aH 256:. 171:sp 158:. 90:sp 51:CH 47:SH 43:CH 1680:) 1678:N 1670:) 1668:E 1644:i 1642:E 1606:E 1583:N 1573:N 1563:N 1553:N 1543:N 1514:e 1507:t 1500:v 1457:: 1437:: 1400:: 1375:. 1313:. 1309:: 1288:N 1276:. 1254:: 1227:. 1205:: 1178:. 1148:: 1121:. 1091:: 1034:) 1020:. 985:. 974:: 945:. 900:i 898:N 896:S 889:N 887:S 845:N 829:N 758:N 742:N 740:S 737:N 732:N 727:N 719:N 715:N 713:S 710:N 698:N 694:N 687:N 683:N 679:N 675:N 671:N 667:N 659:r 644:N 616:N 584:N 565:2 561:( 553:( 545:( 537:( 529:( 521:( 507:F 501:I 483:2 479:( 471:( 455:K 448:K 443:a 440:K 438:p 430:N 418:N 384:N 380:N 378:S 371:N 367:N 363:N 359:N 345:N 341:N 339:S 332:N 330:S 325:N 304:N 302:S 283:( 273:N 265:N 242:N 201:N 148:N 141:N 135:N 133:S 129:N 113:N 105:N 82:N 70:2 68:N 66:S 64:( 55:I 53:3 45:3 39:N 27:. 21:2

Index

slush nitrogen

Ball-and-stick representation
CH3SH
CH3I
reaction mechanism
organic chemistry
nucleophile
sp
leaving group
concerted
Hughes-Ingold symbol
nucleophilic substitution
bimolecular
rate-determining step
SN1 reaction
associative substitution
inorganic chemistry
aliphatic
sp
electronegative
halogen
transition state
pentacoordinate

HOMO–LUMO interaction
σ* antibonding orbital
leaving group
molecular orbitals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.